1
|
Tao H, Guia A, Xie B, Santaana D, Manalo G, Xu J, Ghetti A. Efficient Characterization of Use-Dependent Ion Channel Blockers by Real-Time Monitoring of Channel State. Assay Drug Dev Technol 2006; 4:57-64. [PMID: 16506889 DOI: 10.1089/adt.2006.4.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ion channels are important therapeutic targets for the treatment of a variety of conditions. Among ion channel blocking agents, use-dependent inhibitors can be especially effective therapeutic agents. Use dependence allows the selective inhibition of hyperactive neurons or tachycardiac myocytes, while minimizing effects on cells with normal activity. For voltage-gated channels, the use-dependent compounds typically bind to and inhibit a particular kinetic state that is induced by specific voltage changes. Drug discovery programs that focus on this class of drugs need to rank the use dependence of the compounds. A meaningful comparison among different molecules requires voltage clamp-based assays with continuous voltage control and compensation for or elimination of electrode drift-related effects. A method was developed based on automated electrophysiology in which voltage and frequency dependence of voltage-gated ion channel blockers can be compared using a protocol in which voltage error is compensated for in real time.
Collapse
Affiliation(s)
- Huimin Tao
- AVIVA Biosciences Corporation, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Song J, Jang YY, Shin YK, Lee C, Chung S. N-Ethylmaleimide modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. Brain Res 2000; 855:267-73. [PMID: 10677599 DOI: 10.1016/s0006-8993(99)02405-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of N-ethylmaleimide (NEM), an alkylating reagent to protein sulfhydryl groups, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. When currents were evoked by step depolarizations to 0 mV from a holding potential of -80 mV NEM decreased the amplitude of TTX-S sodium current, but exerted little or no effect on that of TTX-R sodium current. The inhibitory effect of NEM on TTX-S sodium channel was mainly due to the shift of the steady-state inactivation curve in the hyperpolarizing direction. NEM did not affect the voltage-dependence of the activation of TTX-S sodium channel. The steady-state inactivation curve for TTX-R sodium channel was shifted by NEM in the hyperpolarizing direction as that for TTX-S sodium channel. NEM caused a change in the voltage-dependence of the activation of TTX-R sodium channel unlike TTX-S sodium channel. After NEM treatment, the amplitudes of TTX-R sodium currents at test voltages below -10 mV were increased, but those at more positive voltages were not affected. This was explained by the shift in the conductance-voltage curve for TTX-R sodium channels in the hyperpolarizing direction after NEM treatment.
Collapse
Affiliation(s)
- J Song
- Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuk-Suk Dong, Dong-Jak Ku, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
3
|
Klink R, Alonso A. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J Neurophysiol 1997; 77:1813-28. [PMID: 9114238 DOI: 10.1152/jn.1997.77.4.1813] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neurons in layer II of the entorhinal cortex (EC) are key elements in the temporal lobe memory system because they integrate and transfer into the hippocampal formation convergent sensory input from the entire cortical mantle. EC layer II also receives a profuse cholinergic innervation from the basal forebrain that promotes oscillatory dynamics in the EC network and may also implement memory function. To understand the cellular basis of cholinergic actions in EC, we investigated by intracellular recording in an in vitro rat brain slice preparation the muscarinic modulation of the electroresponsive properties of the two distinct classes of medial EC layer II projection neurons, the stellate cells (SCs) and non-SCs. In both SCs and non-SCs, muscarinic receptor activation with carbachol (CCh, 10-50 microM) caused atropine-sensitive (300 nM) membrane depolarization. In SCs, the CCh-induced membrane depolarization was associated with subthreshold membrane potential oscillations and "spike cluster" discharge, which are typically expressed by these cells on depolarization. CCh, however, caused a decrease of the dominant frequency of the membrane potential oscillations from 9.2 +/- 1.1 (SD) Hz to 6.3 +/- 1.1 Hz, as well as a decrease of the intracluster firing frequency from 18.1 +/- 1.7 Hz to 13.6 +/- 1.3 Hz. In addition, spike cluster discharge was less robust, and the cells tended to shift into tonic firing during CCh. In contrast to SCs, in non-SCs, CCh drastically affected firing behavior by promoting the development of voltage-dependent, long-duration (1-5 s) slow bursts of action potentials that could repeat rhythmically at slow frequencies (0.2-0.5 Hz). Concomitantly, the slow afterhyperpolarization (sAHP) was replaced by long-lasting plateau postdepolarizations. In both SCs and non-SCs, CCh also produced conspicuous changes on the action potential waveform and its afterpotentials. Notably, CCh significantly decreased spike amplitude and rate of rise, which suggests muscarinic modulation of a voltage-dependent Na+ conductance. Finally, we also observed that whereas CCh abolished the sAHP in both SCs and non-SCs, the membrane-permeant analogues of adenosine 3',5'-cyclic monophosphate, 8-(4-chlorophenylthio)-adenosine-cyclic monophosphate and 8-bromo-adenosine-cyclic-monophosphate, abolished the sAHP in SCs but not in non-SCs. The data demonstrate that cholinergic modulation further differentiates the intrinsic electroresponsiveness of SCs and non-SCs, and add support to the presence of two parallel processing systems in medial EC layer II that could thereby differentially influence their hippocampal targets. The results also indicate an important role for the cholinergic system in tuning the oscillatory dynamics of entorhinal neurons.
Collapse
Affiliation(s)
- R Klink
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and McGill University, Quebec, Canada
| | | |
Collapse
|
4
|
Abstract
Even though the vast majority of ion channels are regulated by voltage, extracellular ligands, phosphorylation, intracellular ions, or a combination of these influences, probably only a handful of ion channels are regulated by direct interaction with activated G proteins. Although results from electrophysiological studies of some channels are consistent with the hypothesis of regulation via direct physical interactions with G proteins, strong biochemical evidence for such interactions is still lacking. In most cases, such evidence has been difficult to obtain because ion channels are present at very low abundances in cell membranes, or because the molecular identity of the channel is unknown. The recent cloning of members of the inwardly rectifying K+ channel and voltage-gated Ca2+ channel families should facilitate the rigorous study of the putative interactions between G proteins and ion channels.
Collapse
|
5
|
Ma JY, Li M, Catterall WA, Scheuer T. Modulation of brain Na+ channels by a G-protein-coupled pathway. Proc Natl Acad Sci U S A 1994; 91:12351-5. [PMID: 7991631 PMCID: PMC45435 DOI: 10.1073/pnas.91.25.12351] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Na+ channels in acutely dissociated rat hippocampal neurons and in Chinese hamster ovary (CHO) cells transfected with a cDNA encoding the alpha subunit of rat brain type IIA Na+ channel (CNaIIA-1 cells) are modulated by guanine nucleotide binding protein (G protein)-coupled pathways under conditions of whole-cell voltage clamp. Activation of G proteins by 0.2-0.5 mM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), a nonhydrolyzable GTP analog, increased Na+ currents recorded in both cell types. The increase in current amplitude was caused by an 8- to 10-mV negative shift in the voltage dependence of both activation and inactivation. The effects of G-protein activators were blocked by treatment with pertussis toxin or guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), a nonhydrolyzable GDP analog, but not by cholera toxin. GDP[beta S] (2 mM) alone had effects opposite those of GTP[gamma S], shifting Na(+)-channel gating 8-10 mV toward more-positive membrane potentials and suggesting that basal activation of G proteins in the absence of stimulation is sufficient to modulate Na+ channels. In CNaIIA-1 cells, thrombin, which activates pertussis toxin-sensitive G proteins in CHO cells, caused a further negative shift in the voltage dependence of Na(+)-channel activation and inactivation beyond that observed with GTP alone. The results in CNaIIA-1 cells indicate that the alpha subunit of the Na+ channel alone is sufficient to mediate G protein effects on gating. The modulation of Na+ channels via a G-protein-coupled pathway acting on Na(+)-channel alpha subunits may regulate electrical excitability through integration of different G-protein-coupled synaptic inputs.
Collapse
Affiliation(s)
- J Y Ma
- Department of Pharmacology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
6
|
Haarmeier T, Altrup U, Speckmann EJ. Attenuation of a voltage-dependent sodium current by GABA (identified neurons, buccal ganglia, Helix pomatia). Brain Res 1994; 663:131-9. [PMID: 7850461 DOI: 10.1016/0006-8993(94)90470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The action of systemically applied GABA on voltage-dependent currents of the identified neurons B1-B4 in the buccal ganglia of Helix pomatia were investigated by conventional voltage clamp techniques. In the B4 neuron, superfusion with sodium-free solution or addition of tetrodotoxin to the bath medium abolished the voltage dependent inward current. This voltage dependent sodium current was reduced with GABA application. Muscimol exerted the same effect as GABA whereas administration of baclofen had no effect. Voltage-dependent sodium and calcium currents of the neurons B1-B3 remained unchanged with GABA application. It is concluded that GABA is capable of reducing voltage-dependent sodium currents of distinct neuronal individuals via a GABAA receptor-like structure.
Collapse
Affiliation(s)
- T Haarmeier
- Institut für Physiologie der Universität Münster, FRG
| | | | | |
Collapse
|
7
|
Abstract
Physiological concentrations of 3,5,3'-triiodo-L-thyronine (T3) acutely increased burst-mode gating of Na+ channels in rabbit ventricular myocytes. Bursting was measured as the ratio of long events to the total number of events multiplied by 100 (%LE); a long event was defined as a set of openings or a single opening with a total duration greater than or equal to five times the control mean open time (MOT) for cell-attached patches. In the cell-attached configuration, adding either 5 or 50 nM T3 to the pipette increased the %LE. %LE had a biphasic voltage dependence and peaked at -50 mV, although the largest percentage change from control occurred between -30 and -40 mV. Neither unitary conductance nor the overall MOT was altered by T3-induced bursting. However, the MOT of openings within bursts increased, implying a kinetically distinct mode of channel gating during bursts. Long events sometimes were grouped into runs, but the more usual pattern suggested that modal shifts occurred in approximately 1 second. Similar behavior was observed with triiodothyroacetic acid, a T3 analogue that does not elicit protein synthesis. To investigate involvement of soluble second messengers, cell-attached recordings were made with and without T3 in the bath. Placed outside the pipette, 50 and 100 nM T3 failed to alter MOT, unitary current, or %LE. Na+ channel gating also was unaffected by patch excision and by exposing the cytoplasmic face of inside-out patches to 50 nM T3. Nevertheless, excision to the inside-out configuration with 5 nM T3 in the pipette dramatically increased the %LE and lengthened MOT. These results suggest that T3 induced Na+ channel bursting by an extranuclear mechanism that requires proximity of T3 to the extracellular face of the Na+ channel. Furthermore, T3 was not membrane permeant on the time scale of these experiments. Na+ channel bursting may contribute to the propensity for arrhythmias in hyperthyroidism and to the positive inotropic effect of acute T3 administration in the stunned and ischemic myocardium.
Collapse
Affiliation(s)
- S C Dudley
- Department of Physiology, Medical College of Virginia, Richmond 23298-0551
| | | |
Collapse
|
8
|
Yoshida S, Plant S. Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis. J Physiol 1992; 458:307-18. [PMID: 1302268 PMCID: PMC1175157 DOI: 10.1113/jphysiol.1992.sp019419] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The mechanism of Ca2+ release from intracellular stores was studied in defolliculated Xenopus laevis oocytes by measuring whole-cell currents using the two-electrode voltage-clamp method. 2. The extracellular application of ionomycin, a selective Ca2+ ionophore, evoked an inward current consisting of a spike-like fast component followed by a long-lasting slow component with few superimposed current oscillations (fluctuations). The ionomycin response occurred in a dose-dependent manner and was dependent on Cl-. 3. No apparent refractory period was observed for repetitively evoked small ionomycin responses when the concentration of ionomycin was low (0.1 microM). In contrast, a larger ionomycin response (1 microM), consisting of fast and slow components, was followed by refractory period. Washing for 50-90 min was necessary for full recovery of the ionomycin response. 4. The response to ionomycin was suppressed by the extracellular application of acetoxymethyl ester of bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA AM, 1-10 microM), a membrane-permeable intracellular Ca2+ chelator. 5. The ionomycin response was not affected by pertussis toxin (PTX, 0.3-2.0 microgram/ml), a blocker of guanine nucleotide-binding regulatory proteins (G proteins). In contrast, the response to acetylcholine (ACh), which is known to occur via a G protein, was suppressed by PTX. 6. The fast component was not affected by removing Ca2+ from the bathing medium or by replacing extracellular Ca2+ with Ba2+ or Mn2+ (all of these solutions were supplemented with 2 mM EGTA), whereas the slow component was suppressed. 7. Injection of inositol 1,4,5-trisphosphate (IP3) following a response to extra-cellularly applied ionomycin did not evoke an appreciable membrane current. In contrast, ionomycin evoked a small inward current when it was applied after an inward-current response evoked by IP3 injection, whereas a second injection of IP3 did not evoke any appreciable current. 8. The results indicate that (a) ionomycin releases Ca2+ from its intracellular stores without the involvement of G proteins, resulting in activation of Ca(2+)-activated Cl- channels, (b) ionomycin mainly acts on the same intracellular Ca2+ stores as IP3, and (c) entry of Ca2+ from outside the cell considerably contributes to the slow component of the ionomycin response, whereas its fast component is predominantly dependent on the release of Ca2+ from the intracellular stores.
Collapse
Affiliation(s)
- S Yoshida
- Medical Research Council Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh
| | | |
Collapse
|
9
|
Brussaard AB, Lodder JC, ter Maat A, de Vlieger TA, Kits KS. Inhibitory modulation by FMRFamide of the voltage-gated sodium current in identified neurones in Lymnaea stagnalis. J Physiol 1991; 441:385-404. [PMID: 1687748 PMCID: PMC1180204 DOI: 10.1113/jphysiol.1991.sp018757] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The putative neurotransmitter FMRFa (Phe-Met-Arg-Phe-amide) caused an inhibitory modulation of the voltage-gated sodium current (INa) in central neurones, the peptidergic caudo dorsal cells (CDCs) of the mollusc Lymnaea stagnalis. FMRFa reduced INa at all command potentials tested (ranging from -35 to +20 mV), but the amplitude of the effect of FMRFa was voltage dependent, inhibition being stronger at more negative potentials (50 +/- 5% reduction at half-maximal INa activation versus 25 +/- 8% at the peak of the I-V curve). 2. INa current traces were well fitted by a Hodgkin & Huxley based model, using m3 activation kinetics and two time constants for inactivation. 3. The steady-state inactivation curve of INa was characterized by half-maximal inactivation at -42.5 +/- 1.81 mV and a slope factor of 4.6 +/- 0.28 mV. The fastest time constant of inactivation ran from 100 +/- 5 to 0.8 +/- 0.32 ms and the slower time constant from 505 +/- 45 to 4.8 +/- 1.40 ms in the range -40 to -5 mV. 4. FMRFa had no significant effect on either component of inactivation, nor on the voltage dependence of steady-state inactivation, nor on the maximal conductance. 5. FMRFa affected the activation of INa. The activation time constant was increased, ranging from 0.75 +/- 0.050 to 0.22 +/- 0.017 ms under control and from 0.91 +/- 0.043 to 0.31 +/- 0.038 ms with FMRFa in the voltage range -25 to +5 mV. The steady-state activation curve was shifted to less negative potentials: half-maximal activation occurred at -26.5 +/- 1.2 mV under control and at 23.6 +/- 1.4 mV with FMRFa; the slope factor (4.6 +/- 1.4 mV in control experiments) was not affected. The combination of slower activation kinetics and a shift in the voltage dependence of activation in the Hodgkin & Huxley based model, adequately explained the reduction of INa by FMRFa. 6. The physiological consequence is that the spiking threshold is increased, causing an arrest of on-going firing activity and a decrease in excitability.
Collapse
Affiliation(s)
- A B Brussaard
- Department of Biology, Free University, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Hoger JH, Walter AE, Vance D, Yu L, Lester HA, Davidson N. Modulation of a cloned mouse brain potassium channel. Neuron 1991; 6:227-36. [PMID: 1899581 DOI: 10.1016/0896-6273(91)90358-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mouse brain K+ channel (MBK), previously cloned by others, has been independently cloned and shown to express in Xenopus oocytes. This K+ current (IK) inactivated over a time course of seconds and was sensitive to the K+ channel-blocking reagent tetraethylammonium. When the K+ channel was coexpressed with a cloned mouse brain serotonin receptor (5HT1c) in oocytes, activation of the 5HT1c receptor by a brief application of serotonin resulted in a suppression of the IK amplitude over the next 20 min. IK could also be suppressed by activation of G proteins. Suppression was also caused by intracellular Ca2+ injections and was blocked by intracellular injection of EGTA. Calmodulin antagonists block the IK suppression, but a known protein kinase inhibitor did not block suppression. The 5HT1c suppression was reversible; recovery from suppression was blocked by the protein kinase inhibitor H-7. These data suggest that the IK suppression occurs through a novel mechanism independent of A- or C-type protein kinases; suppression is best explained as being due to the action of a Ca2+/calmodulin-activated phosphatase; recovery from suppression is due to the action of a protein kinase.
Collapse
Affiliation(s)
- J H Hoger
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Phorbol esters and purified protein kinase C (PKC) have been shown to down-modulate the voltage-dependent Na+ channels expressed in Xenopus oocytes injected with chick brain RNA. We used the two-electrode voltage-clamp technique to demonstrate that a Na+ channel expressed in oocytes injected with RNA coding for the alpha subunit of the channel alone (VA200, a variant of rat brain type IIA) is also inhibited by PKC activation. The inhibition of Na+ currents, expressed in oocytes injected with either alpha subunit RNA (rat) or total brain RNA (chick), is voltage-dependent, being stronger at negative potentials. It appears to result mainly from a shift in the activation curve to the right and possibly a decrease in the steepness of the voltage dependence of activation. There is little effect on the inactivation process and maximal Na+ conductance. Thus, PKC modulates the Na+ channel by a mechanism involving changes in voltage-dependent properties of its main, channel-forming alpha subunit.
Collapse
Affiliation(s)
- N Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
12
|
Sigel E. Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 1990; 117:201-21. [PMID: 2231695 DOI: 10.1007/bf01868451] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E Sigel
- Pharmakologisches Institut, Universität Bern, Switzerland
| |
Collapse
|
13
|
Dargent B, Couraud F. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons. Proc Natl Acad Sci U S A 1990; 87:5907-11. [PMID: 2165609 PMCID: PMC54438 DOI: 10.1073/pnas.87.15.5907] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, we investigated the effect of Na(+)-channel activators (scorpion alpha toxin, batrachotoxin, and veratridine) on the density of Na+ channels in fetal rat brain neurons in vitro. A partial but rapid (t1/2, 15 min) disappearance of surface Na+ channels was observed as measured by a decrease in the specific binding of [3H]saxitoxin and 125I-labeled scorpion beta toxin and a decrease in specific 22Na+ uptake. Moreover, the increase in the number of Na+ channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na+ channels was abolished by tetrodotoxin, was found to be dependent on the external Na+ concentration, and was prevented when either choline (a nonpermeant ion) or Li+ (a permeant ion) was substituted for Na+. Amphotericin B, a Na+ ionophore, and monensin were able to mimick the effect of Na(+)-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na(+)-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na+ concentration, whether elicited by Na(+)-channel activators or mediated by a Na+ ionophore, can induce a decrease in surface Na+ channels and therefore is involved in down-regulation of Na(+)-channel density in fetal rat brain neurons in vitro.
Collapse
Affiliation(s)
- B Dargent
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique UA 1179, Faculté de Médecine-Secteur Nord, Marseille, France
| | | |
Collapse
|
14
|
Lotan I, Dascal N, Naor Z, Boton R. Modulation of vertebrate brain Na+ and K+ channels by subtypes of protein kinase C. FEBS Lett 1990; 267:25-8. [PMID: 1694792 DOI: 10.1016/0014-5793(90)80279-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effects of purified subtypes I, II and III of protein kinase C (PKC) on voltage-dependent transient K+ (A) and Na+ channels were studied in Xenopus oocytes injected with chick brain RNA. The experiments were performed in the constant presence of 10 nM beta-phorbol 12-myristate-13-acetate (PMA). Intracellular injection of subtype I (tau) reduced the A-current (IA), with no effect on Na+ current (INa). PKC subtype II (beta 1 + beta 2) and III (alpha) reduced both currents. PKC did not affect the response to kainate. Inactivated (heated) or unactivated (injected in the absence of PMA) enzyme and vehicle alone had no effect. Our results strongly suggest that INa and IA in vertebrate neurons are modulated by PKC; all PKC subtypes exert a similar effect on the A-channel while only subtypes II and III modulate the Na+ channel.
Collapse
Affiliation(s)
- I Lotan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|