1
|
N(ε)-Carboxymethyl Modification of Lysine Residues in Pathogenic Prion Isoforms. Mol Neurobiol 2015; 53:3102-3112. [PMID: 25983034 PMCID: PMC4902843 DOI: 10.1007/s12035-015-9200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
The most prominent hallmark of prion diseases is prion protein conversion and the subsequent deposition of the altered prions, PrPSc, at the pathological sites of affected individuals, particularly in the brain. A previous study has demonstrated that the N-terminus of the pathogenic prion isoform (PrPSc) is modified with advanced glycation end products (AGEs), most likely at one or more of the three Lys residues (positions 23, 24, and 27) in the N-terminus (23KKRPKP28). The current study investigated whether Nε-(carboxymethyl)lysine (CML), a major AGE form specific to Lys residues produced by nonenzymatic glycation, is an AGE adduct of the N-terminus of PrPSc. We show that CML is linked to at least one Lys residue at the N-terminus of PrPSc in 263K prion-infected hamster brains and at least one of the eight Lys residues (positions 101, 104, 106, 110, 185, 194, 204, and 220) in the proteinase K (PK)-resistant core region of PrPSc. The nonenzymatic glycation of the Lys residue(s) of PrPSc with CML likely occurs in the widespread prion-deposit areas within infected brains, particularly in some of the numerous tyrosine hydroxylase-positive thalamic and hypothalamic nuclei. CML glycation does not occur in PrPC but is seen in the pathologic PrPSc isoform. Furthermore, the modification of PrPSc with CML may be closely involved in prion propagation and deposition in pathological brain areas.
Collapse
|
2
|
Lesions of the fasciculus retroflexus alter footshock-induced cFos expression in the mesopontine rostromedial tegmental area of rats. PLoS One 2013; 8:e60678. [PMID: 23593280 PMCID: PMC3625179 DOI: 10.1371/journal.pone.0060678] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb), an epithalamic structure that forms reciprocal connections with midbrain dopamine neurons, shows the opposite response being activated by reward omission or aversive stimuli and inhibited by reward-predicting cues. It has been hypothesized that habenular input to midbrain dopamine neurons is conveyed via a feedforward inhibitory pathway involving the GABAergic mesopontine rostromedial tegmental area. Here, we show that exposing rats to low-intensity footshock (four, 0.5 mA shocks over 20 min) induces cFos expression in the rostromedial tegmental area and that this effect is prevented by lesions of the fasciculus retroflexus, the principal output pathway of the habenula. cFos expression is also observed in the medial portion of the lateral habenula, an area that receives dense DA innervation via the fr and the paraventricular nucleus of the thalamus, a stress sensitive area that also receives dopaminergic input. High-intensity footshock (120, 0.8 mA shocks over 40 min) also elevates cFos expression in the rostromedial tegmental area, medial and lateral aspects of the lateral habenula and the paraventricular thalamus. In contrast to low-intensity footshock, increases in cFos expression within the rostromedial tegmental area are not altered by fr lesions suggesting a role for non-habenular inputs during exposure to highly aversive stimuli. These data confirm the involvement of the lateral habenula in modulating the activity of rostromedial tegmental area neurons in response to mild aversive stimuli and suggest that dopamine input may contribute to footshock- induced activation of cFos expression in the lateral habenula.
Collapse
|
3
|
Yeo S, Choi YG, Hong YM, Lim S. Neuroprotective changes of thalamic degeneration-related gene expression by acupuncture in an MPTP mouse model of parkinsonism: microarray analysis. Gene 2012; 515:329-38. [PMID: 23235115 DOI: 10.1016/j.gene.2012.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 10/12/2012] [Accepted: 12/02/2012] [Indexed: 01/18/2023]
Abstract
Acupuncture stimulations at GB34 and LR3 inhibit the reduction of tyrosine hydroxylase in the nigrostriatal dopaminergic neurons in the parkinsonism animal models. Especially, behavioral tests showed that acupuncture stimulations improved the motor dysfunction in a previous study by almost 87.7%. The thalamus is a crucial area for the motor circuit and has been identified as one of the most markedly damaged areas in Parkinson's disease (PD), so acupuncture stimulations might also have an effect on the thalamic damage. In this study, gene expression changes following acupuncture at the acupoints were investigated in the thalamus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model using a whole transcript array. It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase in the thalamic regions of the MPTP model, while acupuncture at the non-acupoints could not suppress this decrease by its level shown in the acupoints. GeneChip gene array analysis showed that 18 (5 annotated genes: Dnase1l2, Dusp4, Mafg, Ndph and Pgm5) of the probes down-regulated in MPTP, as compared to the control, were exclusively up-regulated by acupuncture at the acupoints, but not at the non-acupoints. In addition, 14 (3 annotated genes; Serinc2, Sp2 and Ucp2) of the probes up-regulated in MPTP, as compared to the control, were exclusively down-regulated by acupuncture at the acupoints, but not at the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These results suggest that the 32 probes (8 annotated genes) which are affected by MPTP and acupuncture may be responsible for exerting the inhibitory effect of acupuncture in the thalamus which can be damaged by MPTP intoxication.
Collapse
Affiliation(s)
- Sujung Yeo
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
4
|
Baker H, Kobayashi K, Okano H, Saino-Saito S. Cortical and striatal expression of tyrosine hydroxylase mRNA in neonatal and adult mice. Cell Mol Neurobiol 2003; 23:507-18. [PMID: 14514011 PMCID: PMC11530167 DOI: 10.1023/a:1025015928129] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Elucidating the mechanisms underlying regulation of the dopamine (DA) phenotype during development and in adult animals was a major focus of many of the students and postdoctoral fellows in the Laboratory of Dr Donald Reis. In one series of studies, expression of tyrosine hydroxylase (TH), the first enzyme in the DA biosynthetic pathway, was induced in primary cultures prepared from the cortical anlage of embryonic day 13 (E13)-E17 rat embryos. On the basis of these data, the current studies investigated whether under appropriate conditions TH expression might occur in forebrain regions that do not normally contain DA neurons. 2. A transgenic mouse strain harboring a 9-kb TH promoter/EGFP (enhanced green fluorescent protein) reporter construct was analyzed as adults for coexpression of the fluorescent reporter and the endogenous gene, the latter using a sensitive nonradioactive in situ hybridization procedure. The latter procedure was also used to determine the development of neonatal cortical endogenous TH expression. 3. Cortical and striatal cells containing TH mRNA were observed at postnatal day 5 (P5), but not P2, increased in number at P7 and were found in adults. Many cells in the cortex and striatum coexpressed TH mRNA and EGFP, but TH protein was not detected in these brain regions indicating independent transcriptional and translational regulation of TH expression. Overlapping expression of the two transcriptional indicators and TH protein in olfactory bulb occurred only in those DA neurons that receive afferent stimulation from receptor cells. 4. These findings suggest that partial DAergic differentiation may occur in some cortical and striatal cells, but that full expression of the phenotype requires synaptic activation or activity-dependent release of an as-yet unidentified factor(s).
Collapse
Affiliation(s)
- Harriet Baker
- Weill Medical College of Cornell University at The Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, USA.
| | | | | | | |
Collapse
|
5
|
Tedroff JM. The neuroregulatory properties of L-DOPA. A review of the evidence and potential role in the treatment of Parkinson's disease. Rev Neurosci 1997; 8:195-204. [PMID: 9548232 DOI: 10.1515/revneuro.1997.8.3-4.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that L-dihydroxyphenylalanine (L-DOPA) has neurotransmitter-like and/or neuromodulatory properties in the CNS. Such evidence is based on a wide range of findings including the existence of specific L-DOPAergic neurons in several regions of the CNS, neurotransmitter-like characteristics and specific pharmacological effects. This review attempts to outline the main evidence for this conception and to relate such findings to L-DOPA treatment effects in Parkinson's disease. In this context L-DOPA in itself has been shown to potentiate D2 receptor-mediated effects, inhibit acetylcholine release and increase the release of L-glutamate, neuropharmacological effects which can be linked to treatment side-effects in advanced Parkinson's disease. It is suggested that supersensitive L-DOPA-mediated effects contribute to the pathogenesis underlying L-DOPA-induced motor complications in advanced Parkinson's disease. However, since specific L-DOPA receptors have yet to be identified, the assessment of the relative importance of L-DOPA-mediated effects in this clinical context must be regarded as incomplete.
Collapse
Affiliation(s)
- J M Tedroff
- Department of Neurology, University Hospital, Uppsala, Sweden
| |
Collapse
|
6
|
Abstract
L-DOPA is proposed to be a neurotransmitter and/or neuromodulator in CNS. It is released probably from neurons, which may contain L-DOPA as an end-product, and/or from some compartment other than catecholamine-containing vesicles. The L-DOPA itself produces presynaptic and postsynaptic responses. All are stereoselective and most are antagonized by competitive antagonist. In striatum, L-DOPA is neuromodulator, mother of catecholamines, not only a precursor for dopamine but also a potentiator of children for presynaptic beta-adrenoceptors to facilitate dopamine release and postsynaptic D2 receptors, and ACh release inhibitor. All may cooperate for Parkinson's disease. Meanwhile, supersensitization of increase in L-glutamate release to nanomolar levodopa was seen in Parkinson's model rats, which may relate to dyskinesia or "on-off" during chronic therapy. In lower brainstem, L-DOPA tonically activates postsynaptic depressor sites of NTS and CVLM and pressor sites of RVLM. L-DOPA is probably a neurotransmitter of primary baroreceptor afferents terminating in NTS. GABA, the inhibitory neuromodulator for baroreflex in NTS, tonically functions to inhibit, via GABAA receptors, L-DOPA release and depressor responses to levodopa. Levodopa inversely releases GABA. L-DOPAergic monosynaptic relay from NTS to CVLM and from PHN to RVLM is suggested. Tonic L-DOPAergic baroreceptor-aortic nerve-NTS-CVLM relay seems to carry baroreflex information. Disturbance of neuronal activity to release L-DOPA in NTS, loss of the activity in CVLM, enhancement of the activity with decreased decarboxylation and increase in sensitivity to levodopa in RVLM may be involved in maintenance of hypertension in SHR. This is a story of "L-DOPAergic receptors" with extremely high affinity and low density.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
7
|
Min N, Joh TH, Kim KS, Peng C, Son JH. 5' upstream DNA sequence of the rat tyrosine hydroxylase gene directs high-level and tissue-specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 27:281-9. [PMID: 7898312 DOI: 10.1016/0169-328x(94)90011-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tyrosine hydroxylase (TH), the first and rate-limiting enzyme in the biosynthesis of catecholamine neurotransmitters, is expressed within central and peripheral catecholaminergic cells. To delineate DNA sequences necessary for tissue-specific expression of the rat TH gene, transgenic mice were produced containing 0.15 kb, 2.4 kb, and 9.0 kb of 5' flanking sequence fused to the E. coli lacZ (beta-galactosidase) reporter gene. The reporter gene expression in the transgenic animals was monitored by both X-gal histochemical staining and beta-galactosidase immunohistochemistry and compared to TH mRNA and protein expression. Transgenic mice bearing 9.0 kb, but not the smaller constructs with either 2.4 kb or 0.15 kb of 5' flanking sequence, fused to lacZ were able to direct high level expression of beta-galactosidase at levels equivalent to the endogenous TH in central catecholaminergic cells, and to a lesser degree to adrenal gland. Previously, 4.8 kb of 5' flanking region was reported to contain some tissue-specific element(s) determined by chloramphenicol acetyltransferase (CAT) assay using regional brain dissections and was not able to demonstrate cellular localization of the CAT expression [2]. Using histological procedures which allow for spatial resolution, this study demonstrated that the crucial catecholaminergic neuron-specific DNA element(s) resides between -9 kb and -2.4 kb of the 5' flanking region of the rat TH gene; this assertion is substantiated by the high-level of tissue-specific expression of lacZ in catecholaminergic cells.
Collapse
Affiliation(s)
- N Min
- Laboratory of Molecular Neurobiology, Cornell University Medical College, W.M. Burke Research Medical Institute, White Plains, NY 10605
| | | | | | | | | |
Collapse
|
8
|
Asmus SE, Newman SW. Tyrosine hydroxylase mRNA-containing neurons in the medial amygdaloid nucleus and the reticular nucleus of the thalamus in the Syrian hamster. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 20:267-73. [PMID: 7905594 DOI: 10.1016/0169-328x(93)90051-p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To confirm previous immunocytochemical findings in colchicine-treated Syrian hamsters, in situ hybridization was used to investigate the distribution of TH mRNA-containing cells in the medial amygdaloid nucleus (Me) and the thalamic reticular nucleus (Rt) of untreated hamsters. TH mRNA-producing neurons were observed in anterior and posterior Me and throughout Rt, similar to the distribution of TH-immunostained cells in these areas of animals receiving colchicine. These data confirm that TH is normally produced in amygdaloid and thalamic cell groups which lie outside the classical catecholamine systems.
Collapse
Affiliation(s)
- S E Asmus
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | |
Collapse
|
9
|
Asmus SE, Newman SW. Tyrosine hydroxylase neurons in the male hamster chemosensory pathway contain androgen receptors and are influenced by gonadal hormones. J Comp Neurol 1993; 331:445-57. [PMID: 8099590 DOI: 10.1002/cne.903310402] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemosensory and hormonal signals, both of which are essential for mating in the male Syrian hamster, are relayed through a distinct forebrain circuit. Immunocytochemistry for tyrosine hydroxylase, a catecholamine biosynthetic enzyme, previously revealed immunoreactive neurons in the anterior and posterior medial amygdaloid nucleus, one of the nuclei within this pathway. In addition, dopamine-immunoreactive neurons were located in the posterior, but not the anterior, medial amygdala. In the present study, tyrosine hydroxylase-immunostained neurons were also observed in other areas of the chemosensory pathway, including the posteromedial bed nucleus of the stria terminalis and the posterior, lateral part of the medial preoptic area, while dopamine immunostaining was only seen in the posteromedial bed nucleus of the stria terminalis. The colocalization of tyrosine hydroxylase and androgen receptors was examined in these four tyrosine hydroxylase cell groups by a double immunoperoxidase technique. The percentage of tyrosine hydroxylase-immunolabeled neurons that were also androgen receptor-immunoreactive was highest in the posterior medial amygdaloid nucleus (74%) and the bed nucleus of the stria terminalis (79%). Fewer tyrosine hydroxylase-immunostained neurons in the anterior medial amygdala (33%) and the medial preoptic area (4%) contained androgen receptors. Surprisingly, castration resulted in a significant decrease in the number of tyrosine hydroxylase-immunoreactive neurons only in the anterior medial amygdaloid nucleus, and this effect was transient. Six weeks after castration, the anterior medial amygdala contained 61% fewer tyrosine hydroxylase-immunolabeled neurons, but 12 weeks after gonadectomy, immunostaining returned to intact values. The number of immunostained neurons in testosterone-replaced, castrated hamsters was not significantly different from that of intact or castrated animals at any time. The results of this study indicate that a substantial number of tyrosine hydroxylase-immunostained neurons in the chemosensory pathway are influenced by androgens; the majority of these neurons in the posterior medial amygdala and the posteromedial bed nucleus of the stria terminalis produce androgen receptors, and tyrosine hydroxylase immunoreactivity is altered by castration in the anterior medial amygdala.
Collapse
Affiliation(s)
- S E Asmus
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | |
Collapse
|
10
|
Tillet Y, Batailler M, Thibault J. Neuronal projections to the medial preoptic area of the sheep, with special reference to monoaminergic afferents: immunohistochemical and retrograde tract tracing studies. J Comp Neurol 1993; 330:195-220. [PMID: 8491868 DOI: 10.1002/cne.903300205] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The preoptic area contains most of the luteinizing hormone releasing hormone immunoreactive neurons and numerous monoaminergic afferents whose cell origins are unknown in sheep. Using tract tracing methods with a specific retrograde fluorescent tracer, fluorogold, we examined the cells of origin of afferents to the medial preoptic area in sheep. Among the retrogradely labeled neurons, immunohistochemistry for tyrosine hydroxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase, and serotonin was used to characterize catecholamine and serotonin fluorogold labeled neurons. Most of the afferents came from the ipsilateral side to the injection site. It was observed that the medial preoptic area received major inputs from the diagonal band of Broca, the lateral septum, the thalamic paraventricular nucleus, the lateral hypothalamus, the area dorsolateral to the third ventricle, the perimamillary area, the amygdala, and the ventral part of the hippocampus. Other numerous, scattered, retrogradely labeled neurons were observed in the ventral part of the preoptic area, the vascular organ of the lamina terminalis, the ventromedial part of the hypothalamus, the periventricular area, the area lateral to the interpeduncular nucleus, and the dorsal vagal complex. Noradrenergic afferents came from the complex of the locus coeruleus (A6/A7 groups) and from the ventro-lateral medulla (group A1). However, dopaminergic and adrenergic neuronal groups retrogradely labeled with fluorogold were not observed. Serotoninergic fluorogold labeled neurons belonged to the medial raphe nucleus (B8, B5) and to the serotoninergic group situated lateral to the interpeduncular nucleus (S4). In the light of these anatomical data we hypothesize that these afferents have a role in the regulation of several functions of the preoptic area, particularly those related to reproduction. Accordingly these afferents could be involved in the control of luteinizing hormone releasing hormone (LHRH) pulsatility or of preovulatory LHRH surge.
Collapse
Affiliation(s)
- Y Tillet
- Unité de Neuroendocrinologie Sexuelle, INRA Station de Physiologie de la Reproduction, Nouzilly, France
| | | | | |
Collapse
|
11
|
Asmus SE, Kincaid AE, Newman SW. A species-specific population of tyrosine hydroxylase-immunoreactive neurons in the medial amygdaloid nucleus of the Syrian hamster. Brain Res 1992; 575:199-207. [PMID: 1349252 DOI: 10.1016/0006-8993(92)90080-s] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The medial amygdaloid nucleus (Me) is part of a neural pathway that regulates sexual behavior in the male Syrian hamster. To characterize the neurochemical content of neurons in this nucleus, brains from colchicine-treated adult male and female hamsters were immunocytochemically labeled using antibodies that recognize the catecholamine-synthesizing enzymes, tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT), as well as dopamine. A large population of TH-immunoreactive (TH-IR) neurons was observed throughout Me of male and female hamsters, primarily concentrated in the midrostral and caudal portions of the nucleus. The somata were generally small to medium in size and bipolar. Brains from animals that did not receive colchicine contained a limited number of TH-IR neurons in Me as reported previously. The DBH and PNMT antisera did not label any cells in Me of colchicine-treated animals, and the dopamine antiserum labeled neurons in the same location as the caudal group of TH-IR cells. Therefore, these caudal TH-IR neurons are interpreted to be dopaminergic. The rostral group of TH-IR neurons, on the other hand, may be producing only the immediate precursor of dopamine, L-3,4-dihydroxyphenylalanine (L-DOPA). The TH-synthesizing neurons in Me of the Syrian hamster appear to be a species-specific group of cells located outside of the previously described catecholaminergic cell groups.
Collapse
Affiliation(s)
- S E Asmus
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
12
|
Tison F, Normand E, Jaber M, Aubert I, Bloch B. Aromatic L-amino-acid decarboxylase (DOPA decarboxylase) gene expression in dopaminergic and serotoninergic cells of the rat brainstem. Neurosci Lett 1991; 127:203-6. [PMID: 1679228 DOI: 10.1016/0304-3940(91)90794-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ hybridization was performed in the rat brain to detect aromatic L-amino acid decarboxylase (AADC) mRNA using 35S-labeled oligonucleotide probes derived from rat kidney AADC cDNA. Results demonstrated AADC mRNA in areas containing dopaminergic and serotoninergic cell bodies. Combined immunohistochemistry for tyrosine- or tryptophan hydroxylase and in situ hybridization for AADC mRNA demonstrated the dopaminergic or serotoninergic nature of cells containing AADC mRNA. Tyrosine hydroxylase-positive mesencephalic neurons containing a very low or no AADC mRNA signal were also observed.
Collapse
Affiliation(s)
- F Tison
- URA CNRS 1200 Laboratoire d'Histologie-Embryologie, Université de Bordeaux II, France
| | | | | | | | | |
Collapse
|
13
|
Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, Jouvet M. Aromatic L-amino acid decarboxylase-immunohistochemistry in the cat lower brainstem and midbrain. J Comp Neurol 1990; 302:935-53. [PMID: 2081822 DOI: 10.1002/cne.903020418] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By indirect immunohistochemistry, the present study examined the distribution of neuronal structures in the cat medulla oblongata, pons, and midbrain, showing immunoreactivity to aromatic L-amino acid decarboxylase (AADC), which catalyzes the conversion of L-3, 4-dihydroxyphenylalanine (L-DOPA) to dopamine, and 5-hydroxytryptophan to serotonin (5HT). With simultaneous and serial double immunostaining techniques, immunoreactivity to this enzyme was demonstrated in most of the catecholaminergic and serotonergic neurons. We could also demonstrate AADC-IR cell bodies that do not contain tyrosine hydroxylase (TH-) or 5HT-immunoreactivity (called "D-type cells") outside such monoaminergic cell systems. At the medullo-spinal junction, very small D-type cells were found within and beneath the ependymal layer of the 10th area of Rexed surrounding the central canal. D-type cells were localized in the caudal reticular formation, nucleus of the solitary tract, a dorsal aspect of the lateral parabrachial nucleus, and pretectal areas as have been reported in the rat. Furthermore, the present study describes, in the cat brainstem, new additional D-type cell groups that have not been reported in the rat. Dense or loose clusters of D-type cells were localized in the external edge of the laminar trigeminal nucleus, dorsal motor nucleus of the vagus, external cuneate nucleus, nucleus praepositus hypoglossi, central, pontine, and periaqueductal gray, superficial layer of the superior colliculus, and area medial to the retroflexus. D-type cells were loosely clustered in the lateral part of the central tegmental field dorsal to the substantia nigra, extending dorsally in the medial division of the posterior complex of the thalamus and medial side of the brachium of the inferior colliculus. They extended farther rostrodorsally along the medial side of the nucleus limitans and joined with the pretectal cell group. Almost all these cells were very small and ovoid to round with 1-2 short processes with the exception of dorsal motor vagal cells. AADC-IR axons were clearly identified in the vagal efferent nerves, longitudinal medullary pathway, dorsal tegmental bundle rostral to the locus coeruleus. Serotonergic axons were identified not only in the central tegmentum field and lateral side of the central superior nucleus, but also in the ventral surface of the medulla oblongata. We describe principal densely stained fiber plexuses in the cat brainstem. The findings of the present study provide a morphological basis for neurons that decarboxylate endogenous and exogenous L-DOPA, 5HTP, and other aromatic L-amino acids.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, INSERM U52, CNRS UA1195, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
14
|
Kummer W, Gibbins IL, Stefan P, Kapoor V. Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 1990; 261:595-606. [PMID: 1978803 DOI: 10.1007/bf00313540] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cranial and spinal sensory ganglia of the guinea-pig were investigated by means of histochemistry and biochemistry for the presence of catecholamines and catecholamine-synthesizing enzymes. Sensory neurons exhibiting immunoreactivity to the rate-limiting enzyme of catecholamine synthesis, tyrosine hydroxylase (TH), were detected by immunohistochemistry in lumbo-sacral dorsal root ganglia, the nodose ganglion and the petrosal/jugular ganglion complex. The carotid body was identified as a target of TH-like-immunoreactive (TH-LI) neurons by the use of combined retrograde tracing and immunohistochemistry. Double-labelling immunofluorescence revealed that most TH-LI neurons also contained somatostatin-LI, but TH-LI did not coexist with either calcitonin gene-related peptide- or substance P-LI. TH-LI neurons did not react with antibodies to other enzymes involved in catecholamine synthesis, i.e., aromatic amino acid decarboxylase (AADC), dopamine-beta-hydroxylase (D beta H), and phenylethanolamine-N-methyl-transferase (PNMT). Petrosal neurons as well as their endings in the carotid body lacked dopamine- and L-DOPA-LI. Sensory neurons did not display glyoxylic acid-induced catecholamine fluorescence. Ganglia containing TH-LI neurons were kept in short-term organ culture after crushing their roots and the exiting nerve in order to enrich intra-axonal transmitter content at the ganglionic side of the crush. However, even under these conditions, catecholamine fluorescence was not detected in axons projecting peripherally or centrally from the ganglia. Sympathetic noradrenergic nerves entered the ganglia and terminated within them. Accordingly, biochemical analyses of guinea-pig sensory ganglia revealed noradrenaline but no dopamine. In conclusion, catecholamines within guinea-pig sensory ganglia are confined to sympathetic nerves, which fulfill presently unknown functions. The TH-LI neurons themselves, however, lack any additional sign of catecholamine synthesis, and the presence of enzymatically active TH within these neurons is questionable.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, University of Heidelberg, FRG
| | | | | | | |
Collapse
|
15
|
Kitahama K, Geffard M, Okamura H, Nagatsu I, Mons N, Jouvet M. Dopamine- and dopa-immunoreactive neurons in the cat forebrain with reference to tyrosine hydroxylase-immunohistochemistry. Brain Res 1990; 518:83-94. [PMID: 1975219 DOI: 10.1016/0006-8993(90)90957-d] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution of cell bodies containing immunoreactivities to dopamine (DA), L-3,4-dihydroxyphenylalanine (DOPA) and tyrosine hydroxylase (TH) was studied immunohistochemically in the cat forebrain especially in the hypothalamus with or without intraventricular administration of colchicine. In normal cats, DA-immunoreactive (IR) neurons, whose intensity of immunostainings was variable from one to another, were localized exclusively in the hypothalamus and showed a distribution pattern similar to that of TH-IR ones. They were distributed in the posterior, dorsal and periventricular hypothalamic areas. Arcuate cells showed no or very weak DA-immunoreactivity. Weak to intense DOPA-IR cells were distributed in a similar manner to DA-IR ones but were far smaller in number. In colchicine-treated animals, DA- and DOPA-immunoreactivities were enhanced particularly in arcuate and dorsal hypothalamic cells. A cluster composed of small DA- and DOPA-IR cells was identified in the area ventral to the mamillothalamic tract equivalent to rat A13c TH-IR cell group. Colchicine treatment enabled us to visualize a large number of TH-IR perikarya in the medial and lateral preoptic areas, anterior commissure nucleus, basal forebrain, area closely related to the organum vasculosum laminae terminalis, and some in the bed nucleus of the stria terminalis as has been reported in other species. However, virtually none of these cells contained detectable DA- and DOPA-immunoreactivities.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, C.N.R.S. U.R.A.1195, I.N.S.E.R.M. U.52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
16
|
Vincent SR, Hope BT. Tyrosine hydroxylase containing neurons lacking aromatic amino acid decarboxylase in the hamster brain. J Comp Neurol 1990; 295:290-8. [PMID: 1972709 DOI: 10.1002/cne.902950211] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently described populations of tyrosine hydroxylase-immunoreactive neurons in the hamster brain in regions not known to contain catecholamine cell bodies. In the present study, the nature of the tyrosine hydroxylase immunoreactivity in the hamster brain was determined. In addition, these tyrosine hydroxylase-immunoreactive cell groups were examined for their ability to express aromatic amino acid decarboxylase. Immunohistochemistry with two different antibodies to tyrosine hydroxylase identified immunoreactive cell bodies in regions known to contain catecholamine neurons, including the substantia nigra and locus ceruleus. In addition, tyrosine hydroxylase-immunoreactive neurons were observed in other regions, including the basal forebrain, inferior colliculus, lateral parabrachial nucleus, and dorsal motor nucleus of the vagus. Western blotting indicated that hamster brain contained only one immunoreactive molecule, very similar in size to rat tyrosine hydroxylase. Thus it is likely that the immunohistochemical studies stained authentic hamster tyrosine hydroxylase. Indeed, in situ hybridization studies using a synthetic oligonucleotide probe against tyrosine hydroxylase mRNA resulted in specific and heavy labelling of these novel tyrosine hydroxylase-immunoreactive neurons. When adjacent sections were stained with antibodies to aromatic amino acid decarboxylase, known catecholamine cell groups were stained. However, the novel tyrosine hydroxylase cell groups did not display any aromatic amino acid decarboxylase immunoreactivity. These results suggest that neurons are present in the hamster brain that are able to hydroxylate tyrosine to L-DOPA, but that lack the ability to decarboxylate aromatic amino acids to produce dopamine or other catecholamines.
Collapse
Affiliation(s)
- S R Vincent
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|