1
|
de Sousa ME, Gusmao DO, Dos Santos WO, Moriya HT, de Lima FF, List EO, Kopchick JJ, Donato J. Fasting and prolonged food restriction differentially affect GH secretion independently of GH receptor signaling in AgRP neurons. J Neuroendocrinol 2024; 36:e13254. [PMID: 36964750 DOI: 10.1111/jne.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Growth hormone (GH) receptor (GHR) is abundantly expressed in neurons that co-release the agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). Since ARHAgRP/NPY neurons regulate several hypothalamic-pituitary-endocrine axes, this neuronal population possibly modulates GH secretion via a negative feedback loop, particularly during food restriction, when ARHAgRP/NPY neurons are highly active. The present study aims to determine the importance of GHR signaling in ARHAgRP/NPY neurons on the pattern of GH secretion in fed and food-deprived male mice. Additionally, we compared the effect of two distinct situations of food deprivation: 16 h of fasting or four days of food restriction (40% of usual food intake). Overnight fasting strongly suppressed both basal and pulsatile GH secretion. Animals lacking GHR in ARHAgRP/NPY neurons (AgRP∆GHR mice) did not exhibit differences in GH secretion either in the fed or fasted state, compared to control mice. In contrast, four days of food restriction increased GH pulse frequency, basal GH secretion, and pulse irregularity/complexity (measured by sample entropy), whereas pulsatile GH secretion was not affected in both control and AgRP∆GHR mice. Hypothalamic Ghrh mRNA levels were unaffected by fasting or food restriction, but Sst expression increased in acutely fasted mice, but decreased after prolonged food restriction in both control and AgRP∆GHR mice. Our findings indicate that short-term fasting and prolonged food restriction differentially affect the pattern of GH secretion, independently of GHR signaling in ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Willian O Dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Felipe F de Lima
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Abstract
Growth hormone (GH) secretory patterns emerge following birth, and changes in patterning occur throughout life. These secretory patterns are coupled to growth, reproduction and metabolism. Comparing human and animal studies, this review will highlight ultradian patterning of GH release and the mechanisms that contribute to this. Discussions will focus on the emergence in variations in the number and frequency of GH secretory events, and the amounts of GH released (peak and basal). Animal studies have contributed significantly to our understanding of the processes that regulate GH release. However, translation of knowledge from animal models to benefit our understanding of human physiology is sometimes limited. To overcome these limitations, it is critical that we reconcile the cause and consequences of differences in GH release between humans and model organisms. In doing so, we can embrace emerging technologies that will rapidly advance our knowledge of endogenous process that control GH release.
Collapse
Affiliation(s)
- Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Queensland, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia.
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia; Queensland Brain Institute, The University of Queensland, Australia.
| |
Collapse
|
3
|
Foradori CD, Whitlock BK, Daniel JA, Zimmerman AD, Jones MA, Read CC, Steele BP, Smith JT, Clarke IJ, Elsasser TH, Keisler DH, Sartin JL. Kisspeptin Stimulates Growth Hormone Release by Utilizing Neuropeptide Y Pathways and Is Dependent on the Presence of Ghrelin in the Ewe. Endocrinology 2017; 158:3526-3539. [PMID: 28977590 DOI: 10.1210/en.2017-00303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
Although kisspeptin is the primary stimulator of gonadotropin-releasing hormone secretion and therefore the hypothalamic-pituitary-gonadal axis, recent findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Here we show that central delivery of kisspeptin causes a robust rise in plasma GH in fasted but not fed sheep. Kisspeptin-induced GH secretion was similar in animals fasted for 24 hours and those fasted for 72 hours, suggesting that the factors involved in kisspeptin-induced GH secretion are responsive to loss of food availability and not the result of severe negative energy balance. Pretreatment with the neuropeptide Y (NPY) Y1 receptor antagonist, BIBO 3304, blocked the effects of kisspeptin-induced GH release, implicating NPY as an intermediary. Kisspeptin treatment induced c-Fos in NPY and GH-releasing hormone (GHRH) cells of the arcuate nucleus. The same kisspeptin treatment resulted in a reduction in c-Fos in somatostatin (SS) cells in the periventricular nucleus. Finally, blockade of systemic ghrelin release or antagonism of the ghrelin receptor eliminated or reduced the ability of kisspeptin to induce GH release, suggesting the presence of ghrelin is required for kisspeptin-induced GH release in fasted animals. Our findings support the hypothesis that during short-term fasting, systemic ghrelin concentrations and NPY expression in the arcuate nucleus rise. This permits kisspeptin activation of NPY cells. In turn, NPY stimulates GHRH cells and inhibits SS cells, resulting in GH release. We propose a mechanism by which kisspeptin conveys reproductive and hormone status onto the somatotropic axis, resulting in alterations in GH release.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Brian K Whitlock
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Jay A Daniel
- Department of Animal Science, Berry College, Mt. Berry, Georgia 30149
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Melaney A Jones
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Casey C Read
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Barbara P Steele
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Jeremy T Smith
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Crawley, Washington 6009, Australia
| | - Iain J Clarke
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Theodore H Elsasser
- Animal Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Duane H Keisler
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - James L Sartin
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
4
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Steyn FJ. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release. J Neuroendocrinol 2015; 27:577-87. [PMID: 25808924 DOI: 10.1111/jne.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.
Collapse
Affiliation(s)
- F J Steyn
- The University of Queensland Centre for Clinical Research and The School of Biomedical Sciences, University of Queensland, Herston, 4029, Australia
| |
Collapse
|
6
|
Proudan N, Peroski M, Grignol G, Merchenthaler I, Dudas B. Juxtapositions between the somatostatinergic and growth hormone-releasing hormone (GHRH) neurons in the human hypothalamus. Neuroscience 2015; 297:205-10. [DOI: 10.1016/j.neuroscience.2015.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022]
|
7
|
Actions of NPY, and its Y1 and Y2 receptors on pulsatile growth hormone secretion during the fed and fasted state. J Neurosci 2015; 34:16309-19. [PMID: 25471570 DOI: 10.1523/jneurosci.4622-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The hypothalamic NPY system plays an important role in regulating food intake and energy expenditure. Different biological actions of NPY are assigned to NPY receptor subtypes. Recent studies demonstrated a close relationship between food intake and growth hormone (GH) secretion; however, the mechanism through which endogenous NPY modulates GH release remains unknown. Moreover, conclusive evidence demonstrating a role for NPY and Y-receptors in regulating the endogenous pulsatile release of GH does not exist. We used genetically modified mice (germline Npy, Y1, and Y2 receptor knock-out mice) to assess pulsatile GH secretion under both fed and fasting conditions. Deletion of NPY did not impact fed GH release; however, it reversed the fasting-induced suppression of pulsatile GH secretion. The recovery of GH secretion was associated with a reduction in hypothalamic somatotropin release inhibiting factor (Srif; somatostatin) mRNA expression. Moreover, observations revealed a differential role for Y1 and Y2 receptors, wherein the postsynaptic Y1 receptor suppresses GH secretion in fasting. In contrast, the presynaptic Y2 receptor maintains normal GH output under long-term ad libitum-fed conditions. These data demonstrate an integrated neural circuit that modulates GH release relative to food intake, and provide essential information to address the differential roles of Y1 and Y2 receptors in regulating the release of GH under fed and fasting states.
Collapse
|
8
|
Zou S, Somvanshi RK, Paik S, Kumar U. Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hypothalamus. J Mol Neurosci 2014; 55:480-91. [PMID: 25001005 DOI: 10.1007/s12031-014-0369-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022]
Abstract
Despite several overlapping functions of cannabinoid receptor 1 (CB1 receptor), somatostatin (SST), and neuronal nitric oxide synthase (nNOS) in the hypothalamus, nothing is currently known whether CB1 receptor-positive neurons coexpress SST and nNOS. In the present study, we describe the colocalization of CB1 receptor with SST and nNOS in the rat brain hypothalamus. In the hypothalamus, the distributional patterns and colocalization of CB1 receptor with SST and nNOS were selective and region specific. CB1 receptor and SST exhibited comparable colocalization (<60%) in paraventricular nucleus (PVN) and periventricular nucleus (PeVN), followed by 20% colocalization in ventromedial hypothalamic nucleus (VMH). Neurons showing colocalization between CB1 receptor and nNOS in PeVN constituted >80%, followed by 60 and 30% in PVN and VMH, respectively. In contrast, SST- and nNOS-positive neurons displayed comparable colocalization (>55%) in PeVN and VMH, followed by PVN (~20%). In the median eminence, CB1 receptor-, SST-, and nNOS-like immunoreactivity was mostly confined to the nerve fibers. The morphological colocalization of CB1 receptor with SST and nNOS shed new light on the understanding of their roles in regulation of physiological and pharmacological response to certain stimuli in hypothalamic nuclei specifically in food intake and energy balance.
Collapse
Affiliation(s)
- Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
9
|
The effect of intracerebroventricular infusions of ghrelin or short fasting on the gene expression and immunoreactivity of neuropeptide Y in the hypothalamic neurons in prepubertal female lambs: A morphofunctional study. J Chem Neuroanat 2012; 46:45-50. [DOI: 10.1016/j.jchemneu.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023]
|
10
|
Fujisawa A, Matsuwaki T, Yamanouchi K, Nishihara M. Possible involvement of neuropeptide Y in photo-induced suppression of growth hormone pulses. J Vet Med Sci 2012; 75:275-81. [PMID: 23090692 DOI: 10.1292/jvms.12-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that growth hormone (GH) is secreted in a pulsatile manner. Although the GH pulse-generating mechanism is not fully understood, we have previously reported that neuropeptide Y (NPY) profiles in the cerebrospinal fluid were negatively correlated with serum GH pulses. In addition, it is known that photic stimulation suppresses GH pulses for a certain period of time. In the present study, to investigate the involvement of NPY in regulating GH pulse generation, NPY gene expression in the arcuate nucleus (ARC) of the hypothalamus in rats was analyzed at around the lights on. First, we confirmed that GH pulses did not occur for around 1.5 hr after the start of the light phase. Then, we analyzed the activity of neurons and expression of NPY mRNA 1 hr before and 0.5 and 2 hr after lights on. Both the activity of neurons, which was evaluated by immunohistochemical detection for phosphorylated-cAMP response element binding protein (pCREB), and NPY mRNA levels in the caudal ARC were higher at 0.5 hr after lights on than the other two time points, while pCREB-positive cell numbers in the rostral ARC remained unchanged throughout the experimental period. In addition, NPY immunoreactivity in the periventricular nucleus (PeVN) was also higher at 0.5 hr after lights on than the other time points. These results suggest that NPY neurons in the caudal ARC projecting to the PeVN play a role in inhibiting GH pulses at the commencement of the light phase.
Collapse
Affiliation(s)
- Ayano Fujisawa
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Tokyo 113-8757, Japan
| | | | | | | |
Collapse
|
11
|
Coiro V, Volpi R, Stella A, Maccanelli F, Araldi A, Giumelli C, Magotti M, Cataldo S, Chiodera P. Inhibitory effect of somatostatin on the NPY response to insulin-induced hypoglycemia and the role of endogenous opioids. ACTA ACUST UNITED AC 2011; 170:62-4. [DOI: 10.1016/j.regpep.2011.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 11/28/2022]
|
12
|
Yonezawa T, Mogi K, Li JY, Sako R, Manabe N, Yamanouchi K, Nishihara M. Effects of estrogen on growth hormone pulsatility in peripheral blood and neuropeptide profiles in the cerebrospinal fluid of goats. J Reprod Dev 2011; 57:280-7. [PMID: 21242654 DOI: 10.1262/jrd.10-118s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that growth hormone (GH) pulses were negatively associated with neuropeptide Y (NPY) profiles in cerebrospinal fluid (CSF) of the third ventricle of Shiba goats. In addition, while most GH pulses were coincident with GH-releasing hormone (GHRH) pulses, there was no correlation between GH and somatostatin (SRIF) levels. The present study was performed to elucidate the relationship between GH pulses and these neuropeptide levels in CSF when estradiol (1.0 mg/head) was subcutaneously administered to ovariectomized goats. CSF and plasma samples were collected every 15 min for 18 h (from 6 h before to 12 h after injection). GH levels in peripheral blood and GHRH, SRIF and NPY levels in CSF were measured by radioimmunoassay. Pulse/trough characteristics and correlations were assessed by the ULTRA algorithm and cross-correlation analysis. Before estradiol was injected, significant coincidence was found between GHRH pulses and GH pulses, and negative coincidence was found between NPY troughs and GH pulses. Six to 12 h after estradiol injection, the amplitude and area under the curve (AUC) of the GH pulses were markedly increased. The duration and AUC of the GHRH pulses in the CSF were also increased, and stronger synchrony of GHRH with GH was observed. In contrast, the baseline of NPY was significantly decreased, and the negative correlation between the GH pulses and NPY troughs disappeared. The parameters of SRIF troughs were not clearly changed. These observations suggest that estrogen enhances the pattern of secretion of GH in the goat via enhancement of GHRH pulses and decrease of NPY levels.
Collapse
Affiliation(s)
- Tomohiro Yonezawa
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Effects of maternal deprivation on the somatotrophic axis and neuropeptide Y in the hypothalamus and pituitary in female lambs. The histomorphometric study. Folia Histochem Cytobiol 2010; 48:299-305. [PMID: 20675289 DOI: 10.2478/v10042-010-0024-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of maternal deprivation on the somatotrophic axis and neuropeptide Y (NPY) neuronal system in the hypothalamus of female lambs were evaluated. Twelve-week-old lambs were divided into two groups: the control (lambs stayed with mothers) and maternally deprived (MD; lambs separated for 3 days from mothers). The expression of immunoreactive (ir) somatostatin in the neurons of the periventricular nucleus (PEV) and in nerve terminals of the median eminence (ME), growth hormone (GH) in the adenohypophyseal cells and NPY in the neurons of the PEV and arcuate (ARC) nuclei of the hypothalamus using immunohistochemistry followed by the image analysis were estimated. Concentrations of GH in the blood plasma were determined by radioimmunoassay. The expression of ir somatostatin in the PEV and ME, ir NPY in the ARC and PEV, ir GH in adenohypophyseal cells, and blood plasma GH concentrations were greater (p<0.05) in MD than in the control lambs. In conclusion, MD affects the somatotrophic axis by enhancement of GH secretion via restraining of somatostatin output. The simultaneous increase of expression of hypothalamic ir NPY suggests NPY involvement in the regulation of psychoemotional stress through the somatotrophic axis in the female lambs.
Collapse
|
14
|
Luque RM, Park S, Kineman RD. Role of endogenous somatostatin in regulating GH output under basal conditions and in response to metabolic extremes. Mol Cell Endocrinol 2008; 286:155-68. [PMID: 18258353 DOI: 10.1016/j.mce.2007.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 01/26/2023]
Abstract
Somatostatin (SST) was first described over 30 years ago as a hypothalamic neuropeptide which inhibits GH release. Since that time a large body of literature has accumulated describing how endogenous SST mediates its effects on GH-axis function under normal conditions and in response to metabolic extremes. This review serves to summarize the key findings in this field with a focus on recent progress, much of which has been made possible by the availability of genetically engineered mouse models and SST receptor-specific agonists.
Collapse
Affiliation(s)
- Raul M Luque
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
15
|
Kiss J, Csaba Z, Csáki A, Halász B. Glutamatergic innervation of growth hormone-releasing hormone-containing neurons in the hypothalamic arcuate nucleus and somatostatin-containing neurons in the anterior periventricular nucleus of the rat. Brain Res Bull 2006; 70:278-88. [PMID: 17027763 DOI: 10.1016/j.brainresbull.2006.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Growth hormone-releasing hormone (GHRH) and somatostatin are the two main hypothalamic neurohormones, which stimulate or inhibit directly hypophysial growth hormone (GH) release. Majority of the GHRH neurons projecting to the median eminence is situated in the arcuate nucleus and the somatostatin neurons in the anterior periventricular nucleus. Data suggest that the excitatory amino acid glutamate may play an important role in the control of hypothalamic neuroendocrine neurons and processes including the control of GH. There is a dense plexus of glutamatergic fibres in the hypothalamic arcuate and anterior periventricular nucleus. The aim of the present studies was to examine the relationship of these fibres to the GHRH neurons in the arcuate nucleus and to somatostatin neurons in the anterior periventricular nucleus. Double-labelling immuno-electron microscopy was used. Glutamatergic structures were identified by the presence of vesicular glutamate transporter 2 (VGluT2) (a selective marker of glutamatergic elements) immunoreactivity. A significant number of VGluT2-immunoreactive boutons was observed to make asymmetric type of synapses with GHRH-immunostained nerve cells in the arcuate and with somatostatin neurons in the anterior periventricular nucleus. A subpopulation of somatostatin-immunoreactive neurons displayed also VGluT2 immunoreactivity. Our findings provide direct neuromorphological evidence for the view that the action of glutamate on GH release is exerted, at least partly, directly on GHRH and somatostatin neurons releasing these neurohormones into the hypophysial portal blood.
Collapse
Affiliation(s)
- József Kiss
- Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, Tuzoltó u. 58, H-1094 Budapest, Hungary
| | | | | | | |
Collapse
|
16
|
Mano-Otagiri A, Nemoto T, Sekino A, Yamauchi N, Shuto Y, Sugihara H, Oikawa S, Shibasaki T. Growth hormone-releasing hormone (GHRH) neurons in the arcuate nucleus (Arc) of the hypothalamus are decreased in transgenic rats whose expression of ghrelin receptor is attenuated: Evidence that ghrelin receptor is involved in the up-regulation of GHRH expression in the arc. Endocrinology 2006; 147:4093-103. [PMID: 16728494 DOI: 10.1210/en.2005-1619] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH secretagogue (GHS)/ghrelin stimulates GH secretion by binding mainly to its receptor (GHS-R) on GHRH neurons in the arcuate nucleus (Arc) of the hypothalamus. GHRH, somatostatin, and neuropeptide Y (NPY) in the hypothalamus are involved in the regulatory mechanism of GH secretion. We previously created transgenic (Tg) rats whose GHS-R expression is reduced in the Arc, showing lower body weight and shorter nose-tail length. GH secretion is decreased in female Tg rats. To clarify how GHS-R affects GHRH expression in the Arc, we compared the numbers of GHS-R-positive, GHRH, and NPY neurons between Tg and wild-type rats. Immunohistochemical analysis showed that the numbers of GHS-R-positive neurons, GHRH neurons, and GHS-R-positive GHRH neurons were reduced in Tg rats, whereas the numbers of NPY neurons and GHS-R-positive NPY neurons did not differ between the two groups. The numbers of Fos-positive neurons and Fos-positive GHRH neurons in response to KP-102 were decreased in Tg rats. Competitive RT-PCR analysis of GHRH mRNA expression in the cultured hypothalamic neurons showed that KP-102 increased NPY mRNA expression level and that NPY decreased GHRH mRNA expression level. KP-102 increased GHRH mRNA expression level in the presence of anti-NPY IgG. GH increased somatostatin mRNA expression. Furthermore, GH and somatostatin decreased GHRH mRNA expression, whereas KP-102 showed no significant effect on somatostatin mRNA expression. These results suggest that GHS-R is involved in the up-regulation of GHRH and NPY expression and that NPY, somatostatin, and GH suppress GHRH expression. It is also suggested that the reduction of GHRH neurons of Tg rats is induced by a decrease in GHS-R expression.
Collapse
Affiliation(s)
- Asuka Mano-Otagiri
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fodor M, Kordon C, Epelbaum J. Anatomy of the hypophysiotropic somatostatinergic and growth hormone-releasing hormone system minireview. Neurochem Res 2006; 31:137-43. [PMID: 16586030 DOI: 10.1007/s11064-005-9017-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2005] [Indexed: 10/24/2022]
Abstract
The central control of growth hormone (GH) secretion from the pituitary gland is ultimately achieved by the interaction between two hypothalamic neurohormones, somatostatin which inhibits and growth hormone-releasing hormone (GHRH) which stimulates GH release. The regulation of the somatostatin and GHRH release from the hypothalamus is regulated by a range of other neuropeptides, neurotransmitters, neurohormones. In this mini review we attempt to provide a short summary covering the anatomy and chemical characteristics of the various cell populations regulating GH secretion as a tribute to Miklós Palkovits who pioneered the field of functional neuroanatomy of hypothalamic networks.
Collapse
Affiliation(s)
- Mariann Fodor
- Department of Pediatrics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Park S, Peng XD, Frohman LA, Kineman RD. Expression analysis of hypothalamic and pituitary components of the growth hormone axis in fasted and streptozotocin-treated neuropeptide Y (NPY)-intact (NPY+/+) and NPY-knockout (NPY-/-) mice. Neuroendocrinology 2005; 81:360-71. [PMID: 16244497 DOI: 10.1159/000089101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/29/2005] [Indexed: 01/08/2023]
Abstract
In the fasted and the streptozotocin (STZ)-induced diabetic male rat, hypothalamic growth hormone (GH)-releasing hormone (GHRH) mRNA levels, and pulsatile GH release are decreased. These changes are believed to be due to a rise in hypothalamic neuropeptide Y (NPY) that inhibits GHRH expression. To directly test if NPY is required for metabolic regulation of hypothalamic neuropeptides important in GH secretion, NPY, GHRH and somatostatin (SRIH) mRNA levels were determined in fasted (48 h) and STZ-treated wild-type (NPY(+/+)) and NPY-knockout (NPY(-/-)) mice by ribonuclease protection assay. In addition, pituitary receptor mRNA levels for GHRH (GHRH-R), ghrelin (GHS-R) and SRIH (sst2) were assessed by RT-PCR. Under fed conditions the GH axis of NPY(+/+) and NPY(-/-) did not differ. In the NPY(+/+) mouse, fasting resulted in a 23% weight loss and >250% increase in NPY mRNA accompanied by a significant reduction in both GHRH and SRIH mRNA. These changes were associated with increases in pituitary expression of GHRH-R and GHS-R and a concomitant suppression of sst2. In the NPY(-/-) mouse, fasting also resulted in a 23% weight loss and comparable changes in GHRH-R and sst2, but failed to alter GHRH, SRIH and GHS-R mRNA levels. Fasting resulted in an overall increase in circulating GH, which reached significance in the fasted NPY(-/-) mouse. Induction of diabetes in NPY(+/+) mice, using a single, high-dose, STZ injection (150 mg/kg), resulted in modest weight loss (5%), and a 158% increase NPY expression which was associated with reciprocal changes in pituitary GHS-R and sst2 expression, similar to that observed in the fasted state, but no change in hypothalamic GHRH or SRIF expression was observed. Induction of diabetes in NPY(+/+) and NPY(-/-) mice, using a multiple, low-dose, STZ paradigm (5 consecutive daily injections of 40 mg/kg), did not alter body weight, hypothalamic neuropeptide expression or pituitary receptor expression, with the exception that sst2 mRNA levels were suppressed and GH levels did rise in the NPY(-/-) mouse. These observations demonstrate that NPY is not required for basal regulation of the GH axis, but is required for fasting-induced suppression of GHRH and SRIH expression, as well as fasting-induced augmentation of pituitary GHS-R mRNA. In contrast to the rat, fasting clearly did not suppress circulating GH levels in mice, but resulted in an overall rise in mean GH levels, similar to that observed in other mammalian species. The fact that many of the fasting-induced changes in the GH axis were observed in the high-dose STZ-treated mice, but were not observed in the multiple, low-dose paradigm, suggests STZ-mediated modulation of GH axis function is dependent on the severity of the catabolic state and not hyperglycemia.
Collapse
Affiliation(s)
- Seungjoon Park
- Section of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, 820 Damen Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
19
|
Henry BA. Links between the appetite regulating systems and the neuroendocrine hypothalamus: lessons from the sheep. J Neuroendocrinol 2003; 15:697-709. [PMID: 12787054 DOI: 10.1046/j.1365-2826.2003.01049.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypothalamus is integral to the regulation of energy homeostasis and the secretion of hormones from the pituitary gland. Consequently, hypothalamic systems may have a dual purpose in regulating both neuroendocrine function and appetite. To date, most studies investigating the interface between appetite and hormone secretion have been performed in rats or mice that have been acutely fasted or baring a genetic abnormality causing either obesity or aphagia. By contrast, various physiological models, including chronic food-restriction or photoperiodically driven changes in voluntary food intake, add further perspective to the issue. In this regard, sheep provide an innovative model whereby long-term changes in body weight or extended feeding rhythms can be investigated. This review compares and contrasts data obtained in different species with regard to the neuroendocrinology of appetite, and discusses the benefits and knowledge gained from using various nonrodent models with a particular emphasis on a ruminant species.
Collapse
Affiliation(s)
- B A Henry
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol, UK.
| |
Collapse
|
20
|
Goldstone AP, Unmehopa UA, Swaab DF. Hypothalamic growth hormone-releasing hormone (GHRH) cell number is increased in human illness, but is not reduced in Prader-Willi syndrome or obesity. Clin Endocrinol (Oxf) 2003; 58:743-55. [PMID: 12780752 DOI: 10.1046/j.1365-2265.2003.01788.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Acute illness leads to increased GH, but reduced IGF-I secretion, while both are reduced in chronic illness. Prader-Willi syndrome (PWS) is a genetic obesity syndrome, with GH deficiency a feature independent of obesity. Reduced GH secretion may result from decreased hypothalamic release of GH-releasing hormone (GHRH). OBJECTIVE To quantify hypothalamic GHRH neurone cell number in control subjects with various lengths of premorbid illness duration, PWS and non-PWS obese subjects. DESIGN We examined GHRH neurones in the infundibular nucleus/median eminence complex of control subjects (n = 26, including four children), PWS (n = 6) and non-PWS (n = 4) obese adults and PWS children (n = 2), by quantitative immunocytochemistry, using postmortem material. RESULTS We found: (i) higher GHRH cell number during prolonged illness prior to death in both control adults (r = +0.62, P = 0.002, cell number vs. premorbid illness duration) and PWS adults (r = +0.90, P = 0.02); (ii) higher GHRH cell number in female than male adults [by 53% (95% confidence interval 28-83%) in controls, P = 0.005, correcting for premorbid illness duration]; (iii) no difference in GHRH cell number between PWS adults and control or non-PWS obese adults (P = 0.7 and P = 0.4, adjusting for sex and illness duration); and (iv) low GHRH cell number in only one PWS child (who had been receiving exogenous GH therapy). CONCLUSIONS These findings suggest continued activation of GHRH neurones during prolonged illness. There is no evidence that the GH deficiency in PWS results from reduced GHRH cell number, and GHRH neuronal responses to illness and exogenous GH treatment appear normal in PWS.
Collapse
Affiliation(s)
- Anthony P Goldstone
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Pompolo S, Rawson JA, Clarke IJ. Projections from the arcuate/ventromedial region of the hypothalamus to the preoptic area and bed nucleus of stria terminalis in the brain of the ewe; lack of direct input to gonadotropin-releasing hormone neurons. Brain Res 2001; 904:1-12. [PMID: 11516406 DOI: 10.1016/s0006-8993(01)02372-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to determine whether cells in the region of the arcuate and ventromedial hypothalamic nuclei (ARC/VMH) project to the gonadotropin-releasing hormone (GnRH) cells in the preoptic area (POA) and diagonal band of Broca (dbB) of the female sheep brain. An anterograde tracer, biotinylated dextran amine (BDA), was injected (70 nl) into the ARC/VMH (n=7) and the brains were perfused 3 weeks later. BDA terminals were mainly found in the dbB, POA and bed nucleus of stria terminalis (BNST). In order to determine the extent of input to GnRH neurons, we performed immunocytochemistry on the same sections with a GnRH antibody and examined close association of GnRH-immunoreactive (GnRH-IR) neurons (cell bodies and proximal dendrites) with BDA terminals. Of 223 GnRH-IR neurons that were examined, only three (1.3%) had BDA terminals in close proximity. Neither was close proximity observed between BDA terminals and GnRH-IR fibres. Injection of BDA into the BNST (n=6) showed terminals in POA, but only one of 273 GnRH-IR cells examined had BDA terminals in close proximity and no GnRH-IR fibres had BDA terminals in close proximity. Our results suggest that (1) although there are projections from the VMH/ARC to the dbB, POA and BNST, an interneuron or chain of interneurons is required for input to the GnRH neurones; (2) any input to GnRH neurons from the BNST involves at least one interneuron. The identity of these interneurons remains to be determined. Thus, input to the GnRH neurons from the estrogen receptor-rich area of ARC/VMH and from the BNST is not direct.
Collapse
Affiliation(s)
- S Pompolo
- Prince Henry's Institute of Medical Research, P.O. Box 5152, 3168, Victoria, Clayton, Australia.
| | | | | |
Collapse
|
22
|
Polkowska J, Gładysz A. Effect of food manipulation on the neuropeptide Y neuronal system in the diencephalon of ewes. J Chem Neuroanat 2001; 21:149-59. [PMID: 11312056 DOI: 10.1016/s0891-0618(01)00089-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of neuropeptide Y (NPY), which is involved in the neuromodulatory function associated with animal nutrition, growth and reproduction, depends on the nutritional status. However, the roles of individual components of food are not fully recognised. In this study, we evaluated the effects of dietary protein levels on the diencephalic population of NPY neurones. Female lambs were fed two diets equilibrated energetically but containing 8% protein in restricted diet or 18% protein in elevated diet, for 15 weeks starting with 6 months of age, during the first breeding period. Then, brain tissues were collected, fixed and used for the immunohistochemical localisation of NPY. Detection of NPY in diencephalon sections was followed by the image analysis and expressed as the percent area stained and optical density of immunostaining. Two distinct populations of the immunoreactive NPY perikarya were found, one in the infundibular nucleus; and the other in areas of diencephalon adjacent to the rostral hypothalamus. Long-term feeding the protein restricted diet caused a prominent expression of the immunoreactive material solely in the hypothalamic NPY neurones, particularly in those located in the entire periventricular area and in the infundibular nucleus. Both, percent area exhibiting positive staining and the density of immunoreactive NPY measured in the periventricular subdivision of the paraventricular nucleus were significantly higher (P<0.05) in sheep fed restricted diet, than in sheep fed on elevated diet. This study describes the distribution of NPY neurones in the sheep diencephalon, and shows the relationships between the expression of hypothalamic population of NPY neurones and the level of protein feeding.
Collapse
Affiliation(s)
- J Polkowska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jablonna, Poland.
| | | |
Collapse
|
23
|
McMahon CD, Chapin LT, Lookingland KJ, Radcliff RP, Tucker HA. Feeding reduces activity of growth hormone-releasing hormone and somatostatin neurons. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:210-7. [PMID: 10654626 DOI: 10.1046/j.1525-1373.2000.22329.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretion of growth hormone (GH) is synchronized among castrate male cattle (steers) around feeding when access to feed is restricted to a 2-hr period each day. Typically, concentrations of GH increase before and decrease after feeding. Our objectives were to determine whether i) concentrations of GH decrease in blood after start of feeding; ii) activity of immunoreactive growth hormone-releasing hormone (GHRH-ir) neurons decreases in the arcuate nucleus (ARC) after feeding; iii) activity of immunoreactive somatostatin (SS-ir) neurons in the periventricular nucleus (PeVN) and ARC increase after feeding; and iv) GHRH stimulates release of GH to a similar magnitude at 0900 and at 1300 hr, in steers fed between 1000 and 1200 hr. Blood samples were collected at 20-min intervals from 0700 to 1300 hr. Groups of steers were euthanized at 0700, 0900, 1100, and 1300 hr (n = 5 per group). Dual-label immunohistochemistry was performed on free-floating sections of hypothalami using antibodies directed against Fos and Fos-related antigens (Fos/FRA) as a marker of neuronal activity in immunoreactive GHRH and SS neurons. Concentrations of GH were high before and decreased after feeding. The percentage of SS-ir neurons containing Fos/FRA-ir in the PeVN was 50% lower (P<0.01) at 1100 hr and 36% lower (P<0.05) at 1300 hr than at 0900 hr. There was no change in percentage of SS-ir neurons containing Fos/FRA-ir in the ARC. The percentage of GHRH-ir neurons containing Fos/FRA-ir in the ARC was 66% lower (P<0.05) at 1100 hr and 65% lower (P<0.05) at 1300 hr than at 0700 hr. In contrast, the number of GHRH-ir neurons increased from 0700 to 1300 hr. GHRH-induced release of GH was suppressed at 1300 hr compared with 0900 hr. In conclusion, reduced basal and GHRH-induced secretion of GH after feeding was associated with decreased activity of GHRH neurons in the ARC and decreased activity of SS neurons in the PeVN.
Collapse
Affiliation(s)
- C D McMahon
- Department of Animal Science, Michigan State University, East Lansing 48824-1225, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system, especially by the functional interplay of two hypothalamic hypophysiotropic hormones, GH-releasing hormone (GHRH) and somatostatin (SS), exerting stimulatory and inhibitory influences, respectively, on the somatotrope. The two hypothalamic neurohormones are subject to modulation by a host of neurotransmitters, especially the noradrenergic and cholinergic ones and other hypothalamic neuropeptides, and are the final mediators of metabolic, endocrine, neural, and immune influences for the secretion of GH. Since the identification of the GHRH peptide, recombinant DNA procedures have been used to characterize the corresponding cDNA and to clone GHRH receptor isoforms in rodent and human pituitaries. Parallel to research into the effects of SS and its analogs on endocrine and exocrine secretions, investigations into their mechanism of action have led to the discovery of five separate SS receptor genes encoding a family of G protein-coupled SS receptors, which are widely expressed in the pituitary, brain, and the periphery, and to the synthesis of analogs with subtype specificity. Better understanding of the function of GHRH, SS, and their receptors and, hence, of neural regulation of GH secretion in health and disease has been achieved with the discovery of a new class of fairly specific, orally active, small peptides and their congeners, the GH-releasing peptides, acting on specific, ubiquitous seven-transmembrane domain receptors, whose natural ligands are not yet known.
Collapse
Affiliation(s)
- E E Müller
- Department of Pharmacology, Chemotherapy, and Toxicology, University of Milan, Milan, Italy
| | | | | |
Collapse
|
26
|
Shinohara K, Tominaga K, Inouye ST. Phase dependent response of vasoactive intestinal polypeptide to light and darkness in the suprachiasmatic nucleus. Neurosci Res 1999; 33:105-10. [PMID: 10211775 DOI: 10.1016/s0168-0102(98)00122-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Responsiveness of the vasoactive intestinal polypeptide (VIP) content to light and darkness in the rat suprachiasmatic nucleus (SCN) was examined by enzyme immunoassay of micropunched tissues. VIP content in the SCN has been shown to decrease monotonically in animals maintained in illumination. Decreases in VIP content in the SCN in response to both 6-h light and dark pulses depended on the phase of the circadian cycle when the pulses were applied. Light imposed at circadian time (CT) 18 or CT 22 was more effective in suppressing VIP levels than light exposure of the same intensity imposed at CT 0 or CT 6. Darkness interrupting continuous light was more effective at around CT 0 and less effective at around CT 12. These results suggest that VIP responsiveness to light and darkness in the SCN is regulated by the circadian clock in different ways and are correlated with phase-dependent phase shifts in the activity rhythm after light and dark pulses.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
27
|
Hurley DL, Wee BE, Phelps CJ. Growth hormone releasing hormone expression during postnatal development in growth hormone-deficient Ames dwarf mice: mRNA in situ hybridization. Neuroendocrinology 1998; 68:201-9. [PMID: 9734005 DOI: 10.1159/000054367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several genetic mutations in mice and rats that produce lifelong growth hormone (GH) deficiency result in overexpression of GH-releasing hormone (GHRH) mRNA in hypothalamic arcuate nucleus neurons. In order to examine the development of this condition, GHRH mRNA expression was quantified in Ames dwarf (df/df) and normal (DF/?) mice at 1 (day of birth), 3, 7, 14, 21 and 60 postnatal days (d) following in situ hybridization. Total mRNA was assessed using computer-assisted densitometry after X-ray film autoradiography, and mRNA expression per neuron was quantified by counts of grains per cell after emulsion autoradiography. Total GHRH mRNA was the same in dwarf and normal mice at 1, 3 and 7d. GHRH mRNA in dwarfs increased at 14d to 240% of that in DF/? (p < 0.005); the percentage overexpression in dwarf mice remained >/=200% through 60d, although total GHRH mRNA increased in both dwarfs and normals during this period. GHRH mRNA per neuron was the same in normal and dwarf mice at 1d, then increased in dwarfs to 190% of that in normals at 3d (p < 0.05), and rose to 300% of normal levels by 7d and beyond (p < 0. 005). There was no sexual dimorphism in expression by either measure in normal or dwarf mice. These results indicate that an increase in GHRH mRNA in Ames dwarf mice is first detectable at 3d, a period of approximately 7d after the failure to initiate GH production, which occurs normally at embryonic day 17.5. The onset of GHRH overexpression occurs earlier than the decline of either hypophysiotropic somatostatin or dopamine in Ames dwarf mice. This difference may be due to the stimulatory action of GHRH, as opposed to the inhibitory effects of factors examined previously.
Collapse
Affiliation(s)
- D L Hurley
- Department of Cell and Molecular Biology, Tulane University, New Orleans, La., USA.
| | | | | |
Collapse
|
28
|
Kamegai J, Unterman TG, Frohman LA, Kineman RD. Hypothalamic/pituitary-axis of the spontaneous dwarf rat: autofeedback regulation of growth hormone (GH) includes suppression of GH releasing-hormone receptor messenger ribonucleic acid. Endocrinology 1998; 139:3554-60. [PMID: 9681507 DOI: 10.1210/endo.139.8.6136] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, the spontaneous dwarf rat (SDR) has been used to examine GHRH production and action in the selective absence of endogenous GH. This dwarf model is unique in that GH is not produced because of a point mutation in the GH gene. However, other pituitary hormones are not obviously compromised. Examination of the hypothalamic pituitary-axis of SDRs revealed that GHRH messenger RNA (mRNA) levels were increased, whereas somatostatin (SS) and neuropeptide Y (NPY) mRNA levels were decreased, compared with age- and sex-matched normal controls, as determined by Northern blot analysis (n = 5 animals/group; P < 0.05). The elevated levels of GHRH mRNA in the SDR hypothalamus were accompanied by a 56% increase in pituitary GHRH receptor (GHRH-R) mRNA, as determined by RT-PCR (P < 0.05). To investigate whether the up-regulation of GHRH-R mRNA resulted in an increase in GHRH-R function, SDR and control pituitary cell cultures were challenged with GHRH (0.001-10 nM; 15 min), and intracellular cAMP concentrations were measured by RIA. Interestingly, SDR pituitary cells were hyperresponsive to 1 and 10 nM GHRH, which induced a rise in intracellular cAMP concentrations 50% greater than that observed in control cultures (n = 3 separate experiments; P < 0.05 and P < 0.01, respectively). Replacement of GH, by osmotic minipump (10 microg/h for 72 h), resulted in the suppression of GHRH mRNA levels (P < 0.01), whereas SS and NPY mRNA levels were increased (P < 0.05), compared with vehicle-treated controls (n = 5 animals/treatment group). Consonant with the fall in hypothalamic GHRH mRNA was a decrease in pituitary GHRH-R mRNA levels. Although replacement of insulin-like growth factor-I (IGF-I), by osmotic pump (5 microg/h for 72 h), resulted in a rise in circulating IGF-I concentrations comparable with that observed after GH replacement, IGF-I treatment was ineffective in modulating GHRH, SS, or NPY mRNA levels. However, IGF-I treatment did reduce pituitary GHRH-R mRNA levels, compared with vehicle-treated controls (P < 0.05). These results further validate the role of GH as a negative regulator of hypothalamic GHRH expression, and they suggest that SS and NPY act as intermediaries in GH-induced suppression of hypothalamic GHRH synthesis. These data also demonstrate that increases in circulating IGF-I are not responsible for changes in hypothalamic function observed after GH treatment. Finally, this report establishes modulation of GHRH-R synthesis as a component of GH autofeedback regulation.
Collapse
Affiliation(s)
- J Kamegai
- Department of Medicine, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|
29
|
Shinohara K, Tominaga K, Inouye ST. Luminance-dependent decrease in vasoactive intestinal polypeptide in the rat suprachiasmatic nucleus. Neurosci Lett 1998; 251:21-4. [PMID: 9714455 DOI: 10.1016/s0304-3940(98)00491-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light responsiveness of the vasoactive intestinal polypeptide (VIP) content in the suprachiasmatic nucleus (SCN) of the rat with pupils dilated by atropine was examined by enzyme immunoassay. After exposure to 6 h light at 3-1000 lux VIP levels in the SCN decreased as a monotonic function with a working range from 3 to 300 lux. At 12 h, 30 lux light decreased the VIP content to the minimum level that was attained by 300 lux light exposure in 6 h, suggesting that brighter illumination decreases VIP levels more rapidly, but light at a luminance of 0.05 lux for 3 days did not suppress VIP levels. These results suggest that VIP in the SCN codes visual information on luminance with a small working range and a relative high threshold.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, Japan.
| | | | | |
Collapse
|
30
|
Vuagnat BA, Pierroz DD, Lalaoui M, Englaro P, Pralong FP, Blum WF, Aubert ML. Evidence for a leptin-neuropeptide Y axis for the regulation of growth hormone secretion in the rat. Neuroendocrinology 1998; 67:291-300. [PMID: 9641610 DOI: 10.1159/000054326] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The obese gene (OB) product, leptin, has been shown to exert control on metabolic processes such as food intake and body weight homeostasis, possibly through a neuropeptide Y (NPY) neurotransmission. More recently, leptin has been shown to control several neuroendocrine axes, modulating pituitary hormone secretions in function of metabolic conditions. Since in the rat growth hormone (GH) secretion is dependent upon prevailing metabolic conditions, and NPY has been shown to be implicated in the feedback mechanisms of this hormone, we reasoned that leptin could also exert control over GH secretion and we examined this hypothesis in male rats submitted to a 3-day fast. Circulating leptin concentrations measured by RIA abruptly fell to low values after 24 h of fasting and remained low thereafter. Upon refeeding, leptin secretion regularly increased. As shown by others, pulsatile GH secretion had disappeared after 3 days of fasting. Centrally administered leptin (10 microg/day, i.c.v. infusion initiated at the beginning of the fasting period) totally prevented the disappearance of pulsatile GH secretion. No leak of centrally administered leptin to the general circulation was observed. Infusing the same amount of leptin intracerebroventricularly to rats receiving ad libitum feeding produced a severe reduction in food intake but maintained a normal GH secretory pattern. In contrast, pair-fed rats, submitted to the same food restriction, exhibited a marked reduction in GH secretion. Hypothalamic NPY gene expression, estimated by Northern blot analysis, was significantly increased in fasting rats, and decreased in leptin-treated, fasting rats. In rats receiving ad libitum feeding, leptin treatment reduced NPY gene expression, consistent with the observed reduction in food intake, whereas pair-fed animals logically exhibited increased NPY gene expression. In both situations with reduced feeding, normal GH secretion was seen in leptin-treated animals exhibiting low NPY gene expression, whereas decreased or abolished GH secretion was seen in animals not receiving leptin and exhibiting increased NPY mRNA levels. Interestingly, despite maintenance of normal GH secretion in leptin-treated, fasting rats, plasma IGF-I levels were low, as in vehicle-treated rats. Indeed, hepatic gene expression for both GH receptor and IGF-I was markedly reduced by fasting, and no correction was seen with leptin treatment. In summary, the regulation of GH secretion, at least the changes linked with malnutrition, appears to be dependent upon a leptin signal, perceived centrally, possibly related to circulating levels of this new hormone. The present data suggest that leptin can rescue normal pulsatile GH secretion by preventing the documented inhibitory action of NPY on GH secretion.
Collapse
Affiliation(s)
- B A Vuagnat
- Department of Pediatrics, University of Geneva School of Medicine, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Bluet-Pajot MT, Epelbaum J, Gourdji D, Hammond C, Kordon C. Hypothalamic and hypophyseal regulation of growth hormone secretion. Cell Mol Neurobiol 1998; 18:101-23. [PMID: 9524732 DOI: 10.1023/a:1022579327647] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Regulation of pulsatile secretion of growth hormone (GH) relies on hypothalamic neuronal loops, major transmitters involved in their operation are growth hormone releasing hormone (GHRH) synthetized mostly in arcuate nucleus (ARC) neurons, and somatostatin (SRIH), synthetized both in hypothalamus periventricular (PVe) and ARC neurons. 2. Neurons synthetizing both peptides can inhibit each other in a reciprocal manner. Other neuropeptides synthetized in ARC neurons, such as galanin, or in ARC interneurons, such as neuropeptide Y (NPY), are able to modulate synthesis and release of GHRH and SRIH into the hypothalamohypophyseal portal system. 3. In addition, the hitherto uncharacterized endogenous ligand of the recently cloned growth hormone releasing peptide receptor, expressed mostly in the ARC, triggers GH release, presumably by actions on ARC interneurons. 4. Thyroid, gonadal, and adrenal steroid hormones also affect the GHRH-SRIH balance; a differential distribution of sex steroid receptors in the ARC and the PVe is likely to account for the different pattern of GH secretion in male and female animals. 5. Growth hormone itself is able to inhibit the amplitude of GH secretory episodes and to increase their frequency, by entering the brain (presumably by receptor-mediated internalization at the level of the choroid plexus) and acting subsequently on ARC neurons. 6. At the pituitary level, major neurotransmitters regulating GH cells act on receptors of the VIP/PACAP/GHRH family and of the somatostatin family, in particular, sst2 and sst3. Those are coupled to accumulation of cAMP as a second messenger. 7. In addition, patch-clamp experiments and measurement of intracellular Ca2+ indicate that GH cells present characteristic, GHRH-dependent, but self-maintained Ca2+ spikes and [Ca2+]i transients, which reflect adaptive mechanisms to constraints of episodic release. 8. Recent data on transcription factors affecting GH gene expression and somatotrope differentiation are also summarized. 9. Regulation and differentiation of somatotropes also depend upon paracrine processes within the pituitary itself and involve growth factors and several neuropeptides, for instance, vasoactive intestinal peptide, angiotensin 2, endothelin, and activin. 10. Finally, characteristic changes occur in the GH secretory pattern under discrete, pathological conditions, such as abnormal growth and dwarfism, diabetes, and acromegaly, as well as during inflammatory processes.
Collapse
Affiliation(s)
- M T Bluet-Pajot
- Unité de Recherche sur la Dynamique des Systèmes Neuroendocriniens (U159), INSERM, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res 1997; 756:283-6. [PMID: 9187344 DOI: 10.1016/s0006-8993(97)00184-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptide Y, produced in the arcuate nucleus of the hypothalamus, plays a key role in the central regulation of anterior pituitary and appetitive functions. The pleiotropic nature of neuropeptide Y in these mechanisms indicates the existence of heterogeneity in the hypothalamic neuronal population producing neuropeptide Y. In this study, we report the coexistence of neuropeptide Y and the amino acid transmitter, gamma-aminobutyric acid (GABA), in neuronal perikarya of the arcuate nucleus. Fluorescent double immunolabeling for neuropeptide Y and glutamic acid decarboxylase was carried out on vibratome sections collected through the hypothalamic arcuate nuclei of animals that were pretreated with colchicine. It was found that about one third of the neuropeptide Y-producing arcuate nucleus perikarya co-expressed glutamic acid decarboxylase. This population of neuropeptide Y-containing GABAergic neurons were distributed longitudinally within the arcuate nucleus located predominantly in its dorsomedial aspects. These results show that there are at least two distinct populations of neuropeptide Y-producing neurons in the arcuate nucleus: a subset of neuropeptide Y and GABA-co-producing neurons located in the dorsomedial arcuate nucleus and a subset of non-GABAergic neuropeptide Y cells located in the ventral arcuate nucleus. This heterogeneity in the neuropeptide Y-producing perikarya of the hypothalamus may help explain adverse neuroendocrine and behavioral effects of arcuate nucleus neuropeptide Y.
Collapse
Affiliation(s)
- T L Horvath
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
33
|
Suzuki N, Okada K, Minami S, Wakabayashi I. Inhibitory effect of neuropeptide Y on growth hormone secretion in rats is mediated by both Y1- and Y2-receptor subtypes and abolished after anterolateral deafferentation of the medial basal hypothalamus. REGULATORY PEPTIDES 1996; 65:145-51. [PMID: 8884982 DOI: 10.1016/0167-0115(96)00085-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuropeptide Y (NPY) may play a physiological role in the regulation of growth hormone (GH) secretion by acting via somatostatin (SS) in the periventricular nucleus (PeV), as well as via the GH-releasing factor in the arcuate nucleus (ARC) of the medial basal hypothalamus (MBH). The objectives of the present study were to determine the neuron structures and receptor subtypes necessary for mediating the inhibitory effect of NPY on GH secretion in unanesthetized male rats. To eliminate the influence of hypophyseotropic SS, anterolateral deafferentation (ALC) of the hypothalamus was performed. Intracerebroventricular (i.c.v.) administration of 1.17 nmol of NPY decreased the blood level of GH for 3-4 h in sham-operated rats, while the procedure was without effect in ALC rats. The i.c.v. administration of 1.17 nmol of a Y1-receptor agonist ([Leu31, Pro34]-NPY) or a Y2-receptor agonist (NPY 13-36 and NPY 3-36) similarly suppressed the blood GH level. The data support the hypothesis that neuron structures anterolateral to the MBH are required for NPY-induced inhibition of GH secretion that is mediated via Y1- and Y2-receptor subtypes. Combined with data of other investigators, SS is likely the neurohumoral mediator of the effect of NPY on GH secretion.
Collapse
Affiliation(s)
- N Suzuki
- Department of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Pearson PL, Anderson LL, Jacobson CD. The prepubertal ontogeny of neuropeptide Y-like immunoreactivity in the male Meishan pig brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:41-69. [PMID: 8821478 DOI: 10.1016/0165-3806(95)00161-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuropeptide Y (NPY) is widely distributed in the mammalian brain and is involved in numerous functions including the control of feeding, growth and reproduction. Therefore, NPY may be an important peptide to study in agricultural species. This study describes the immunohistochemical localization of NPY throughout prepubertal development in the Meishan pig, a Chinese breed known for its superior reproductive characteristics. Brains of animals from gestational day (g) 30 through postnatal day (pn) 50 (duration of pregnancy averaged 114 days) were processed using a standard immunohistochemical technique utilizing a commercially available rabbit anti-porcine NPY antibody. Neuropeptide Y-like immunoreactivity (NPY-IR) in cell bodies and fibers is evident in many areas of the brain at g30, including the basal telencephalon, hypothalamus, mesencephalon, pons, and medulla. Throughout prenatal development, cell bodies containing NPY-IR generally increase in number and distribution in the brain. During postnatal development the number of cell bodies displaying NPY-IR decreases. The arcuate nucleus of the hypothalamus, shows a dramatic reduction in the number of immunoreactive cell bodies between pn1 (day of birth) and pn20, just before weaning. The distribution of NPY-IR in fibers becomes more widespread throughout gestational development, showing a pattern by g110 that was characteristic of postnatal ages. The intensity of NPY-IR in fibers also increases throughout gestation. Some additional increases in immunoreactivity occur postnatally, especially in the periventricular hypothalamus and the hippocampus. Other brain areas like the caudate nucleus and putamen show decreases in immunoreactivity postnatally. The distribution of NPY-IR in cell bodies and fibers is similar to that seen in other species, including the rat, and supports the hypothesis that NPY participates in controlling feeding, growth and reproduction in the pig.
Collapse
Affiliation(s)
- P L Pearson
- Department of Veterinary Anatomy, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
35
|
Minami S, Kamegai J, Sugihara H, Suzuki N, Higuchi H, Wakabayashi I. Central glucoprivation evoked by administration of 2-deoxy-D-glucose induces expression of the c-fos gene in a subpopulation of neuropeptide Y neurons in the rat hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:305-10. [PMID: 8750890 DOI: 10.1016/0169-328x(95)00151-h] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Central glucoprivation evoked by the intracerebroventricular administration of 2-deoxy-D-glucose (2DG) induces eating and suppresses growth hormone (GH) secretion in rats. To elucidate the hypothalamic mechanism of these phenomena, the induction of c-fos gene expression was examined by in situ hybridization using rats with centrally administered 2DG. Autoradiography on X-ray film showed that c-fos gene expression was transiently induced in discrete hypothalamic regions; namely the paraventricular nucleus, arcuate nucleus (ARC), the surrounding regions of the third ventricle dorsal to the ARC, and the periventricular nucleus (PeV). The time course of the expression was different in these nuclei. Double-label in situ hybridization for c-fos mRNA and neuropeptide Y (NPY) or somatostatin mRNAs revealed that 20% of the NPY neurons in the ARC expressed the c-fos gene, while a small population of somatostatin neurons (6.1% in the ARC and 2.6% in the PeV) expressed the c-fos gene following 2DG administration. Since NPY is an orexigenic neuropeptide and has an inhibitory effect on GH secretion, the data suggest that the activation of a subpopulation of NPY neurons in the ARC contributes, in part, to the increased food intake and suppression of GH secretion after central glucoprivation evoked by 2DG.
Collapse
Affiliation(s)
- S Minami
- Department of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Okamura H, Kawakami F, Tamada Y, Geffard M, Nishiwaki T, Ibata Y, Inouye ST. Circadian change of VIP mRNA in the rat suprachiasmatic nucleus following p-chlorophenylalanine (PCPA) treatment in constant darkness. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:358-64. [PMID: 7609623 DOI: 10.1016/0169-328x(94)00278-m] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuronal activity of the suprachiasmatic nucleus (SCN) is known to be regulated by two major extrinsic factors conveyed by three anatomically distinct pathways to the SCN: photic stimulus by the direct retinohypothalamic tract (RHT) and the indirect geniculohypothalamic tract (GHT), and information from the brainstem by ascending forebrain serotonergic (5-hydroxytryptamine: 5-HT) tract. It has been shown that VIP mRNA level in neurons of the SCN is altered by external light, but remains stable in constant darkness. In the present study, by using the in situ hybridization technique combined with computer-assisted image analysis, we examined VIP mRNA expression in the SCN of rats in which the two major factors were eliminated, i.e. photic stimulus by exposing animals in total darkness and 5-HT transmission by three-day successive administration of p-chlorophenyl-alanine methylester (an inhibitor of tryptophan hydroxylase, 200 mg/kg, daily). In saline-treated controls, VIP mRNA levels remained almost constant throughout the day. In contrast, in PCPA-treated rats, a significant rhythm of VIP mRNA was observed with a peak at CT 4 and a trough at CT 20. These observations suggest that the removal of photic and 5-HT influence induces VIP mRNA rhythm in the SCN, indicating that VIP mRNA is controlled not only by photic information but also by the circadian clock.
Collapse
Affiliation(s)
- H Okamura
- Department of Anatomy, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The circadian rhythm in mammals is under control of the pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. This tiny nucleus contains a number of neurochemicals, including peptides, amines and amino acids. Heterogeneous distribution of these neurochemicals defines the substructures of the SCN. In the present review, functional significance of such neurochemical heterogeneity in the SCN is discussed in the light of circadian patterns of the concentrations of these neurochemicals in the SCN and their effects on SCN neurons in in vitro slice preparation. In particular, the hypothesis that the dorsomedial SCN is involved in maintaining the circadian rhythm, while the ventrolateral SCN is involved in adjusting the phase of the rhythm, is critically discussed. These considerations suggest that distinct sub-components of the SCN as marked by neurochemicals, interact with each other and this organizational architecture could be the basis of the proper operation of the circadian time keeping system in this nucleus.
Collapse
Affiliation(s)
- S T Inouye
- Laboratory of Integrative Brain Function, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
38
|
Hisano S, Fukui Y, Chikamori-Aoyama M, Aizawa T, Shibasaki T. Reciprocal synaptic relations between CRF-immunoreactive- and TRH-immunoreactive neurons in the paraventricular nucleus of the rat hypothalamus. Brain Res 1993; 620:343-6. [PMID: 8369968 DOI: 10.1016/0006-8993(93)90178-p] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By double immunoelectron microscopy, we studied synaptic relations between corticotropin-releasing factor (CRF)-immunoreactive (ir) and thyrotropin-releasing hormone (TRH)-ir neurons in the paraventricular nucleus (PVN) of the rat hypothalamus. CRF-ir and TRH-ir neurons made reciprocal synaptic connections in the medial and periventricular parvocellular regions. These results may suggest that both the parvocellular neurons interplay on their hypophysiotropic functions within the PVN.
Collapse
Affiliation(s)
- S Hisano
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
39
|
Hisano S, Chikamori-Aoyama M, Aizawa T, Fukui Y. Somatostatin-like immunoreactive axon terminals on oxytocin-like immunoreactive neurons in the paraventricular nucleus of the rat hypothalamus. Neurosci Lett 1993; 156:21-3. [PMID: 8105428 DOI: 10.1016/0304-3940(93)90429-o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
By double label immunohistochemistry, we studied the synaptic relation between somatostatin (SS) and oxytocin (OT) or vasopressin (VP) neurons in the paraventricular nucleus (PVN) of the rat hypothalamus. In the light microscopic observation, SS-immunoreactive (ir) fibers were seen very frequently in contact with OT-ir neurons, but not with VP-ir neurons. Immunoelectron microscopic analysis revealed that somata and their dendrites of OT-ir magnocellular neurons were in synaptic contacts with SS-ir axon terminals. No SS-ir synaptic terminals were found on VP-ir magnocellular neurons. The results suggest that OT-containing magnocellular neurons in the PVN are under regulatory influences of SS-containing neurons.
Collapse
Affiliation(s)
- S Hisano
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | | | | | |
Collapse
|
40
|
Daikoku S, Hisano S, Kagotani Y. Neuronal associations in the rat suprachiasmatic nucleus demonstrated by immunoelectron microscopy. J Comp Neurol 1993; 325:559-71. [PMID: 1361497 DOI: 10.1002/cne.903250408] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The synaptic associations of neurons in the suprachiasmatic nucleus (SCN) of rats were examined by single immunolabeling for somatostatin (SRIH) and arginine vasopressin (AVP), and double immunolabeling for SRIH plus AVP and vasoactive intestinal polypeptide (VIP) plus AVP. Single immunolabeling showed that SRIH neurons, which displayed some somatic and dendritic spines, formed synaptic contacts with immunonegative and positive axon terminals. AVP neurons also formed synaptic contacts with both immunonegative and positive axon terminals. The immunonegative terminals contained small, spherical clear vesicles or flattened clear vesicles. A few immunopositive AVP fibers made synapses with immunonegative somatic or dendritic spines. Double immunolabeling showed synaptic associations between SRIH axons and AVP cell bodies or dendritic processes, and between AVP axons and the somata or dendrites of SRIH neurons. These findings suggest a reciprocal relation between the two types of neurons. Synaptic contacts between AVP neurons and VIP axon terminals were also demonstrated. Previously, we found synapses between SRIH axons and VIP neurons. Thus SRIH neurons appeared to regulate AVP and VIP neurons. On the basis of these findings, two possible oscillation systems of the SCN are proposed.
Collapse
Affiliation(s)
- S Daikoku
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | | | |
Collapse
|
41
|
Hisano S, Daikoku S. Existence of mutual synaptic relations between corticotropin-releasing factor-containing and somatostatin-containing neurons in the rat hypothalamus. Brain Res 1991; 545:265-75. [PMID: 1713527 DOI: 10.1016/0006-8993(91)91295-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light microscopic studies of vibratome sections, which were double-immunostained for corticotropin-releasing factor (CRF) and for somatostatin (SS), suggested the presence of reciprocal synaptic relations between neurons containing immunoreactive (ir) CRF and those containing ir SS in the parvocellular paraventricular nucleus (parvo-PVN) and in the anterior periventricular area (APV) of the rat hypothalamus. In the sections the peptides included in neuronal fibers were labeled black with silver-gold particles, and the peptides included in neuronal cell bodies were labeled brown with diaminobenzidine (DAB). Thereby the brown cell bodies appeared to be surrounded by several black nerve terminals. In electron microscopic studies, the labeling was mostly performed in reverse fashion, because of the convenience for observing the ultrastructural details of the nerve terminals. The neuroplasm of the postsynaptic perikarya and dendrites was labeled with gold-coated silver grains, while the presynaptic axonal terminals were shown with scattered DAB particles. Granular structures in the perikarya or axonal terminals were labeled distinctively. The synaptic morphology appeared to be either symmetric or asymmetric connections. Then we found synaptic connections between presynaptic ir SS containing fiber terminals and postsynaptic ir CRF containing perikarya in the parvo-PVN, and those ir CRF containing fiber terminals and ir SS containing perikarya in the APV. The existence of such a reciprocal association between CRF and SS neurons may suggest that these neuronal systems intervene among different functional systems in the hypothalamus.
Collapse
Affiliation(s)
- S Hisano
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | |
Collapse
|
42
|
Kagotani Y, Hisano S, Tsuruo Y, Daikoku S, Chihara K. Vasopressin-deficient paraventricular magnocellular neurons of homozygous Brattleboro rats synthesize neuropeptide Y. Neurosci Lett 1990; 112:37-42. [PMID: 2385361 DOI: 10.1016/0304-3940(90)90318-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunohistochemical study was carried out to determine whether neuropeptide Y (NPY), which was only found in certain experimental procedures in arginine vasopressin (AVP)-containing neurons of the magnocellular paraventricular nucleus, might also be synthesized in AVP-deficient homozygous Brattleboro (BB) rats. After an intraventricular colchicine administration, NPY was found in many AVP-deficient non-oxytocinergic magnocellular neurons of the paraventricular and supraoptic nuclei in BB rats, but not in suprachiasmatic nucleus neurons. The results suggest that the NPY synthesis is a phenotype of magnocellular non-oxytocinergic neurosecretory neurons and occurs independently from the synthesis of AVP.
Collapse
Affiliation(s)
- Y Kagotani
- Department of Anatomy, School of Medicine, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|