1
|
Bilella A, Alvarez-Bolado G, Celio MR. TheFoxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits. J Comp Neurol 2016; 524:2955-81. [DOI: 10.1002/cne.24057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Alessandro Bilella
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg; 69120 Heidelberg Germany
| | - Marco R. Celio
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| |
Collapse
|
2
|
Pedersen KV, Drewes AM, Frimodt-Møller PC, Osther PJS. Visceral pain originating from the upper urinary tract. ACTA ACUST UNITED AC 2010; 38:345-55. [PMID: 20473661 DOI: 10.1007/s00240-010-0278-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Pain originating from the upper urinary tract is a common problem and stone colic is one of the most intense pain conditions that can be experienced in the clinic. The pain is difficult to alleviate and often leads to medical attention. In humans, pain mechanisms of the upper urinary tract pain are still poorly understood, which often leads to a trial and error approach in clinical pain management. Pain from the upper urinary tract seems to have all the characteristics of pure visceral pain, including referred pain with or without hyperalgesia/trophic changes in somatic tissues and viscero-visceral hyperalgesia. However, further studies are needed to better understand these visceral pain mechanisms with regard to optimising pain management. This review gives an introduction to visceral pain in general and upper urinary tract pain in particular, with special reference to pain pathways and pharmacological and non-pharmacological pain modulation.
Collapse
Affiliation(s)
- Katja Venborg Pedersen
- Department of Urology, Hospital Littlebelt, University of Southern Denmark, Dronningensgade 97, 7000, Fredericia, Denmark.
| | | | | | | |
Collapse
|
3
|
Berényi A, Benedek G, Nagy A. Double sliding-window technique: a new method to calculate the neuronal response onset latency. Brain Res 2007; 1178:141-8. [PMID: 17900542 DOI: 10.1016/j.brainres.2007.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 11/17/2022]
Abstract
Neuronal response onset latency provides important data on the information processing within the central nervous system. In order to enhance the quality of the onset latency estimation, we have developed a 'double sliding-window' technique, which combines the advantages of mathematical methods with the reliability of standard statistical processes. This method is based on repetitive series of statistical probes between two virtual time windows. The layout of the significance curve reveals the starting points of changes in neuronal activity in the form of break-points between linear segments. A second-order difference function is applied to determine the position of maximum slope change, which corresponds to the onset of the response. In comparison with Poisson spike-train analysis, the cumulative sum technique and the method of Falzett et al., this 'double sliding-window, technique seems to be a more accurate automated procedure to calculate the response onset latency of a broad range of neuronal response characteristics.
Collapse
Affiliation(s)
- Antal Berényi
- Department of Physiology, Faculty of Medicine, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | | | | |
Collapse
|
4
|
Abstract
We studied how the nervous system selects between noxious stimulus-evoked withdrawals and micturition, movements that are necessary for survival but use overlapping muscles and therefore cannot occur simultaneously. In lightly anesthetized rats, micturition was favored, because noxious stimulation never interrupted micturition, whereas withdrawals were suppressed during voiding. Neurons in the ventromedial medulla (VMM) are a major source of descending antinociceptive signals. To test whether VMM neurons support withdrawal suppression during micturition, the discharge of VMM neurons was recorded during continence and micturition. VMM cells that were inhibited (M-inh) or excited (M-exc) during micturition were observed. M-inh cells were excited by noxious cutaneous stimulation and thus are likely nociception facilitating, whereas M-exc cells were inhibited by noxious heat and are likely nociception inhibiting. The excitation of nociception-inhibiting M-exc and inhibition of nociception-facilitating M-inh cells predicts suppression of withdrawals during micturition. M-exc cells were typically silent before micturition, whereas most M-inh cells fired before micturition, suggesting that these cells may also play a preparatory role for micturition. To test this idea, we examined manipulations that either advanced or delayed the onset of micturition. Hypothalamic stimulation and noxious paw heat advanced micturition while exciting M-inh cells and inhibiting M-exc cells. In contrast, colorectal distension, a stimulus that delays micturition, inhibited M-inh cells and excited M-exc cells. These results suggest a model in which, during continence, VMM M-inh cells facilitate and M-exc cells inhibit bladder afferents, advancing micturition onset when M-inh cells are activated and delaying onset when M-exc cells are activated.
Collapse
Affiliation(s)
- Madelyn A Baez
- Committee on Neurobiology and Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
5
|
Jian BJ, Acernese AW, Lorenzo J, Card JP, Yates BJ. Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res 2005; 1044:241-50. [PMID: 15885222 DOI: 10.1016/j.brainres.2005.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 11/16/2022]
Abstract
Prior experiments have shown that a region of the medial and inferior vestibular nuclei contributes to cardiovascular and respiratory regulation. In addition to labyrinthine inputs, the majority of neurons in this region of the vestibular nuclei receive signals from the skin, muscle, and viscera, although the pathways conveying these nonlabyrinthine inputs to the vestibular nucleus neurons are unknown. To gain further insight into the afferent pathways to this functionally distinct subdivision of the vestibular complex, we combined monosynaptic mapping with viral transneuronal tracing in the ferret. First order afferent projections were defined by retrograde transport of the beta-subunit of cholera toxin (CTbeta), and the extended polysynaptic circuitry was defined in the same animals by injection of a recombinant of pseudorabies virus Bartha (PRV) into the contralateral vestibular nuclei. Neurons containing CTbeta or infected by retrograde transneuronal transport and replication of PRV were distributed throughout the spinal cord, but were 10 times more prevalent in the cervical cord than the lumbar cord. The labeled spinal neurons were most commonly observed in Rexed's laminae IV-VI and the dorsal portions of laminae VII-VIII. Both the CTbeta and PRV injections also resulted in labeling of neurons in all four vestibular nuclei, the prepositus hypoglossi, the reticular formation, the inferior olivary nucleus, the medullary raphe nuclei, the spinal and principal trigeminal nuclei, the facial nucleus, and the lateral reticular nucleus. Following survival times >/=3 days, PRV-infected neurons were additionally present in nucleus solitarius and the gracile and cuneate nuclei. These data show that an anatomical substrate is present for somatosensory and visceral inputs to influence the activity of cells in the autonomic region of the vestibular nuclei and suggest that these signals are primarily transmitted through brainstem relay neurons.
Collapse
Affiliation(s)
- B J Jian
- Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Room 519, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
6
|
Brink TS, Mason P. Role for Raphe Magnus Neuronal Responses in the Behavioral Reactions to Colorectal Distension. J Neurophysiol 2004; 92:2302-11. [PMID: 15175367 DOI: 10.1152/jn.00374.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The brain stem is necessary for the expression of behavioral reactions to noxious visceral inputs. Neurons in raphe magnus (RM) and the adjacent nucleus reticularis magnocellularis (NRMC) respond to visceral stimuli and can facilitate the behavioral reaction to visceral stimulation. To determine which RM and NRMC cells could play a role in generating the reaction to colorectal distension (CRD), the responses of RM and NRMC cells to multiple intensities of CRD were compared with simultaneously evoked cardiovascular and visceromotor reactions in halothane-anesthetized rats. Most neurons (89%) responded to CRD with one of three basic response patterns. For cells with a graded response pattern, the response magnitude increased with increasing stimulation intensity. For flat responding cells, the response magnitude was not different across suprathreshold stimulation intensities. Finally, neurons with a switch response pattern responded to low- and high-intensity CRD in opposing directions. Cells were either inhibited or excited by CRD in each of these categories. Responses of cells with both graded and switch response patterns were significantly correlated with CRD-evoked tachycardia, pressor reaction, and hunching. The activity of graded-responding cells have the greatest predictive value for CRD-evoked reactions. Flat-responding cells have nonlinear responses that may augment reactions to stimuli above the noxious threshold. Cells with switch type response patterns may contribute to differential reactions evoked by CRD stimuli within the noxious range. In sum, RM and NRMC neurons respond to CRD with a variety of patterns, each of which may contribute to the sculpting of CRD reactions in different ways.
Collapse
Affiliation(s)
- Thaddeus S Brink
- Dept. of Neurobiology, Pharmacology, and Physiology, University of Chicago, MC 0926, 947 E. 58th St., Chicago, IL 60637, USA
| | | |
Collapse
|
7
|
Andrews KA, Desai D, Dhillon HK, Wilcox DT, Fitzgerald M. Abdominal sensitivity in the first year of life: comparison of infants with and without prenatally diagnosed unilateral hydronephrosis. Pain 2002; 100:35-46. [PMID: 12435457 DOI: 10.1016/s0304-3959(02)00288-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There are few studies on visceral pain in infants, despite its clinical importance. We have used the abdominal skin reflex (ASR) to measure changes in abdominal sensitivity in the presence of visceral pathology in infants. The reflex was elicited by applying calibrated von Frey hairs to each side of the abdomen and the mechanical threshold and the degree of reflex radiation as denoted by hip flexion were measured. The developmental progression of ASR properties during the first year of life was studied in a cross-sectional sample of healthy infants ranging from 30 to 95 weeks postconceptional age (PCA). These properties were compared to those in infants with unilateral hydronephrosis (UH) using a blinded protocol. Infants with UH were studied at their first outpatient appointment after birth, and postoperatively following surgery if this was indicated. The investigators were blinded to laterality and severity of hydronephrosis until data were analysed, or until surgery. A total of 30 patients with UH and 77 healthy infants were included in the study. In 21 (70%) patients, the side of hydronephrosis had a significantly lower ASR threshold than the contralateral side of the abdomen. There was a significant increase in reflex threshold and decrease in reflex radiation with increasing PCA in control infants. However, in UH infants, this relationship did not exist, even on the unaffected side of the abdomen.Our results show that infants with prenatally diagnosed UH demonstrate increased abdominal sensitivity compared with control infants. Using the ASR, we have provided the first evidence of referred visceral hypersensitivity in infants.
Collapse
Affiliation(s)
- K A Andrews
- Children Nationwide Paediatric Pain Research Centre, Department of Anatomy, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
8
|
Zhuo M, Sengupta JN, Gebhart GF. Biphasic modulation of spinal visceral nociceptive transmission from the rostroventral medial medulla in the rat. J Neurophysiol 2002; 87:2225-36. [PMID: 11976363 DOI: 10.1152/jn.2002.87.5.2225] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Descending inhibitory and facilitatory influences from the rostroventral medulla (RVM) on responses of lumbosacral spinal neurons to noxious colorectal distension (CRD, 80 mmHg, 20 s) were studied. At 25 sites in the RVM, electrical stimulation produced biphasic effects, facilitating responses of spinal neurons to CRD at lesser intensities of stimulation (5-25 microA) and inhibiting responses of the same neurons at greater intensities of stimulation (50-100 microA). At 38 other sites in the RVM, electrical stimulation produced only intensity-dependent inhibition of neuron responses to CRD. At another 13 sites in the RVM, electrical stimulation (5-100 microA) produced only facilitatory effects on responses to CRD. Descending modulatory effects were selective for distension-evoked activity; spontaneous activities of the same spinal neurons were not significantly affected by electrical stimulation that either facilitated or inhibited neuron responses to CRD. Neuron responses to graded CRD (20-100 mmHg) were positively accelerating functions that were shifted leftward or rightward, respectively, by lesser, facilitatory intensities or greater, inhibitory intensities of RVM stimulation. L-glutamate microinjection into the RVM replicated the effects of electrical stimulation, producing similar biphasic modulatory effects as produced by electrical stimulation. Microinjection of glutamate into the RVM at a low dose (5 nmoles) facilitated responses of spinal neurons to CRD and inhibited responses of the same neurons at a greater dose (50 nmoles). In some experiments, microinjection of lidocaine (0.5 microl of 4% solution) or the neurotoxin ibotenic acid (0.5 microl, 10 microg) into the RVM produced reversible or long-lasting, respectively, decreases in spontaneous activity and responses of spinal neurons to CRD. These results reveal that spinal visceral nociceptive transmission is subject to a tonic descending excitatory influence from the RVM and that descending modulatory effects from the RVM on visceral nociceptive transmission are qualitatively similar to modulation of cutaneous nociceptive transmission.
Collapse
Affiliation(s)
- M Zhuo
- Department of Pharmacology, College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
9
|
Abstract
Experiments were conducted to determine the influence of tonically active descending pathways on thoracolumbar spinal neurons that respond to renal nerve stimulation in anesthetized cats. We examined the effect of reversible blockade of spinal conduction on spontaneous activity, responses to renal nerve stimulation and responses to somatic stimuli of 71 spinal neurons. Mid-thoracic cold block resulted in enhanced responses (tonically inhibited neurons), reduced responses (tonically excited neurons), or did not affect neuronal responses. The spontaneous activity of 47 of 69 neurons (68%) increased from 7.3 +/- 2.0 spikes/s before cooling to 23.3 +/- 4.5 spikes/s during cooling. Activity of 8 neurons (12%) decreased while 14 (20%) had no change in activity. Cooling increased the responses of 51 of 71 neurons (72%) to renal nerve stimulation. Renal nerve stimulation evoked a two-fold increase in both short latency (early) and long latency (late) responses. Four neurons had a late response which was revealed by cold block. Cooling decreased responses of 8 of 71 neurons (11%) and 9 neurons (13%) were not affected. Cooling increased the early responses but decreased the late responses of 3 of 71 neurons (4%). All neurons had somatic receptive fields and 33 of 56 exhibited increased responses to somatic stimulation during cooling. In addition, receptive field sizes of 26 neurons increased. Four neurons had a decrease and 25 neurons had no change in receptive field size during cooling. These data indicate that tonically active descending pathways modulate the activity of most spinal neurons with renal input and the major effect of these pathways is inhibitory. This influence may be important in the modulation of spinal circuits that participate in reflexes evoked by renal afferent fibers.
Collapse
Affiliation(s)
- A Standish
- Department of Physiology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | |
Collapse
|