1
|
Zhang Y, Mei Y, Cao A, Li S, He C, Song L, Gao J, Zhu Y, Cao X. Transcriptome analyses of betta fish (Betta splendens) provide novel insights into fin regeneration and color-related genes. Gene 2023:147508. [PMID: 37230203 DOI: 10.1016/j.gene.2023.147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The betta fish (Betta splendens), an important ornamental fish, haswell-developed and colorful fins.After fin amputation, betta fish can easily regenerate finssimilar to the originalsin terms of structureand color. The powerful fin regeneration ability and a variety of colors in the betta fish are fascinating. However, the underlying molecular mechanisms are still not fully understood. In this study, tail fin amputation and regeneration experiments were performed on two kinds of betta fish: red and white color betta fish. Then, transcriptome analyseswere conducted to screen out fin regeneration and color-relatedgenes in betta fish. Through enrichment analyses of differentially expressed genes (DEGs), we founda series of enrichment pathways and genes related to finregeneration, including cell cycle (i.e. plcg2), TGF-beta signaling pathway (i.e. bmp6), PI3K-Akt signaling pathway (i.e. loxl2aand loxl2b), Wnt signaling pathway(i.e. lef1), gap junctions (i.e. cx43), angiogenesis (i.e. foxp1), and interferon regulatory factor (i.e. irf8). Meanwhile, some fin color-related pathways and genes were identified in betta fish, especially melanogenesis (i.e. tyr, tyrp1a, tyrp1b, and mc1r) and carotenoid color genes (i.e. pax3, pax7, sox10, and ednrba). In conclusion, this studycan not only enrich the research onfish tissue regeneration, but also has a potential significance for the aquaculture and breeding of the betta fish.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Aiying Cao
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Sen Li
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Chuan He
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Liyuan Song
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Abstract
Phospholipase C γ1 (PLCγ1) is a member of the PLC family that functions as signal transducer by hydrolyzing membrane lipid to generate second messengers. The unique protein structure of PLCγ1 confers a critical role as a direct effector of VEGFR2 and signaling mediated by other receptor tyrosine kinases. The distinct vascular phenotypes in PLCγ1-deficient animal models and the gain-of-function mutations of PLCγ1 found in human endothelial cancers point to a major physiological role of PLCγ1 in the endothelial system. In this review, we discuss aspects of physiological and molecular function centering around PLCγ1 in the context of endothelial cells and provide a perspective for future investigation.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Chen X, Lv Q, Ma J, Liu Y. PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling. Cell Prolif 2018; 51:e12437. [PMID: 29430764 DOI: 10.1111/cpr.12437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/27/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. MATERIALS AND METHODS A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. RESULTS Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. CONCLUSIONS This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Qiongxia Lv
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Jun Ma
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Chen X, Zhu X, Liu Y, Lv Q, Ma J. Silencing of phospholipase C gamma 2 promotes proliferation of rat hepatocytes in vitro. J Cell Biochem 2017; 119:4085-4096. [PMID: 29236324 DOI: 10.1002/jcb.26592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022]
Abstract
The management of hepatic failure is undoubtedly difficult, and poor results have led to the search for novel therapeutic approaches. Nowadays, anti-apoptotic gene therapy is considered as an ideal approach. It has been proved that phospholipase Cγ2 (PLCγ2) is involved in the apoptosis of immune cells and tumor cells; however, whether this gene is related to hepatocyte death is still unclear. This study examined the role of PLCγ2 by inhibiting its expression in rat hepatocytes with siRNA. We also further analyzed the cellular mechanism by which the expression inhibition of PLCγ2 induces cell death. Silencing PLCγ2 gene by adenovirus vector expressing PLCγ2-targeted siRNA caused the great decline in the number of G1- and G2/M phase cells, the significant increase in the number of S phase cells, and the obvious reduction in apoptosis index. In addition, silencing PLCγ2 gene relieved the rat hepatocyte damage, such as the cell shrinkage and chromatin condensation, nuclear fragmentation. Further analysis of Ad-PLCγ2 siRNA-transfected hepatocytes demonstrated that suppression of PLCγ2 gene expression could cause the caspase dependent cell death by inhibiting the signal pathway MEKK1/MKK4/JNK1/2/c-Jun. In conclusion, these findings suggest that interference with PLCγ2 expression could relieve the inhibitory effect of PLCγ2 on hepaocyte apoptosis, thus, promote proliferation through inactivating PKCδ-mediated JNK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Xuemin Zhu
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Qiongxia Lv
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Jun Ma
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Lu G, Chang JT, Liu Z, Chen Y, Li M, Zhu JJ. Phospholipase C Beta 1: a Candidate Signature Gene for Proneural Subtype High-Grade Glioma. Mol Neurobiol 2016; 53:6511-6525. [PMID: 26614510 PMCID: PMC5085994 DOI: 10.1007/s12035-015-9518-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
Phospholipase C beta 1 (PLCβ1) expresses in gliomas and cultured glial cells, but its expression is barely detectable in normal glial cells. We analyzed data from Gene Expression Omnibus (GEO-GDSxxx), The Cancer Genome Atlas (TCGA), and the Repository for Molecular Brain Neoplasia Data (REMBRANDT) to explore the potential role of PLCβ1 as a biomarker in high-grade glioma (HGG). PLCβ1 expression is significantly higher in grade III gliomas than that in grade IV gliomas from GDS1815 (n = 24 vs. 76), GDS1962 (n = 19 vs. 81), and GDS1975 (n = 26 vs. 59). In GDS1815, PLCβ1 expression correlates with several known proneural (PN) signature genes; its expression from PN subtype (n = 15) is significantly higher than that from mesenchymal (Mes) subtype (n = 33) HGG. In GDS1962, PLCβ1 expression is the highest in nontumor brain tissue (n = 23) and is significantly higher than its expression in grade II gliomas [astrocytomas (n = 7) and oligodendrogliomas (n = 37)]. A Kaplan-Meier survival curve from a REMBRANDT cohort demonstrates that glioma patients with intermediate PLCβ1 expression (n = 103) survived significantly longer than PLCβ1 downregulated (2X) groups (n = 226). From TCGA data, PLCβ1 RNA-Seq signal inversely correlates with the pathological grades, and PLCβ1 expression in PN (n = 8) is of significantly higher levels than that in Mes (n = 8) subtypes of glioblastoma. The top 50 % of PLCβ1 expression subgroup (n = 294) of gliomas (grades II to IV merged) survived significantly longer than the low 50 percentile of the PLCβ1 expression subgroup (n = 293). p values are less than 0.05 for all these analyses. We conclude that PLCβ1 is a candidate signature gene for PN subtype HGG, and its expression inversely correlates with glioma pathological grade and is a potential prognostic factor.
Collapse
Affiliation(s)
- Guangrong Lu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - Jeffrey T Chang
- The Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, 77030, USA
| | - Zheyu Liu
- Division of Biostatistics, UTHealth School of Public Health, Houston, TX, 77030, USA
| | - Yong Chen
- Division of Biostatistics, UTHealth School of Public Health, Houston, TX, 77030, USA
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Li
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
- The Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, 77030, USA
- Department of Medicine and Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jay-Jiguang Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
7
|
Lo Vasco VR. Phosphoinositide pathway and the signal transduction network in neural development. Neurosci Bull 2012; 28:789-800. [PMID: 23152330 DOI: 10.1007/s12264-012-1283-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022] Open
Abstract
The development of the nervous system is under the strict control of a number of signal transduction pathways, often interconnected. Among them, the phosphoinositide (PI) pathway and the related phospholipase C (PI-PLC) family of enzymes have been attracting much attention. Besides their well-known role in the regulation of intracellular calcium levels, PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways, contributing to a specific and complex network in the developing nervous system. In this review, the connections of PI signalling with further transduction pathways acting during neural development are discussed, with special regard to the role of the PI-PLC family of enzymes.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicine, Sapienza University of Rome, viale del Policlinico 33, Rome 00185, Italy.
| |
Collapse
|
8
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Lo Vasco VR, Pacini L, Di Raimo T, D'arcangelo D, Businaro R. Expression of phosphoinositide-specific phospholipase C isoforms in human umbilical vein endothelial cells. J Clin Pathol 2011; 64:911-5. [DOI: 10.1136/jclinpath-2011-200096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AimsThe signalling system of phosphoinositides (PIs) is involved in a number of cell and tissue functions including membrane trafficking, ion channel activity, cell cycle, apoptosis, differentiation and cell and tissue polarity. Recently, a role in cell migration was hypothesised for PI and related molecules including the phosphoinositide-specific phospholipases C (PI-PLCs), main players in PI signalling. The expression of PI-PLCs is tissue-specific and evidence suggests that it varies under different conditions such as tumour progression or cell activation. In order to obtain a complete picture, the expression of all PI-PLC isoforms was analysed in human endothelial cells (EC).MethodsUsing molecular biology methods (RT-PCR), the expression of PI-PLC isoforms was analysed in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for human EC.ResultsAll the PI-PLC isoforms except PI-PLC β1, PI-PLC ɛ and PI-PLC ζ were expressed in HUVEC.ConclusionsThe growing interest in the complex cascade of events occurring in angiogenesis will provide useful insights for therapeutic strategies. The expression of PI-PLC isoforms in HUVEC is a useful tool for further studies directed to understanding their role in angiogenesis. However, although HUVEC represent a widely used experimental model for human macrovascular EC, limitations remain in that they cannot fully represent the metabolic properties and interactions of the EC distributed in the entire organism.
Collapse
|
10
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Mi LY, Ettenson DS, Edelman ER. Phospholipase C-delta extends intercellular signalling range and responses to injury-released growth factors in non-excitable cells. Cell Prolif 2008; 41:671-90. [PMID: 18616695 DOI: 10.1111/j.1365-2184.2008.00544.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Intercellular communication in non-excitable cells is restricted to a limited range close to the signal source. Here, we have examined whether modification of the intracellular microenvironment could prolong the spatial proposition of signal generation and could increase cell proliferation. MATERIAL AND METHODS Mathematical models and experimental studies of endothelial repair after controlled mechanical injury were used. The models predict the diffusion range of injury-released growth factors and identify important parameters involved in a signalling regenerative mode. Transfected human umbilical vein endothelial cells (HUVECs) were used to validate model results, by examining intercellular calcium signalling range, cell proliferation and wound healing rate. RESULTS The models predict that growth factors have a limited capacity of extracellular diffusion and that intercellular signals are specially sensitive to cell phospholipase C-delta (PLCdelta) levels. As basal PLCdelta levels are increased by transfection, a significantly increased intercellular calcium range, enhanced cell proliferation, and faster wound healing rate were observed. CONCLUSION Our in silico and in vitro studies demonstrated that non-excitable endothelial cells respond to stimuli in a complex manner, in which intercellular communication is controlled by physicochemical properties of the stimulus and by the cell microenvironment. Such findings may have profound implications for our understanding of the tight nature of autocrine cell growth control, compensation to stress states and response to altered microenvironment, under pathological conditions.
Collapse
Affiliation(s)
- L Y Mi
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
12
|
Codazzi F, Di Cesare A, Chiulli N, Albanese A, Meyer T, Zacchetti D, Grohovaz F. Synergistic control of protein kinase Cgamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons. J Neurosci 2006; 26:3404-11. [PMID: 16571747 PMCID: PMC6673850 DOI: 10.1523/jneurosci.0478-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conventional protein kinase C (PKC) isoforms are abundant neuronal signaling proteins with important roles in regulating synaptic plasticity and other neuronal processes. Here, we investigate the role of ionotropic and metabotropic glutamate receptor (iGluR and mGluR, respectively) activation on the generation of Ca2+ and diacylglycerol (DAG) signals and the subsequent activation of the neuron-specific PKCgamma isoform in hippocampal neurons. By combining Ca2+ imaging with total internal reflection microscopy analysis of specific biosensors, we show that elevation of both Ca2+ and DAG is necessary for sustained translocation and activation of EGFP (enhanced green fluorescent protein)-PKCgamma. Both DAG production and PKCgamma translocation were localized processes, typically observed within discrete microdomains along the dendritic branches. Markedly, intermediate-strength NMDA receptor (NMDAR) activation or moderate electrical stimulation generated Ca2+ but no DAG signals, whereas mGluR activation generated DAG but no Ca2+ signals. Both receptors were needed for PKCgamma activation. This suggests that a coincidence detection process exists between iGluRs and mGluRs that relies on a molecular coincidence detection process based on the corequirement of Ca2+ and DAG for PKCgamma activation. Nevertheless, the requirement for costimulation with mGluRs could be overcome for maximal NMDAR stimulation through a direct production of DAG via activation of the Ca2+-sensitive PLCdelta (phospholipase Cdelta) isoform. In a second important exception, mGluRs were sufficient for PKCgamma activation in neurons in which Ca2+ stores were loaded by previous electrical activity. Together, the dual activation requirement for PKCgamma provides a plausible molecular interpretation for different synergistic contributions of mGluRs to long-term potentiation and other synaptic plasticity processes.
Collapse
|
13
|
PAQUET MARYSE, KUWAJIMA MASAAKI, YUN CCHRIS, SMITH YOLAND, HALL RANDYA. Astrocytic and neuronal localization of the scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF-2) in mouse brain. J Comp Neurol 2006; 494:752-62. [PMID: 16374813 PMCID: PMC1472808 DOI: 10.1002/cne.20854] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Na+/H+ exchanger regulatory factor 2 (NHERF-2) is a scaffold protein that regulates cellular signaling by forming protein complexes. Several proteins known to interact with NHERF-2 are abundantly expressed in the central nervous system, but little is known about NHERF-2 localization in the brain. By using immunohistochemistry combined with light and electron microscopy, we found that many populations of astrocytes, as well as some populations of neurons, were immunopositive for NHERF-2 throughout the mouse brain. Quantitative analysis of the subcellular distribution of NHERF-2 immunostaining in four brain structures, cerebral cortex, hippocampus, striatum, and cerebellar cortex, showed that NHERF-2 was expressed mainly in astrocytic processes but was also sometimes observed in both pre- and postsynaptic neuronal elements. NHERF-2 immunostaining was associated mainly with the plasma membrane of neurons and astrocytes. However, NHERF-2 immunoreactivity was also observed in association with synaptic vesicles in putative glutamatergic axon terminals. The subcellular localization of NHERF-2 in brain is consistent with a role for NHERF-2 in forming complexes between cell surface and cytosolic proteins, and the preferential expression of NHERF-2 in astrocytes suggests that this scaffold protein may play an important role in astrocytic physiology.
Collapse
Affiliation(s)
- MARYSE PAQUET
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - MASAAKI KUWAJIMA
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - C. CHRIS YUN
- Department of Medicine, Division of Digestive Disease, Emory University School of Medicine, Atlanta, Georgia 30322
| | - YOLAND SMITH
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - RANDY A. HALL
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
- *Correspondence to: Randy A. Hall, Department of Pharmacology, Emory University School of Medicine, 5113 Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322. E-mail:
| |
Collapse
|
14
|
Abstract
Phospholipase Cbeta (PLCbeta) isoforms, which are under the control of Galphaq and Gbetagamma subunits, generate Ca2+ signals induced by a broad array of extracellular agonists, whereas PLCdelta isoforms depend on a rise in cytosolic Ca2+ for their activation. Here we find that PLCbeta2 binds strongly to PLCdelta1 and inhibits its catalytic activity in vitro and in living cells. In vitro, this PLC complex can be disrupted by increasing concentrations of free Gbetagamma subunits. Such competition has consequences for signaling, because in HEK293 cells PLCbeta2 suppresses elevated basal [Ca2+] and inositol phosphates levels and the sustained agonist-induced elevation of Ca2+ levels caused by PLCdelta1. Also, expression of both PLCs results in a synergistic release of [Ca2+] upon stimulation in A10 cells. These results support a model in which PLCbeta2 suppresses the basal catalytic activity of PLCdelta1, which is relieved by binding of Gbetagamma subunits to PLCbeta2 allowing for amplified calcium signals.
Collapse
Affiliation(s)
- Yuanjian Guo
- Department of Physiology and Biophysics, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
15
|
Narayanan V, Guo Y, Scarlata S. Fluorescence Studies Suggest a Role for α-Synuclein in the Phosphatidylinositol Lipid Signaling Pathway. Biochemistry 2004; 44:462-70. [PMID: 15641770 DOI: 10.1021/bi0487140] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-synuclein plays a key role in the pathogenesis of many neurodegenerative diseases. To date, its cellular role has yet to be determined, although it has been proposed to be connected to calcium and G protein-mediated dopamine signaling. Alpha-synuclein is known to bind strongly to model membrane surfaces where it may interact with other membrane-associated proteins. Here, we find that the membrane association of alpha-synuclein is enhanced by the presence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and Ca(2+). We also find that alpha-synuclein interacts with high affinity with the G protein-regulated enzyme phospholipase Cbeta(2) (PLCbeta(2)), which catalyzes the hydrolysis of PI(4,5)P(2). Binding of alpha-synuclein to PLCbeta(2) reduces its catalytic activity by 50%, but causes its level of activation by Gbetagamma subunits to increase from 4- to 24-fold. This effect is greatly reduced for A53T alpha-synuclein, which is a mutant associated with familial Parkinson's disease. PI(4,5)P(2) hydrolysis by PLCbeta(2) results in an increase in the intracellular Ca(2+) concentration, and we find that in cultured cells the presence of alpha-synuclein results in a 6-fold enhancement in the release of Ca(2+) from intracellular stores in response to agents that release Gbetagamma subunits relative to controls. Alpha-synuclein also enhances the increase in the level of inositol phosphates seen upon G protein stimulation, suggesting that it also may interact with PLCbeta(2) in cells. Given that Ca(2+) and dopamine regulation are mediated through PLCbeta and G protein signals, our results suggest that alpha-synuclein may play a role in inositol phospholipid signaling.
Collapse
Affiliation(s)
- Vijaya Narayanan
- Department of Physiology and Biophysics, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
16
|
Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. ACTA ACUST UNITED AC 2004; 44:13-47. [PMID: 14739001 DOI: 10.1016/j.brainresrev.2003.10.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipases are a diverse group of enzymes whose activation may be responsible for the development of injury following insult to the brain. Amongst the numerous isoforms of phospholipase proteins expressed in mammals are 19 different phospholipase A2's (PLA2s), classified functionally as either secretory, calcium dependent, or calcium independent, 11 isozymes belonging to three structural groups of PLC, and 3 PLD gene products. Many of these phospholipases have been identified in selected brain regions. Under normal conditions, these enzymes regulate the turnover of free fatty acids (FFAs) in membrane phospholipids affecting membrane stability, fluidity, and transport processes. The measurement of free fatty acids thus provides a convenient method to follow phospholipase activity and their regulation. Phospholipase activity is also responsible for the generation of an extensive list of intracellular messengers including arachidonic acid metabolites. Phospholipases are regulated by many factors including selective phosphorylation, intracellular calcium and pH. However, under abnormal conditions, excessive phospholipase activation, along with a decreased ability to resynthesize membrane phospholipids, can lead to the generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apoptosis/necrosis. This review evaluates the critical contribution of the various phospholipases to brain injury following ischemia and trauma and in neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
17
|
Okubo Y, Kakizawa S, Hirose K, Iino M. Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells. Neuron 2001; 32:113-22. [PMID: 11604143 DOI: 10.1016/s0896-6273(01)00464-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IP(3) signaling in Purkinje cells is involved in the regulation of cell functions including LTD. We have used a GFP-tagged pleckstrin homology domain to visualize IP(3) dynamics in Purkinje cells. Surprisingly, IP(3) production was observed in response not only to mGluR activation, but also to AMPA receptor activation in Purkinje cells in culture. AMPA-induced IP(3) production was mediated by depolarization-induced Ca(2+) influx because it was mimicked by depolarization and was blocked by inhibition of the P-type Ca(2+) channel. Furthermore, trains of complex spikes, elicited by climbing fiber stimulation (1 Hz), induced IP(3) production in Purkinje cells in cerebellar slices. These results revealed a novel IP(3) signaling pathway in Purkinje cells that can be elicited by synaptic inputs from climbing fibers.
Collapse
Affiliation(s)
- Y Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000; 80:1291-335. [PMID: 11015615 DOI: 10.1152/physrev.2000.80.4.1291] [Citation(s) in RCA: 726] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function.
Collapse
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
19
|
Takashima S, Becker LE. International exchange program. Canada and Japan. Neuropathology 2000; 20 Suppl:S127-8. [PMID: 11037204 DOI: 10.1046/j.1440-1789.2000.00316.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S Takashima
- National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | | |
Collapse
|
20
|
Novak JE, Agranoff BW, Fisher SK. Increased expression of Galpha(q/11) and of phospholipase-Cbeta1/4 in differentiated human NT2-N neurons: enhancement of phosphoinositide hydrolysis. J Neurochem 2000; 74:2322-30. [PMID: 10820192 DOI: 10.1046/j.1471-4159.2000.0742322.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CNS is enriched in phosphoinositide-specific phospholipase C (PLC) and in the G proteins linked to its activation. Although the regional distributions of these signaling components within the brain have been determined, neither their cell type-specific localizations (i.e., neuronal versus glial) nor the functional significance of their high expression has been definitively established. In this study, we have examined the expression of phosphoinositide signaling proteins in human NT2-N cells, a well characterized model system for CNS neurons. Retinoic acid-mediated differentiation of NT2 precursor cells to the neuronal phenotype resulted in five- to 15-fold increases in the expression of PLC-beta1, PLC-beta4, and Galpha(q/11) (the prime G protein activator of these isozymes). In contrast, the expression of PLC-beta3 and PLC-gamma1 was markedly reduced following neuronal differentiation. Similar alterations in cell morphology and in the expression of PLC-beta1, PLC-beta3, and Galpha(q/11) expression were observed when NT2 cells were differentiated with berberine, a compound structurally unrelated to retinoic acid. NT2-N neurons exhibited a significantly higher rate of phosphoinositide hydrolysis than NT2 precursor cells in response to direct activation of either G proteins or PLC. These results indicate that neuronal differentiation of NT2 cells is associated with dramatic changes in the expression of proteins of the phosphoinositide signaling system and that, accordingly, differentiated NT2-N neurons possess an increased ability to hydrolyze inositol lipids.
Collapse
Affiliation(s)
- J E Novak
- Neuroscience Laboratory, Mental Health Research Institute, and Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104-1687, USA
| | | | | |
Collapse
|
21
|
Mizuguchi M, Qin J, Yamada M, Ikeda K, Takashima S. High expression of doublecortin and KIAA0369 protein in fetal brain suggests their specific role in neuronal migration. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1713-21. [PMID: 10550327 PMCID: PMC1866984 DOI: 10.1016/s0002-9440(10)65486-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The X-linked subcortical laminar heterotopia and lissencephaly syndrome is a disorder of neuronal migration caused by a mutation in XLIS, a recently cloned gene on chromosome Xq22.3-q23. The predicted protein product for XLIS, doublecortin (DC), shows high homology to a putative calcium calmodulin-dependent kinase, KIAA0369 protein (KI). Here we identified DC and KI in the brains of human and rat fetuses by immunochemical and immunohistochemical means. In this study, Western blotting demonstrated that both DC and KI are specific to the nervous system and are abundant during the fetal period, around 20 gestational weeks in humans and embryonic days 17 to 20 in rats. Immunostaining of the developing neocortex disclosed localization of DC and KI immunoreactivities in neuronal cell bodies and processes in the zones of ongoing neuronal migration. Although KI showed a somewhat wider distribution than DC, the temporal and spatial patterns of their expression were similar. These results suggest that DC and KI participate in a common signaling pathway regulating neuronal migration.
Collapse
Affiliation(s)
- M Mizuguchi
- Department of Pediatrics, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
22
|
Toms NJ, Roberts PJ. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 1999; 38:1511-7. [PMID: 10530813 DOI: 10.1016/s0028-3908(99)00090-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain macroglia are known to express a diverse array of neurotransmitter receptors whose signal transduction pathways may be subject to heteroreceptor 'cross-talk'. In the current study we have examined group 1 mGlu receptor-evoked [Ca2+]i signalling, and possible heteroreceptor cross-talk, in cultured type 2 astrocytes. The selective group 1 metabotropic glutamate (mGlu) receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) elevated [Ca2+]i (EC50 = 1.7 +/- 0.6 microM); an effect reversed by the selective mGlu receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine (IC50 = 52.7 +/- 8.7 microM). DHPG-evoked [Ca2+]i responses were abolished by (1) thapsigargin (100 nM), implicating the involvement of internal Ca2+ stores in group 1 mGlu [Ca2+]i responses and (2) the removal of extracellular Ca2+. When applied alone, the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA, 100 nM) failed to influence [Ca2+]i. However, in the presence of 1 microM DHPG, CPA potently (EC50 = 12.3 +/- 1.9 nM) increased [Ca2+]i responses. In the presence of 100 nM CPA, the efficacy of DHPG was doubled without any significant change in the DHPG EC50 value. This effect was reversed by either the selective adenosine A1 receptor antagonist, 8-cyclopentyltheophylline (IC50 = 50.3 +/- 19.9 nM) or overnight incubation with Pertussis toxin (100 ng/ml). We conclude that (1) type 2 astrocytes contain group 1 mGlu receptors coupled to [Ca2+]i signalling and (2) co-activation of adenosine A1 receptors enhances group 1 mGlu-evoked [Ca2+]i responses in these cells via a Gi/o G protein-mediated mechanism.
Collapse
Affiliation(s)
- N J Toms
- Department of Pharmacology, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
23
|
Oliva AM, Bas N, García A. Differences in the stimulation of the phosphoinositide cycle by amine neurotransmitters in cultured rat forebrain neurones and astrocytes. Biochem Pharmacol 1997; 54:1243-51. [PMID: 9416975 DOI: 10.1016/s0006-2952(97)00329-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, we compared the stimulation by carbachol (CCh), noradrenaline (NA), and histamine (HA) of phosphoinositide hydrolysis in rat forebrain neuronal and glial cultures. When Ca2+ was omitted from the stimulation buffer (low microM extracellular Ca2+), amine-induced [3H]inositol phosphate accumulation was reduced to a higher extent in astrocytes (70-80% for CCh and NA and 100% for HA) than in neurones (around 50-60% for all the amines). Furthermore, guanosine 5'-[gamma-thio]trisphosphate (GTP[S]) stimulation of phosphoinositidase C (PIC) in membranes was 5-fold higher in neurones than in astrocytes. These results indicate differences in the mechanism of PIC stimulation in the two cell types. After 30 min stimulation in the presence of 10 mM Li+, a higher accumulation of [3H]inositol 4-monophosphate and [3H]inositol 1,4-bisphosphate than of [3H]inositol 1/3-monophosphate occurred for all agonists in neurones, whereas the opposite was observed in astrocytes. Moreover, in these cells stimulation for 5 min in the absence of Li+ produced a 2-3-fold accumulation of all metabolites of the 3-kinase pathway of inositol-1,4,5-trisphosphate metabolism but not of those of the 5-phosphatase pathway. Thus, regardless of the amine receptor stimulated, the 3-kinase route appeared to prevail in astrocytes and the 5-phosphatase pathway in neurones. The histamine response in neurones differed from that of the other agonists in that it rapidly declined. Taken together these results indicate that the heterogeneity in amine stimulation of the phosphoinositide cycle previously observed in brain slices could arise to a great extent from the cellular diversity of this preparation and be related to the differential contribution of the amine receptors located in neurones and astrocytes.
Collapse
Affiliation(s)
- A M Oliva
- Institut de Biologia Fonamental Vicent Villar Palasi and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
24
|
Jalonen TO, Margraf RR, Wielt DB, Charniga CJ, Linne ML, Kimelberg HK. Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 1997; 758:69-82. [PMID: 9203535 DOI: 10.1016/s0006-8993(97)00163-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ca2+ imaging and patch-clamp techniques were used to study the effects of serotonin (5-HT) on ionic conductances in rat cortical astrocytes. 1 and 10 microM serotonin caused a transient increase in intracellular calcium (Ca(i)) levels in fura-2AM-loaded cultured astrocytes and in astrocytes acutely isolated and then cultured in horse serum-containing medium for over 24 h. However, the acutely isolated (less than 6 h from isolation) astrocytes, as well as acutely isolated astrocytes cultured in serum-free media, failed to respond to 5-HT by changes in Ca(i). Coinciding with the changes in Ca(i) levels, inward currents were activated by 10 microM 5-HT in cultured, but not in acutely isolated astrocytes. Two separate types of serotonin-induced, small-conductance inward single-channel currents were found. First, in both Ca2+-containing and Ca2+-free media serotonin transiently activated a small-conductance apamin-sensitive channel. Apamin is a specific blocker of the small-conductance Ca2+-activated K+ channel (sK(Ca)) When cells were pre-treated with phospholipase C inhibitor U73122 no 5-HT-induced sK(Ca) channel openings were seen, indicating that this channel was activated by Ca2+ released from intracellular stores via IP3. A second type of small inward channel activated later, but only in the presence of external Ca2+. It was inhibited by the L-type Ca2+ channel blockers, nimodipine and nifedipine. Both types of channel activity were inhibited by ketanserin, indicating activation of the 5-HT2A receptor.
Collapse
Affiliation(s)
- T O Jalonen
- Division of Neurosurgery, Albany Medical College, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sieber FE, Traystman RJ, Martin LJ. Delayed neuronal death after global incomplete ischemia in dogs is accompanied by changes in phospholipase C protein expression. J Cereb Blood Flow Metab 1997; 17:527-33. [PMID: 9183290 DOI: 10.1097/00004647-199705000-00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activation of phospholipase C (PLC) increases intracellular Ca2+ and may play a role in delayed neuronal death after ischemia. Because changes in intracellular Ca2+ are believed to participate in ischemic neuronal injury, we tested the hypothesis that PLC beta protein levels are temporally altered in brain regions that undergo neurodegeneration after global incomplete ischemia. Dogs (n = 12) were subjected to 20 minutes of global incomplete ischemia followed by recovery of either 1 (n = 5) or 7 days (n = 7). Six sham-operated animals were used as nonischemic controls. In hematoxylin and eosin-stained brain sections, neuronal density at 1 day after ischemia was unchanged relative to nonischemic controls in hippocampus CA1, caudate, and cerebellar cortex (anterior lobule). However, at 7 days after ischemia, neuronal densities were decreased to 56 +/- 15% (mean +/- SD) and 75 +/- 17% of control in CA1 and caudate, respectively. At 1 and 7 days after ischemia, the percentage of neurons showing ischemic injury increased from 13 +/- 10 to 40 +/- 35% in CA1, 24 +/- 25 to 59 +/- 16% in cerebellum, and 4 +/- 2 to 18 +/- 12% in caudate. Densitometric analysis of immunocytochemically stained brain sections from controls (n = 3). 1 day after ischemia (n = 3), and 7 days after ischemia (n = 5) revealed that PLC beta immunoreactivity was increased in cerebellum at 1 day (0.274 +/- 0.013 v 0.295 +/- 0.005 optical density units [OD] in control and 1 day, respectively) and 7 days (0.108 +/- 0.009 v 0.116 +/- 0.005 O.D. in control and 7 days, respectively). PLC beta immunoreactivity was unchanged after ischemia in caudate and hippocampus. Western blot analysis of PLC beta immunoreactivity in the cerebellar cortex and hippocampus in the control (n = 3), 1 day (n = 2), and 7 days after ischemia (n = 2) groups showed that PLC beta levels were increased after ischemia in cerebellum 266% and 227% above control at 1 and 7 days, respectively. However, in hippocampus, PLC expression after ischemia was unchanged at 97% and 84% of control at 1 and 7 days, respectively. These results show that delayed neuronal degeneration after global incomplete ischemia is accompanied by regional abnormalities in PLC levels. Elevated PLC levels early may represent an aberrant signal transduction mechanism resulting in delayed cell damage, whereas decreased PLC levels later after ischemia may reflect ongoing neurodegeneration.
Collapse
Affiliation(s)
- F E Sieber
- Department of Anesthesiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | |
Collapse
|
26
|
Peng YW, Rhee SG, Yu WP, Ho YK, Schoen T, Chader GJ, Yau KW. Identification of components of a phosphoinositide signaling pathway in retinal rod outer segments. Proc Natl Acad Sci U S A 1997; 94:1995-2000. [PMID: 9050893 PMCID: PMC20031 DOI: 10.1073/pnas.94.5.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1996] [Accepted: 12/10/1996] [Indexed: 02/03/2023] Open
Abstract
Phototransduction in retinal rods involves a G protein-coupled signaling cascade that leads to cGMP hydrolysis and the closure of cGMP-gated cation channels that are open in darkness, producing a membrane hyperpolarization as the light response. For many years there have also been reports of the presence of a phosphoinositide pathway in the rod outer segment, though its functions and the molecular identities of its components are still unclear. Using immunocytochemistry with antibodies against various phosphoinositide-specific phospholipase C (PLC) isozymes (beta1-4, gamma1-2, and delta1-2), we have found PLCbeta4-like immunoreactivity in rod outer segments. Similar experiments with antibodies against the alpha-subunits of the G(q) family of G proteins, which are known to activate PLCbeta4, have also demonstrated G(alpha11)-like immunoreactivity in this location. Immunoblots of total proteins from whole retina or partially purified rod outer segments with anti-PLCbeta4 and anti-G(alpha11) antibodies gave, respectively, a single protein band of the expected molecular mass, suggesting specific labelings. The retinal locations of the two proteins were also supported by in situ hybridization experiments on mouse retina with probes specific for the corresponding mouse genes. These two proteins, or immunologically identical isoforms, therefore likely mediate the phosphoinositide signaling pathway in the rod outer segment. At present, G(alpha11) or a G(alpha11)-like protein represents the only G protein besides transducin (which mediates phototransduction) identified so far in the rod outer segment. Although absent in the outer segment layer, other PLC isoforms as well as G(alpha q) (another G(q) family member), are present elsewhere in the retina.
Collapse
Affiliation(s)
- Y W Peng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Pandey SC, Pandey GN, Smith TL. Chronic ethanol effects on the expression of phospholipase C isozymes and Gq/11-protein in primary cultures of astrocytes. Alcohol 1996; 13:487-92. [PMID: 8888946 DOI: 10.1016/0741-8329(96)00041-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The goal of this investigation was to determine whether chronic ethanol exposure alters the expression of specific protein sites distal to receptors [Gq/11-protein, phospholipase C (PLC) isozymes] in primary cultures of astrocytes obtained from neonatal rat cortex. The protein expression (immunolabeling) of the PLC-beta 1, -gamma 1, -delta 1 isozymes and of the Gq/11 alpha subunit was determined by Western blot analysis using specific monoclonal antibodies. The PLC-beta 1, -gamma 1, -delta 1 isozymes and the Gq/11 alpha subunit migrated at apparent molecular masses (PLC-beta 1, 41 kDa; PLC-gamma 1, 145 kDa. PLC-delta 1, 85 kDa: Gq/11 alpha protein, 42 kDa). Thus, a PLC-beta 1 fragment of 41 kDa, but not the biologically active 150 kDa PLC-beta 1, was detected in primary cultures of astrocytes. Chronic ethanol exposure (4 days) resulted in a significant increase in the expression of PLC-delta 1, whereas under identical conditions, the expression of PLC-beta 1, -gamma 1, and of the alpha subunit of Gq/11 protein was not significantly altered in astrocytes. These results suggest that chronic ethanol exposure results in an increased expression of the PLC-delta 1, isozyme in primary cultures of astrocytes.
Collapse
Affiliation(s)
- S C Pandey
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago 60612, USA
| | | | | |
Collapse
|
28
|
Carfagna N, Cavanus S, Damiani D, Salmoiraghi P, Fariello R, Post C. Modulation of phosphoinositide turnover by chronic nicergoline in rat brain. Neurosci Lett 1996; 209:189-92. [PMID: 8736642 DOI: 10.1016/0304-3940(96)12634-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Basal and agonist-stimulated phosphoinositide (PI) turnover and inositol 1,4,5 -trisphospate (InsP3) content in rat brain were investigated after chronic nicergoline (SERMION) treatment. Oral administration of nicergoline (5 mg/kg b.i.d. for 7 weeks) enhanced the basal turnover of PI in the cerebral cortex compared to controls. This effect was paralleled by a significant rise of cortical InsP3 levels. No significant changes of noradrenaline- or carbachol-induced accumulation of [3H]-inositol-I-phophate ([3H]-InsP1) were found in cortices from nicergoline-treated rats. On the contrary, in the striatum nicergoline significantly potentiated the responsiveness of noradrenaline- and carbachol-stimulated PI turnover, leaving unchanged the basal production of [3H]-InsP1 and InsP3 levels. The results suggest that the interaction of nicergoline with PI transducing pathway might have relevance to the mechanisms of action of nicergoline.
Collapse
Affiliation(s)
- N Carfagna
- CNS Biology, Pharmacia and Upjohn, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Mizuguchi M, Sohma O, Takashima S, Ikeda K, Yamada M, Shiraiwa N, Ohta S. Immunochemical and immunohistochemical localization of Bcl-x protein in the rat central nervous system. Brain Res 1996; 712:281-6. [PMID: 8814903 DOI: 10.1016/0006-8993(95)01453-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To explore the role of bcl-x in the regulation of cell death in the nervous system, we produced monoclonal antibodies against rat Bcl-xL protein, the major product of the rat bcl-x gene that inhibits apoptosis, and defined its distribution in rat neural tissues by immunochemical and immunohistochemical means. Western blotting of tissue homogenates identified the Bcl-x protein as two bands with molecular weights of about 29 and 31 kDa. The level of Bcl-x expression in the nervous system was high, being comparable to that in the hematolymphoid system, and higher in the fetal than in the adult brain. Subcellular fractionation studies localized Bcl-x to various subcellular compartments. In tissue culture, Bcl-x was produced by all the cell types examined, including neurons, astrocytes, oligodendrocytes and microglial cells. Immunohistochemistry revealed that Bcl-x immunoreactivity was more intense in the gray than in the white matter. In the fetal cerebral cortex, labeling was mostly confined to the neuronal perikarya, whereas in the more mature brain, the neuropil of the gray matter, as well as the glial cells in the white matter, was also stained.
Collapse
Affiliation(s)
- M Mizuguchi
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Mizuguchi M, Ikeda K, Asada M, Mizutani S, Kamoshita S. Expression of Bcl-2 protein in murine neural cells in culture. Brain Res 1994; 649:197-202. [PMID: 7953633 DOI: 10.1016/0006-8993(94)91064-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To explore the role of the protooncogene bcl-2 in the prevention of programmed cell death in the nervous system, we investigated its expression in mouse neural cells in primary culture. The 26 kDa protein product, Bcl-2, was detected by immunocytochemistry and immunoblotting in cultured neurons, astrocytes and oligodendrocytes, but the immunoreactivity of microglial cells was not detectable by immunoblotting. The subcellular distribution of Bcl-2 was similar between in vivo (brain) and in vitro (culture) and between cultured neurons and astrocytes, while the content was higher in astrocytes than in neurons. The substantial expression of bcl-2 in primary cultured brain cells suggests that it has some physiological control in the brain over programmed cell death, which may be exerted not only in neurons but also in some glial cells such as astrocytes.
Collapse
Affiliation(s)
- M Mizuguchi
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Japan
| | | | | | | | | |
Collapse
|
31
|
Uysal A, Kaaden OR. Establishment of cell lines from bovine brain. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1993; 7:303-8. [PMID: 8219811 DOI: 10.1007/978-3-7091-9300-6_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As shown by immunocytochemistry, 16 cell lines of neuronal, oligodendroglial or neuronoglial origin have been established from bovine fetal brain by immortalization with SV40 virus and cloning in soft agar. The cell lines were characterized according to their cell surface markers using mono- and polyclonal antibodies.
Collapse
Affiliation(s)
- A Uysal
- Institute for Medical Microbiology, Veterinary Faculty, Ludwig-Maximilians-University Munich, Federal Republic of Germany
| | | |
Collapse
|
32
|
Abstract
Phosphatidylinositol bisphosphate hydrolysis is an immediate response to many hormones, including growth factors. The hydrolysis of phosphatidylinositol bisphosphate is catalyzed by phosphatidylinositol-specific phospholipase C. A number of phospholipase C isozymes have been identified. Different isozymes are activated by different receptor classes. This review will summarize the different isozymes of phospholipase C, and the current knowledge of the mechanisms by which phospholipase C activity is modulated by growth factors.
Collapse
Affiliation(s)
- G Jones
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | | |
Collapse
|
33
|
Farooqui AA, Hirashima Y, Horrocks LA. Brain phospholipases and their role in signal transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 318:11-25. [PMID: 1636485 DOI: 10.1007/978-1-4615-3426-6_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A A Farooqui
- Department of Medical Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
34
|
Yamada M, Mizuguchi M, Rhee SG, Kim SU. Developmental changes of three phosphoinositide-specific phospholipase C isozymes in the rat nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 59:7-16. [PMID: 1645628 DOI: 10.1016/0165-3806(91)90023-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developmental changes of 3 phosphoinositide-specific phospholipase C isozymes (PI-PLC-beta, PI-PLC-gamma and PI-PLC-delta) in the rat nervous system were studied by immunohistochemical and immunochemical methods. PI-PLC-gamma immunoreactivity was intensely expressed in the radial fibers from the late fetal to early newborn stages, while weaker PI-PLC-beta reaction was also demonstrated in these structures. PI-PLC-beta and PI-PLC-gamma immunoreactivity appeared in neurons of various regions after the first postnatal week and then increased to the adult stage. Bergmann glia and some astrocytes also showed weak immunoreactivity for both isozymes from the newborn stage, while such immunoreactive astrocytes were relatively restricted in distribution in the white matter and hippocampus at the adult stage. PI-PLC-delta immunoreactivity appeared in astrocytes of entire cerebral regions from the second postnatal week, although weak antigenicity was also present in some neurons. Immunoblot analysis revealed that the immunoreactivities of 3 PI-PLC isozymes were present in both fetal and adult brains, with strong reactions of PI-PLC-beta and PI-PLC-delta in adult brain and that of PI-PLC-gamma in fetal brain. These results suggest that each PI-PLC isozyme plays important roles in different cell types in the course of their differentiation, and that some PI-PLC isozymes, especially PI-PLC-gamma, may be involved in cellular division and growth during the histogenesis of the central nervous system.
Collapse
Affiliation(s)
- M Yamada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|