1
|
Pennuto M, Pandey UB, Polanco MJ. Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Front Neuroendocrinol 2020; 57:100821. [PMID: 32006533 DOI: 10.1016/j.yfrne.2020.100821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The pleiotropic peptide insulin-like growth factor 1 (IGF-I) regulates human body homeostasis and cell growth. IGF-I activates two major signaling pathways, namely phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt) and Ras/extracellular signal-regulated kinase (ERK), which contribute to brain development, metabolism and function as well as to neuronal maintenance and survival. In this review, we discuss the general and tissue-specific effects of the IGF-I pathways. In addition, we present a comprehensive overview examining the role of IGF-I in neurodegenerative diseases, such as spinal and muscular atrophy, amyotrophic lateral sclerosis, and polyglutamine diseases. In each disease, we analyze the disturbances of the IGF-I pathway, the modification of the disease protein by IGF-I signaling, and the therapeutic strategies based on the use of IGF-I developed to date. Lastly, we highlight present and future considerations in the use of IGF-I for the treatment of these disorders.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy; Padova Neuroscience Center (PNC), 35131 Padova, Italy; Myology Center (CIR-Myo), 35131 Padova, Italy.
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - María José Polanco
- Department of Pharmaceutic and Health Science, University San Pablo CEU, Campus Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
2
|
Franco C, Genis L, Navarro JA, Perez-Domper P, Fernandez AM, Schneuwly S, Torres Alemán I. A role for astrocytes in cerebellar deficits in frataxin deficiency: Protection by insulin-like growth factor I. Mol Cell Neurosci 2017; 80:100-110. [PMID: 28286293 DOI: 10.1016/j.mcn.2017.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 12/29/2022] Open
Abstract
Inherited neurodegenerative diseases such as Friedreich's ataxia (FRDA), produced by deficiency of the mitochondrial chaperone frataxin (Fxn), shows specific neurological deficits involving different subset of neurons even though deficiency of Fxn is ubiquitous. Because astrocytes are involved in neurodegeneration, we analyzed whether they are also affected by frataxin deficiency and contribute to the disease. We also tested whether insulin-like growth factor I (IGF-I), that has proven effective in increasing frataxin levels both in neurons and in astrocytes, also exerts in vivo protective actions. Using the GFAP promoter expressed by multipotential stem cells during development and mostly by astrocytes in the adult, we ablated Fxn in a time-dependent manner in mice (FGKO mice) and found severe ataxia and early death when Fxn was eliminated during development, but not when deleted in the adult. Analysis of underlying mechanisms revealed that Fxn deficiency elicited growth and survival impairments in developing cerebellar astrocytes, whereas forebrain astrocytes grew normally. A similar time-dependent effect of frataxin deficiency in astrocytes was observed in a fly model. In addition, treatment of FGKO mice with IGF-I improved their motor performance, reduced cerebellar atrophy, and increased survival. These observations indicate that a greater vulnerability of developing cerebellar astrocytes to Fxn deficiency may contribute to cerebellar deficits in this inherited disease. Our data also confirm a therapeutic benefit of IGF-I in early FRDA deficiency.
Collapse
Affiliation(s)
- C Franco
- Cajal Institute, CSIC, Madrid, Spain; CIBERNED, Spain
| | - L Genis
- Cajal Institute, CSIC, Madrid, Spain; CIBERNED, Spain
| | | | | | - A M Fernandez
- Cajal Institute, CSIC, Madrid, Spain; CIBERNED, Spain
| | | | | |
Collapse
|
3
|
Engrailed2 and Cerebellar Development in the Pathogenesis of Autism Spectrum Disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Lavaque E, Mayen A, Azcoitia I, Tena-Sempere M, Garcia-Segura LM. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. ACTA ACUST UNITED AC 2006; 66:308-18. [PMID: 16329132 DOI: 10.1002/neu.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system.
Collapse
|
5
|
Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? ACTA ACUST UNITED AC 2005; 50:134-41. [PMID: 15950289 DOI: 10.1016/j.brainresrev.2005.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 12/21/2022]
Abstract
In the present work we review evidence supporting the use of insulin-like growth factor I (IGF-I) for treatment of cerebellar ataxia, a heterogeneous group of neurodegenerative diseases of low incidence but high societal impact. Most types of ataxia display not only motor discoordination, but also additional neurological problems including peripheral nerve dysfunctions. Therefore, a feasible therapy should combine different strategies aimed to correct the various disturbances specific for each type of ataxia. For cerebellar deficits, and most probably also for other types of brain deficits, the use of a wide-spectrum neuroprotective factor such as IGF-I may prove beneficial. Intriguingly, both ataxic animals as well as human patients show altered serum IGF-I levels. While the pathogenic significance of IGF-I, if any, in this varied group of diseases is difficult to envisage, disrupted IGF-I neuroprotective signaling may constitute a common stage in the pathological cascade associated to neuronal death. Indeed, treatment with IGF-I has proven effective in animal models of ataxia. Based on this pre-clinical evidence we propose that IGF-I should be tested in clinical trials of cerebellar ataxia in those cases where either serum IGF-I deficiency (as in primary cerebellar atrophy) or loss of sensitivity to IGF-I (as in ataxia telangiectasia) has been reported. Taking advantage of the widely protective and anabolic actions of IGF-I on peripheral tissues, this neurotrophic factor may provide additional therapeutic advantages for many of the disturbances commonly associated to ataxia such as cardiopathy, muscle wasting, or immune dysfunction.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Avda. Dr. Arce 37, 28002 Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Hess BH, Krewet JA, Tolbert DL. Olivocerebellar projections are necessary for exogenous trophic factors to delay heredo-Purkinje cell degeneration. Brain Res 2003; 986:54-62. [PMID: 12965229 DOI: 10.1016/s0006-8993(03)03169-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The temporally protracted heredodegeneration of cerebellar Purkinje cells in shaker mutant rats can be modified: ablation of the inferior olive accelerates their degeneration whereas chronic intraventricular infusion of trophic factors extends their survival. The present study sought to determine if chronic trophic factor infusion could block the accelerated degeneration of Purkinje cells due to inferior olivary chemoablation thereby focusing on possible mechanisms for the amelioration of heredo-Purkinje cell death. When the inferior olive was chemically ablated with 3-acetylpyridine at the midpoint of 2 weeks of conjoint intraventricular infusion of glial cell line-derived trophic factor (GDNF) and insulin like growth factor type I (IGF-1) Purkinje cells were not protected by the exogenous trophic factors, but rather degenerated prematurely consistent with chemoablation alone. These findings support the conclusion that when the inferior olive is ablated, Purkinje cell heredodegeneration progresses through a mechanism not significantly affected by the action of these trophic factors.
Collapse
Affiliation(s)
- Brian H Hess
- Francis Doris Murphy Neuroanatomy Research Laboratory, Department of Anatomy and Neurobiology, School of Medicine, Saint Louis University, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
7
|
Fukudome Y, Tabata T, Miyoshi T, Haruki S, Araishi K, Sawada S, Kano M. Insulin-like growth factor-I as a promoting factor for cerebellar Purkinje cell development. Eur J Neurosci 2003; 17:2006-16. [PMID: 12786966 DOI: 10.1046/j.1460-9568.2003.02640.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian CNS, the peptide hormone insulin-like growth factor-I (IGF-I) is synthesized in a certain subset of neurons and, it has been suggested, serves as a local neurotrophic factor. A postnatal increase in the expression of IGF-I and the type-1 IGF receptors (IGFR1) in the cerebellar cortex and its related brain regions indicates that developing cerebellar Purkinje cells (PC) may be an important target of IGF-I. However, little is known about how IGF-I influences PC development. Here we addressed this question, using a reduced environment of cerebellar neuron culture derived from perinatal mice. IGF-I exogenously applied at a physiological concentration (10 nm) greatly promoted the dendritic growth and survival of the PCs. By contrast, IGF-I only slightly promoted the somatic growth and little affected the maturation of the electrophysiological excitability of the PCs. The closely related hormone insulin had weaker promoting effects than did IGF-I. IGF-I appeared to at least bind to IGFR1 and to up-regulate the signalling pathways involving the phosphoinositide 3-kinase (PI3-K), mitogen-activated protein kinase (MAPK), p38 kinase (p38K), and an unknown signalling molecule(s). These signalling pathways may be coupled to the individual aspects of PC development in different manners and this may explain the difference in effects of IGF-I among these aspects. These findings suggest that IGF-I serves as a promoting factor for PC development, particularly postnatal survival and dendritic growth.
Collapse
Affiliation(s)
- Yuko Fukudome
- Department of Cellular Neurophysiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhong J, Deng J, Ghetti B, Lee WH. Inhibition of insulin-like growth factor I activity contributes to the premature apoptosis of cerebellar granule neuron in weaver mutant mice: in vitro analysis. J Neurosci Res 2002; 70:36-45. [PMID: 12237862 DOI: 10.1002/jnr.10360] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evidence from transgenic mice and cultured cerebellar neurons supports an important role for insulin-like growth factor I (IGF-I) in the formation of cerebellar cytoarchitecture. To understand IGF-I's function during cerebellar development, we examined the involvement of IGF-I in the premature apoptosis of granule neurons derived from the cerebella of weaver (wv) mutant mice. Before their demise, wv granule neurons increased the expression and secretion of IGFBP5 in a gene dose-dependent manner. Because IGFBP5 may interfere with the interaction of IGF-I and its receptor, the abnormally high IGFBP5 levels in wv granule neurons suggest that a lack of IGF-I activation may contribute to their premature apoptosis. This hypothesis is supported by a gene dose-dependent decrease in IGF-I receptor (IGF-IR) phosphorylation. More importantly, there is a parallel gene dose-dependent decrease in Akt activity, which was inversely correlated with the activity levels of caspase 3. On the other hand, adding IGFBP5 antibody into culture media increased the survival of wv granule neurons, whereas adding IGFBP5 decreased the survival of wild-type granule neurons. To delineate the interaction between IGF-I and IGFBP5 on wv granule neurons, we examined neuronal survival after treating with IGF-I, des(1-3) IGF-I, or IGFBP5 antibody. At the same concentration, des(1-3) IGF-I was more effective than IGF-I in promoting survival, in increasing Akt activity, and in decreasing caspase 3 activity. These results indicate that IGF-I's actions on wv granule neurons are normally inhibited by excess IGFBP5, and sufficient IGF-I receptor activation rescues wv granule neurons via stimulating the Akt signaling pathway.
Collapse
Affiliation(s)
- Jin Zhong
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
9
|
Torres-Aleman I, Pons S, Santos-Benito FF. Survival of Purkinje Cells in Cerebellar Cultures is Increased by Insulin-like Growth Factor I. Eur J Neurosci 2002; 4:864-869. [PMID: 12106309 DOI: 10.1111/j.1460-9568.1992.tb00196.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a trophic factor for both neurons and glia. Its presence in the developing and adult cerebellum suggests a role for this growth factor in this area of the brain. Recently, we have described the existence of an IGF-I-containing pathway in afferents of Purkinje neurons arising from the inferior olive. In addition, IGF-I receptors are present in the molecular layer of the cerebellar cortex. These observations prompted us to investigate whether the Purkinje cell is a target for IGF-I. Addition of IGF-I to rat cerebellar cultures produced a 7-fold increase in the number of Purkinje cells (calbindin-positive) together with an increase in the calbindin content of the cultures. IGF-I also doubled the number of surviving neurons and produced a moderate, non-significant increase in [3H]thymidine incorporation by the cultures. On the other hand, basic fibroblast growth factor (bFGF), which is also present in the cerebellum, produced a dramatic increase in both the proportion of astrocytes and in the mitotic activity of the cultures, without affecting neuron survival. We conclude that IGF-I is a specific promoter of Purkinje cell survival and that its effects differ from those produced by bFGF in fetal cerebellar cultures. These findings reinforce our hypothesis that the Purkinje cell is a target neuron for IGF-I action in the developing cerebellum.
Collapse
Affiliation(s)
- I. Torres-Aleman
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute of Neurobiology, CSIC, Avda. Dr Arce 37, 28002 Madrid, Spain
| | | | | |
Collapse
|
10
|
Murase SI, Hayashi Y. Neuronal expression of macrophage colony stimulating factor in Purkinje cells and olfactory mitral cells of wild-type and cerebellar-mutant mice. THE HISTOCHEMICAL JOURNAL 2002; 34:85-95. [PMID: 12365804 DOI: 10.1023/a:1021308328278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Macrophage colony stimulating factor (M-CSF) is known to be the most effective growth factor for macrophage and microglial proliferation. In the brain tissue system, M-CSF is mainly produced in astrocytes and microglia, but is not known to occur in neurons. In the present paper, we examined the distribution of neurons expressing M-CSF in the mouse brain by immunohistochemistry and in situ hybridization. We observed M-CSF immunoreactivity in both the cerebellum and the olfactory bulb. These positive cells were found to be Purkinje cells in the cerebellum, and mitral cells in the olfactory bulb. M-CSF mRNA expression was also confirmed to occur in these cells. Purkinje cells of reeler and weaver mutants showed M-CSF expression as seen in wild-type mice; however, those in the staggerer mutant did not. This expression in wild-type mice first appeared at postnatal day 7 and continued stably thereafter. When Purkinje cells were deprived of their climbing fibre innervation by inferior cerebellar pedunculotomy or by transplantation of cerebellar anlagen into the anterior eye chamber, the expression of M-CSF remained unchanged. These data indicate that expression of M-CSF in Purkinje cells is controlled by an intrinsic mechanism and could, therefore, be a new marker of postnatal development in rodent cerebella. The absence of M-CSF expression in the staggerer mutant is possibly due to developmental arrest in the early postnatal period.
Collapse
Affiliation(s)
- Shin-ichi Murase
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
11
|
von Bartheld CS, Wang X, Butowt R. Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol Neurobiol 2001; 24:1-28. [PMID: 11831547 DOI: 10.1385/mn:24:1-3:001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional views of neurotrophic factor biology held that trophic factors are released from target cells, retrogradely transported along their axons, and rapidly degraded upon arrival in cell bodies. Increasing evidence indicates that several trophic factors such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF-2), glial cell-line derived neurotrophic factor (GDNF), insulin-like growth factor (IGF-I), and neurotrophin-3 (NT-3), can move anterogradely along axons. They can escape the degradative pathway upon internalization and are recycled for future uses. Internalized ligands can move through intermediary cells by transcytosis, presumably by endocytosis via endosomes to the Golgi system, by trafficking of the factor to dendrites or by sorting into anterograde axonal transport with subsequent release from axon terminals and uptake by second- or third-order target neurons. Such data suggest the existence of multiple "trophic currencies," which may be used over several steps in neural networks to enable nurturing relationships between connected neurons or glial cells, not unlike currency exchanges between trading partners in the world economy. Functions of multistep transfer of trophic material through neural networks may include regulation of neuronal survival, differentiation of phenotypes and dendritic morphology, synapse plasticity, as well as excitatory neurotransmission. The molecular mechanisms of sorting, trafficking, and release of trophic factors from distinct neuronal compartments are important for an understanding of neurotrophism, but they present challenging tasks owing to the low levels of the endogenous factors.
Collapse
Affiliation(s)
- C S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557, USA.
| | | | | |
Collapse
|
12
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 584] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
13
|
Quesada A, Etgen AM. Insulin-like growth factor-1 regulation of alpha(1)-adrenergic receptor signaling is estradiol dependent in the preoptic area and hypothalamus of female rats. Endocrinology 2001; 142:599-607. [PMID: 11159830 DOI: 10.1210/endo.142.2.7946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we demonstrated that estradiol (E(2)) modulates cross-talk between protein tyrosine kinases and norepinephrine (NE) receptor signaling in the hypothalamus (HYP) and preoptic area (POA), brain areas that govern female reproductive function. We are now investigating the identity of protein tyrosine kinase(s) that modify NE receptor signaling in the HYP and POA. Incubation of POA and HYP slices with insulin-like growth factor I (IGF-I), which signals via a receptor (IGF-IR) with endogenous tyrosine kinase activity, enhances NE-stimulated cAMP accumulation only in tissue derived from ovariectomized, E(2)-primed animals. JB-1, an antagonist for IGF-IR, prevents the IGF-I enhancement of NE-stimulated cAMP accumulation in both POA and HYP slices. IGF-I enhances NE-stimulated cAMP accumulation via modulation of alpha(1)-adrenoceptor potentiation of adenylyl cyclase. Binding studies in membranes demonstrate that ovariectomized, E(2)-primed animals show a significant increase in the density of [(125)I]IGF-I-binding sites in both POA and HYP compared with ovariectomized control animals. Neither the IC(50) for [(125)I]IGF-I displacement by IGF-I nor the levels of IGF-I binding proteins in serum or brain tissue are affected by E(2). RIA results showed that E(2) does not modify serum or brain IGF-I levels. These results indicate that E(2) regulation of NE receptor function in the POA and HYP involves increased expression of IGF-IR, and that after E(2) treatment, IGF-IR activation augments alpha(1)-adrenoceptor signaling.
Collapse
Affiliation(s)
- A Quesada
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
14
|
Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J, Torres-Aleman I. Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol Dis 2000; 7:657-65. [PMID: 11114263 DOI: 10.1006/nbdi.2000.0311] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum levels of insulin and insulin-like growth factors and their binding proteins (IGFs and IGFBPs, respectively) are changed in human neurodegenerative diseases of very different etiology, such as Alzheimer's disease, amyotrophic lateral sclerosis, or cerebellar ataxia. However, the significance of these endocrine disturbances is not clear. We now report that in two very different inherited neurodegenerative conditions, ataxia-telangiectasia (AT) and Charcot-Marie-Tooth 1A (CMT-1A) disease, serum levels of IGFs are also altered. Both types of patients have increased serum IGF-I and IGFBP-2 levels, and decreased serum IGFBP-1 levels, while only AT patients have high serum insulin levels. Furthermore, serum IGFs are also changed in three different animal models of neurodegeneration: neurotoxin-induced motor discoordination, diabetic neuropathy, and hereditary cerebellar ataxia. In these three models, serum insulin levels are significantly decreased, serum IGF-I and IGFBP-1, -2, and -3 are decreased in diabetic and neurotoxin-injected rats, while serum IGFBP-1 is increased in hereditary ataxic rats. Altogether, these observations indicate that a great variety of neurodegenerative diseases show endocrine perturbations, resulting in changes in serum IGFs levels. These perturbations are disease-specific and are probably due to metabolic and endocrine derangements, nerve cell death, and sickness-related disturbances associated to the neurodegenerative process. Our observations strongly support the need to evaluate serum IGFs in other neurodegenerative conditions.
Collapse
Affiliation(s)
- S Busiguina
- Laboratory of Neuroendocrinology, Cajal Institute, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The adult brain requires a constant trophic input for appropriate function. Although the main source of trophic factors for mature neurons is considered to arise locally from glial cells and synaptic partners, recent evidence suggests that hormonal-like influences from distant sources may also be important. These include not only relatively well-characterized steroid hormones that cross the brain barriers, but also blood-borne protein growth factors able to cross the barriers and exert unexpected, albeit specific, trophic actions in diverse brain areas. Insulin-like growth factor I (IGF-I) is until now the serum neurotrophic factor whose actions on the adult brain are best-characterized. This is because IGF-I has been known for many years to be present in serum, whereas the presence in the circulation of other more classical neurotrophic factors has only recently been recognized. Thus, new evidence strongly suggests that IGF-I, and other blood-borne neurotrophic factors such as Fibroblast Growth Factor (FGF-2) or the neurotrophins, exert a tonic trophic input on brain cells, providing a mechanism for what we may refer to as neuroprotective surveillance. Protective surveillance includes "first-line" defense mechanisms ranging from blockade of neuronal death after a wide variety of cellular insults to upregulation of neurogenesis when defenses against neuronal death are overcome. Most importantly, surveillance should also encompass modulation of homeostatic mechanisms to prevent neuronal derangement. These will include modulation of basic cellular processes such as metabolic demands and maintainance of cell-membrane potential as well as more complex processes such as regulation of neuronal plasticity to keep neurons able to respond to constantly changing functional demands.
Collapse
Affiliation(s)
- I Torres-Aleman
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain.
| |
Collapse
|
16
|
Zhou X, Herman JP, Paden CM. Evidence that IGF-I acts as an autocrine/paracrine growth factor in the magnocellular neurosecretory system: neuronal synthesis and induction of axonal sprouting. Exp Neurol 1999; 159:419-32. [PMID: 10506513 DOI: 10.1006/exnr.1999.7189] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of mature oxytocinergic (OT) and vasopressinergic (VP) neurons of the magnocellular neurosecretory system (MNS) to undergo axonal growth implies that one or more growth factors may be active in the adult MNS, yet little is known regarding their possible identity. One such potential factor is insulin-like growth factor I (IGF-I). We have examined the expression of IGF-I mRNA and IGF-I-immunoreactivity (IGF-I-ir) in the mature MNS and have also determined the in vivo response of OT and VP neurons to hypothalamic implants of IGF-I. In situ hybridization revealed moderate labeling of IGF-I mRNA in both the supraoptic (SON) and the paraventricular (PVN) nuclei of adult male rats. RT-PCR analysis confirmed the presence of authentic IGF-I mRNA in extracts of the basal hypothalamus. Faint IGF-I-ir was detected in scattered magnocellular neurons within both the PVN and the SON of normal rats, but IGF-I-ir was much more intense and the majority of MNS neurons including those in the accessory nuclei were immunoreactive in sections from rats given colchicine, as were some parvocellular neurons in the PVN. Confocal microscopy revealed that IGF-I-ir was present in both OT and VP neurons, but VP neurons contained the most intense IGF-I-ir. Finally, a dramatic growth response of OT but not of VP fibers was observed following implantation of polymer rods containing IGF-I into the hypothalamus. A dense OT fiber plexus grew along the cannula track and OT fibers invaded the leptomeninges ventral to the SON and encircled the rostral cerebral artery. To our knowledge this is the first demonstration of axonal sprouting by mature OT neurons in response to an identified growth factor and the first direct demonstration of sprouting in response to exogenous IGF-I in the adult CNS. These findings suggest that IGF-I is synthesized and transported by adult MNS neurons where it may act as an autocrine and/or paracrine growth factor.
Collapse
Affiliation(s)
- X Zhou
- Department of Biology, Montana State University, Bozeman, Montana, 59717, USA
| | | | | |
Collapse
|
17
|
Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 1999; 11:2019-30. [PMID: 10336671 DOI: 10.1046/j.1460-9568.1999.00623.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exogenous administration of insulin-like growth factor I (IGF-I) restores motor function in rats with neurotoxin-induced cerebellar deafferentation. We first determined that endogenous IGFs are directly involved in the recovery process because infusion of an IGF-I receptor antagonist into the lateral ventricle blocks gradual recovery of limb coordination that spontaneously occurs after partial deafferentation of the olivo-cerebellar circuitry. We then analysed mechanisms whereby exogenous IGF-I restores motor function in rats with complete damage of the olivo-cerebellar pathway. Treatment with IGF-I normalized several markers of cell function in the cerebellum, including calbindin, glutamate receptor 1 (GluR1), gamma-aminobutyric acid (GABA) and glutamate, which are all depressed after 3-acetylpyridine (3AP)-induced deafferentation. IGF-I also promoted functional reinnervation of the cerebellar cortex by inferior olive (IO) axons. In the IO, increased expression of bax in neurons and bcl-X in astrocytes after 3AP was significantly reduced by IGF-I treatment. On the contrary, IGF-I prevented the decrease in poly-sialic-acid neural cell adhesion molecule (PSA-NCAM) and GAP-43 expression induced by 3AP in IO cells. IGF-I also significantly increased the number of neurons expressing bcl-2 in brainstem areas surrounding the IO. Altogether, these results indicate that subcutaneous IGF-I therapy promotes functional recovery of the olivo-cerebellar pathway by acting at two sites within this circuitry: (i) by modulating death- and plasticity-related proteins in IO neurons; and (ii) by impinging on homeostatic mechanisms leading to normalization of cell function in the cerebellum. These results provide insight into the neuroprotective actions of IGF-I and may be of practical consequence in the design of new therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Fernandez AM, de la Vega AG, Torres-Aleman I. Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci U S A 1998; 95:1253-8. [PMID: 9448318 PMCID: PMC18736 DOI: 10.1073/pnas.95.3.1253] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1997] [Indexed: 02/05/2023] Open
Abstract
We tested the potential of insulin-like growth factor I (IGF-I) to induce functional recovery in an animal model of cerebellar ataxia because this motor impairment is accompanied in humans and rodents by distinct changes in several components of the IGF-I trophic system. Rats rendered ataxic by deafferentation of the cerebellar cortex with 3-acetylpyridine recovered motor function after IGF-I was administered, as determined by behavioral and electrophysiological tests. When treated with IGF-I, inferior olive neurons, the targets of the neurotoxin, were rescued to various degrees (from 92 to 27% of surviving neurons), depending on the time that treatment with IGF-I was initiated. Furthermore, full recovery was obtained regardless of the route by which the trophic factor was administered (intraventricular or subcutaneous) even in rats with severe neuronal loss. These results suggest that human ataxia could be treated with IGF-I by a simple procedure.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid 28002, Spain
| | | | | |
Collapse
|
19
|
Abstract
The effect of insulin-like growth factor 1 (IGF-1) on neonatal plasticity was studied using the rat olivocerebellar projection as a model. Unilateral removal of climbing fibres in the rat before postnatal day 7 induces re-innervation of the deafferented hemi-cerebellum, which does not occur after postnatal day 10. Rats aged 11 or 12 days underwent climbing fibre transection followed by IGF-1 injection into the denervated cerebellar cortex 24 h later. The exogenous IGF-1 induced climbing fibre re-innervation of the denervated hemicerebellum in a pattern similar to that seen in the immature rat. Thus IGF-1 can extend the window of neonatal plasticity of the brain and therefore may be of potential therapeutic use post-trauma.
Collapse
Affiliation(s)
- R M Sherrard
- Neuroscience Laboratory, School of Life Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
20
|
Nieto-Bona MP, Garcia-Segura LM, Torres-Alemán I. Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. Int J Dev Neurosci 1997; 15:749-54. [PMID: 9402225 DOI: 10.1016/s0736-5748(97)00021-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purkinje cells synthesize insulin-like growth factor I and express insulin-like growth factor I receptors during their entire life. An additional source of insulin-like growth factor I for these cells is provided by climbing fiber afferents originating in the inferior olive nucleus. Recently we found that insulin-like growth factor I from the inferior olive is necessary for motor learning processes probably involving Purkinje cell synaptic plasticity. We now studied whether inferior olive insulin-like growth factor I influences the synaptic structure of Purkinje cells, because changes in synaptic morphology are related to neuronal plasticity events. We injected an insulin-like growth factor I antisense in the inferior olive of adult rats, a procedure which we previously found to elicit a significant and reversible decrease of insulin-like growth factor I levels in the contralateral cerebellum. Ultrastructural analysis of the cerebellar cortex of these animals showed a significant reduction in the size of dendritic spines on Purkinje cells of antisense-treated rats compared to controls. The decrease in spine size was linked to a diminished numerical density of dendritic spines on Purkinje cells, without affecting the numerical density of synapses in the molecular layer of the cerebellum. This reduction was not due to a change in the thickness of the molecular layer. Climbing or parallel fiber terminals were also unaffected. Taken together with previous findings, these results support a role for insulin-like growth factor I produced in the inferior olive in the maintenance of Purkinje cell synaptic plasticity.
Collapse
Affiliation(s)
- M P Nieto-Bona
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | |
Collapse
|
21
|
Morley JE, Kaiser F, Raum WJ, Perry HM, Flood JF, Jensen J, Silver AJ, Roberts E. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci U S A 1997; 94:7537-42. [PMID: 9207127 PMCID: PMC23857 DOI: 10.1073/pnas.94.14.7537] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > -0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GH-IGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GH-IGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.
Collapse
Affiliation(s)
- J E Morley
- Geriatric Research Education and Clinic Center, Veterans Administration Medical Center, St. Louis, MO 63106, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Maheshwari HG, Mermelstein S, vonSchlegell AS, Shambaugh GE. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein-calorie malnutrition. Neurochem Res 1997; 22:313-9. [PMID: 9051667 DOI: 10.1023/a:1022447007154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neonatal brain development in the rat is adversely affected by malnutrition. Alterations in tissue binding of IGF-I in the malnourished brain were tested in rat pups from mothers who were fed a 20% protein diet (C) or a 4% protein diet (M) starting from day 21 of gestation and continued throughout suckling. IGF-I binding in both cortex and cerebellum decreased progressively in C and M groups from day 6 to day 13. At day 9, 11, and 13, the binding was significantly greater (p < 0.02) in M compared to C groups. To investigate whether these changes might be related to the alteration in receptor activity, membranes were incubated with 125I-IGF in the presence of excess insulin with or without unlabeled IGF-I. In the absence of insulin, specific IGF-I binding in the M group was increased by 41.8 +/- 13.8% (mean +/- SEM p < 0.05) relative to C group. Insulin produced a consistent but incomplete inhibition of binding in both C and M, of 75% and 67% respectively. In addition, the specific IGF-I binding in the presence of insulin was increased in M group by 70.2 +/- 9.4% relative to C, p < 0.05. To characterize the nature of this binding, cerebral cortical membranes, from both groups, incubated with 125I-IGF-I were cross-linked, and electrophoresed on 6% and 10% SDS-PAGE gels under reducing conditions. Autoradiography of the 6% gel showed two specific bands at 115 kD and 240 kD, consistent with monomeric and dimeric forms of the IGF-I receptor, which were inhibited by excess insulin. In contrast, a 10% gel showed an additional band at 35 kD (IGF-binding protein) that was not inhibited by insulin. In both gels, membrane preparations from the M group showed a heightened intensity of the bands relative to C. The increase in binding protein relative to the receptor suggests a disequilibrium that may limit the availability of exogenous IGF-I to the tissues.
Collapse
Affiliation(s)
- H G Maheshwari
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
23
|
Fernandez AM, Garcia-Estrada J, Garcia-Segura LM, Torres-Aleman I. Insulin-like growth factor I modulates c-Fos induction and astrocytosis in response to neurotoxic insult. Neuroscience 1997; 76:117-22. [PMID: 8971764 DOI: 10.1016/s0306-4522(96)00395-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor I participates in the cellular response to brain insult by increasing its messenger RNA expression and/or protein levels in the affected area. Although it has been suggested that insulin-like growth factor I is involved in a variety of cellular responses leading to homeostasis, mechanisms involved in its possible trophic effects are largely unknown. Since activation of c-Fos in postmitotic neurons takes place both in response to insulin-like growth factor I and after brain injury, we have investigated whether this early response gene may be involved in the actions of insulin-like growth factor I after brain insult. Partial deafferentation of the cerebellar cortex by 3-acetylpyridine injection elicited c-Fos protein expression on both Purkinje and granule cells of the cerebellar cortex. This neurotoxic insult also triggered gliosis, as determined by an increased number of glial fibrillary acidic protein-positive cells (reactive astrocytes) in the cerebellar cortex. When 3-acetylpyridine-injected animals received a continuous intracerebellar infusion of either a peptidic insulin-like growth factor I receptor antagonist or an insulin-like growth factor I antisense oligonucleotide for two weeks through an osmotic minipump, c-Fos expression was obliterated while reactive gliosis was greatly increased. On the contrary, continuous infusion of insulin-like growth factor I significantly decreased reactive gliosis without affecting the increase in c-Fos expression. These results indicate that insulin-like growth factor I is involved in both the neuronal (c-Fos) and the astrocytic (glial fibrillary acidic protein) activation in response to injury.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Abstract
We found that integrin beta 1 subunit (INT beta 1)-immunoreactive Purkinje cells first appeared caudally at postnatal day (PD) 6 of rat and most Purkinje cells gradually became positive by PD 12. The expression of INT beta 1 was then suppressed in some of these cells, so that the positive Purkinje cells in the adult were organized into parasagittal bands interposed by negative cells throughout the vermis and hemispheres. When Purkinje cells were deprived of their climbing fiber innervation by inferior cerebellar pedunculotomy or by transplantation of cerebellar anlagen into the anterior eye chamber, the subsequent patterning of INT beta 1-positive Purkinje cells was not changed. In both reeler and weaver mice, the INT beta 1-positive parasagittal bands were observed, however, the Purkinje cells in the staggerer mice did not express INT beta 1 at any stage. These data suggest that the expression of INT beta 1 in Purkinje cells is genetically programmed in the developing cerebellum, and that the afferent synaptic inputs by climbing and parallel fibers are not prerequisites for INT beta 1 expression in Purkinje cells. Therefore, the unique distribution patterns of INT beta 1-positive Purkinje cells provides a new marker for postnatal development of rodent cerebella.
Collapse
Affiliation(s)
- S Murase
- Department of Anatomy, School of Medicine, Keio University, Tokyo, Japan
| | | |
Collapse
|
25
|
Torres-Aleman I, Barrios V, Lledo A, Berciano J. The insulin-like growth factor I system in cerebellar degeneration. Ann Neurol 1996; 39:335-42. [PMID: 8602752 DOI: 10.1002/ana.410390310] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain insulin-like growth factor I (IGF-I) and its related molecules may be involved in neurodegenerative processes in which IGF-I-containing pathways are compromised. Since IGF-I is present in the olivocerebellar circuitry, two types of late-onset cerebellar ataxias (olivopontocerebellar and idiopathic cerebellar cortical atrophy) were chosen to test this hypothesis. The following significant changes in the peripheral IGF-I system of these patients were found: low IGF-I levels, and high IGF-binding protein 1 (BP-1), and BP-3 affinity for IGF-1. Sixty percent of the patients also had significantly low insulin levels. Patients suffering from other neurological diseases with cerebellar dysfunction and ataxia not involving the olivocerebellar pathway also had low IGF-I levels, while IGFBPs and insulin levels were normal. Our data indicate that degeneration of an IGF-I-containing neuronal pathway produces significant changes in the peripheral IGF system. This suggests strongly that the endocrine (bloodborne) and the paracrine/autocrine (brain) IGF systems are linked functionally. We propose that alterations in the blood IGF-I system may constitute a marker of some cerebellar diseases.
Collapse
Affiliation(s)
- I Torres-Aleman
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Castro-Alamancos MA, Arevalo MA, Torres-Aleman I. Involvement of protein kinase C and nitric oxide in the modulation by insulin-like growth factor-I of glutamate-induced GABA release in the cerebellum. Neuroscience 1996; 70:843-7. [PMID: 8848170 DOI: 10.1016/0306-4522(95)00472-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insulin-like growth factor-I elicits a long-term depression of the glutamate-induced GABA release in the adult rat cerebellum that lasts at least several hours. We studied whether protein kinase C and nitric oxide may be involved in this effect of insulin-like growth factor-I on GABA release since both signalling pathways have been implicated in other forms of neuromodulation in the cerebellum. By using microdialysis in the adult rat cerebellum, we found that either an inhibitor of protein kinase C (staurosporine) or of nitric oxide synthase (Nw-nitro-L-arginine methyl ester) counteracted the long-term, but not the acute effects of insulin-like growth factor-I on glutamate-induced GABA release. On the contrary, when either an activator of protein kinase C (phorbol ester), or an nitric oxide donor (L-arginine), were given with glutamate, they mimicked only the acute effects of insulin-like growth factor-I on glutamate-induced GABA release. Finally, when both protein kinase C and nitric oxide-synthase were simultaneously inhibited by conjoint administration of staurosporine and Nw-nitro-L-arginine methyl ester, a complete blockage of both the short and the long-term effects of insulin-like growth factor-I on GABA release was obtained. These results, indicate that: (i) activation by insulin-like growth factor-I of either the protein kinase C or nitric oxide-signalling pathways is sufficient for the short-term inhibition of glutamate-induced GABA release; and (ii) simultaneous activation of both the protein kinase C and the nitric oxide signalling pathways is necessary for insulin-like growth factor-I to induce a long-term depression of GABA responses to glutamate. Thus, long-term depression of glutamate-induced GABA release by insulin-like growth factor-I in the cerebellum is mediated by simultaneous activation of both protein kinase C and nitric oxide-signalling pathways.
Collapse
|
27
|
Rossi F, Strata P. Reciprocal trophic interactions in the adult climbing fibre—Purkinje cell system. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80006-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Nieto-Bona MP, Busiguina S, Torres-Aleman I. Insulin-like growth factor I is an afferent trophic signal that modulates calbindin-28kD in adult Purkinje cells. J Neurosci Res 1995; 42:371-6. [PMID: 8583505 DOI: 10.1002/jnr.490420311] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent evidence suggests that Purkinje cells are specific targets of insulin-like growth factor I (IGF-I) through their entire life span. During development, Purkinje cell numbers and their calbindin-28kD content increase after IGF-I treatment in culture. In the adult, part of the IGF-I present in the cerebellum is transported from the inferior olive, and modulates Purkinje cell function. We investigated whether IGF-I produced by inferior olive neurons and transported to the contralateral cerebellum through climbing fibers may modulate the levels of calbindin-28kD in the cerebellum of adult animals. Twenty-four hr after injection of an antisense oligonucleotide of IGF-I into the inferior olive, both IGF-I and calbindin-28kD levels in the contralateral cerebellar lobe were significantly reduced, while the number of calbindin-positive Purkinje cells was unchanged. The effect of the antisense on IGF-I levels was fully reversed 3 days after its injection into the inferior olive, with a postinhibitory rebound observed at this time, while calbindin-28kD levels slowly returned to control values. A control oligonucleotide did not produce any change in either IGF-I or calbindin-28kD content in the cerebellum. These results indicate that normal levels of IGF-I in the inferior olive are necessary to maintain appropriate levels of IGF-I in the cerebellum and of calbindin-28kD in the Purkinje cell. These results also extend our previous findings on the existence of an olivo-cerebellar IGF-I-containing pathway with trophic influence on the adult Purkinje cell.
Collapse
Affiliation(s)
- M P Nieto-Bona
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
29
|
Shambaugh GE, Natarajan N, Davenport ML, Oehler D, Unterman T. Nutritional insult and recovery in the neonatal rat cerebellum: insulin-like growth factors (IGFs) and their binding proteins (IGFBPs). Neurochem Res 1995; 20:475-90. [PMID: 7544447 DOI: 10.1007/bf00973105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alterations in growth caused by neonatal malnutrition may be mediated in part by changes in insulin-like growth factor (IGF) and IGF binding protein (IGFBP) expression. Since the neonatal rat cerebellum undergoes a transient, proliferative growth phase in the first two weeks of life, this structure was used to determine whether alterations in circulating and tissue IGFs and IGFBPs may mediate effects of impaired nutrition on the developing central nervous system. Gravid rats were placed on a 4% (protein-calorie deprived, D) or 20% (control, C) protein diets one day prior to delivery and allowed to nurse their pups postpartum. Pups nursing from D mothers received a limited volume of milk and were calorically deprived. Some litters of D pups were foster fed by C mothers from day 8 to day 13 to constitute a recovery group (R). Cerebellar weight, protein, and DNA content in D pups were less than C, p < 0.001. In R pups, DNA and protein returned to C levels by day 13. Between days 6 and 13, serum IGF-I levels rose from 158 +/- 18 to 210 +/- 18 ng/ml in C but remained low in D (47 +/- 6 ng/ml and 25 +/- 3 ng/ml), respectively. In R pups, serum IGF-I partially recovered during this time, and increased from 49 +/- 5 to 110 +/- 7 ng/ml. In cerebellar extracts, IGF-I levels in both C and D were lower at 13 days than at 6 days, p < 0.05 and p < 0.005, respectively. IGF-I levels in C were similar at day 9 and day 11 and were consistently higher than D (11.84 +/- 0.83 vs 8.56 +/- 0.92 ng/g, p < 0.02 C vs D). In R, IGF-I was reduced on day 11, but was similar to C on day 13. Serum IGF-II in D was lower than C, p < 0.01, and did not increase in the R group. Cerebellar IGF-II was virtually undetectable in either group. Immunoprecipitation and ligand blotting studies of serum demonstrated that circulating levels of 32-34 K IGFBPs were increased 3-4 fold in D vs C, reflecting high levels of IGFBP-1 and/or -2, while levels of 24 K IGFBP-4 were lower in D vs C. By contrast, immunoprecipitation and ligand blotting of cerebellar extracts detected IGFBP-2 and -4, but did not detect IGFBP-1. Further, tissue levels of IGFBP-2 were not increased in D vs C, and levels of IGFBP-4 also were not markedly affected by nutritional deprivation. These results suggest that alterations in tissue content and the availability of IGF-I only modestly contributed to the effects of impaired nutrition in the developing central nervous system.
Collapse
Affiliation(s)
- G E Shambaugh
- Research Service, VA Lakeside Medical Center, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
30
|
Karachot L, Kado RT, Ito M. Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res 1994; 21:161-8. [PMID: 7724067 DOI: 10.1016/0168-0102(94)90158-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Long-term depression (LTD) was induced in rat cerebellar slices by conjunctive stimulation of parallel fibers (PFs) and climbing fibers (CFs) under perfusion of 20 microM picrotoxin. LTD was estimated by the reduction in the initial rising slope of EPSPs PF-induced in Purkinje cell dendrites. LTD-inducing efficacy was represented by both the average amount of depression and the probability of inducing depression greater than 25%, both measured at 40 min after the onset of conjunctive stimulation. Using 300 regularly recurring pulses given to both CFs and PFs with 0 ms interval, LTD was optimally induced at 1 Hz, and to lesser degrees at other frequencies. When the number of conjunctive stimuli at 1 Hz with zero CF-PF interval was varied from 50 to 500, 300 stimuli induced LTD most robustly. When CF-PF interval was varied while 300 pulses were given at 0.25-4 Hz, LTD was induced even when PF stimuli were delayed after CF stimuli by as much as 2 s, but it was inhibited when PF stimuli preceded CF stimuli by 10-100 ms. LTD was also induced by applying repeated short pulse trains to both CFs and PFs, but repeated application of a PF stimulus train immediately followed by a CF stimulus train as in classical conditioning was effectless. The present results suggest complex processes leading to LTD as a result of conjunctive CF and PF stimulation.
Collapse
Affiliation(s)
- L Karachot
- Laboratory for Neural Networks, Frontier Research Program, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | |
Collapse
|
31
|
Castro-Alamancos MA, Torres-Aleman I. Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. Proc Natl Acad Sci U S A 1994; 91:10203-7. [PMID: 7937862 PMCID: PMC44986 DOI: 10.1073/pnas.91.21.10203] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cerebellum is thought to be critically involved in learning and retention of several types of classically conditioned motor responses. We investigated whether insulin-like growth factor I (IGF-I) may constitute an intercellular mediator of a motor learning task because previous findings indicated that IGF-I from the inferior olive modulates glutamate-induced gamma-aminobutyric acid release by Purkinje cells in the cerebellar cortex. Synaptic plasticity of the Purkinje cell is thought to be instrumental in motor learning. We found that injection of an IGF-I antisense oligonucleotide in the inferior olive elicited a complete inhibition of conditioned eye-blink learning in freely moving rats. This blockage was reversible and recovered when the levels of cerebellar IGF-I returned to normal values. Injection of a sense oligonucleotide did not interfere with the acquisition of the conditioned response. On the other hand, retention of the conditioned response was not impaired by subsequent injection of the IGF-I antisense oligonucleotide, indicating that olivocerebellar IGF-I is essential for the acquisition of the conditioned eye-blink response but is not essential for its retention.
Collapse
Affiliation(s)
- M A Castro-Alamancos
- Laboratory of Physiology, Cajal Institute, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | |
Collapse
|
32
|
Torres-Aleman I, Pons S, Arévalo MA. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res 1994; 39:117-26. [PMID: 7530775 DOI: 10.1002/jnr.490390202] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The developmental regulation of insulin-like growth factor I (IGF-I), its receptor, and its binding proteins (IGFBPs) was studied in the rat cerebellum. All the components of the IGF-I system were detectable in the cerebellum at least by embryonic day 19. Levels of IGF-I receptor and its mRNA were highest at perinatal ages and steadily decrease thereafter, although a partial recovery in IGF-I receptor mRNA was found in adults. Levels of IGF-I and its mRNA also peaked at early ages, although immunoreactive IGF-I showed a second peak during adulthood. Finally, levels of IGFBPs were also highest at early postnatal ages and abruptly decreased thereafter to reach lower adult levels. Since highest levels of the different components of the IGF-I system were found at periods of active cellular growth and differentiation we also examined possible trophic effects of IGF-I on developing cerebellar cells in vitro. We found a dose-dependent effect of IGF-I on neuron survival together with a specific increase of the two main neurotransmitters used by cerebellar neurons, GABA and glutamate. Analysis of cerebellar cultures by combined in vitro autoradiography and immunocytochemistry with cell-specific markers indicated that both Purkinje cells (calbindin-positive) and other neurons (neurofilament-positive) contain IGF-I binding sites. These results extend previous observations on a developmental regulation of the IGF-I system in the cerebellum and reinforce the notion of a physiologically relevant trophic role of IGF-I in cerebellar development.
Collapse
Affiliation(s)
- I Torres-Aleman
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | |
Collapse
|
33
|
Aguado F, Sánchez-Franco F, Rodrigo J, Cacicedo L, Martínez-Murillo R. Insulin-like growth factor I-immunoreactive peptide in adult human cerebellar Purkinje cells: co-localization with low-affinity nerve growth factor receptor. Neuroscience 1994; 59:641-50. [PMID: 8008211 DOI: 10.1016/0306-4522(94)90183-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been proposed that Insulin-like growth factor I is involved in the development, growth and maintenance of the central nervous system possibly interacting with other trophic factors. High levels of insulin-like growth factor I have been detected in the cerebellum during development and adulthood suggesting a specific role for insulin-like growth factor I in this brain area. While there is ever increasing data regarding the cell types containing endogenous insulin-like growth factor I in the rat brain, no information on the human brain is yet available. In the present study we sought to analyse the precise location of insulin-like growth factor I peptide in the adult human cerebellum using a specific antiserum against recombinant human insulin-like growth factor I. After immunocytochemistry, numerous Purkinje cells exhibited intense positive staining occupying the cell soma, dendrites and dendritic spines as well as axons. Occasionally, immunoreactive Purkinje cell axons were arciform and exhibited bulbous dilatations along their proximal length. Putative recurrent collaterals of Purkinje cell axons were also insulin-like growth factor I reactive. Double-staining immunocytochemistry in the same sections consistently showed, as expected, co-expression of insulin-like growth factor I and calbindin, although a few calbindin containing Purkinje cells lacked insulin-like growth factor I immunostaining suggesting there are insulin-like growth factor I positive Purkinje cell subsets in the human cerebellum. In addition, co-expression of insulin-like growth factor I and low-affinity nerve growth factor receptor-immunoreactive protein was found in a subpopulation of insulin-like growth factor I positive Purkinje cells. The results of this study prove the presence of insulin-like growth factor I immunoreactivity in a Purkinje cell subpopulation of the adult human cerebellum suggesting that insulin-like growth factor I may participate in paracrine or autocrine regulatory systems in the adult human brain.
Collapse
Affiliation(s)
- F Aguado
- Departamento de Neuroanatomía Comparada, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Nieto-Bona MP, Garcia-Segura LM, Torres-Aleman I. Orthograde transport and release of insulin-like growth factor I from the inferior olive to the cerebellum. J Neurosci Res 1993; 36:520-7. [PMID: 7511697 DOI: 10.1002/jnr.490360504] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Insulin-like growth factor I (IGF-I) and its receptor are expressed in functionally related areas of the rat brain such as the inferior olive and the cerebellar cortex. A marked decrease of IGF-I levels in cerebellum is found when inferior olive neurons are lesioned. In addition, Purkinje cells in the cerebellar cortex depend on this growth factor to survive and differentiate in vitro. Thus, we consider it possible that IGF-I forms part of a putative trophic circuitry encompassing the inferior olive and the cerebellar cortex and possibly other functionally connected areas. To test this hypothesis we have studied whether IGF-I may be taken up, transported, and released from the inferior olive to the cerebellum. We have found that 125I-IGF-I is taken up by inferior olive neurons in a receptor-mediated process and orthogradely transported to the cerebellum. Thus, radioactivity found in the cerebellar lobe contralateral to the injection site in the inferior olive was immunoprecipitated by an anti-IGF-I antibody, co-eluted with 125I-IGF-I in an HPLC column, and co-migrated with 125I-IGF-I in an SDS-urea polyacrylamide gel electrophoresis. Time-course studies indicated that orthograde axonal transport is relatively rapid since 30 min after the injection, radiolabeled IGF-I was already detected in the contralateral cerebellum. Furthermore, transport of IGF-I from the inferior olive is specific since when 125I-neurotensin was injected in the inferior olive or when 125I-IGF-I was injected in the pontine nucleus, no radioactivity was found in the contralateral cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M P Nieto-Bona
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | |
Collapse
|
35
|
Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci U S A 1993; 90:7386-90. [PMID: 8346260 PMCID: PMC47142 DOI: 10.1073/pnas.90.15.7386] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We tested the possibility that insulin-like growth factor I (IGF-I) acts as a neuromodulator in the adult cerebellar cortex since previous observations indicated that IGF-I is located in the olivo-cerebellar system encompassing the inferior olive and Purkinje cells. We found that conjoint administration of IGF-I and glutamate through a microdialysis probe stereotaxically implanted into the cerebellar cortex and deep cerebellar nuclei greatly depressed the release of gamma-aminobutyric acid (GABA), which normally follows a glutamate pulse. This inhibition was dose-dependent and long-lasting. Moreover, the effect was specific for glutamate since KCl-induced GABA release was not modified by IGF-I. Basic fibroblast growth factor, another growth-related peptide present in the cerebellum, did not alter the response of GABA to glutamate stimulation. In addition, electrical stimulation of the inferior olivary complex significantly raised IGF-I levels in the cerebellar cortex. Interestingly, when the inferior olive was stimulated in conjunction with glutamate administration, GABA release by cerebellar cells in response to subsequent glutamate pulses was depressed in a manner reminiscent of that seen after IGF-I. These findings indicate that IGF-I produces a long-lasting depression of GABA release by Purkinje cells in response to glutamate. IGF-I might be present in climbing fiber terminals and/or cells within the cerebellar cortex and thereby might affect Purkinje cell function. Whether this IGF-I-induced impairment of glutamate stimulation of Purkinje cells underlies functionally plastic processes such as long-term depression is open to question.
Collapse
|
36
|
Garcia-Estrada J, Garcia-Segura LM, Torres-Aleman I. Expression of insulin-like growth factor I by astrocytes in response to injury. Brain Res 1992; 592:343-7. [PMID: 1280521 DOI: 10.1016/0006-8993(92)91695-b] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Astrocytes are known to express several growth factors in response to injury and neurological disease. Insulin-like growth factor I (IGF-I) induces astrocytes to divide in vitro and is expressed by developing, but not adult astrocytes both in vivo and in vitro. We tested whether IGF-I is re-expressed by reactive astrocytes in response to injury. We found that astrocytes surrounding the lesioned parenchyma after introduction of a cannula through the cerebral cortex, hippocampus and midbrain contain high levels of immunoreactive IGF-I, as determined by immunocytochemistry using a highly sensitive and specific anti-IGF-I monoclonal antibody. Interestingly, the contralateral hippocampus also contained IGF-I positive astrocytes although in substantial lower numbers. Intact animals showed no detectable IGF-I immunoreactivity in astrocytes. IGF-I was detected at the first time point tested after the lesion was made, 1 week, and for at least 1 month thereafter. Reactive astrocytes expressing high levels of glial fibrillary acidic protein were found in a much wider distribution all along the lesioned area and beyond. We conclude that mechanical injury of the brain induces a specific pattern of expression of IGF-I by a subpopulation of astrocytes. These findings suggest that IGF-I is participating in the response of astrocytes to injury.
Collapse
Affiliation(s)
- J Garcia-Estrada
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | |
Collapse
|