1
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2015; 219:9-17. [PMID: 26234277 DOI: 10.1016/j.resp.2015.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
We have previously shown that cough potentiation induced by intravenous administration of the AT1 receptor antagonist losartan is lower than that induced by the ACE inhibitor lisinopril in anesthetized and awake rabbits. Since losartan and lisinopril cross the blood-brain barrier, their central action on the cough reflex can be hypothesized. Mechanical stimulation of the tracheobronchial tree and citric acid inhalation were used to induce cough reflex responses in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of losartan (5mM), lisinopril (1mM), bradykinin (0.05 mM), HOE-140 (0.2mM, a bradykinin B2 receptor antagonist) and CP-99,994 (1mM, an NK1 receptor antagonist) were performed into the caudal nucleus tractus solitarii, the predominant site of termination of cough-related afferents. Lisinopril, but not losartan increased the cough number. This effect was reverted by HOE-140 or CP-99,994. Cough potentiation was also induced by bradykinin. The results support for the first time a central protussive action of lisinopril mediated by an accumulation of bradykinin and substance P.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy.
| |
Collapse
|
2
|
The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 2010; 30:130-9. [PMID: 19773800 PMCID: PMC2949094 DOI: 10.1038/jcbfm.2009.196] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.
Collapse
|
3
|
Cloutier F, Ongali B, Campos MM, Thibault G, Neugebauer W, Couture R. Correlation between brain bradykinin receptor binding sites and cardiovascular function in young and adult spontaneously hypertensive rats. Br J Pharmacol 2004; 142:285-96. [PMID: 15066903 PMCID: PMC1574947 DOI: 10.1038/sj.bjp.0705759] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intracerebroventricular (i.c.v.) effects of bradykinin (BK) B(1) and B(2) receptor agonists and antagonists were assessed on mean arterial blood pressure (MAP) and heart rate (HR) in awake unrestrained spontaneously hypertensive rats (SHR, aged of 8 and 16 weeks) and age-matched Wistar Kyoto rats (WKY). Quantitative in vitro autoradiographic studies were also performed on the brain of both strains with specific radioligands for B(2) receptors [(125)I]HPP-Hoe 140 and B(1) receptors [(125)I]HPP-des-Arg(10) and Hoe140. MAP increased linearly with doses of BK (81-8100 pmol) and the amplitudes were significantly greater in SHR, particularly at 16 weeks. While BK evoked a negative linear trend on HR (bradycardia) in WKY, a positive one (tachycardia) was observed in adult SHR. In both strains, BK-induced pressor response was blocked by equimolar doses of B(2) receptor antagonist, D-Arg-[Hyp(3), Thi(5), D-Tic(7), Oic(8)]-BK (Hoe 140), but not by B(1) receptor antagonist, AcLys[D-betaNal(7), Ile(8)]des-Arg(9)-BK (R-715). B(1) receptor agonists (Sar-[D-Phe(8)]-des-Arg(9)-BK, des-Arg(9)-BK, des-Arg(10)-Kallidin) and antagonist (R-715 alone or with Hoe 140) had no or marginal effect on MAP and HR at doses up to 8100 pmol in SHR and WKY. Higher densities of specific [(125)I]HPP-Hoe 140 labelling were found in discrete brain areas of SHR, especially in regions associated with cardiovascular function. Low levels of [(125)I]HPP-[des-Arg(10)]-Hoe140 binding sites were seen in WKY and SHR, yet densities were significantly greater in midbrain and cortical regions of SHR aged of 16 weeks. Contrary to SHR, ageing caused a downregulation of B(2) and B(1) receptor binding sites in specific brain nuclei in WKY. It is concluded that the hypersensitivity of the pressor response to i.c.v. BK in SHR occurs during both the early and established phases of hypertension in parallel with the enhancement of B(2) receptor binding sites in various cardiovascular brain centres. In contrast, brain B(1) receptors do not seem to participate in the central pressor effects of kinins nor in the maintenance of hypertension in SHR.
Collapse
Affiliation(s)
- Frank Cloutier
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Brice Ongali
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Maria M Campos
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Gaétan Thibault
- Clinical Research Institute, Université de Montréal, Montréal, Québec, Canada H2W 1R7
| | - Witold Neugebauer
- Institute of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada JIH 5N4
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
- Author for correspondence:
| |
Collapse
|
4
|
Qadri F, Schwartz EC, Häuser W, Jöhren O, Müller-Esterl W, Dominiak P. Kinin B2 receptor localization and expression in the hypothalamo-pituitary-adrenal axis of spontaneously hypertensive rats. Int Immunopharmacol 2003; 3:285-92. [PMID: 12639805 DOI: 10.1016/s1567-5769(02)00269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE An enhanced hypothalamo-pituitary-adrenocortical (HPA) activity has been demonstrated during onset of high blood pressure in spontaneously hypertensive rats (SHR). Furthermore, compared to normotensive Wistar-Kyoto (WKY) rats, SHR show hypersensitivity to bradykinin (BK)-induced pressor responses which may be caused by an upregulation of B(2) receptor expression in the brain. METHODS We performed an immunohistochemical localization and measured gene expression of B(2) receptors in the hypothalamus, pituitary and adrenal glands of SHR at three ages corresponding to the development of hypertension, i.e. prehypertensive phase, onset of hypertension and established hypertension. Using reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot technique, B(2) receptor mRNA and protein levels, respectively, were measured. RESULTS A specific immunostaining for B(2) receptors was observed in the hypothalamic nuclei paraventricularis (PVN) and supraopticus (SON). In the pituitary and adrenal glands, a strong immunostaining was observed in neurohypophysis (NH) and adrenal medulla, respectively. At all ages tested, B(2) receptor mRNA and protein levels were higher in the hypothalamus and adrenal glands of SHR compared to age-matched WKY rats. Among SHR, the mRNA level was increased in neurohypophysis with age, and no difference was found in the adenohypophysis (AH) between SHR and WKY rats. CONCLUSION The data demonstrate a specific localization and an upregulation of B(2) receptor expression in the hypothalamus and adrenal glands of SHR, providing an anatomical and molecular basis for a possible contributory role to bradykinin-induced hypersensitivity of cardiovascular responses. The increased B(2) receptor expression in the hypothalamus and adrenal glands may also play a role in the abnormalities of the HPA axis in SHR during the development of hypertension.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Clinic of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Zausinger S, Lumenta DB, Pruneau D, Schmid-Elsaesser R, Plesnila N, Baethmann A. Effects of LF 16-0687 Ms, a bradykinin B(2) receptor antagonist, on brain edema formation and tissue damage in a rat model of temporary focal cerebral ischemia. Brain Res 2002; 950:268-78. [PMID: 12231253 DOI: 10.1016/s0006-8993(02)03053-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bradykinin, an endogenous nonapeptide produced by activation of the kallikrein-kinin system, promotes neuronal tissue damage as well as disturbances in blood-brain barrier function through activation of B(2) receptors. LF 16-0687 Ms, a non-peptide competitive bradykinin B(2) receptor antagonist, was recently found to decrease brain swelling in various models of traumatic brain injury. We have investigated the influence of LF 16-0687 Ms on the edema formation, neurological outcome, and infarct size in temporary focal cerebral ischemia in rats. Sprague-Dawley rats were subjected to MCA occlusion for 90 min by an intraluminal filament. Local CBF was bilaterally recorded by laser Doppler flowmetry. Study I: animals were assigned to one of three treatment arms (n=11 each): (a) vehicle, (b) LF 16-0687 Ms (12.0 mg/kg per day), or (c) LF 16-0687 Ms (36.0 mg/kg per day) given repetitively s.c. over 3 days. The neurological recovery was examined daily. The infarct volume was assessed histologically 7 days after ischemia. Study II: brain swelling and bilateral hemispheric water content were determined at 48 h post ischemia in eight rats, subjected to the low dose regimen as described above, and in eight vehicle-treated control animals. All treated animals showed tendency to exhibit improved neurological recovery throughout the observation period as compared to the vehicle-treated controls, while this improvement was only significant within the low dose group from postischemic days 3 to 4. Low dose LF 16-0687 Ms significantly attenuated the total and cortical infarct volume by 50 and 80%, respectively. Furthermore, postischemic swelling (-62%) and increase in water content of the infarcted brain hemisphere (-60.5%) was significantly inhibited. The present findings provide strong evidence for an involvement of bradykinin-mediated secondary brain damage following from focal cerebral ischemia. Accordingly, specific inhibition of bradykinin B(2) receptors by LF 16-0687 Ms attenuated postischemic brain swelling, improved the functional neurological recovery, and limited ischemic tissue damage, raising its potential for clinical evaluation in patients with acute stroke.
Collapse
Affiliation(s)
- S Zausinger
- Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Müller-Esterl W, Maeda H. Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 2002; 98:29-35. [PMID: 11857381 DOI: 10.1002/ijc.10142] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bradykinin (BK) has multiple pathophysiologic functions such as induction of vascular permeability and mitogenesis, and it triggers the release of other mediators such as nitric oxide in inflammatory and cancer tissues. To explore the pathophysiologic roles of BK in tumor, we examined the distribution of BK B2 receptors in human adenocarcinoma (lung, stomach), lymphoma (lymph node), hepatoma, squamous cell carcinoma (lung) and carcinoid (duodenum), and in mouse colon adenocarcinoma 38 (C-38) and sarcoma 180 (S-180) tumor tissues. Immunohistochemical staining of tumor tissues with an anti-BK B2 receptor antibody, or autoradiography with the B2 receptor antagonist [125I]HOE 140 (D-Arg-[Hyp Thi D-Tic Oic8]-BK) and the B2 receptor agonist [3H]BK indicated the presence of B2 receptors in all human tumor cells and murine S-180 and C-38 cells. Specific binding of [3H]HOE 140 was observed in S-180 cells with a Kd of 2.1 nM. Binding of [125I]HOE 140 to S-180 cells was competed by an excess amount (20-100 times) of nonradiolabeled HOE 140 or BK, but not by BK B1 receptor agonist des-Arg9-BK. These results provide direct evidence that the BK B2 receptor is expressed in human cancer and experimental murine tumors, which suggests a potential role for BK in inducing pathologic signal transduction in cancer growth and progression, nitric oxide production and vascular permeability enhancement in tumors. BK antagonists may thus have applications in the modulation of cancer growth and in paraneoplastic syndromes.
Collapse
Affiliation(s)
- Jun Wu
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Plesnila N, Schulz J, Stoffel M, Eriskat J, Pruneau D, Baethmann A. Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J Neurotrauma 2001; 18:1049-58. [PMID: 11686492 DOI: 10.1089/08977150152693746] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bradykinin is a mediator of brain edema acting through B2 receptors. However, it is not known if bradykinin mediates the formation of cytotoxic or vasogenic brain swelling. To investigate this question we subjected rats to a cryogenic brain lesion over the left parietal cortex, a model well known to produce predominantly vasogenic brain edema. We inhibited bradykinin B2 receptors with the recently characterized nonpeptide B2 receptor antagonist, LF 16-0687. The animals were assigned to three groups (n = 10, each) receiving 10, or 100 microg/kg/min LF 16-0687 or vehicle (0.9% NaCl). Treatment started 15 min before trauma and was continued for 24 h. Another three groups of animals (n = 10, each) received 10 microg/kg/min LF 16-0687 starting 30 or 60 min after trauma or vehicle (0.9% NaCl) for 24 h. Animals were then sacrificed and swelling and water content of the brain were determined. In the vehicle treated group the traumatized hemisphere swelled by 9.3 +/- 1.1% as compared to the untraumatized contralateral side. Pretreatment with 10 microg/kg/min LF 16-0687 decreased brain swelling significantly to 6.4 +/- 1.3% (p < 0.05). Pre-treatment with 100 microg/kg/min was found to be less effective and did not result in a significant reduction of brain swelling (7.4 + 1.3%). Treatment with LF 16-0687 for 24 h (10 microg/kg/min) started 30 or 60 min after trauma did not reduce brain water content or hemispheric swelling. These results demonstrate that brain injury-mediated bradykinin production induces vasogenic brain edema by B2 receptor stimulation. Our findings further clarify the role of bradykinin in the pathophysiology of brain edema formation and confirm the therapeutic potency of bradykinin B2 receptor inhibition.
Collapse
Affiliation(s)
- N Plesnila
- Institute for Surgical Research, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Chapter VII Brain kallikrein–kinin system: from receptors to neuronal pathways and physiological functions. HANDBOOK OF CHEMICAL NEUROANATOMY 2000. [DOI: 10.1016/s0924-8196(00)80009-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
|
10
|
Qadri F, Bäurle L, Häuser W, Rascher W, Dominiak P. Centrally bradykinin B2-receptor-induced hypertensive and positive chronotropic effects are mediated via activation of the sympathetic nervous system. J Hypertens 1999; 17:1265-71. [PMID: 10489103 DOI: 10.1097/00004872-199917090-00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The presence of bradykinin B2 receptors in the cardiovascular regulatory centres of the brain indicates that increase in mean arterial pressure (MAP) and heart rate after intracerebroventricular (i.c.v.) injections of bradykinin is mediated via stimulation of sympathetic nervous system. METHODS Adult Wistar- Kyoto (WKY) rats were instrumented chronically with an i.c.v. cannula, and the catheters were placed into the femoral artery and vein. Increasing doses of bradykinin (1 -300 pmol) were given i.c.v. and (i) MAP and heart rate, (ii) plasma dopamine, noradrenaline and adrenaline, and (iii) plasma arginine vasopressin (AVP) levels were determined. In addition, following blockade of peripheral alpha1 -adrenoceptors with prazosin (50 and 250 microg/kg i.v.) beta1-adrenoceptors with atenolol (10 mg/kg i.v.) or V1 -receptors with TMe-AVP (Manning compound) (10 microg/kg i.c.v. and 100 microg/kg i.v.) the effects of bradykinin (100 pmol i.c.v.) on MAP and heart rate were determined. RESULTS Bradykinin increased MAP and heart rate dose-dependently. The pressor effects of 100 pmol bradykinin i.c.v. were completely blocked by pretreatment with the specific B2 receptor antagonist Hoe 140 (3 pmol, i.c.v.). There was no change in plasma dopamine, noradrenaline, adrenaline or AVP levels after increasing doses of bradykinin. However, peripheral blockade of alpha1- and beta1-adrenoceptors reduced the bradykinin-induced increase in MAP and heart rate, whereas central and peripheral V1 receptor blockade did not alter the cardiovascular responses to i.c.v. bradykinin. CONCLUSION Our data suggest that the hypertensive and positive chronotropic effects induced by i.c.v. bradykinin are due to stimulation of sympathoneuronal rather than sympathoadrenal pathway in vivo.
Collapse
Affiliation(s)
- F Qadri
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University of Lübeck, Germany.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The nervous system and peripheral tissues in mammals contain a large number of biologically active peptides and proteases that function as neurotransmitters or neuromodulators in the nervous system, as hormones or cellular mediators in peripheral tissue, and play a role in human neurological diseases. The existence and possible functional relevance of bradykinin and kallidin (the peptides), kallikreins (the proteolytic enzymes), and kininases (the peptidases) in neurophysiology and neuropathological states are discussed in this review. Tissue kallikrein, the major cellular kinin-generating enzyme, has been localised in various areas of the mammalian brain. Functionally, it may assist also in the normal turnover of brain proteins and the processing of peptide-hormones, neurotransmitters, and some of the nerve growth factors that are essential for normal neuronal function and synaptic transmission. A specific class of kininases, peptidases responsible for the rapid degradation of kinins, is considered to be identical to enkephalinase A. Additionally, kinins are known to mediate inflammation, a cardinal feature of which is pain, and the clearest evidence for a primary neuronal role exists so far in the activation by kinins of peripherally located nociceptive receptors on C-fibre terminals that transmit and modulate pain perception. Kinins are also important in vascular homeostasis, the release of excitatory amino acid neurotransmitters, and the modulation of cerebral cellular immunity. The two kinin receptors, B2 and B1, that modulate the cellular actions of kinins have been demonstrated in animal neural tissue, neural cells in culture, and various areas of the human brain. Their localisation in glial tissue and neural centres, important in the regulation of cardiovascular homeostasis and nociception, suggests that the kinin system may play a functional role in the nervous system.
Collapse
Affiliation(s)
- D M Raidoo
- Department of Physiology, Faculty of Medicine, University of Natal, Durban, South Africa
| | | |
Collapse
|
12
|
Abstract
The present study has employed in vitro electrophysiology to characterise the ability of bradykinin to depolarise the rat isolated nodose ganglion preparation, containing the perikarya of vagal afferent neurons. Both bradykinin and kallidin elicited a concentration-dependent (1-100 nM) depolarisation when applied to the superfusate bathing the nodose ganglia, whereas the bradykinin B1 receptor agonist, des-Arg9-bradykinin, was only effective in the micromolar range. Furthermore, the electrophysiological response to bradykinin was antagonised by the bradykinin B2 receptor antagonist, D-arginyl-L-arginyl-L-prolyl-trans-4-hydroxy-L-prolylglycyl-3-(2-t hienyl)-L-alanyl-L-seryl-D-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl+ ++-L-(2alpha,3beta,7abeta)-octahydro-1H-indole-2-carbonyl-L- arginine (Hoe 140), in a concentration-related manner. To determine the anatomical location of functional bradykinin B2 receptors, in vitro autoradiography with [125I]para-iodophenyl Hoe 140 was performed on sections of rat and human inferior vagal (nodose) ganglia and confirmed the presence of binding over vagal perikarya. Collectively, these data provide evidence for functionally relevant bradykinin B2 receptors on vagal afferent neurons, which are apparently also present on human vagal perikarya.
Collapse
Affiliation(s)
- E Krstew
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
13
|
Lindsey CJ, Buck HS, Fior-Chadi DR, Lapa RC. Pressor effect mediated by bradykinin in the paratrigeminal nucleus of the rat. J Physiol 1997; 502 ( Pt 1):119-29. [PMID: 9234201 PMCID: PMC1159576 DOI: 10.1111/j.1469-7793.1997.119bl.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The participation of the paratrigeminal nucleus (Pa5) in the pressor response produced by bradykinin in the dorsolateral medulla of rats was investigated. The microinjection of 6 pmol of bradykinin directly over the paratrigeminal nucleus of unanaesthetized rats produced a significant increase in arterial pressure and a moderate increase in heart rate. 2. Bradykinin microinjections in different sites surrounding the Pa5 compromising the external cuneate nucleus, the trigeminal nucleus, the lateral and ventral spinal trigeminal tract and the dorsal trigeminal tract rostral and caudal to the Pa5 did not elicit significant pressor responses. In contrast, microinjections in the paratrigeminal nucleus produced pressor effects. Injections in the dorsolateral medulla directly over the paratrigeminal nucleus produced larger responses than when injections were made in the nucleus. Saline injections in the different nuclei did not produce pressor effects. 3. Neurochemical lesioning of the Pa5, with microinjections of ibotenic acid in the Pa5, abolished the pressor response to bradykinin injected over the lesioned nucleus. The effect was present, however, when bradykinin was injected on the contralateral side to the lesion, over the intact nucleus of the same animal. Pretreatment with capsaicin (injected in the lateral cerebral ventricle), which causes selective degeneration of afferent sensory fibres, did not alter the pressor effect of bradykinin injected over the paratrigeminal nucleus. 4. Dose-related responses were produced by different concentrations of bradykinin (0.6-1.8 pmol) microinjected over the nucleus. The bradykinin receptor antagonist HOE 140, injected over the paratrigeminal nucleus 30 min earlier, abolished the pressor response caused by bradykinin. 5. Low doses of bradykinin injected in or directly over the paratrigeminal nucleus increased arterial pressure and caused a small increase in heart rate by stimulating kinin receptors of the paratrigeminal nucleus in the dorsolateral medulla of awake and unrestrained rats. The pattern of the response was consistent with that of sympathetic stimulation. The paratrigeminal nucleus, which receives primary afferents and projects to the nucleus tractus solitarii and the rostral ventral lateral medulla, may be positioned as relay nucleus possibly connecting sensory input to structures that regulate blood pressure.
Collapse
Affiliation(s)
- C J Lindsey
- Department of Biophysics, Escola Paylista de Medicina, Universidade Federal de São Paulo, Brazil.
| | | | | | | |
Collapse
|
14
|
Figueroa CD, Novoa U, Valdes G, Corthorn J, Müller-Esterl W. Localization of the bradykinin B2 receptor in uterus, bladder and Madin-Darby canine kidney cells. IMMUNOPHARMACOLOGY 1997; 36:127-33. [PMID: 9228536 DOI: 10.1016/s0162-3109(97)00011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kinins are biologically active peptides that act through specific receptors, B1 and B2. Here we describe the localization of the bradykinin B2 receptor in Madin-Darby canine kidney cells and in the uterus and urinary bladder of rat or human origin. We discuss the suitability of anti-peptide antibodies to assess the tissue distribution of bradykinin B2 receptors.
Collapse
Affiliation(s)
- C D Figueroa
- Instituto de Histologia and Patologia, Universidad Austral, Valdivia, Chile
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Murone C, Paxinos G, McKinley MJ, Oldfield BJ, Muller-Esterl W, Mendelsohn FA, Chai SY. Distribution of bradykinin B2 receptors in sheep brain and spinal cord visualized by in vitro autoradiography. J Comp Neurol 1997; 381:203-18. [PMID: 9130669 DOI: 10.1002/(sici)1096-9861(19970505)381:2<203::aid-cne7>3.0.co;2-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bradykinin B2 receptors were localized in the sheep brain and spinal cord by quantitative in vitro autoradiography using a radiolabelled and specific bradykinin B2 receptor antagonist analogue, 3-4-hydroxyphenyl-propionyl-D-Arg0-[Hyp3,Thi5,D-Tic 7,Oic8]bradykinin, (HPP-HOE 140). This radioligand displays high affinity and specificity for bradykinin B2 receptors. The respective K(i) values of 0.32, 1.37 and 156 nM were obtained for bradykinin, HOE140 and D-Arg[Hyp3,D-Phe7,Leu8]bradykinin competing for radioligand binding to lamina II of sheep spinal cord sections. Using this radioligand, we have demonstrated the distribution of bradykinin B2 receptors in many brain regions which have not been previously reported. The highest density of bradykinin B2 receptors occur in the pleoglial periaqueductal gray, oculomotor and trochlear nuclei and the circumventricular organs. Moderate densities of receptors occur in the substantia nigra, particularly the reticular part, the posterior thalamic and subthalamic nuclei, zona incerta, the red and pontine nuclei, some of the pretectal nuclei and in discrete layers of the superior colliculus. In the hindbrain, moderate levels of bradykinin B2 receptor binding occur in the nucleus of the solitary tract, and in spinal trigeminal, inferior olivary, cuneate and vestibular nuclei. Laminae II, X and dorsal root ganglia display the most striking binding densities in the spinal cord, while the remainder of the dorsal and ventral horn display a low and diffuse density of binding. Bradykinin B2 receptors are extensively distributed throughout the sheep brain and spinal cord, not only to sensory areas but also to areas involved in motor activity.
Collapse
Affiliation(s)
- C Murone
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Lopes P, Couture R. Localization of bradykinin-like immunoreactivity in the rat spinal cord: effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy. Neuroscience 1997; 78:481-97. [PMID: 9145804 DOI: 10.1016/s0306-4522(96)00554-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A putative role for bradykinin has been proposed in the processing of sensory information at the level of the spinal cord. Autoradiographic studies have demonstrated the presence of B2 kinin receptor binding sites in superficial laminae of the dorsal horn and a down-regulation of those receptors in rat models of pain injury. In this study, classical immunocytochemistry and confocal microscopy immunofluorescence were used first to localize bradykinin-like immunoreactivity in all major spinal cord segments of naive rats; second, to assess bradykinin-like immunoreactivity changes that occur in animals subjected to various chemical treatments and surgical lesions. High densities of bradykinin-like immunoreactivity were observed in motoneuron of the ventral horn, deeper laminae and nucleus dorsalis of the dorsal horn. Higher magnification of ventral horn showed strong immunostaining of motoneuron perikaryas and their proximal processes. Two types of bradykinin-like immunoreactivity immunostained cellular bodies were observed in deeper laminae of the dorsal horn. These interneurons, morphologically corresponding to islets and antenna-type cells project dendrites to adjacent laminae. Furthermore, numerous strongly marked dendrites, transversally cut, suggest the presence of projection neurons to higher cervical centres. Following unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesion of the sciatic nerve, important increases of bradykinin-like immunoreactivity were found in laminae III and IV of the ipsilateral dorsal horn. In contrast, significant decreases of immunodeposits were observed in both cell bodies and numerous dendrites of motoneuron surrounding neuropil. Specific destructions of sensory afferent fibres with capsaicin or selective activation of kallikreins with melittin caused increases of bradykinin-like immunoreactivity in both the dorsal and ventral horns of the spinal cord. These results which demonstrate the cellular localization of bradykinin-like immunoreactivity in both dorsal and ventral horns of the rat spinal cord, further reveal the plasticity of this non-sensory peptidergic system following various chemical and surgical treatments. Hence, these anatomical findings along with earlier functional and receptor autoradiographic studies reinforce the putative role of bradykinin in sensory function.
Collapse
Affiliation(s)
- P Lopes
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
18
|
Cunha V, Gutierrez J, Corrêa FM. Biologic activities of iodinated analogues of Tyr0-bradykinin and bradykinin-Ile10-Tyr11 assessed in the rat uterus and the guinea pig ileum. GENERAL PHARMACOLOGY 1996; 27:787-94. [PMID: 8842680 DOI: 10.1016/0306-3623(95)02104-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. The biological activity of bradykinin (BK) and analogues containing ofr in extended N- or C-terminal portions of the molecule, as well as that of their iodinated products, was compared in isolated rat uterus and guinea pig ileum preparations. 2. BK-Tyr10 and BK-Ile10-Tyr11 were obtained by solid phase synthesis employing fmoc chemistry. 3. Iodination of BK-Ile10-Tyr11 and Tyr0-BK was performed using iodobeads, and the products were purified by reverse-phase HPLC. 4. The relative potency (RP) of noniodinated analogues in the uterus was: Tyr0-BK (1.3) = BK (1.0) > BK-Ile10-Tyr11 (0.45) > > BK-Tyr10 (0.02) and BK (1.0) > BK-Ile10-Tyr11 (0.25) = Tyr0-BK (0.22) > > > BK-Tyr10 (0.002). The RP of mono-iodo (MI) and di-iodo (DI) products was: BK (1.0) > DI-BK-Ile10-Tyr11 (0.63) = DI-Tyr0-BK (0.63) > MI-Tyr0-BK (0.46) = MI-BK-Ile10-Tyr11 (0.40). 5. The RP of noniodinated analogues in the guinea pig ileum was: BK (1.0) > MI-Tyr0-BK (0.39) > MI-BK-Ile10-Tyr11 (0.17) = DI-Tyr0-BK (0.16) = DI-BK-Ile10-Tyr11 (0.13). 6. Differences in RP of 8-10 fold for Tyr0-BK or BK-Tyr10 and 2-fold for BK-Ile10-Tyr11 were observed between the two preparations used, indicating possible receptor differences. 7. Iodination caused a reduction in the RP of the analogues in both preparations. 8. In the rat uterus, the changes in the RP of the Tyr0-BK analogues were more evident than those observed with the iodinated analogues of BK-Ile10-Tyr11, indicating that iodination causes different changes in RP, according to the localization of the Tyr in the molecule. 9. The data support the idea that iodinated analogues of BK-Ile10-Tyr11, with intact N-terminal portion, may be as useful as iodinated analogues of Tyr0-BK for the study of BK receptors.
Collapse
Affiliation(s)
- V Cunha
- Department of Pharmacology, School of Medicine of Ribeiráo Preto, University of Sáo Paulo, Brazil.
| | | | | |
Collapse
|
19
|
Murone C, Perich RB, Schlawe I, Chai SY, Casley D, MacGregor DP, Müller-Esterl W, Mendelsohn FA. Characterization and localization of bradykinin B2 receptors in the guinea-pig using a radioiodinated HOE140 analogue. Eur J Pharmacol 1996; 306:237-47. [PMID: 8813637 DOI: 10.1016/0014-2999(96)00190-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The potent bradykinin B2 receptor antagonist analogue, [125I]HPP-HOE140, ([125I]-3-4-hydroxyphenyl-propionyl-D-Arg0-[Hyp3, Thi5,D-Tic7, Oic8]bradykinin), was used to localize and characterize guinea-pig tissue bradykinin B2 receptors. Analysis of competition for the radioligand binding, using membrane preparations of lung, ileum and uterus, revealed the presence of a high- and low-affinity binding site: at the high-affinity site, the apparent Ki for the various bradykinin B2 receptor ligands ranged from 0.26 to 2.13 nM for HPP-HOE140, from 0.25 to 1.45 nM for HOE140, from 129 to 625 nM for D-Arg0[pHyp3,Phe7]bradykinin and from 0.05 to 1.11 nM for bradykinin. At the low-affinity site, the apparent Ki values ranged from 4.90 to 10.5 nM, from 1.23 to 1.90 nM, 4760 nM and from 2.01 to 62.1 nM, respectively. By contrast, the bradykinin Bi receptor antagonist, des-Arg9[Leu8]bradykinin did not compete for [125I]HPP-HOE140 binding from membrane preparations at concentrations up to 1 microM. Using in vitro autoradiography on tissue sections, intense binding was observed in the lamina propria of the villi of ileum and the arteriolar smooth muscle cells in lung. In the uterus, dense binding was found in the inner third of the myometrium and over epithelial cells of the glandular endometrium, while diffuse binding was observed throughout the endometrial stroma. In the brain, intense binding was observed in the nucleus of the solitary tract, spinal trigeminal tract and area postrema of the hindbrain, the middle cerebral arteries, and the choroid plexus of the third and lateral ventricles. Moderate binding was observed in the CA3 region of the hippocampus and posterior and ventroposterior thalamic nuclei. In the spinal cord, high-density binding occurred in the laminae I and II of the dorsal horn. Unlike previous autoradiographic localization studies of the bradykinin B2 receptor using radiolabeled bradykinin, the radiolabeled antagonist HPP-HOE140 did not bind to bradykinin-degrading peptidases, such as angiotensin-converting enzyme, and displayed subtype specificity. Therefore, binding studies with [125I]HPP-HOE140 offers high sensitivity and specificity for characterization, quantitation and localization of subtypes of bradykinin B2 receptors in tissues, and offers new information on uterine and brain bradykinin B2 receptors.
Collapse
Affiliation(s)
- C Murone
- University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Caligiorne SM, Santos RA, Campagnole-Santos MJ. Cardiovascular effects produced by bradykinin microinjection into the nucleus tractus solitarii of anesthetized rats. Brain Res 1996; 720:183-90. [PMID: 8782911 DOI: 10.1016/0006-8993(95)01498-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we characterized the cardiovascular effects produced by microinjection of doses in the femtomole range of bradykinin (BK) into the nucleus tractus solitarii of male Wistar rats (230-280 g, n = 120) anesthetized with urethane (1.2 g/kg, i.p.). Microinjections of BK (1, 10, 100 fmol, and 1 and 10 pmol, in 50 nl) or vehicle (NaCl, 0.9%) were made by using a triple-barreled glass micropipette into the medial nTS (0.4 mm anterior, 0.3 mm lateral to the obex and 0.3 mm deep from the dorsal surface). Microinjection of BK produced a shallow dose-dependent decrease in mean arterial pressure and heart rate reaching -18 +/- 6 mmHg and -21 +/- 5 beats/min, with the dose of 10 pmol. The peripheral mechanism of these effects, tested in animals treated with methylatropine (2 mg/kg, i.v.), or propranolol (2 mg/kg, i.v.) or prazosin (30 micrograms/kg, i.v.), was shown to be mainly dependent on an increase in vagal efferent activity for bradycardia and a decrease in sympathetic activity for hypotension. In order to investigate the receptor subtype involved in these effects, BK was microinjected into the nTS before and after the injection of the B1 receptor antagonist, Des-Arg9-Leu8-BK (DALBK) (11.5 pmol) or before and after the B2 receptor antagonist, HOE-140 (7.7 pmol). The cardiovascular effects of BK were significantly attenuated by the microinjection of HOE-140 and DALBK into the nTS. The effect of BK microinjected into the nTS on the baroreflex modulation was also investigated. While BK produced a significant facilitation of the baroreflex, HOE-140 and DALBK produced a significant attenuation of the baroreceptor control of heart rate. Taken together, the data presented in this study indicate the nTS as a site, in the central nervous system, for the modulatory effect of BK on the central cardiovascular control.
Collapse
Affiliation(s)
- S M Caligiorne
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
21
|
Walker K, Dray A, Perkins M. Hyperalgesia in rats following intracerebroventricular administration of endotoxin: effect of bradykinin B1 and B2 receptor antagonist treatment. Pain 1996; 65:211-9. [PMID: 8826509 DOI: 10.1016/0304-3959(95)00195-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study investigated the development of thermal and mechanical hyperalgesia following intracerebroventricular (i.c.v.) injections of E. coli lipopolysaccharide (LPS). Hind paw withdrawal to von Frey filament stimulation and thermal withdrawal latencies were measured before and up to 24 or 48 h following an i.c.v. injection of LPS (dose range: 0.02--200 micrograms). Thermal and mechanical hyperalgesia were evident by 6 h after LPS injection. LPS-induced hyperalgesia was reversed by the B2 receptor antagonist, HOE 140 (10--30 pmol), when administered i.c.v. but not systemically (0.01--1 mmol/kg, i.v.). Central co-administration of the B1 receptor antagonists, des-Arg9-Leu8 Bk (0.1--1 nmol) or des-Arg10 HOE 140 (0.1--1 nmol) had no effect on thermal or mechanical hyperalgesia. LPS-induced hyperalgesia was also inhibited by indomethacin administered either i.c.v. (10 nmol) or i.v. (1 mumol/kg). These results indicate that administration of endotoxin to the CNS induces the development of hyperalgesia and that this response involves the activity of kinins, via the stimulation of centrally located B2 receptors, and the formation of prostanoids.
Collapse
Affiliation(s)
- K Walker
- Sandoz Institute for Medical Research, London, UK
| | | | | |
Collapse
|
22
|
Walker K, Dray A, Perkins M. Development of hyperthermia following intracerebroventricular administration of endotoxin in the rat: effect of kinin B1 and B2 receptor antagonists. Br J Pharmacol 1996; 117:684-8. [PMID: 8646414 PMCID: PMC1909344 DOI: 10.1111/j.1476-5381.1996.tb15244.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. E. coli lipopolysaccharide (LPS) produced a dose-dependent (dose range: 0.02-150 micrograms) increase in rat core temperature that was maximal 6 h after intracerebroventricular (i.c.v.) administration. LPS (200 ng) increased core temperature by 1.0 +/- 0.2 degrees C, 6 h following administration, as compared to vehicle-treated controls (-0.2 +/- 0.2 degrees C). 2. LPS-induced (200 ng) hyperthermia was prevented by co-administration of the bradykinin (BK) B2 receptor antagonist, Hoe 140 (10 and 30 pmol, i.c.v.) or by indomethacin (10 nmol, i.c.v.). 3. Systemic administration of Hoe 140 at doses up to 1 mumol kg-1, s.c., did not attenuate LPS-induced (200 ng, i.c.v.) hyperthermia. However, LPS hyperthermia was significantly reduced by systemic administration of indomethacin (1 mumol kg-1, i.v.). 4. Co-administration of the selective B1 receptor antagonists, [des-Arg9, Leu8]BK (0.1 - 1 nmol, i.c.v.) or [des-Arg10] Hoe 140 (0.1 - 1 nmol, i.c.v.), did not prevent LPS-induced hyperthermia. 5. It is concluded that the development of hyperthermia following central administration of endotoxin requires activation of central, but not peripheral bradykinin B2 receptors. The formation of kinins within the CNS may be an important initial component of CNS inflammation following infection.
Collapse
Affiliation(s)
- K Walker
- Sandoz Institute for Medical Research, London
| | | | | |
Collapse
|
23
|
Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 1996; 48:21-53. [PMID: 8830347 DOI: 10.1016/0301-0082(95)00034-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central control of cardiovascular function has been keenly studied for a number of decades. Of particular interest are the homeostatic control mechanisms, such as the baroreceptor heart-rate reflex, the chemoreceptor reflex, the Bezold-Jarisch reflex and the Breuer-Hering reflex. These neurally-mediated reflexes share a common termination point for their respective centrally-projecting sensory afferents, namely the nucleus tractus solitarius (NTS). Thus, the NTS clearly plays a critical role in the integration of peripherally initiated sensory information regarding the status of blood pressure, heart rate and respiratory function. Many endogenous neurochemicals, from simple amino acids through biogenic amines to complex peptides have the ability to modulate blood pressure and heart rate at the level of the NTS. This review will attempt to collate the current knowledge regarding the roles of neuromodulators in the NTS, the receptor types involved in mediating observed responses and the degree of importance of such neurochemicals in the tonic regulation of the cardiovascular system. The neural pathway that controls the baroreceptor heart-rate reflex will be the main focus of attention, including discussion of the identity of the neurotransmitter(s) thought to act at baroafferent terminals within the NTS. In addition, this review will provide a timely update on the use of recently developed molecular biological techniques that have been employed in the study of the NTS, complementing more classical research.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
24
|
Lopes P, Kar S, Chrétien L, Regoli D, Quirion R, Couture R. Quantitative autoradiographic localization of [125I-Tyr8]bradykinin receptor binding sites in the rat spinal cord: effects of neonatal capsaicin, noradrenergic deafferentation, dorsal rhizotomy and peripheral axotomy. Neuroscience 1995; 68:867-81. [PMID: 8577380 DOI: 10.1016/0306-4522(95)00161-b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro receptor autoradiography was used to localize, quantify and characterize [125I-Tyr8]bradykinin binding sites in all major spinal cord segments of normal rats and animals subjected to various chemical treatments and surgical lesions. [125I-Tyr8]bradykinin specific binding sites were predominantly located to superficial laminae of the rat dorsal horn, with the substantia gelatinosa showing the highest density of labelling (values ranging from 3.1 fmol/mg tissue in cervical to 4.5 fmol/mg tissue in lumbar segments). A moderate density (1.8-3.0 fmol/mg tissue) of specific binding was observed in lamina III, whereas in other areas, i.e. laminae I and IV-X, lower amounts of labelling were detected. Within the superficial laminae of the dorsal horn, [125I-Tyr8]bradykinin binding was largely distributed over the neurophil with some perikarya showing concentrations of labelling. In contrast, the ventral horn showed a rather homogeneous distribution of [125I-Tyr8]bradykinin binding over the neuropil, with silver grain alignments surrounding motoneuron perikaryas and proximal processes. Bradykinin, [Tyr8]bradykinin and B2 receptor antagonists (D-Arg[Hyp3,Thi5,D-Tic7,Oic8]bradykinin (Hoe 140), D-Arg[Tyr3,D-Phe7,Leu8]bradykinin, D-Arg[Hyp3, Leu8]bradykinin, D-Arg[Hyp2, Thi5,8,-Phe7]bradykinin D-Arg[Hyp3, D-Phe7, Leu8]bradykinin, Tyr0, D-Arg[Hyp3, D-Phe7, Leu8]bradykinin inhibited [125I-Tyr8]-bradykinin binding with very high subnanomolar affinities, while the B1 receptor agonist (Tyr0,des-Arg10-kallidin) and antagonist ([Leu8]-des-Arg9-bradykinin) did not significantly affect [125I-Tyr8]bradykinin binding at up to micromolar concentrations. Two weeks after unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesions of the sciatic nerve, significant decreases ( +/- 50%) in [125I-Tyr8]bradykinin binding sites were found in ipsilateral laminae I-III of lumbar spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Lopes
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Khan IM, Miller DH, Strickland J, Margolius HS, Privitera PJ. Brain kallikrein-kinin system abnormalities in spontaneously hypertensive rats. Hypertension 1995; 25:524-30. [PMID: 7721393 DOI: 10.1161/01.hyp.25.4.524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objective of the present study was to determine whether the brain kallikrein-kinin system differs between spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) and if so, whether any detected differences occur before the development of hypertension in SHR. We measured cerebrospinal fluid levels of various components of the system in adult and young prehypertensive SHR and WKY. Cerebrospinal fluid kinin concentration and appearance rate were higher in SHR. Cerebrospinal fluid active kallikrein level and kininogenase activity were also higher in adult SHR. In addition, cerebrospinal fluid kinin concentration and appearance rate were higher in prehypertensive, 5- to 6-week-old SHR compared with age-matched WKY. However, no differences in cerebrospinal fluid kallikrein or kininogenase activity were observed between the two strains of young rats. Cerebrospinal fluid kinin concentration was higher in young versus adult rats of the same strain. In WKY, cerebrospinal fluid kallikrein also decreased with age although cerebrospinal fluid kallikrein concentration did not decrease in young and adult SHR. Together, these data suggest that there is a hyperactive kallikrein-kinin system in the brain of SHR that may contribute to the hypertensive state in this animal model.
Collapse
Affiliation(s)
- I M Khan
- Department of Pharmacology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
26
|
Lecci A, Giuliani S, Meini S, Maggi CA. Pharmacological analysis of the local and reflex responses to bradykinin on rat urinary bladder motility in vivo. Br J Pharmacol 1995; 114:708-14. [PMID: 7537595 PMCID: PMC1510018 DOI: 10.1111/j.1476-5381.1995.tb17196.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. The topical application of bradykinin (BK) (0.05-5000 pmol/rat) onto the serosal surface of the urinary bladder in urethane-anaesthetized rats, evoked low amplitude tonic contractions (not exceeding 25 mmHg) or high amplitude (about 50 mmHg), phasic reflex contractions (chemoceptive micturition reflex) which were abolished by bilateral ablation of the pelvic ganglia. In ganglionectomized rats, BK induced only a local, tonic-type contraction. 2. Systemic capsaicin pretreatment (164 mumol kg-1, 4 days before) reduced the incidence of chemoceptive reflex induced by BK (500 pmol/rat) but had no effect on the magnitude of the tonic-type contraction elicited by BK in ganglionectomized rats. Indomethacin (11 mumol kg-1, 20 min before) reduced the incidence but not the amplitude of the reflex contractions induced by topical application of BK (500 pmol/rat). In ganglionectomized rats, indomethacin (11 mumol kg-1, 20 min before) decreased the amplitude of the tonic contraction evoked by BK. Indomethacin did not affect the chemoceptive reflex induced by topical application of capsaicin (15 nmol/rat) onto the bladder. 3. Intrathecal administration of the tachykinin NK1 receptor antagonists, RP 67,580 (10 nmol/rat) or SR 140,333 (10 nmol/rat), abolished the chemoceptive reflex induced by BK without modifying the magnitude of the tonic contraction. SR 140,333 (10 nmol/rat) also abolished the occurrence of the chemoceptive reflex induced by capsaicin. 4. Intravenous administration of the B2 receptor antagonist, Hoe 140 (35 nmol kg-1, 10 min before) abolished the reflex and local effects induced by BK on bladder motility but failed to modify the chemoceptive reflex induced by topical application of capsaicin (15 nmol/rat). 5. Intrathecal administration of Hoe 140 (10 nmol/rat) reduced the incidence of the chemoceptive reflex induced by BK but had no effect on the amplitude of the local motor response. Likewise, Hoe 140(10 nmol/rat, i.t.) reduced the incidence of reflex bladder contractions induced by topical application of capsaicin (15 nmol/rat) without affecting the magnitude of the tonic-type contraction.6. These findings indicate that BK stimulates motility through B2 receptors in the rat urinary bladder.BK activates the reflex response by stimulating capsaicin-sensitive afferent nerves with a contribution from prostanoids. At the spinal cord level, tachykinin NK1 and BK B2 receptors could also be involved in the chemoceptive reflex induced by BK or capsaicin.
Collapse
Affiliation(s)
- A Lecci
- Pharmacology Research Dept., A. Menarini Pharmaceuticals, Florence, Italy
| | | | | | | |
Collapse
|
27
|
Fior DR, Fuxe K. Bradykinin modulation of alpha 2-adrenoceptors in the nucleus tractus solitarii of the rat. An in vitro autoradiographical study. Neuropharmacology 1995; 34:81-8. [PMID: 7623966 DOI: 10.1016/0028-3908(94)00131-b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The existence of an interaction between bradykinin (Bk) receptors and the alpha 2-adrenoceptors were evaluated by means of quantitative receptor autoradiography in the nucleus tractus solitarii (NTS) of the rat. In competition experiments using L-noradrenaline (0.1 nM to 10 microM) against [3H]p-aminoclonidine ([3H]PAC) (10 nM) it was observed that Bk produced an increase in the IC50 value of L-noradrenaline in a concentration response manner, which reached a maximum of about 100% with 10 nM of the peptide associated with a small decrease in the B0 value (15%). In saturation experiments Bk promoted a significant increase in the KD value of [3H]PAC (60%) and a decrease in the Bmax value (36%). The specific Bk B2 receptor antagonist HOE-140 fully counteracted the effect of Bk on the alpha 2-adrenoceptors as analyzed by the competition experiments. Furthermore, des-Arg9-Bk, a Bk analog which exhibits selective agonist activity to the Bk B1 receptor subtype did not produce any effect on the alpha 2-adrenoceptors, suggesting that the Bk B2 receptor subtype may be mediating the Bk action on the alpha 2-adrenoceptors in the NTS. The effect of Bk (10 nM) was analyzed together with GTP (0.1 nM) in competition experiments and no change in the ability of L-noradrenaline to compete for [3H]PAC binding sites was observed in the presence of GTP, suggesting that the receptor interaction between the Bk B2 receptors and the alpha 2-adrenoceptors may be a G-protein dependent mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D R Fior
- Karolinska Institute, Department of Neuroscience, Stockholm, Sweden
| | | |
Collapse
|
28
|
Abstract
Kinins, including bradykinin and kallidin, are peptides that are produced and act at the site of tissue injury or inflammation. They induce a variety of effects via the activation of specific B1 or B2 receptors that are coupled to a number of biochemical transduction mechanisms. In the periphery the actions of kinins include vasodilatation, increased vascular permeability and the stimulation of immune cells and peptide-containing sensory neurones to induce pain and a number of neuropeptide-induced reflexes. Mechanisms for kinin synthesis are also present in the CNS where kinins are likely to initiate a similar cascade of events, including an increase in blood flow and plasma leakage. Kinins are potent stimulators of neural and neuroglial tissues to induce the synthesis and release of other pro-inflammatory mediators such as prostanoids and cytotoxins (cytokines, free radicals, nitric oxide). These events lead to neural tissue damage as well as long lasting disturbances in blood-brain barrier function. Animal models for CNS trauma and ischaemia show that increases in kinin activity can be reversed either by kinin receptor antagonists or by the inhibition of kinin production. A number of other central actions have been attributed to kinins including an effect on pain signalling, both within the brain (which may be related to vascular headache) and within the spinal dorsal horn where primary afferent nociceptors can be stimulated. Kinins also appear to play a role in cardiovascular regulation especially during chronic spontaneous hypertension. Presently, however, direct evidence is lacking for the release of kinins in pathophysiological conditions of the CNS and it is not known whether spinal or central neurones, other than afferent nerve terminals, are sensitive to kinins. A more detailed examination of the effects of kinins and their central pharmacology is necessary. It is also important to determine whether the inhibition of kinin activity will alleviate CNS inflammation and whether kinin receptor antagonists are useful in pathological conditions of the CNS.
Collapse
Affiliation(s)
- K Walker
- Sandoz Institute for Medical Research, London, U.K
| | | | | |
Collapse
|
29
|
Abstract
Bradykinin is a nonapeptide that plays a central role in the production of pain and inflammation. A horizontal spinal cord slice preparation with attached dorsal root and dorsal root ganglion was used to study the effect of bradykinin on afferent fibers. Intracellular recordings were made from dorsal root ganglion and dorsal horn neurons. Bath application of bradykinin (1 microM) to the dorsal root ganglion compartment produced a depolarization (5 +/+ 0.8 mV) and firing of action potentials in eight out of eighteen dorsal root ganglion neurons tested. Simultaneous intracellular recordings from dorsal horn neurons revealed that the application of bradykinin to dorsal root ganglion, peripheral nerve trunk or dorsal root resulted in the synaptic activation of dorsal horn neurons. The depolarizing effect of bradykinin on the dorsal root ganglion neurons and its synaptic excitatory effect on dorsal horn neurons was abolished by pretreatment of the same segment of sensory neurons by a B2 bradykinin receptor antagonist (D-Arg0,Hyp3,beta-Thi5,8,D-Phe7)-bradykinin (5 microM). Bath application of tetrodotoxin (TTX; 0.2-1 microM) to the sensory neurons blocked electrically-evoked action potentials in large dorsal root ganglion neurons and, consequently, excitatory postsynaptic potentials in dorsal horn neurons evoked by electrical activation of low threshold afferent fibers. However, the stimulatory effects, both depolarization and firing of action potentials, of bradykinin were resistant to TTX. Replacement of sodium ions with TRIS completely abolished the stimulatory effect of bradykinin on the sensory neurons. Bradykinin potentiated the postsynaptic potentials induced by electrical stimulation of TTX-resistant afferent fibers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Jeftinija
- Department of Veterinary Anatomy, Iowa State University, Ames 50011
| |
Collapse
|
30
|
Privitera PJ, Thibodeaux H, Yates P. Rostral ventrolateral medulla as a site for the central hypertensive action of kinins. Hypertension 1994; 23:52-8. [PMID: 7904256 DOI: 10.1161/01.hyp.23.1.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study, we focused on the rostral ventrolateral medulla as a possible site of action for kinins because of its established importance in the central regulation of the cardiovascular system. Unilateral microinjections of 100 pmol to 4 nmol bradykinin into the rostral ventrolateral medulla produced dose-dependent increases in mean arterial pressure in Sprague-Dawley (SD) rats, Wistar-Kyoto (WKY) rats, and spontaneously hypertensive rats (SHR). The dose-response curves for the hypertensive responses to bradykinin in SD and WKY rats were essentially the same, whereas the hypertensive effect of bradykinin was significantly greater in SHR than in either SD or WKY rats. The kinin B2 receptor antagonists D-Arg0,Hyp3,Thi5,8,D-Phe7-bradykinin and Hoe 140 inhibited the hypertensive responses to bradykinin in both SHR and WKY rats. The hypertensive effect of 500 pmol bradykinin was reduced 65 +/- 5% after 4 nmol of D-Arg0, Hyp3,Thi5,8,D-Phe7-bradykinin in SHR and 50 +/- 16% in WKY rats, whereas 1 nmol Hoe 140 abolished the hypertensive effect of 500 pmol bradykinin injected into the rostral ventrolateral medulla. Microinjection of D-Arg0,Hyp3,Thi5,8,D-Phe7-bradykinin produced prolonged dose-dependent decreases in mean arterial pressure and heart rate. Blood pressure decreased 70 +/- 8 mm Hg and heart rate decreased 49 +/- 9 beats per minute in SHR, whereas in WKY rats mean arterial pressure decreased 12 +/- 4 mm Hg, with no change in heart rate. In a similar fashion, Hoe 140 caused a 51 +/- 7 and 17 +/- 3 mm Hg reduction in blood pressure in SHR and WKY rats, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P J Privitera
- Department of Pharmacology, Medical University of South Carolina, Charleston 29425-2251
| | | | | |
Collapse
|
31
|
Binmöller FJ, Reiser G. Ca(2+)-dependent K+ channel activity in rat glioma cells induced by bradykinin stimulation and by inositol 1,4,5-trisphosphate injection. Cell Mol Neurobiol 1993; 13:615-24. [PMID: 8194079 DOI: 10.1007/bf00711561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. A glial cell line derived from C6 rat glioma cells has been shown previously to respond to extracellular pulses of bradykinin or intracellular injection of inositol 1,4,5-trisphosphate (Ins-P3) with a slow hyperpolarizing response due to activation of a K+ current (G. Reiser et al., Brain Res. 506, 205-214; 1990). 2. We determined the ensuing single-channel activity, which is most likely caused by Ca2+ released from internal stores after bradykinin stimulation. Bradykinin-activated channels were selectively permeable to K+, but not to Na+ or to Cl-, and exhibited conductances of mainly 40 and 50 pS. In glioma cells the same type of channel was activated by intracellular injection of Ins-P3 and by extracellular bradykinin pulses.
Collapse
Affiliation(s)
- F J Binmöller
- Physiologisch-chemisches Institut, Universität Tübingen, Germany
| | | |
Collapse
|
32
|
Fior DR, Hedlund PB, Fuxe K. Autoradiographic evidence for a bradykinin/angiotensin II receptor-receptor interaction in the rat brain. Neurosci Lett 1993; 163:58-62. [PMID: 8295734 DOI: 10.1016/0304-3940(93)90228-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using angiotensin II (ANG II) to compete with (3-[125I]iodotyrosyl-4, Sar1, Ile8)ANG-II ([125I]Sar1, Ile8)ANG II) for its binding sites in the nucleus of the solitary tract (nTS) and the paraventricular hypothalamic nucleus (PV) bradykinin (10 nM) reduced the IC50 value (48 nM) of ANG II, an action blocked by the bradykinin B2 antagonist HOE-140 (100 nM). In contrast, when analysing the high-affinity site (Kd 3.1 nM) for [125I]ANG II in the nTS bradykinin (10 nM) increased the Kd value. Thus, a central bradykinin/ANG II receptor interaction may exist involving a differential regulation of the high- and low-affinity ANG II receptors in the nTS. This regulation by bradykinin of angiotensin receptors in the nTS may help to explain the central vasopressor effect of bradykinin.
Collapse
Affiliation(s)
- D R Fior
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Lopes P, Kar S, Tousignant C, Regoli D, Quirion R, Couture R. Autoradiographic localization of [125I-Tyr8]-bradykinin receptor binding sites in the guinea pig spinal cord. Synapse 1993; 15:48-57. [PMID: 8310425 DOI: 10.1002/syn.890150106] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study aimed to localize and characterize [125I-Tyr8]-BK binding sites in all major segments of the guinea pig spinal cord using in vitro quantitative receptor autoradiography. [125I-Tyr8]-BK specific binding sites were localized predominantly in superficial layers of the dorsal horn, with lamina II depicting the highest labelling. The density of specific binding in laminae I and III was moderate, whereas in other areas, i.e., laminae IV-X, lower amounts of labelling were noticed. The B2 receptor antagonists D-Arg[Hyp3,Thi5,D-Tic7,Oic8]-BK (Hoe 140), D-Arg[Hyp3,D-Phe7,Leu8]-BK, Tyr0,D-Arg[Hyp3,D-Phe7,Leu8]-BK, D-Arg[Tyr3,D-Phe7,Leu8]-BK, D-Arg[Hyp2,Thi5,8,D-Phe7]-BK, D-Arg[Hyp3,Leu8]-BK and D-Arg[Hyp3,Gly6,Leu8]-BK as well as unlabelled [Tyr8]-BK inhibited [125I-Tyr8]-BK binding with respective Ki values of 0.04, 12.4, 23.4, 34.5, 43.5, 33.5, 23.0, and 0.6 nM while B1 related molecules (Tyr0,des-Arg10-kallidin and [Leu8]-des-Arg9-BK) did not significantly inhibit [125I-Tyr8]-BK binding up to micromolar concentrations. These results indicate that the specific [125I-Tyr8]-BK binding sites present in the guinea pig spinal cord belong to the B2 receptor subtype. The high density of B2 binding sites in the substantia gelatinosa provides an anatomical evidence in favour of a role for BK as a modulator of nociceptive information.
Collapse
Affiliation(s)
- P Lopes
- Department of Physiology, Faculty of Medicine, University of Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Andreeva L, Rang HP. Effect of bradykinin and prostaglandins on the release of calcitonin gene-related peptide-like immunoreactivity from the rat spinal cord in vitro. Br J Pharmacol 1993; 108:185-90. [PMID: 7679028 PMCID: PMC1907723 DOI: 10.1111/j.1476-5381.1993.tb13460.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) from the dorsal horn of the rat spinal cord in vitro in response to dorsal root stimulation was measured by radioimmunoassay. 2. Stimulation of the dorsal roots (3 or 4 roots on each side) at 10 Hz for 5 min evoked a mean release (R1) of 134.3 +/- 17.5 (n = 10) fmol CGRP-LI; the release (R2) evoked by a second stimulation period 30 min later under control conditions was 77 +/- 10% (n = 10) of R1. Test compounds were applied to the preparation following release R1, and their effect calculated from the value of R2/R1. 3. Bradykinin (0.01-10 microM) had no significant effect on the basal release of CGRP-LI, but at 0.1-10 microM it increased 2-3 fold the release evoked by dorsal root stimulation. 4. This effect of bradykinin was prevented by indomethacin (10 microM), or by the B2-receptor antagonist, Hoe140 (1-10 microM). In the presence of Hoe140, bradykinin significantly reduced R2/R1; the explanation for this is not clear. 5. The B1-receptor agonist, Des-Arg9-bradykinin (10 microM), did not affect CGRP-LI release nor was the effect of bradykinin blocked by the B1-receptor antagonist, Des-Arg9-Leu8-bradykinin (10 microM). 6. Various prostaglandins were found to mimic the effect of bradykinin on CGRP-LI release. Their approximate order of potency was prostaglandin D2 (PGD2) = PGE1 > PGF2 alpha = PGE2; PGI2 was ineffective at 10 microM.7. Forskolin (30 muM) and 3-isobutyl l-methylxanthine (IBMX; 10 fM) also increased the evoked release of CGRP-LI.8. It is concluded that bradykinin acts on B2-receptors in the spinal cord, causing the formation ofprostanoids, which in turn cause an enhancement of neuropeptide release from primary afferent nerve terminals in the dorsal horn. This effect may be secondary to activation of adenylate cyclase. Because B2-receptors are mainly associated with primary afferent nerve terminals, it is likely that prostanoid production is also a function of these structures. Whether this action of bradykinin has any physiological function in nociceptive transmission remains unclear..
Collapse
Affiliation(s)
- L Andreeva
- Sandoz Institute for Medical Research, London
| | | |
Collapse
|