1
|
Villamizar-Torres D, Cepeda Trillos AC, Vargas-Moreno A. Mesial temporal sclerosis and epilepsy: a narrative review. ACTA EPILEPTOLOGICA 2024; 6:28. [PMID: 40217409 PMCID: PMC11960268 DOI: 10.1186/s42494-024-00172-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 04/15/2025] Open
Abstract
Mesial temporal sclerosis (MTS) stands out as a prevalent etiology of medically intractable temporal lobe epilepsy. Understanding the pathological alterations, clinical manifestations and risk factors of MTS is crucial for the recognition and suspicion of this condition. In this paper, we provide a comprehensive narrative review on the pathophysiology, clinical manifestations, and treatment options for MTS. By doing so, we aim to provide an up-to-date understanding of this condition.
Collapse
Affiliation(s)
- Daniel Villamizar-Torres
- Member of the neurosurgery research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
- Radiology deparment, Hospital Universitario San Ignacio, Bogotá, 110231, Colombia
| | - Andrea Carolina Cepeda Trillos
- Member of the neurosurgery research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia.
- Member of the epilepsy research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia.
| | - Alejandro Vargas-Moreno
- Member of the neurosurgery research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
- Neurosurgery department, Hospital Universitario San Ignacio, Bogotá, 110231, Colombia
| |
Collapse
|
2
|
Lee K, Park TIH, Heppner P, Schweder P, Mee EW, Dragunow M, Montgomery JM. Human in vitro systems for examining synaptic function and plasticity in the brain. J Neurophysiol 2020; 123:945-965. [PMID: 31995449 DOI: 10.1152/jn.00411.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human brain shows remarkable complexity in its cellular makeup and function, which are distinct from nonhuman species, signifying the need for human-based research platforms for the study of human cellular neurophysiology and neuropathology. However, the use of adult human brain tissue for research purposes is hampered by technical, methodological, and accessibility challenges. One of the major problems is the limited number of in vitro systems that, in contrast, are readily available from rodent brain tissue. With recent advances in the optimization of protocols for adult human brain preparations, there is a significant opportunity for neuroscientists to validate their findings in human-based systems. This review addresses the methodological aspects, advantages, and disadvantages of human neuron in vitro systems, focusing on the unique properties of human neurons and synapses in neocortical microcircuits. These in vitro models provide the incomparable advantage of being a direct representation of the neurons that have formed part of the human brain until the point of recording, which cannot be replicated by animal models nor human stem-cell systems. Important distinct cellular mechanisms are observed in human neurons that may underlie the higher order cognitive abilities of the human brain. The use of human brain tissue in neuroscience research also raises important ethical, diversity, and control tissue limitations that need to be considered. Undoubtedly however, these human neuron systems provide critical information to increase the potential of translation of treatments from the laboratory to the clinic in a way animal models are failing to provide.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Peter Heppner
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward W Mee
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
3
|
Folweiler KA, Samuel S, Metheny HE, Cohen AS. Diminished Dentate Gyrus Filtering of Cortical Input Leads to Enhanced Area Ca3 Excitability after Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:1304-1317. [PMID: 29338620 PMCID: PMC5962932 DOI: 10.1089/neu.2017.5350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI) disrupts hippocampal function and can lead to long-lasting episodic memory impairments. The encoding of episodic memories relies on spatial information processing within the hippocampus. As the primary entry point for spatial information into the hippocampus, the dentate gyrus is thought to function as a physiological gate, or filter, of afferent excitation before reaching downstream area Cornu Ammonis (CA3). Although injury has previously been shown to alter dentate gyrus network excitability, it is unknown whether mTBI affects dentate gyrus output to area CA3. In this study, we assessed hippocampal function, specifically the interaction between the dentate gyrus and CA3, using behavioral and electrophysiological techniques in ex vivo brain slices 1 week following mild lateral fluid percussion injury (LFPI). Behaviorally, LFPI mice were found to be impaired in an object-place recognition task, indicating that spatial information processing in the hippocampus is disrupted. Extracellular recordings and voltage-sensitive dye imaging demonstrated that perforant path activation leads to the aberrant spread of excitation from the dentate gyrus into area CA3 along the mossy fiber pathway. These results suggest that after mTBI, the dentate gyrus has a diminished capacity to regulate cortical input into the hippocampus, leading to increased CA3 network excitability. The loss of the dentate filtering efficacy reveals a potential mechanism by which hippocampal-dependent spatial information processing is disrupted, and may contribute to memory dysfunction after mTBI.
Collapse
Affiliation(s)
- Kaitlin A. Folweiler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandy Samuel
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
5
|
Yarishkin O, Lee DY, Kim E, Cho CH, Choi JH, Lee CJ, Hwang EM, Park JY. TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus. Mol Brain 2014; 7:80. [PMID: 25406588 PMCID: PMC4240835 DOI: 10.1186/s13041-014-0080-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two-pore domain K(+) (K2P) channels have been shown to modulate neuronal excitability. However, physiological function of TWIK-1, the first identified member of the mammalian K2P channel family, in neuronal cells is largely unknown. RESULTS We found that TWIK-1 proteins were expressed and localized mainly in the soma and proximal dendrites of dentate gyrus granule cells (DGGCs) rather than in distal dendrites or mossy fibers. Gene silencing demonstrates that the outwardly rectifying K(+) current density was reduced in TWIK-1-deficient granule cells. TWIK-1 deficiency caused a depolarizing shift in the resting membrane potential (RMP) of DGGCs and enhanced their firing rate in response to depolarizing current injections. Through perforant path stimulation, TWIK-1-deficient granule cells showed altered signal input-output properties with larger EPSP amplitude values and increased spiking compared to control DGGCs. In addition, supra-maximal perforant path stimulation evoked a graded burst discharge in 44% of TWIK-1-deficient cells, which implies impairment of EPSP-spike coupling. CONCLUSIONS These results showed that TWIK-1 is functionally expressed in DGGCs and contributes to the intrinsic excitability of these cells. The TWIK-1 channel is involved in establishing the RMP of DGGCs; it attenuates sub-threshold depolarization of the cells during neuronal activity, and contributes to EPSP-spike coupling in perforant path-to-granule cell synaptic transmission.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea.
| | - Da Yong Lee
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Korea Research Institute of Bioscience and Biotechnology (KRIBB), Stem Cell Research Center, Daejeon, 305-806, Republic of Korea.
| | - Eunju Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea.
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 136-703, Republic of Korea.
| | - Jae Hyouk Choi
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| | - C Justin Lee
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| | - Jae-Yong Park
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 136-703, Republic of Korea.
| |
Collapse
|
6
|
N'Gouemo P. BKCa channel dysfunction in neurological diseases. Front Physiol 2014; 5:373. [PMID: 25324781 PMCID: PMC4179377 DOI: 10.3389/fphys.2014.00373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
The large conductance, Ca2+-activated K+ channels (BKCa, KCa1.1) are expressed in various brain neurons where they play important roles in regulating action potential duration, firing frequency and neurotransmitter release. Membrane potential depolarization and rising levels of intracellular Ca2+ gated BKCa channels, which in turn results in an outward K+ flux that re/hyperpolarizes the membrane. The sensitivity of BKCa channels to Ca2+ provides an important negative-feedback system for Ca2+ entry into brain neurons and suppresses repetitive firing. Thus, BKCa channel loss-of-function gives rise to neuronal hyperexcitability, which can lead to seizures. Evidence also indicates that BKCa channels can facilitate high-frequency firing (gain-of-function) in some brain neurons. Interestingly, both gain-of-function and loss-of-function mutations of genes encoding for various BKCa channel subunits have been associated with the development of neuronal excitability disorders, such as seizure disorders. The role of BKCa channels in the etiology of some neurological diseases raises the possibility that these channels can be used as molecular targets to prevent and suppress disease phenotypes.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
7
|
Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci U S A 2013; 110:3549-54. [PMID: 23319606 DOI: 10.1073/pnas.1214912110] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The continuous need for ion gradient restoration across the cell membrane, a prerequisite for synaptic transmission and conduction, is believed to be a major factor for brain's high oxidative demand. However, do energy requirements of signaling and nonsignaling components of cortical neurons and astrocytes vary with activity levels and across species? We derived oxidative ATP demand associated with signaling (P(s)) and nonsignaling (P(ns)) components in the cerebral cortex using species-specific physiologic and anatomic data. In rat, we calculated glucose oxidation rates from layer-specific neuronal activity measured across different states, spanning from isoelectricity to awake and sensory stimulation. We then compared these calculated glucose oxidation rates with measured glucose metabolic data for the same states as reported by 2-deoxy-glucose autoradiography. Fixed values for P(s) and P(ns) were able to predict the entire range of states in the rat. We then calculated glucose oxidation rates from human EEG data acquired under various conditions using fixed P(s) and P(ns) values derived for the rat. These calculated metabolic data in human cerebral cortex compared well with glucose metabolism measured by PET. Independent of species, linear relationship was established between neuronal activity and neuronal oxidative demand beyond isoelectricity. Cortical signaling requirements dominated energy demand in the awake state, whereas nonsignaling requirements were ∼20% of awake value. These predictions are supported by (13)C magnetic resonance spectroscopy results. We conclude that mitochondrial energy support for signaling and nonsignaling components in cerebral cortex are conserved across activity levels in mammalian species.
Collapse
|
8
|
Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci 2012; 32:3848-58. [PMID: 22423105 DOI: 10.1523/jneurosci.6038-11.2012] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus (DG) occupies a key position in information flow through the hippocampus. Its principal cell, the granule cell, has spatially selective place fields. However, the behavioral correlates of cells located in the hilus of the rat dentate gyrus are unknown. We report here that cells below the granule layer show spatially selective firing that consists of multiple subfields. Other cells recorded from the DG had single place fields. Compared with cells with multiple fields, cells with single fields fired at lower rates during sleep were less bursty, and were more likely to be recorded simultaneously with large populations of neurons that were active during sleep and silent during behavior. We propose that cells with single fields are likely to be mature granule cells that use sparse encoding to potentially disambiguate input patterns. Furthermore, we hypothesize that cells with multiple fields might be cells of the hilus or newborn granule cells. These data are the first demonstration, based on physiological criteria, that single- and multiple-field cells constitute at least two distinct cell classes in the DG. Because of the heterogeneity of firing correlates and cell types in the DG, understanding which cell types correspond to which firing patterns, and how these correlates change with behavioral state and between different environments, are critical questions for testing long-standing computational theories that the DG performs a pattern separation function using a very sparse coding strategy.
Collapse
|
9
|
Myers CE, Scharfman HE. Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 2011; 21:1190-215. [PMID: 20683841 PMCID: PMC2976779 DOI: 10.1002/hipo.20828] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2010] [Indexed: 01/31/2023]
Abstract
Many theories of hippocampal function assume that area CA3 of hippocampus is capable of performing rapid pattern storage, as well as pattern completion when a partial version of a familiar pattern is presented, and that the dentate gyrus (DG) is a preprocessor that performs pattern separation, facilitating storage and recall in CA3. The latter assumption derives partly from the anatomical and physiological properties of DG. However, the major output of DG is from a large number of DG granule cells to a smaller number of CA3 pyramidal cells, which potentially negates the pattern separation performed in the DG. Here, we consider a simple CA3 network model, and consider how it might interact with a previously developed computational model of the DG. The resulting "standard" DG-CA3 model performs pattern storage and completion well, given a small set of sparse, randomly derived patterns representing entorhinal input to the DG and CA3. However, under many circumstances, the pattern separation achieved in the DG is not as robust in CA3, resulting in a low storage capacity for CA3, compared to previous mathematical estimates of the storage capacity for an autoassociative network of this size. We also examine an often-overlooked aspect of hippocampal anatomy that might increase functionality in the combined DG-CA3 model. Specifically, axon collaterals of CA3 pyramidal cells project "back" to the DG ("backprojections"), exerting inhibitory effects on granule cells that could potentially ensure that different subpopulations of granule cells are recruited to respond to similar patterns. In the model, addition of such backprojections improves both pattern separation and storage capacity. We also show that the DG-CA3 model with backprojections provides a better fit to empirical data than a model without backprojections. Therefore, we hypothesize that CA3 backprojections might play an important role in hippocampal function.
Collapse
Affiliation(s)
- Catherine E Myers
- Department of Psychology, Rutgers University, Newark, New Jersey, USA.
| | | |
Collapse
|
10
|
Stegen M, Kirchheim F, Hanuschkin A, Staszewski O, Veh RW, Wolfart J. Adaptive Intrinsic Plasticity in Human Dentate Gyrus Granule Cells during Temporal Lobe Epilepsy. Cereb Cortex 2011; 22:2087-101. [DOI: 10.1093/cercor/bhr294] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Abstract
INTRODUCTION Epilepsies are disorders of neuronal excitability characterized by spontaneous and recurrent seizures. Ion channels are critical for regulating neuronal excitability and, therefore, can contribute significantly to epilepsy pathophysiology. In particular, large conductance, Ca2+-activated K+ (BKCa) channels play an important role in seizure etiology. These channels are activated by both membrane depolarization and increased intracellular Ca2+. This unique coupling of Ca2+ signaling to membrane depolarization is important in controlling neuronal hyperexcitability, as outward K+ current through BKCa channels hyperpolarizes neurons. AREAS COVERED BKCa channel structure-function and the role of these channels in epilepsy pathophysiology. EXPERT OPINION Loss-of-function BKCa channel mutations contribute to neuronal hyperexcitability that can lead to temporal lobe epilepsy, tonic-clonic seizures and alcohol withdrawal seizures. Similarly, BKCa channel blockade can trigger seizures and status epilepticus. Paradoxically, some mutations in BKCa channel subunit can give rise to channel gain-of-function that leads to development of idiopathic epilepsy (primarily absence epilepsy). Seizures themselves also enhance BKCa channel currents associated with neuronal hyperexcitability, and blocking BKCa channels suppresses generalized tonic-clonic seizures. Thus, both loss-of-function and gain-of-function BKCa channels might serve as molecular targets for drugs to suppress certain seizure phenotypes including temporal lobe seizures and absence seizures, respectively.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Georgetown University Medical Center, Interdisciplinary Program in Neuroscience and Department of Pediatrics, Washington, DC 20057, USA.
| |
Collapse
|
12
|
Armstrong C, Szabadics J, Tamás G, Soltesz I. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal-hippocampal interplay. J Comp Neurol 2011; 519:1476-91. [PMID: 21452204 DOI: 10.1002/cne.22577] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal-hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired intracellular patch clamp recordings from post-hoc-identified cells in acute rat hippocampal slices and identified a subpopulation of molecular layer interneurons that expressed immunocytochemical markers present in members of the neurogliaform cell (NGFC) class. Single NGFCs displayed small dendritic trees, and their characteristically dense axonal arborizations covered significant portions of the outer and middle one-thirds of the molecular layer, with frequent axonal projections across the fissure into the CA1 and subicular regions. Typical NGFCs exhibited a late firing pattern with a ramp in membrane potential prior to firing action potentials, and single spikes in NGFCs evoked biphasic, prolonged GABA(A) and GABA(B) postsynaptic responses in GCs. In addition to providing dendritic GABAergic inputs to GCs, NGFCs also formed chemical synapses and gap junctions with various molecular layer interneurons, including other NGFCs. NGFCs received low-frequency spontaneous synaptic events, and stimulation of perforant path fibers revealed direct, facilitating synaptic inputs from the entorhinal cortex. Taken together, these results indicate that NGFCs form an integral part of the local molecular layer microcircuitry generating feed-forward inhibition and provide a direct GABAergic pathway linking the dentate gyrus to the CA1 and subicular regions through the hippocampal fissure.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
13
|
N'Gouemo P, Yasuda RP, Faingold CL. Protein expression of small conductance calcium-activated potassium channels is altered in inferior colliculus neurons of the genetically epilepsy-prone rat. Brain Res 2009; 1270:107-11. [PMID: 19254702 PMCID: PMC2697038 DOI: 10.1016/j.brainres.2009.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 11/28/2022]
Abstract
The genetically epilepsy-prone rat (GEPR) exhibits inherited predisposition to sound stimuli-induced generalized tonic-clonic seizures (audiogenic reflex seizures) and is a valid model to study the physiopathology of epilepsy. In this model, the inferior colliculus (IC) exhibits enhanced neuronal firing that is critical in the initiation of reflex audiogenic seizures. The mechanisms underlying IC neuronal hyperexcitability that leads to seizure susceptibility are not as yet fully understood. The present report shows that the levels of protein expression of SK1 and SK3 subtypes of the small conductance Ca2+-activated K+ channels were significantly decreased, while SK2 channel proteins were increased in IC neurons of seizure-naive GEPR-3s (SN-GEPR-3), as compared to control Sprague-Dawley rats. No significant change was found in the expression of BK channel proteins in IC neurons of SN-GEPR-3s. Single episode of reflex audiogenic seizures in the GEPR-3s did not significantly alter the protein expression of SK1-3 and BK channels in IC neurons compared to SN-GEPR-3s. Thus, downregulation of SK1 and SK3 channels and upregulation of SK2 channels provide direct evidence that these Ca2+-activated K+ channels play important roles in IC neuronal hyperexcitability that leads to inherited seizure susceptibility in the GEPR.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics, Bldg D, Room 285, Georgetown University Medical Center, 3900 Reservoir Rd, NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
14
|
Skov J, Nedergaard S, Andreasen M. The slow Ca2+-dependent K+-current facilitates synchronization of hyperexcitable pyramidal neurons. Brain Res 2009; 1252:76-86. [DOI: 10.1016/j.brainres.2008.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/13/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|
15
|
Williamson A, Patrylo PR. Physiological studies of human dentate granule cells. PROGRESS IN BRAIN RESEARCH 2008; 163:183-98. [PMID: 17765719 DOI: 10.1016/s0079-6123(07)63011-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The availability of human hippocampi obtained through surgery (usually for treatment of temporal lobe epilepsy) has allowed us to investigate the properties of the human dentate in a way that cannot be done with other brain regions. The dentate has been the primary focus of these studies because of its relative preservation in all patient specimens. Moreover, there is extensive synaptic reorganization of numerous neurotransmitter systems in this the fascia dentate (dentate gyrus and the hilus) in humans with specific forms of TLE. These changes are not evident in tissue from patients with seizure that begin outside the hippocampus, and, as a result, this tissue provides an invaluable resource for comparisons. Physiological data using both slices and acutely dissociated cells demonstrate that the granule cells have membrane properties similar to those of rodents although there are specific changes that appear to be associated with seizures. Similarly, in the non-sclerotic hippocampi, the synaptic properties are similar to those reported in rodents. There are also a number of parallels between the findings in humans and in status animal models of temporal lobe epilepsy. This review will cover analyses of membrane properties as well as of glutamatergic, GABAergic, and neuromodulatory systems. Thus, while there are a number of issues that invariably arise with studies of pathological human tissue, this tissue is ideally suited to verify and refine animal models of temporal lobe epilepsy. In addition, one can argue that human tissue provides the only resource to evaluate the ways that granule cells recorded from laboratory animals approximate human granule cell physiology.
Collapse
Affiliation(s)
- Anne Williamson
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06518, USA.
| | | |
Collapse
|
16
|
Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J Neurosci 2008; 27:13756-61. [PMID: 18077687 DOI: 10.1523/jneurosci.4053-07.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic reorganization of the dentate gyrus inner molecular layer (IML) is a pathophysiological process that may facilitate seizures in patients with temporal-lobe epilepsy. Two subtypes of IML neurons were originally described by Ramón y Cajal (1995), but have not been thoroughly studied. We used two-photon imaging, infrared-differential interference contrast microscopy and patch clamp recordings from rat hippocampal slices to define the intrinsic physiology and synaptic targets of spiny, granule-like neurons in the IML, termed semilunar granule cells (SGCs). These neurons resembled dentate granule cells but had axon collaterals in the molecular layer, significantly larger dendritic arborization in the molecular layer, and a more triangular cell body than granule cells. Unlike granule cells, SGCs fired throughout long-duration depolarizing steps and had ramp-like depolarizations during interspike periods. Paired recordings demonstrated that SGCs are glutamatergic and monosynaptically excite both hilar interneurons and mossy cells. Semilunar granule cells appear to represent a distinct excitatory neuron population in the dentate gyrus that may be an important target for mossy fiber sprouting in patients and rodent models of temporal lobe epilepsy.
Collapse
|
17
|
Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. PROGRESS IN BRAIN RESEARCH 2007; 163:601-13. [PMID: 17765740 DOI: 10.1016/s0079-6123(07)63032-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The idea of the dentate gyrus as a gate or filter at the entrance to the hippocampus, blocking or filtering incoming excitation from the entorhinal cortex, has been an intriguing one. Here we review the historical development of the idea, and discuss whether it may be possible to be more specific in defining this gate. We propose that dentate function can be understood within a context of Hebbian association and competition: hilar mossy cells help the dentate granule cells to recognize incoming entorhinal patterns of activity (Hebbian association), after which patterns that are consistently and repetitively presented to the dentate gyrus are passed through, while random, more transient patterns are blocked (non-associative Hebbian competition). Translamellar inhibition as well as translamellar potentiation can be understood in this context. The dentate-hilar complex thus plays the role of a "pattern excluder", not a pattern completer. The unique role of pattern exclusion may explain the peculiar qualities of dentate granule cells and hilar mossy cells.
Collapse
Affiliation(s)
- David Hsu
- Department of Neurology, University of Wisconsin, 600 Highland Avenue, H6/526, Madison, WI 53792, USA.
| |
Collapse
|
18
|
Selke K, Müller A, Kukley M, Schramm J, Dietrich D. Firing pattern and calbindin-D28k content of human epileptic granule cells. Brain Res 2006; 1120:191-201. [PMID: 16997289 DOI: 10.1016/j.brainres.2006.08.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 11/30/2022]
Abstract
In the hippocampus of chronic temporal lobe epilepsy, many abnormalities in structure and function have been described but their pathophysiological relevance often is poorly understood. In this study, we asked whether there may be a link between changes in the firing pattern and the loss of the calcium binding protein calbindin-D28k in epileptic hippocampal granule cells. Using the perforated patch-clamp technique, we investigated granule cells in slices prepared from human hippocampi removed for the treatment of pharmacoresistant temporal lobe epilepsy. Granule cells in hippocampi without significant signs of structural damage (lesion group) displayed a firing pattern indistinguishable from that of rodent granule cells and were strongly labeled with anti-calbindin-D28k antibodies. In contrast, half of granule cells in sclerotic hippocampi (HS group) showed an altered firing pattern and a severe loss of calbindin-D28k. While these cells show passive membrane properties comparable to cells of the rodent and lesion group, they lack the medium afterhyperpolarization and display only a weak spike frequency adaptation. On the other hand, granule cells in the HS group have an increased action potential threshold and an enlarged fast afterhyperpolarization. Applying post-recording immunohistochemistry to individual electrophysiologically characterized granule cells, we show that the loss of calbindin-D28k is not causally related to any of the changes in firing pattern. Both alterations seem to occur during the course of temporal lobe epilepsy, with the firing pattern being affected earlier than the calbindin-D28k content. In conclusion, we propose that it is the combination of the altered intrinsic excitability of granule cells with the amplified and prolonged synaptic input from perforant path fibers previously described in the epileptic dentate area which promotes tonic, non-adapting, high frequency firing of granule cells and thereby strongly augments the excitability of the hippocampus.
Collapse
Affiliation(s)
- K Selke
- Department of Neurosurgery, NCH U1 R035, Experimental Neurophysiology, University Clinic Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
19
|
Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ERG, Eilers A, Kivi A, Zeller M, Meencke HJ, Cavalheiro EA, Heinemann U, Lehmann TN. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 2004; 24:10416-30. [PMID: 15548657 PMCID: PMC6730304 DOI: 10.1523/jneurosci.2074-04.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 08/28/2004] [Accepted: 10/02/2004] [Indexed: 11/21/2022] Open
Abstract
Hippocampal specimens resected to cure medically intractable temporal lobe epilepsy (TLE) provide a unique possibility to study functional consequences of morphological alterations. One intriguing alteration predominantly observed in cases of hippocampal sclerosis is an uncommon network of granule cells monosynaptically interconnected via aberrant supragranular mossy fibers. We investigated whether granule cell populations in slices from sclerotic and nonsclerotic hippocampi would develop ictaform activity when challenged by low-frequency hilar stimulation in the presence of elevated extracellular potassium concentration (10 and 12 mm) and whether the experimental activity differs according to the presence of aberrant mossy fibers. We found that ictaform activity could be evoked in slices from sclerotic and nonsclerotic hippocampi (27 of 40 slices, 14 of 20 patients; and 11 of 22 slices, 6 of 12 patients, respectively). However, the two patient groups differed with respect to the pattern of ictaform discharges and the potassium concentration mandatory for its induction. Seizure-like events were already induced with 10 mm K+. They exclusively occurred in slices from sclerotic hippocampi, of which 80% displayed stimulus-induced oscillatory population responses (250-300 Hz). In slices from nonsclerotic hippocampi, atypical negative field potential shifts were predominantly evoked with 12 mm K+. In both groups, the ictaform activity was sensitive to ionotropic glutamate receptor antagonists and lowering of [Ca2+]o. Our results show that, in granule cell populations of hippocampal slices from TLE patients, high K+-induced seizure-like activity and ictal spiking coincide with basic electrophysiological abnormalities, hippocampal sclerosis, and mossy fiber sprouting, suggesting that network reorganization could play a crucial role in determining type and threshold of such activity.
Collapse
Affiliation(s)
- Siegrun Gabriel
- Johannes Mueller Institute of Physiology, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen SF, Huang CC, Wu HM, Chen SH, Liang YC, Hsu KS. Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1-infected organotypic hippocampal cultures. Epilepsia 2004; 45:322-32. [PMID: 15030494 DOI: 10.1111/j.0013-9580.2004.37403.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Epileptic seizures are frequently seen after viral encephalitis. Herpes simplex virus type 1 (HSV-1) encephalitis is the most common cause of acquired epilepsy in humans. However, little information is available about the neuropathogenesis of HSV-1-associated seizures. We have developed an in vitro HSV-1-infected organotypic hippocampal slice culture to elucidate the underlying mechanisms of HSV-1-associated acute seizure activity. METHODS Hippocampal slice cultures were prepared from postnatal day 10 to 12 rat pups. Wild-type HSV-1 strain RE (1 x 10(5) PFU) was applied to cultures at 14 days in vitro. The excitability of CA3 pyramidal cells and hippocampal network properties were measured with electrophysiological recordings. Hematoxylin-eosin (H&E) and Timm stains were used. RESULTS HSV-1 infection induces epileptiform activity, neuron loss, and subsequently a dramatic increase of mossy fiber sprouting in the supragranular area. With intracellular recordings, surviving CA3 pyramidal cells exhibited a more depolarizing resting membrane potential concomitant with an increase in membrane input resistance and had a lower threshold to generate synchronized bursts and a decrease in the amplitude of afterhyperpolarization than did controls. When the antiherpes agent acyclovir was applied with a delay of 1 or 24 h after HSV-1 infection, a dramatic inhibition of HSV-1 replication and protection of the neuron loss were observed. CONCLUSIONS These results suggest that a direct change in the excitability of the hippocampal CA3 neuronal network and HSV-1-induced neuron loss resulting in subsequent mossy fiber reorganization may play an important role in the generation of epileptiform activity.
Collapse
Affiliation(s)
- Su-Fen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Scharfman HE, Sollas AE, Berger RE, Goodman JH, Pierce JP. Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience 2004; 121:1017-29. [PMID: 14580952 DOI: 10.1016/s0306-4522(03)00481-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Granule cells in the dentate gyrus are born throughout life, and various stimuli can affect their development in the adult brain. Following seizures, for instance, neurogenesis increases greatly, and some new cells migrate to abnormal (ectopic) locations, such as the hilus. Previous electrophysiological studies of this population have shown that they have intrinsic properties that are similar to normal granule cells, but differ in other characteristics, consistent with abnormal integration into host circuitry. To characterize the response of ectopic hilar granule cells to perforant path stimulation, intracellular recordings were made in hippocampal slices from rats that had pilocarpine-induced status epilepticus and subsequent spontaneous recurrent seizures. Comparisons were made with granule cells located in the granule cell layer of both pilocarpine- and saline-treated animals. In addition, a few ectopic hilar granule cells were sampled from saline-treated rats. Remarkably, hilar granule cells displayed robust responses, even when their dendrites were not present within the molecular layer, where perforant path axons normally terminate. The evoked responses of hilar granule cells were similar in several ways to those of normally positioned granule cells, but there were some differences. For example, there was an unusually long latency to onset of responses evoked in many hilar granule cells, especially those without molecular layer dendrites. Presumably this is due to polysynaptic activation by the perforant path. These results indicate that synaptic reorganization after seizures can lead to robust activation of newly born hilar granule cells by the perforant path, even when their dendrites are not in the terminal field of the perforant path. Additionally, the fact that these cells can be found in normal tissue and develop similar synaptic responses, suggests that seizures, while not necessary for their formation, strongly promote their generation and the development of associated circuits, potentially contributing to a lowered seizure threshold.
Collapse
Affiliation(s)
- H E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, Route 9W, West Haverstraw, NY 10993-1195, USA.
| | | | | | | | | |
Collapse
|
22
|
Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 2004; 90:2536-47. [PMID: 14534276 DOI: 10.1152/jn.00251.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA.
| | | | | | | |
Collapse
|
23
|
Scharfman HE. Functional implications of seizure-induced neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:192-212. [PMID: 15250595 PMCID: PMC1839060 DOI: 10.1007/978-1-4757-6376-8_14] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurobiological doctrine governing the concept of neurogenesis has undergone a revolution in the past few years. What was once considered dubious is now well accepted: new neurons are born in the adult brain. Science fiction is quickly becoming a reality as scientists discover ways to convert skin, bone, or blood cells into neurons. In the epilepsy arena, widespread interest has developed because of the evidence that neurogenesis increases after seizures, trauma, and other insults or injuries that alter seizure susceptibility. This review discusses some of the initial studies in this field, and their often surprising functional implications. The emphasis will be on the granule cells of hippocampus, because they are perhaps more relevant to epilepsy than other areas in which neurogenesis occurs throughout life, the olfactory bulb and subventricular zone. In particular, the following questions will be addressed: 1. Do granule cells that are born in the adult brain become functional, and what are the limits of their function? Do they behave homogeneously? Results from our own laboratory have focused on cells that become established outside the normal boundaries of the granule cell layer, forming a group of "ectopic" granule cells in the hilar region. 2. Is increased neurogenesis beneficial, or might it actually exacerbate seizures? Evidence is presented that supports the hypothesis that new granule cells may not necessarily act to ameliorate seizures, and might even contribute to them. Furthermore, cognitive deficits following seizures might in part be due to new circuits that develop between new cells and the host brain. 3. How do the new cells interact with the host brain? Several changes occur in the dentate gyrus after seizures, and increased neurogenesis is only one of many. What is the interdependence of this multitude of changes, if any? 4. Is neurogenesis increased after seizures in man? Research suggests that the data from human epileptics are actually inconsistent with the studies in animal models of epilepsy, because there is little evidence of increased neurogenesis in epileptic tissue resected from intractable epileptics. Yet neurogenesis has been shown to occur in humans throughout adult life. What might be the reasons for these seemingly disparate results?
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, USA
| |
Collapse
|
24
|
Wu HM, Huang CC, Chen SH, Liang YC, Tsai JJ, Hsieh CL, Hsu KS. Herpes simplex virus type 1 inoculation enhances hippocampal excitability and seizure susceptibility in mice. Eur J Neurosci 2003; 18:3294-304. [PMID: 14686902 DOI: 10.1111/j.1460-9568.2003.03075.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is the major pathogen related to epilepsy. However, little is known about the pathogenesis of HSV-1-associated epilepsy. Here, we report that corneal inoculation of mice with HSV-1 induces acute spontaneous behavioural and electrophysiological seizures and chronically increases hippocampal excitability and seizure susceptibility. In slices from infected mice, the surviving hippocampal CA3 pyramidal neurons exhibited a more depolarizing resting membrane potential concomitant with an increase in membrane input resistance. They also had a lower threshold for generating synchronized bursts and a decrease in the amplitude of afterhyperpolarization (AHP) than did controls. These results suggest that a direct change in the excitability of the hippocampal CA3 neuronal network could play an important role in facilitating the development of acute seizures and subsequent epilepsy.
Collapse
Affiliation(s)
- Hung-Ming Wu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Studies in animal models have suggested a role for stem cells in repair and regeneration of the nervous system. Human equivalents of stem and precursor cells have been isolated and their efficacy is being evaluated in rodent and primate models. Difficulties exist in translating results of these preclinical models to therapy in humans. Evolutionary differences among rodents, primates, and humans; fundamental differences in the anatomy and physiology; differences in immune responses in xenotransplant models; the paucity of good transplant models of chronic disease; and allelic variability in the cells themselves make any study evaluating the efficacy of cells in transplant models difficult to interpret. As no better alternatives to testing in animals exist, we suggest that at this early stage a considered step-by-step approach to testing and comparison of different transplant strategies in isolation will prepare us better for clinical trials than simple evaluation of functional outcomes in various models of disease. We emphasize that we do not recommend delaying or abandoning clinical trials; rather, we suggest that one anticipate failures and design experiments and data collection such that we learn from these failures to ensure future success in as rapid a time frame as possible.
Collapse
Affiliation(s)
- Irene Ginis
- Gerontology Research Center, Stem Cell Biology Unit/Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Room 4E02, Baltimore, MD 21224, USA
| | | |
Collapse
|
26
|
O'Brien S, Rosene DL, Luebke JI. GABAA receptor-mediated neurotransmission in the dentate gyrus of the rhesus monkey: comparison with the rat. Synapse 2003; 49:287-9. [PMID: 12827648 DOI: 10.1002/syn.10237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Susan O'Brien
- Center for Behavioral Development, Boston University School of Medicine, 85 E. Newton Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
27
|
Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000. [PMID: 10934264 DOI: 10.1523/jneurosci.20-16-06144.2000] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A group of neurons with the characteristics of dentate gyrus granule cells was found at the hilar/CA3 border several weeks after pilocarpine- or kainic acid-induced status epilepticus. Intracellular recordings from pilocarpine-treated rats showed that these "granule-like" neurons were similar to normal granule cells (i. e., those in the granule cell layer) in membrane properties, firing behavior, morphology, and their mossy fiber axon. However, in contrast to normal granule cells, they were synchronized with spontaneous, rhythmic bursts of area CA3 pyramidal cells that survived status epilepticus. Saline-treated controls lacked the population of granule-like cells at the hilar/CA3 border and CA3 bursts. In rats that were injected after status epilepticus with bromodeoxyuridine (BrdU) to label newly born cells, and also labeled for calbindin D(28K) (because it normally stains granule cells), many double-labeled neurons were located at the hilar/CA3 border. Many BrdU-labeled cells at the hilar/CA3 border also were double-labeled with a neuronal marker (NeuN). Taken together with the recent evidence that granule cells that are born after seizures can migrate into the hilus, the results suggest that some newly born granule cells migrate as far as the CA3 cell layer, where they become integrated abnormally into the CA3 network, yet they retain granule cell intrinsic properties. The results provide insight into the physiological properties of newly born granule cells in the adult brain and suggest that relatively rigid developmental programs set the membrane properties of newly born cells, but substantial plasticity is present to influence their place in pre-existing circuitry.
Collapse
|
28
|
Musshoff U, Köhling R, Lücke A, Speckmann E, Tuxhorn I, Wolf P, Pauuek HW, Oppel F. Vigabatrin reduces epileptiform activity in brain slices from pharmacoresistant epilepsy patients. Eur J Pharmacol 2000; 401:167-72. [PMID: 10924922 DOI: 10.1016/s0014-2999(00)00420-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human neocortical temporal lobe tissue resected for treatment of pharmacoresistant epilepsy was investigated. In slices prepared from this tissue, epileptiform field potentials (EFP) were induced by omission of magnesium from the artificial cerebrospinal fluid (ACSF). The effects of the gamma-aminobutyric acid transaminase inhibitor vigabatrin on EFP were tested. Vigabatrin exerted a dose-dependent reduction of the repetition rate of EFP: after 3 h of administration of vigabatrin in concentrations of 100 and 200 micromol/l, the repetition rate of EFP was reduced to 35% and 18% of the initial values, respectively. This effect was not reversible. In control experiments with neocortical slices from rats, vigabatrin reduced EFP in a comparable range. The results demonstrate a strong antiepileptic effect of vigabatrin on EFP in tissues from pharmacoresistant epilepsy patients.
Collapse
Affiliation(s)
- U Musshoff
- Institut für Physiologie, Universität Münster, Robert-Koch-Str. 27a 48149, Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Telfeian AE, Federoff HJ, Leone P, During MJ, Williamson A. Overexpression of GluR6 in rat hippocampus produces seizures and spontaneous nonsynaptic bursting in vitro. Neurobiol Dis 2000; 7:362-74. [PMID: 10964607 DOI: 10.1006/nbdi.2000.0294] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that overexpression of specific glutamate receptors within the hippocampus would induce seizures and the associated cellular changes seen in temporal lobe epilepsy (TLE). The GluR6 kainate receptor was overexpressed by injecting rat hippocampi with HSVGluR6, a viral vector transducing fully edited GluR6. These animals experienced limbic seizures approximately 4 h following the injection. Control animals injected with HSVlac, a vector expressing beta-galactosidase, did not have seizures. Recordings from hippocampal CA1 pyramidal cells were performed 12 to 48 h and 1 week to 1 month postinjection. We observed nonsynaptic Na(+)-mediated bursting in 77.5% of cells 12 to 48 h following injection of HSVGluR6 but not HSVlac. The synaptic responses were normal in both groups. However, the physiological properties of cells from HSVGluR6-injected hippocampi changed over time. Two weeks following HSVGluR6 injection, synaptic bursts could be evoked, but intrinsic bursting became rare. These changes persisted for at least 1 month. We postulate that this transition from intrinsic to synaptic hyperexcitability may be important in the development of TLE.
Collapse
Affiliation(s)
- A E Telfeian
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | | | | | | | | |
Collapse
|
30
|
Köhling R, Qü M, Zilles K, Speckmann EJ. Current-source-density profiles associated with sharp waves in human epileptic neocortical tissue. Neuroscience 2000; 94:1039-50. [PMID: 10625046 DOI: 10.1016/s0306-4522(99)00327-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In human neocortical slices obtained during epilepsy surgery, sharp waves have been described to appear spontaneously, the shape of which met all criteria of epileptiform field potentials. In the present investigation, the current sinks and sources underlying these potentials were analysed. The cortical tissue used in the present study was a small portion of the tissue blocks excised for treatment of pharmacoresistant focal epilepsy. The tissue came from the temporal (n = 26), frontal (n = 1) and parietal (n = 1) lobes. Slices of 500 microm thickness were cut in the frontal plane perpendicular to the pial surface. Field potentials were recorded using a linear array of eight wire electrodes (diameter: 33 microm) with interelectrode distances of 300 microm. To scan a slice for sharp field potentials, this array was placed perpendicular to the pial surface at the midsection of each preparation, and consecutively at the respective midsections of the resulting halves of the slice. Each of these locations was termed a recording line. Depending on the appearance of spontaneous potentials, recording lines and slices were classified as either spontaneous or non-spontaneous. With both spontaneous and zero Mg(2+)-induced interictal discharges, in spontaneous slices, current sinks were preferentially located in layers II and III. In non-spontaneous slices, current sinks associated with interictal potentials could be found throughout all cortical laminae. With zero Mg(2+)-induced ictal activity, in spontaneous slices, the initial sinks were preferentially located in cortical laminae II and IIIa, and were shifted to lower ones after additional application of bicuculline. In non-spontaneous slices, no ictal-type discharges could be induced with omission of Mg2+ from the superfusate. Only addition of bicuculline elicited ictal-type activity, and sinks associated with this were preferentially located in layers II and IIIa. The results suggest that the supragranular layers, especially layer II, change qualitatively in functional organization in slices showing spontaneous discharges. We think that this special feature represents the function of the upper layers and can be blocked by bicuculline. This interpretation is supported by the observation that ictal discharges normally started in the upper layers in spontaneous and non-spontaneous slices, except for spontaneous slices with bicuculline, where the zone initiating discharges was translocated to deeper layers.
Collapse
Affiliation(s)
- R Köhling
- Institut für Physiologie, Westfälische Wilhelms-Universität, Münster, Germany.
| | | | | | | |
Collapse
|
31
|
Mathern GW, Pretorius JK, Mendoza D, Leite JP, Chimelli L, Born DE, Fried I, Assirati JA, Ojemann GA, Adelson PD, Cahan LD, Kornblum HI. Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Ann Neurol 1999; 46:343-58. [PMID: 10482265 DOI: 10.1002/1531-8249(199909)46:3<343::aid-ana10>3.0.co;2-s] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Changes in the subunit stoichiometry of the N-methyl-D-aspartate (NMDA) receptor (NMDAR) alters its channel properties, and may enhance or reduce neuronal excitability in temporal lobe epilepsy patients. This study determined whether hippocampal NMDA receptor subunit mRNA levels were increased or decreased in temporal lobe epilepsy patients compared with nonseizure autopsy cases. Hippocampal sclerosis (HS; n = 16), non-HS (n = 10), and autopsy hippocampi (n = 9) were studied for NMDAR1 (NR1) and NR2A-D mRNA levels by using semiquantitative in situ hybridization techniques, along with neuron densities. Compared with autopsy hippocampi, non-HS and HS patients showed increased NR2A and NR2B hybridization densities per dentate granule cell. Furthermore, non-HS hippocampi showed increased NR1 and NR2B mRNA levels per CA2/3 pyramidal neuron compared with autopsy cases. HS patients, by contrast, showed decreased NR2A hybridization densities per CA2/3 pyramidal neuron compared with non-HS and autopsy cases. These findings indicate that chronic temporal lobe seizures are associated with differential changes in hippocampal NR1 and NR2A-D hybridization densities that vary by subfield and clinical-pathological category. In temporal lobe epilepsy patients, these findings support the hypothesis that in dentate granule cells NMDA receptors are increased, and excitatory postsynaptic potentials should be strongly NMDA mediated compared with nonseizure autopsies. HS patients, by comparison, showed decreased pyramidal neuron NR2A mRNA levels, and this suggests that NMDA-mediated pyramidal neuron responses should be reduced in HS patients compared with non-HS cases.
Collapse
Affiliation(s)
- G W Mathern
- Division of Neurosurgery, University of California, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beck H, Steffens R, Heinemann U, Elger CE. Ca(2+)-dependent inactivation of high-threshold Ca(2+) currents in hippocampal granule cells of patients with chronic temporal lobe epilepsy. J Neurophysiol 1999; 82:946-54. [PMID: 10444689 DOI: 10.1152/jn.1999.82.2.946] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular Ca(2+) represents an important trigger for various second-messenger mediated effects. Therefore a stringent control of the intracellular Ca(2+) concentration is necessary to avoid excessive activation of Ca(2+)-dependent processes. Ca(2+)-dependent inactivation of voltage-dependent calcium currents (VCCs) represents an important negative feedback mechanism to limit the influx of Ca(2+) that has been shown to be altered in the kindling model of epilepsy. We therefore investigated the Ca(2+)-dependent inactivation of high-threshold VCCs in dentate granule cells (DGCs) isolated from the hippocampus of patients with drug-refractory temporal lobe epilepsy (TLE) using the patch-clamp method. Ca(2+) currents showed pronounced time-dependent inactivation when no extrinsic Ca(2+) buffer was present in the patch pipette. In addition, in double-pulse experiments, Ca(2+) entry during conditioning prepulses caused a reduction of VCC amplitudes elicited during a subsequent test pulse. Recovery from Ca(2+)-dependent inactivation was slow and only complete after 1 s. Ca(2+)-dependent inactivation could be blocked either by using Ba(2+) as a charge carrier or by including bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) or EGTA in the intracellular solution. The influence of the cytoskeleton on Ca(2+)-dependent inactivation was investigated with agents that stabilize and destabilize microfilaments or microtubules, respectively. From these experiments, we conclude that Ca(2+)-dependent inactivation in human DGCs involves Ca(2+)-dependent destabilization of both microfilaments and microtubules. In addition, the microtubule-dependent pathway is modulated by the intracellular concentration of GTP, with lower concentrations of guanosine triphosphate (GTP) causing increased Ca(2+)-dependent inactivation. Under low-GTP conditions, the amount of Ca(2+)-dependent inactivation was similar to that observed in the kindling model. In summary, Ca(2+)-dependent inactivation was present in patients with TLE and Ammon's horn sclerosis (AHS) and is mediated by the cytoskeleton similar to rat pyramidal neurons. The similarity to the kindling model of epilepsy may suggest the possibility of altered Ca(2+)-dependent inactivation in patients with AHS.
Collapse
Affiliation(s)
- H Beck
- Department of Epileptology, University of Bonn Medical Center, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
33
|
Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. J Neurosci 1999. [PMID: 10377368 DOI: 10.1523/jneurosci.19-13-05619.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.
Collapse
|
34
|
Dietrich D, Clusmann H, Kral T, Steinhäuser C, Blümcke I, Heinemann U, Schramm J. Two electrophysiologically distinct types of granule cells in epileptic human hippocampus. Neuroscience 1999; 90:1197-206. [PMID: 10338290 DOI: 10.1016/s0306-4522(98)00574-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the electrophysiology of morphologically identified human granule cells with conventional current-clamp recordings. Slices were prepared from 14 human epileptic sclerotic hippocampi. Granule cells appeared to have a diverse electrophysiology. Each cell was distinguished by the shape of the afterhyperpolarization following single action potentials. Two types could be discerned: type I afterhyperpolarizations were monophasic and brief (typically 10-40 ms), whilst type II afterhyperpolarizations were biphasic and long (typically 50-100 ms). The two types also differed in their repetitive firing behaviour and action potential morphology: type I cells had significantly weaker spike frequency adaptation, lower action potential amplitude and smaller action potential upstroke/downstroke ratio. Thus, the firing pattern of type I cells resembled that of rodent dentate interneurons. In contrast, the corresponding parameters of type II cells were comparable to rodent dentate granule cells. Despite the distinct firing patterns, membrane properties were not different. The two types of cells also differed in their synaptic responses to stimulation of the perforant path. At strong suprathreshold stimulation intensity, type I cells always generated multiple action potentials, whereas type II cells usually spiked once only. Slow inhibitory postsynaptic potentials were not detected in type I neurons, but were easily identified in type II neurons. Extracellular recordings of perforant path-evoked field potentials in the cell layer confirmed that the majority of granule cells showed multiple discharges even when we recorded simultaneously from a type II cell that generated one action potential only. The morphology of both types of cells was characteristic of what has been described for primate dentate granule cells. Based on comparisons with previous studies on rodent and human granule cells, we tentatively hypothesize that: (i) the majority of granule cells from sclerotic hippocampus display an hyperexcitable epileptogenic electrophysiology; (ii) there is a subset of granule cells whose electrophysiology is preserved and is more comparable to granule cells from non-epileptic hippocampus.
Collapse
Affiliation(s)
- D Dietrich
- Klinik für Neurochirurgie, Universität Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Voltage-dependent Ca2+ channels (VCCs) represent one of the main routes of Ca2+ entry into neuronal cells. Changes in intracellular Ca2+ dynamics and homeostasis can cause long-lasting cellular changes via activation of different Ca2+ dependent signalling pathways. We have investigated the properties of VCCs in human hippocampal dentate granule cells (DGCs) using the whole-cell configuration of the patch-clamp method. Classical high-threshold Ca2+ currents were composed mainly of omega-CgTx-sensitive N-type and nifedipine-sensitive L-type currents that were present in similar proportions. In addition, a Ca2+ current component that was sensitive to low concentrations of Ni2+, but not to nifedipine or omega-conotoxin GVIA (omega-CgTx GVIA) was present. This latter component showed a half-maximal inactivation at more hyperpolarized potentials than high-threshold currents and a more rapid time-dependent inactivation. This current was termed T-type Ca2+ current. Current components with similar pharmacological and kinetic characteristics could be elicited in acutely isolated control rat DGCs. The current density of high threshold and T-type Ca2+ components was significantly larger in human DGCs and in the kainate model compared to DGCs isolated from adult control rats. These differences in current density were not accompanied by parallel differences in the voltage-dependence of VCCs. Taken together, these data suggest that an up-regulation of Ca2+ current density may occur in hippocampal epileptogenesis without consistent changes in Ca2+ current properties.
Collapse
Affiliation(s)
- H Beck
- Department of Experimental Epileptology, University of Bonn Medical Center, Germany.
| | | | | | | |
Collapse
|
36
|
Verma-Ahuja S, Evans MS, Espinosa JA. Evidence of increased excitability in GEPR hippocampus preceding development of seizure susceptibility. Epilepsy Res 1998; 31:161-73. [PMID: 9722027 DOI: 10.1016/s0920-1211(98)00027-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The genetically epilepsy-prone rat (GEPR) provides a valuable model to study the mechanism of neonatal seizure susceptibility because seizure predisposition in GEPRs is determined by factors present from birth. We have previously shown that reduced afterhyperpolarization (AHP), reduced spike frequency adaptation and increased excitation with repetitive stimulation are present in the adult GEPRs. To investigate whether these abnormalities are present at birth or appear at the time when GEPRs show seizure susceptibility and to elucidate whether these abnormalities were a consequence of seizure experience (the adult rats previously tested were induced to seize in three tests), we studied the membrane and synaptic properties of CA3 hippocampal neurons in preseizing offspring of GEPR-9s (seizure naive GEPRs). Electrophysiological recordings were done in the in vitro brain slice preparation during three different stages of early postnatal development (postnatal day (P) 7-10, P12-15 and P18-28) in GEPRs and compared to age matched control Sprague-Dawley (SD) rats. Reduction in AHP amplitude and duration and reduced inhibitory post synaptic potentials (IPSPs) were observed in the CA3 region in all the three stages tested. Reduction in spike frequency adaptation in 40% of CA3 neurons and reduction in fast AHP occurred in the 3rd and 4th weeks of postnatal development in GEPRs. Therefore, our results suggest that reduced synaptic inhibition and increased membrane excitability in the CA3 circuitry are present from early postnatal development and may represent few of the general cortical features that might eventually contribute to development of enhanced seizure susceptibility in developing GEPRs.
Collapse
Affiliation(s)
- S Verma-Ahuja
- SIU School of Medicine, Department of Surgery, Springfield, IL 62794-9230, USA
| | | | | |
Collapse
|
37
|
Reckziegel G, Beck H, Schramm J, Elger CE, Urban BW. Electrophysiological characterization of Na+ currents in acutely isolated human hippocampal dentate granule cells. J Physiol 1998; 509 ( Pt 1):139-50. [PMID: 9547388 PMCID: PMC2230947 DOI: 10.1111/j.1469-7793.1998.139bo.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Properties of voltage-dependent Na+ currents were investigated in forty-two dentate granule cells (DGCs) acutely isolated from the resected hippocampus of twenty patients with therapy-refractory temporal lobe epilepsy (TLE) using the whole-cell patch-clamp technique. 2. Depolarizing voltage commands elicited large, rapidly activating and inactivating Na+ currents (140 pS microm-2; 163 mM extracellular Na+) that were reduced in amplitude by lowering the Na+ gradient (43 mM extracellular Na+). At low temperatures (8-12 C), the time course of Na+ currents slowed and could be well described by the model of Hodgkin & Huxley. 3. Na+ currents were reversibly blocked by tetrodotoxin (TTX) and saxitoxin (STX) with a half-maximal block of 4.7 and 2.6 nM, respectively. In order to reduce series resistance errors, the Na+ current was partially blocked by low toxin concentrations (10-15 nM) in the experiments described below. Under these conditions, Na+ currents showed a threshold of activation of about -50 mV, and the voltages of half-maximal activation and inactivation were -29 and -55 mV, respectively. 4. The time course of recovery from inactivation could be described with a double-exponential function (time constants, 3-20 and 60-200 ms). The rapid and slow time constants showed a distinct voltage dependence with maximal values around -55 and -80 mV, respectively. These properties contributed to a reduction of the Na+ currents during repetitive stimulation that was more pronounced with higher stimulation frequencies and also showed a dependence on the holding potential. 5. In summary, the most striking features of DGC Na+ currents were the large current density and the presence of a current component showing a slow recovery from inactivation. Our data provide a basis for comparison with properties of Na+ currents in animal models of epilepsy, and for the study of drug actions in therapy-refractory epilepsy.
Collapse
Affiliation(s)
- G Reckziegel
- Department of Epileptology, University of Bonn Medical Center, D-53105 Bonn, Germany.
| | | | | | | | | |
Collapse
|
38
|
Schumacher TB, Beck H, Steinhäuser C, Schramm J, Elger CE. Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 1998; 39:355-63. [PMID: 9578025 DOI: 10.1111/j.1528-1157.1998.tb01387.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The anticonvulsants phenytoin (PHT), carbamazepine (CBZ), and gabapentin (GBP) are commonly used in the treatment of temporal lobe epilepsy. Ca2+ current modulation has been proposed to contribute to the antiepileptic activity of these drugs. The purpose of this study was to determine the effects of these anticonvulsants on voltage-dependent calcium channels in pathologically altered neurons from patients with chronic temporal lobe epilepsy. METHODS Acutely isolated human hippocampal granule cells were examined by using the whole-cell configuration of the patch-clamp technique. RESULTS PHT and CBZ produced a reversible, concentration-dependent inhibition of high-voltage-activated (HVA) Ca2+ currents without affecting voltage-dependent activation. The concentration-response curves of PHT and CBZ indicated maximal inhibition of 35 and 65%, respectively, with half-maximal inhibition being obtained at 89 and 244 microM, respectively. At therapeutic cerebrospinal fluid (CSF) concentrations, HVA currents were not significantly altered by PHT and CBZ. However, PHT but not CBZ showed a reduction of HVA currents of 16% at a therapeutic whole-brain concentration of 80 microM. In contrast to CBZ, PHT produced a small hyperpolarizing shift in the voltage dependence of steady-state inactivation. PHT, 80 microM, shifted the potential of half-maximal inactivation by -3.1 +/- 0.5 mV (p < 0.05). GBP, which was recently found to bind to the alpha2delta subunit of a neuronal Ca2+ channel, showed no modulation of Ca2+ conductances. CONCLUSIONS These results suggest that, in contrast to GBP and CBZ, modulation of postsynaptic Ca2+ channels can contribute to the anticonvulsant action of PHT in human hippocampal granule cells.
Collapse
|
39
|
O'Connor ER, Sontheimer H, Spencer DD, de Lanerolle NC. Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 1998; 39:347-54. [PMID: 9578024 DOI: 10.1111/j.1528-1157.1998.tb01386.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We studied Na+ channel expression and the ability to generate action potential (AP)-like responses in primary cultures of human astrocytes by whole cell patch-clamp recording techniques. METHODS Tissue samples from 22 patients with various classifications of temporal lobe epilepsy (TLE) were plated to form separate astrocyte cultures from three regions; the hippocampus, parahippocampus, and anterolateral temporal neocortex. RESULTS The resting membrane potential of seizure focus astrocytes (MTLE, mesial TLE) was significantly depolarized (approximately -55 mV) as compared with cortical astrocytes (-80 mV). Hippocampal astrocytes from other substrates for TLE (MaTLE, mass-associated TLE; PTLE, paradoxical TLE) in which the hippocampus is not the seizure focus displayed resting membrane potentials similar to those of neocortical astrocytes (approximately -75 mV). Astrocytes from the seizure focus (MTLE) displayed much larger tetrodotoxin (TTX)-sensitive Na+ currents with -66-fold higher Na+ channel density (113.5 +/- 17.41 pA/pf) than that of comparison neocortical astrocytes (1.7 +/- 3.7 pA/pf) or than that of the hippocampal and parahippocampal astrocytes of the MaTLE and PTLE groups. As a consequence of this higher channel density, seizure focus astrocytes were capable of generating AP-like responses. However, at the resting potential, most Na+ channels are inactive and no spontaneous firing was observed. In contrast, astrocytes in the comparison neocortex from all groups and the hippocampus and parahippocampus from the MaTLE and PTLE groups could not fire AP-like responses even after large current injections. CONCLUSIONS The function of Na+ channels in these astrocytes is unclear. However, the marked differences in seizure focus astrocytes as compared with cortical and nonseizure focus hippocampal astrocytes suggest a more active role for astrocytes associated with hyperexcitable neurons at a seizures focus.
Collapse
Affiliation(s)
- E R O'Connor
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | | | |
Collapse
|
40
|
Abstract
There are specific alterations in the structure or function of ion channels in the epileptic brain. Some of these alterations may promote hyperexcitability, whereas others may protect neurons from the deleterious effects of epileptic discharges. With the use of human tissue resected from epilepsy patients and the comparison of cellular properties to those found in well-defined experimental models, we will continue to gain insight into the specific ion channel changes associated with epilepsies. Further genetic studies will help to elucidate the altered molecular mechanisms underlying ion channel changes in this devastating neurological disorder (Noebels, 1996). Whether it is a change in structure, function, or both, the study of ion channels in epilepsies will soon reveal specific characteristics of ion channels found only in epileptic tissue. If the altered properties of such ion channels cannot be found in control (nonepileptic) neurons, these channels might be called "epileptic" ion channels. An understanding of the specific structure, function, and pharmacology of these "epileptic" channels will yield important clues for future therapeutical approaches aimed at preventing epileptogenesis, and insight into the processes whereby ion channels become "epileptic" may finally open the way to prophylactic treatments of the epilepsies.
Collapse
Affiliation(s)
- I Mody
- Department of Neurology, Reed Neurological Research Center, University of California-Los Angeles School of Medicine 90095, USA
| |
Collapse
|
41
|
St John JL, Rosene DL, Luebke JI. Morphology and electrophysiology of dentate granule cells in the rhesus monkey: comparison with the rat. J Comp Neurol 1997; 387:136-47. [PMID: 9331177 DOI: 10.1002/(sici)1096-9861(19971013)387:1<136::aid-cne11>3.0.co;2-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphologic and electrophysiologic properties of dentate granule cells in the young adult rhesus monkey (Macaca mulatta) were examined for the first time with whole-cell patch clamp recordings and intracellular biocytin filling in in vitro hippocampal slice preparations. Data from monkeys were compared with data generated in an identical manner from adult Sprague-Dawley rats. Intracellularly filled monkey and rat granule cells were identical in numerous morphologic parameters, including area of somata, total dendritic length, dendritic spread, segment number and length, and branching pattern. The single statistically significant difference in morphology was the vertical extent of the dendritic tree (distance from soma to fissure), which was 20% greater in the monkey. The passive membrane properties (resting membrane potential, input resistance, and membrane time constant) measured under current clamp conditions were virtually identical. The thresholds and amplitudes of action potentials were the same, but significant differences were seen in the kinetics of single action potentials. Monkey granule cell action potentials were significantly longer in duration (with slower rise and fall times) than action potentials in rat cells. These differences were likely due to a much smaller fast after hyperpolarization in the monkey as compared with the rat cells. Thus, with the exception of action potential properties, the principal finding of this study is that there is significant conservation of both form and function in dentate granule cells in these two species, despite the enormous phylogenetic separation. This suggests that granule cell properties may be extremely stable across diverse mammalian species.
Collapse
Affiliation(s)
- J L St John
- Center for Behavioral Development, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
42
|
de Lanerolle NC, Williamson A, Meredith C, Kim JH, Tabuteau H, Spencer DD, Brines ML. Dynorphin and the kappa 1 ligand [3H]U69,593 binding in the human epileptogenic hippocampus. Epilepsy Res 1997; 28:189-205. [PMID: 9332884 DOI: 10.1016/s0920-1211(97)00044-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of dynorphin (DYN), one of its binding sites (kappa 1 receptor) and their relationship to neuronal loss and granule cell hyperexcitability was examined in hippocampi from patients with temporal lobe epilepsy (TLE). In hippocampi that were not the seizure focus (mass associated temporal lobe epilepsy, MaTLE; and paradoxical temporal lobe epilepsy, PTLE) DYN-like immunoreactivity was localized in the dentate granule cells and their mossy fiber terminals within the hilus and area CA3. In hippocampi that were the seizure focus (MTLE), 89% showed an additional band of immunoreactivity confined to the inner molecular layer (IML) of the dentate gyrus, representing recurrent mossy fiber collaterals. In 11% of MTLE patients no staining was found in the IML (MTLE/DYN-). The MTLE/DYN- hippocampi were also characterized by a significantly lower degree of cell loss than in MTLE hippocampi in the dentate granule cell layer, the hilus and CA3. Both MTLE and MTLE/DYN- hippocampi showed evoked epileptiform bursting in granule cells while MTLE showed greater polysynaptic EPSPs and spontaneous excitatory activity. Thus granule cell recurrent collateral sprouting may account for only some aspects of hyperexcitability. In 30% of the MTLE group, hilar neurons of a variety of morphological types expressed DYN immunoreactivity in their somata and dendrites. The density of [3H]U69,593 binding sites in MaTLE and PTLE patients was highest in areas CA1 and the subiculum-regions having little or no DYN-staining. In the dentate molecular layer, hilus and CA3--regions with the most DYN immunoreactivity--there was a low density of ligand binding. The significance of this transmitter/receptor mismatch is yet unknown.
Collapse
Affiliation(s)
- N C de Lanerolle
- Neurosurgery Section, Yale University School of Medicine, New Haven, CT 06520-8039, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Beck H, Steffens R, Heinemann U, Elger CE. Properties of voltage-activated Ca2+ currents in acutely isolated human hippocampal granule cells. J Neurophysiol 1997; 77:1526-37. [PMID: 9084617 DOI: 10.1152/jn.1997.77.3.1526] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Properties of Ba2+ currents through voltage-dependent Ca2+ channels (IBa) were investigated in 61 dentate granule cells acutely isolated from the resected hippocampus of nine patients with therapy-refractory temporal lobe epilepsy (TLE). Currents with a high threshold of activation (HVA) peaked at 0 mV, and showed some time-dependent inactivation and a voltage of half-maximal steady-state inactivation (V1/2inact) of -16.4 mV. Application of saturating doses of omega-conotoxin (omega-CgTx) GVIA or nifedipine distinguished characteristic N-type (38%) and L-type (62% of HVA currents) Ca2+ currents. Combined application of both agents blocked HVA currents by > 95%. In a 10-mo-old child but not in adult patients, an omega-agatoxin IVA (omega-AgaTxIVA)-sensitive but omega-CgTx MVIIC-insensitive, noninactivating component of HVA currents (approximately 24%) was present that most probably corresponds to a P-type current. A T-type Ca2+ current could be separated from HVA components on the basis of its steady-state voltage-dependent inactivation (V1/2inact = -71.0 mV). The T-type Ca2+ current isolated by subtraction peaked at more negative potentials (-10 mV), showed a significantly more rapid time-dependent inactivation, and could be selectively blocked by low concentrations of Ni2+. It was insensitive to nifedipine and omega-CgTx GVIA. We conclude that L-, N-, and T-type currents are present in adult human dentate granule cells and an additional P-type current is present in neurons from a 10-mo-old patient. These data may provide a basis for comparison with animal models of epilepsy and for the elucidation of mechanisms of action of drugs intended for use in human disease.
Collapse
Affiliation(s)
- H Beck
- Department of Epileptology, University of Bonn Medical Center, Germany
| | | | | | | |
Collapse
|
44
|
Beck H, Clusmann H, Kral T, Schramm J, Heinemann U, Elger CE. Potassium currents in acutely isolated human hippocampal dentate granule cells. J Physiol 1997; 498 ( Pt 1):73-85. [PMID: 9023769 PMCID: PMC1159235 DOI: 10.1113/jphysiol.1997.sp021842] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Properties of voltage- and Ca(2+)-dependent K+ currents were investigated in thirty-four dentate granule cells acutely isolated from the resected hippocampus of eleven patients with therapy-refractory temporal lobe epilepsy (TLE). 2. When intracellular Ca2+ was strongly buffered with 11.5 mM EGTA-1 mM Ca2+ in the recording pipette, K+ currents (IK) with a slow activation and biexponential time-dependent decay could be elicited, which showed a threshold for activation around -30 mV. 3. A contribution of Ca(2+)-dependent K+ currents became apparent with intracellular solution containing 1 mM BAPTA-0.1 mM Ca2+. Superfusion of low-Ca2+ extracellular solution blocked 43% of outward currents in this recording configuration. Outward current components could also be blocked by substituting 5 mM Ba2+ for extracellular Ca2+ (78%), or by application of 100 microM Cd2+ (25%). 4. The Ca(2+)-dependent K+ currents could be pharmacologically subdivided into two components. One component was sensitive to 500 microM tetraethylammmonium (TEA; 41%) and 10 nM charybdotoxin (CTX; 47.2%). The blocking effects of 10 nM CTX and 500 microM TEA were not additive, suggesting that both agents block the same conductance. A second, smaller outward current component was blocked by 50 nM apamin (13%). 5. A transient A-type K+ current could be observed in six neurones and showed a fast monoexponential time-dependent inactivation with a steady-state voltage dependence that was distinct from that of IK. The A-type current was blocked by 4-aminopyridine (4-AP) but not by TEA or low-Ca2+ solution. 6. We conclude that outward currents in human hippocampal dentate granule cells can be separated into at least four types by their kinetic and pharmacological properties. These include at least one voltage-dependent current similar to those observed in mammalian hippocampal neurones, and two Ca(2+)-dependent K+ currents that most probably correspond to SK- and BK-type currents. A classical A-type current could be detected in some patients with Ammon's horn sclerosis (AHS) but not in patients with lesion-associated TLE.
Collapse
Affiliation(s)
- H Beck
- Department of Epileptology, University of Bonn Medical Center, Germany. H. Beck:
| | | | | | | | | | | |
Collapse
|
45
|
Beck H, Blümcke I, Kral T, Clusmann H, Schramm J, Wiestler OD, Heinemann U, Elger CE. Properties of a delayed rectifier potassium current in dentate granule cells isolated from the hippocampus of patients with chronic temporal lobe epilepsy. Epilepsia 1996; 37:892-901. [PMID: 8814103 DOI: 10.1111/j.1528-1157.1996.tb00043.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Properties of potassium outward currents were investigated in human hippocampal dentate gyrus granule cells from 11 hippocampal specimens obtained from patients with temporal lobe epilepsy (TLE) during resective surgery. METHODS Dentate granule cells were isolated enzymatically and outward currents analyzed by using the whole-cell configuration of the patch-clamp method. Hippocampal specimens were classified neuropathologically with respect to severe segmental cell loss, gliosis, and axonal sprouting (Ammon's horn sclerosis, AHS), or the presence of a focal lesion in the adjacent temporal lobe. RESULTS A delayed rectifier outward current (IK), but not an A-type potassium current (IA) or inwardly rectifying potassium currents, was observed in all cells. The average current density of IK, the time-dependent decay of IK, and the resting membrane characteristics were not significantly different between patients with and without AHS. The voltage of half-maximal activation V1/2(act) was 5.4 +/- 1.8 mV in AHS compared with -2.9 +/- 1.8 mV in lesion-associated epilepsy (NS). In contrast, V1/2(inact) was shifted in a hyperpolarizing direction in AHS (-67.7 +/- 0.6 mV) compared with that in hippocampi not showing AHS (-47.7 +/- 2.6 mV; p = 0.0017). CONCLUSIONS The altered steady-state voltage-dependence of IK may result in abnormal excitability of dentate granule cells in AHS and exert a marked influence on input-output properties of the dentate gyrus.
Collapse
Affiliation(s)
- H Beck
- Department of Epileptology, University of Bonn Medical Center, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Masukawa LM, Wang H, O'Connor MJ, Uruno K. Prolonged field potentials evoked by 1 Hz stimulation in the dentate gyrus of temporal lobe epileptic human brain slices. Brain Res 1996; 721:132-9. [PMID: 8793093 DOI: 10.1016/0006-8993(96)00153-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An abnormal electrophysiological response in brain slices of the dentate gyrus from biopsy material from patients surgically treated for intractable epilepsy (46/57), exhibited characteristics similar to the physiological hallmark of epilepsy, the paroxysmal discharge, a prolonged (30-600 ms) and often large amplitude field potential. The most striking feature of the prolonged response to a single perforant path stimulus was a predominantly biphasic field potential (23/46 cases). The biphasic response was characterized by a negative field potential of substantial duration exceeding 180 ms which followed an initial shorter duration positive field potential. Multiple population spikes occurred during both phases of the response. During a 1 Hz stimulus train applied to the perforant path, the magnitude and duration of the negative component of the field response was significantly increased. Approximately half of the cases (Group 1; 30/57) exhibited potentiation of the biphasic response, while the remaining cases (Group 2; 27/57) exhibited no negative field component during 1 Hz stimulation trains. This repetitive stimulation, in general, increased the area of the field response in a large majority of cases (44/57) regardless of the sign of the field potential. The number of population spikes following 1 Hz stimulation increased significantly for cases in both groups, although the increase was greater for those in Group 1 than in Group 2. Paired pulse depression (20 ms ISI) was reduced in cases that exhibited potentiated biphasic responses during 1 Hz stimulation (Group 1) in comparison to cases that exhibited no negative field potentials (Group 2). Paired pulse depression at a 200 ms ISI was not significantly different between the groups. During a single stimulus, bicuculline disinhibition (20 microM) resulted in either a prolonged positive or biphasic field potential. Intracellularly recorded responses to single perforant path stimuli also exhibited prolonged and large depolarizations that were comparable in time course to the duration of field potentials recorded in the same area whether generated in the absence or presence of bicuculline. The prolonged field potential after bicuculline was reduced by APV (20 microM). We suggest that the prolonged field response, whether biphasic or monophasic when generated by either 1 Hz stimulation or bicuculline disinhibition, may be due directly or indirectly to an increase in membrane depolarization mediated by activation of the NMDA receptor.
Collapse
Affiliation(s)
- L M Masukawa
- Department of Neurology, Graduate Hospital Research Center, Philadelphia, PA 19146, USA
| | | | | | | |
Collapse
|
47
|
Williamson A, Spencer SS, Spencer DD. Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy. Ann Neurol 1995; 38:778-87. [PMID: 7486870 DOI: 10.1002/ana.410380513] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hippocampal depth electrodes are often used to localize seizure onset in patients who may have temporal lobe epilepsy (TLE). A number of features of the spontaneous seizures and of their ictal onset patterns can be analyzed from these recordings. We compared a number of the typical electroencephalographic (EEG) changes at seizure onset with several cellular parameters recorded in dentate granule cells from the same 14 patients diagnosed with medial temporal sclerosis (MTS) to examine the pathophysiological correlates of this spontaneous EEG activity in this form of TLE. The intracellularly recorded parameters include the propensity to fire evoked epileptiform bursts, the absence of evoked inhibitory potentials, the presence of polysynaptic excitatory postsynaptic potentials, and the presence of spontaneous excitatory activity. We noted several correlations between the EEG data and the intracellular recordings. The absence of synaptically evoked bursts was correlated with the presence of low-voltage fast activity at seizure onset. In addition, the loss of inhibitory postsynaptic potentials was correlated with the presence of periodic spiking pre-ictally. Several other correlations were also noted. These data indicate that EEG findings may be predictive of anatomical and cellular pathological changes and provide clues to the physiological mechanisms involved in this form of epilepsy.
Collapse
Affiliation(s)
- A Williamson
- Section of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
48
|
Uruno K, O'Connor MJ, Masukawa LM. Effects of bicuculline and baclofen on paired-pulse depression in the dentate gyrus of epileptic patients. Brain Res 1995; 695:163-72. [PMID: 8556327 DOI: 10.1016/0006-8993(95)00652-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Paired-pulse field responses were recorded from the granule cell layer of the dentate gyrus in brain slices from temporal lobe epileptic patients. Paired-pulse depression (PPD) was examined using perforant path stimulation of low to moderate intensity at an inter-stimulus interval (ISI) of 20 ms. The paired-pulse ratio (PS2/PS1) was expressed as the population spike amplitude of the second response (PS2) relative to that of the first response (PS1). Representative tissue response from each patient biopsy were divided into two groups that were significantly different based on the magnitude of the highest paired-pulse ratio recorded for each biopsy specimen: the strong paired-pulse depression group (PS2/PS1 = 0.12 +/- 0.03; n = 15) and the weak paired-pulse depression group (PS2/PS1 = 0.68 +/- 0.06; n = 13). Paired-pulse ratios from the strong PPD group were relatively independent of stimulus intensity, whereas, PPD was dependent on stimulus intensity in the weak PPD group; i.e., PPD was greatest at the lowest intensity and reached a plateau at higher intensities. Bicuculline (20 microM) and low concentrations of baclofen (0.1-0.2 microM) reduced paired-pulse depression in the strong PPD group, but did not significantly change the paired-pulse ratio in the weak PPD group. Paired-pulse facilitation was observed in some cases after inhibition was blocked pharmacologically. The number of population spikes was increased in the presence of bicuculline but was unchanged by baclofen. In the strong PPD group, baclofen significantly altered the EPSP-population spike (E-S) relationship by increasing the slope of the relationship for the second response, without having an effect on the slope of the first response. Baclofen had no effect on the E-S relationship of either response in the weak PPD group. The data are consistent with (1) less inhibition in the weak PPD group compared to the strong PPD group, (2) reduction of feedback inhibition in the strong PPD group by bicuculline and by low concentrations of baclofen, and (3) the occurrence of paired-pulse facilitation when inhibition was pharmacologically reduced in the dentate gyrus of temporal lobe epileptic patients. The results are also consistent with the presence of GABAB receptors on human inhibitory interneurons that, when activated by baclofen, result in disinhibition of granule cells through feedback circuits. Although inhibition may be compromised in some epileptic human biopsy specimens, the presence of strong inhibition in other patients' biopsy material suggest the re-evaluation of the role of inhibition in epilepsy.
Collapse
Affiliation(s)
- K Uruno
- Department of Neurology, Graduate Hospital Research Center, Philadelphia, PA 19146, USA
| | | | | |
Collapse
|
49
|
Verma-Ahuja S, Evans MS, Pencek TL. Evidence for decreased calcium dependent potassium conductance in hippocampal CA3 neurons of genetically epilepsy-prone rats. Epilepsy Res 1995; 22:137-44. [PMID: 8777900 DOI: 10.1016/0920-1211(95)00040-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genetically epilepsy-prone rat (GEPR) has become an important model to study genetic predisposition to epilepsy involving not only the brainstem but also forebrain structures. Previous work in CA1 hippocampal cells showed a reduction in spike frequency adaptation and only subtle changes in slow afterhyperpolarization (AHP). As important differences exist in calcium dependent potentials in the CA1 and CA3 hippocampal cells, we compared the membrane properties of hippocampal CA3 cells in GEPRs and Sprague-Dawley (SD) rats. There was no significant difference in the resting membrane potential, input resistance, charging time constant or rheobase between GEPRs and SD rat neurons. The action potential amplitude and the width at half maximal amplitude did not differ. A marked reduction in spike frequency adaptation accompanied by a very significant reduction in AHP was seen in the GEPR rats. Since calcium dependent potassium conductance produces both spike frequency adaptation and AHP, our results suggest that this conductance is reduced in the GEPR CA3 neurons.
Collapse
Affiliation(s)
- S Verma-Ahuja
- Department of Surgery, Southern Illinois University School of Medicine, Springfield 62794, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- M S Gazzaniga
- Center for Neuroscience, University of California at Davis 95616, USA
| |
Collapse
|