1
|
Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024; 18:1425525. [PMID: 39027325 PMCID: PMC11256909 DOI: 10.3389/fnins.2024.1425525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology Isidro Espinosa de los Reyes (INPer), Mexico City, Mexico
| | | | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
2
|
Su X, Vasilkovska T, Fröhlich N, Garaschuk O. Characterization of cell type-specific S100B expression in the mouse olfactory bulb. Cell Calcium 2021; 94:102334. [PMID: 33460952 DOI: 10.1016/j.ceca.2020.102334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
S100B is an EF-hand type Ca2+-binding protein of the S100 family, known to support neurogenesis and to promote the interactions between brain's nervous and immune systems. Here, we characterized the expression of S100B in the mouse olfactory bulb, a neurogenic niche comprising mature and adult-born neurons, astrocytes, oligodendrocytes and microglia. Besides astrocytes, for which S100B is a classical marker, S100B was also expressed in NG2 cells and, surprisingly, in APC-positive myelinating oligodendrocytes but not in mature/adult-born neurons or microglia. Various layers of the bulb differed substantially in the composition of S100B-positive cells, with the highest fraction of the APC-positive oligodendrocytes found in the granule cell layer. Across all layers, ∼50 % of NG2 cells were S100B-negative. Finally, our data revealed a strong correlation between the fraction of myelinating oligodendrocytes among the S100B-positive cells and the oligodendrocyte density in different brain areas, underscoring the importance of S100B for the establishment and maintenance of myelin sheaths.
Collapse
Affiliation(s)
- Xin Su
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tamara Vasilkovska
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nicole Fröhlich
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Abstract
Serotonin (5-HT) has been intimately linked with global regulation of motor behavior, local control of motoneuron excitability, functional recovery of spinal motoneurons as well as neuronal maturation and aging. Selective degeneration of motoneurons is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Motoneurons that are preferentially affected in ALS are also densely innervated by 5-HT neurons (e.g., trigeminal, facial, ambiguus, and hypoglossal brainstem nuclei as well as ventral horn and motor cortex). Conversely, motoneuron groups that appear more resistant to the process of neurodegeneration in ALS (e.g., oculomotor, trochlear, and abducens nuclei) as well as the cerebellum receive only sparse 5-HT input. The glutamate excitotoxicity theory maintains that in ALS degeneration of motoneurons is caused by excessive glutamate neurotransmission, which is neurotoxic. Because of its facilitatory effects on glutaminergic motoneuron excitation, 5-HT may be pivotal to the pathogenesis and therapy of ALS. 5-HT levels as well as the concentrations 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 5-HT, are reduced in postmortem spinal cord tissue of ALS patients indicating decreased 5-HT release. Furthermore, cerebrospinal fluid levels of tryptophan, a precursor of 5-HT, are decreased in patients with ALS and plasma concentrations of tryptophan are also decreased with the lowest levels found in the most severely affected patients. In ALS progressive degeneration of 5-HT neurons would result in a compensatory increase in glutamate excitation of motoneurons. Additionally, because 5-HT, acting through presynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission, lowered 5-HT activity would lead to increased synaptic glutamate release. Furthermore, 5-HT is a precursor of melatonin, which inhibits glutamate release and glutamate-induced neurotoxicity. Thus, progressive degeneration of 5-HT neurons affecting motoneuron activity constitutes the prime mover of the disease and its progression and treatment of ALS needs to be focused primarily on boosting 5-HT functions (e.g., pharmacologically via its precursors, reuptake inhibitors, selective 5-HT1A receptor agonists/5-HT2 receptor antagonists, and electrically through transcranial administration of AC pulsed picotesla electromagnetic fields) to prevent excessive glutamate activity in the motoneurons. In fact, 5HT1A and 5HT2 receptor agonists have been shown to prevent glutamate-induced neurotoxicity in primary cortical cell cultures and the 5-HT precursor 5-hydroxytryptophan (5-HTP) improved locomotor function and survival of transgenic SOD1 G93A mice, an animal model of ALS.
Collapse
Affiliation(s)
- Reuven Sandyk
- The Carrick Institute for Clinical Ergonomics Rehabilitation, and Applied Neurosciences, School of Engineering Technologies State University of New York at Farmingdale, Farmingdale, New York 11735, USA.
| |
Collapse
|
4
|
Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B's double life: intracellular regulator and extracellular signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1008-22. [PMID: 19110011 DOI: 10.1016/j.bbamcr.2008.11.009] [Citation(s) in RCA: 537] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 12/22/2022]
Abstract
The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, Section Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Distinct regulation of brain-derived neurotrophic factor and noradrenaline in S100B knockout mice. Neurosci Lett 2008; 442:100-3. [DOI: 10.1016/j.neulet.2008.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/20/2008] [Accepted: 07/05/2008] [Indexed: 11/20/2022]
|
6
|
Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 2008; 49 Suppl 2:33-41. [DOI: 10.1111/j.1528-1167.2008.01491.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Khozhai LI. Formation of the Astroglia in the Mouse Neocortex after Temporary Prenatal Blockade of Serotonin Synthesis. ACTA ACUST UNITED AC 2006; 36:275-8. [PMID: 16465492 DOI: 10.1007/s11055-006-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 10/25/2022]
Abstract
The dynamics of the appearance of astrocytes in the mouse neocortex after prenatal blockade of serotonin synthesis was studied. Experiments were performed on F1(CBA/C57Bl) hybrid mice. Serotonin release was suppressed with parachlorophenylalanine, given as single doses to mothers during the early postimplantation stage of pregnancy. Astrocytes differentiating in the brain were visualized by an immunohistochemical method for detecting astrocyte intermediate filament protein, this being a specific glial fibrillary acidic protein (GFAP) allowing not only marking of cells, but also assessment of the presence, extent, and rate of cell differentiation. The results showed that in normal conditions, GFAP-positive cells appeared in layer I of all neocortical areas during the first week after birth, i.e., the area cingularis, the area occipitalis, the area parietalis, the area insularis, the area praepiriformis, the area piriformis, the area entorhinalis, and the area subiculum. The process of astrocyte differentiation intensified with development. Barrier structures also formed. During the first days of postnatal development, astrocytes and their processes appeared around vessels and the walls of the lateral ventricles. The neocortex of rats developing in conditions of blockade of serotonin synthesis showed smaller numbers of GFAP-positive cells, particularly in the white matter, at all stages of postnatal development studied.
Collapse
Affiliation(s)
- L I Khozhai
- Department of Morphology, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
WHITAKER-AZMITIA PATRICIAM. Role of the Neurotrophic Properties of Serotonin in the Delay of Brain Maturation Induced by Cocainea. Ann N Y Acad Sci 2006; 846:158-164. [DOI: 10.1111/j.1749-6632.1998.tb09734.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S. Relationship between S100β and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 2004; 1021:20-31. [PMID: 15328028 DOI: 10.1016/j.brainres.2004.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 11/28/2022]
Abstract
The expression of astrocyte marker proteins (S100beta and GFAP) during infarction and glial scar formation after transient middle cerebral artery (MCA) occlusion was examined using double immunostaining. S100beta immunoreactivity markedly decreased in the core of the injured area when observed immediately after reperfusion and did not increase again. In the periphery, however, S100beta expression increased, showing that S100beta synthesis was up-regulated. S100beta+/iNOS+ astrocytes in the periphery were observed from day 1, when small infarct areas were detectable, up to day 5, when infarct expansion had almost ended. TUNEL+ cells in the periphery were present from days 1 to 5. S100beta+/TUNEL+ cells were observed centrally and around the periphery of the injured area, predicting that cell death contributes to the increase of S100beta concentration in the injured area. Our results suggest that (1) higher concentration of S100beta in the extracellular space due to S100beta leakage from damaged astrocytes leads to up-regulation of S100beta synthesis and induction of inducible nitric oxide synthase (iNOS) synthesis in astrocytes, contributing to infarct expansion that results in DNA damage or cell death via NO and ROS production, and (2) GFAP, but not S100beta, is a main contributor to glial scar formation. On day 1 postreperfusion, the microdiascopic images of the injured areas from the unstained thick sections or the areas detected by S100beta immunoreactivity were larger than those of the infarct areas detected by hematoxylin--eosin (HE)-staining. The difference between these sizes might be useful to predict infarct expansion.
Collapse
Affiliation(s)
- Yuko Yasuda
- Cell Biology Section, Division of Basic Research, Louis Pasteur Center for Medical Research, 103-5 Sakyo, Tanaka, Monzen-cho, Kyoto 606-8225, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Rothermundt M, Peters M, Prehn JHM, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech 2003; 60:614-32. [PMID: 12645009 DOI: 10.1002/jemt.10303] [Citation(s) in RCA: 436] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
S100B is a calcium-binding peptide produced mainly by astrocytes that exert paracrine and autocrine effects on neurons and glia. Some knowledge has been acquired from in vitro and in vivo animal experiments to understand S100B's roles in cellular energy metabolism, cytoskeleton modification, cell proliferation, and differentiation. Also, insights have been gained regarding the interaction between S100B and the cerebral immune system, and the regulation of S100B activity through serotonergic transmission. Secreted glial S100B exerts trophic or toxic effects depending on its concentration. At nanomolar concentrations, S100B stimulates neurite outgrowth and enhances survival of neurons during development. In contrast, micromolar levels of extracellular S100B in vitro stimulate the expression of proinflammatory cytokines and induce apoptosis. In animal studies, changes in the cerebral concentration of S100B cause behavioral disturbances and cognitive deficits. In humans, increased S100B has been detected with various clinical conditions. Brain trauma and ischemia is associated with increased S100B concentrations, probably due to the destruction of astrocytes. In neurodegenerative, inflammatory and psychiatric diseases, increased S100B levels may be caused by secreted S100B or release from damaged astrocytes. This review summarizes published findings on S100B regarding human brain damage and neurodegeneration. Findings from in vitro and in vivo animal experiments relevant for human neurodegenerative diseases and brain damage are reviewed together with the results of studies on traumatic, ischemic, and inflammatory brain damage as well as neurodegenerative and psychiatric disorders. Methodological problems are discussed and perspectives for future research are outlined.
Collapse
|
11
|
Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 2003; 457:404-19. [PMID: 12561079 DOI: 10.1002/cne.10552] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S100B, the EF-hand Ca(++)-binding protein with gliotrophic and neurotrophic properties implicated in the pathogenesis of Alzheimer's disease, is coined as a glial marker, despite its documented presence in rodent brain neurons. We have generated a transgenic mouse whose EGFP reporter, controlled by the -1,669/+3,106 sequence of the murine S100B gene, allows the direct microscopic observation of most S100B-expressing cells in the central nervous system (CNS). From embryonic day 13 onward, EGFP expression was targeted to selected neuroepithelial, glial, and neuronal cells, indicating that cell-specific expression of S100B is regulated at the transcriptional level during development. In adult mice, the highest level of EGFP expression was found in ependymocytes; astrocytes; and spinal, medullar, pontine, and deep cerebellar S100B neurons. Our results, thus, agree with earlier reports suggesting that S100B is not a CNS glial-specific marker. In addition, we detected EGFP and S100B in forebrain neurons previously thought not to express S100B in the mouse, including neurons of primary motor and somatosensory neocortical areas, the ventral pallidum and prerubral field. Another interesting finding was the selected EGFP targeting to neonatal S100B oligodendrocytes and adult NG2 progenitors as opposed to mature S100B oligodendrocytes. This finding suggests that, except for oligodendrocytes at the last stage of myelin maturation, the -1,669/+3,106 sequence of the S100B gene is a useful reagent for driving expression of transgenes in most S100B-expressing cells of mouse brain.
Collapse
Affiliation(s)
- Virginie Vives
- Institut National de la Santé et de la Recherche Médicale U469, Centre CNRS-INSERM de Pharmacologie et d'Endocrinologie, F-34094 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
12
|
Nishiyama H, Takemura M, Takeda T, Itohara S. Normal development of serotonergic neurons in mice lacking S100B. Neurosci Lett 2002; 321:49-52. [PMID: 11872254 DOI: 10.1016/s0304-3940(01)02549-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S100B, a glia-derived calcium binding protein, exhibits strong neurite extension activity in cultured serotonergic neurons. Using S100B-knockout mice, we examined whether this protein possesses in vivo serotonergic trophic activity. The distribution of serotonergic fibers, determined by immunohistochemistry, in the brains of S100B-knockout mice was quite similar to that of wild-type mice. Furthermore, the content of serotonin and its metabolite 5-hydroxyindole-3-acetic acid in knockout mice was also indistinguishable from those of wild-type mice. Our findings argue against the hypothesis that S100B has a crucial role in neurite extension of serotonergic neurons.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Laboratory for Behavioral Genetics, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
13
|
Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, Angelucci L, Amenta F. Glial fibrillary acidic protein immunoreactive astrocytes in developing rat hippocampus. Mech Ageing Dev 2002; 123:481-90. [PMID: 11796133 DOI: 10.1016/s0047-6374(01)00356-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The developmental pattern of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes was investigated in the hippocampus (subfields CA1, CA3 and CA4) and in the dentate gyrus of male and female rats aged 11, 16, 30, 90 and 150 days by immunohistochemistry associated with image analysis. Analysis was centred on stratum radiatum, a hippocampal area rich in GFAP-immunoreactive astrocytes. The volume of different portions of hippocampus, the number and the size of astrocytes, the intensity of cell body GFAP immunostaining as well as the extension of astrocyte were assessed. A maturation pattern consisting in higher cellular expression of GFAP, an increase in overall cell size and expanding arborisation from the 11th to the 30th postnatal day, followed by stabilisation of these parameters until the 90th day of life, and a subsequent decrease in the oldest age group studied was found. A sex-related different temporal pattern of astrocytes maturation in size and GFAP content was observed in the CA1 subfield only. The increase of GFAP content during pre-weaning ages was less pronounced in females than in males as well as the decrease between the 90th and the 150th day of age. Moreover, the size of astrocytes was larger in females than in males at the 11th and 150th days of life. These findings suggest that hippocampal astrocytes undergo rapid maturation in the 1st month of postnatal life, followed by a slow consolidation of this process until the 3rd month of life. At 5 months of age, there are still dynamic changes in the mature astrocytes, which become slender and thinner probably as a response to the increased volume of hippocampus noticeable at this age.
Collapse
Affiliation(s)
- Assia Catalani
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, P. le. A. Moro 5, 00185, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bendotti C, Cole SE, Gobbi M, Hohmann C, Reeves RH. Overexpression of S100beta in transgenic mice does not protect from serotonergic denervation induced by 5,7-dihydroxytryptamine. J Neurosci Res 2002; 67:501-10. [PMID: 11835317 DOI: 10.1002/jnr.10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transgenic mice overexpressing S100beta were used to examine whether the chronic elevation of this protein alters the response to selective partial serotonergic lesions produced by bilateral intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT). Basal levels of S100beta mRNA examined by in situ hybridization were two- to threefold higher throughout the brain in transgenic than in control mice, whereas 5-HT levels in forebrain were similar in both. After the 5,7-DHT-induced lesions, no differences were found in the S100beta mRNA levels in either normal or transgenic mice. At 5 and 60 days after the lesion, forebrain 5-HT levels were reduced by 56% and 35%, respectively, in control mice and by 51% and 35%, respectively, in the transgenic mice. Analysis of the 5-HT immunostaining showed a marked decrease of the immunoreactivity in various brain regions, which was comparable at the two intervals postlesion. One exception was the medial hypothalamus, where an almost complete disappearance of 5-HT immunoreactivity was observed in the medial region at 5 days after lesion, followed by a marked reinnervation 60 days later. These hypothalamic changes were seen in both controls and S100beta-overexpressing transgenic mice. Quantitative analysis of the density of 5-HT transporter sites using [(3)H]citalopram binding, a marker of serotonergic terminals, showed a marked decrease in different brain regions at both 5 and 60 days after 5,7-DHT injections. No difference in basal and postlesion levels of [(3)H]citalopram binding was seen between transgenic and control mice. In conclusion, this study demonstrates that constitutive overexpression of S100beta in transgenic mice does not modify serotonin levels during development, nor does it protect the serotonergic neurons from selective neurotoxicity or modify the serotonergic sprouting induced by partial lesion.
Collapse
Affiliation(s)
- C Bendotti
- Laboratory of Molecular Neurobiology, Mario Negri Institute for Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy.
| | | | | | | | | |
Collapse
|
15
|
Peskind ER, Griffin WS, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer's disease. Neurochem Int 2001; 39:409-13. [PMID: 11578776 DOI: 10.1016/s0197-0186(01)00048-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Postmortem demonstration of increased expression of biologically active S100B in Alzheimer's disease (AD) and its relation to progression of neuropathological changes across the cortical regions suggests involvement of this astrocytic cytokine in the pathophysiology of AD. The hypothesis that the overexpression of S100B in Alzheimer brain is related to the progression of clinical symptoms was addressed in living persons by measuring S100B concentrations in cerebrospinal fluid (CSF) from AD patients with a broad range of clinical dementia severity and from healthy older persons. The effect of normal aging on CSF S100B concentrations also was estimated. CSF S100B did not differ between all 68 AD subjects (0.98+/-0.09 ng/ml (mean+/-S.E.M.)) and 25 healthy older subjects (0.81+/-0.13 ng/ml). When AD subjects were divided into mild/moderate stage and advanced stage clinical dementia severity by the established Clinical Dementia Rating Scale (CDR) criteria, S100B was significantly higher in the 46 mild/moderate stage AD subjects (1.17+/-0.11 ng/ml) than in either the 22 advanced stage AD subjects (0.60+/-0.12 ng/ml) or the healthy older subjects. Consistent with higher CSF S100B in mild to moderate AD, there was a significant correlation among all AD subjects between CSF S100B and cognitive status as measured by the Mini Mental State Exam (MMSE) score. CSF S100B did not differ between healthy older subjects and healthy young subjects. These results suggest increased CNS expression of S100B in the earlier stages of AD, and are consistent with a role for S100B in the initiation and/or facilitation of neuritic plaque formation in AD brain.
Collapse
Affiliation(s)
- E R Peskind
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, and Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98108, USA.
| | | | | | | | | |
Collapse
|
16
|
Yamazoe I, Takeuchi Y, Matsushita H, Kawano H, Sawada T. Serotonergic heterotypic sprouting in the unilaterally dopamine-depleted mouse neostriatum. Dev Neurosci 2001; 23:78-83. [PMID: 11173929 DOI: 10.1159/000048698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effects of unilateral 6-hydroxydopamine (6-OHDA) treatment on striatal serotonin neurons in 12-day-old mice were studied using immunohistochemistry. The unilateral 6-OHDA lesions were evaluated with tyrosine hydroxylase (TH) immunohistochemistry. The majority of the TH-immunoreactive structures disappeared from the substantia nigra and neostriatum on the 6-OHDA lesioned side. However, the density of serotonin fibers was markedly increased throughout the 6-OHDA-depleted neostriatum 1 year later. These results suggest that serotonergic heterotypic sprouting may be permanent.
Collapse
Affiliation(s)
- I Yamazoe
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
17
|
Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, Agneletti AL, Donato R. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments. Braz J Med Biol Res 1999; 32:1177-85. [PMID: 10510252 DOI: 10.1590/s0100-879x1999001000001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 microM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.
Collapse
Affiliation(s)
- M Garbuglia
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:191-231. [PMID: 10395934 DOI: 10.1016/s0167-4889(99)00058-0] [Citation(s) in RCA: 499] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.
Collapse
Affiliation(s)
- R Donato
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
19
|
Buznikov GA, Lauder JM. Changes in the physiological roles of neurotransmitters during individual development. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:11-21. [PMID: 10088145 DOI: 10.1007/bf02461353] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The classical neurotransmitters (acetylcholine and biogenic monoamines) are multifunctional substances involved in intra- and intercellular signaling at all stages of ontogenesis in multicellular animals. A cyclical scheme is proposed to describe age-related changes in neurotransmitter functions at different stages of development from oocyte maturation to neuron formation. This may reflect not only the temporospatial organization of neurotransmitter processes, but also the origin of the functions of acetylcholine and biogenic monoamines from the protosynapses of the cleaved embryo to neuronal synapses.
Collapse
Affiliation(s)
- G A Buznikov
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
20
|
Burette A, Jalenques I, Romand R. Developmental distribution of astrocytic proteins in the rat cochlear nucleus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:179-89. [PMID: 9593885 DOI: 10.1016/s0165-3806(97)00212-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To investigate the developmental distribution of cochlear nucleus (CN) astrocytes, we used immunocytochemical localization of glial fibrillary acidic protein (GFAP) and S100beta in rats at 0, 5, 10, 15, 21, 30 postnatal days plus the adult. Differential developmental trends were observed for both proteins. The spatial distribution showed a progressive increase of the number of GFAP-immunoreactive (GFAP-IR) astrocytes during development. GFAP positive cells occurred first in the granule cell domain of the ventral CN and in the molecular cell layer of the dorsal CN, then followed an outside to inside pattern of progression. The GFAP-IR reached an adult distribution 1 month after birth. By contrast with GFAP, the apparition of S100beta-immunoreactivity (S100beta-IR) was abrupt (between 0 and 5 days) followed by a rapid stabilization of density and distribution of IR cells (between 15 and 21 days). The developmental distribution of S100beta-IR cells occurred from the posterodorsal region and progressed toward a rostroventral direction. With contrast to GFAP-IR astrocytes, S100beta-positive cells were mainly restricted to the central part of the CN, while only few IR astrocytes were observed in the granule cell domain of the ventral CN or in the molecular cell layer of the dorsal CN. This differential distribution suggests that both antigens were expressed by two different cell populations at least, it is obvious during the first postnatal week. The gradual expression of GFAP and S100beta is interpreted as reflecting the time course of astrocytic maturation. These data suggest that the maturation of CN astrocytes may be linked to the final maturation of CN neurons.
Collapse
Affiliation(s)
- A Burette
- Laboratoire de Neurobiologie, Université Blaise Pascal, 63177 Aubière Cedex, France
| | | | | |
Collapse
|
21
|
Huang YL, Ding M, Hansson HA. Dorsal root ganglion nerve cells transiently express increased immunoreactivity of the calcium-binding protein S-100beta after sciatic nerve transection. Brain Res 1998; 785:351-4. [PMID: 9518690 DOI: 10.1016/s0006-8993(97)01425-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transiently increased immunoreactivity of the calcium binding protein S-100beta was demonstrated in spinal ganglion nerve cells after sciatic nerve transection. Neuropeptide Y (NPY), normally not seen in these nerve cells, appeared concomitantly. The transiently elevated co-expression of S-100beta and NPY is proposed to reflect an increased demand of neurotrophic and neuroprotective compounds in reactive neurons, tentatively regulating calcium ions.
Collapse
Affiliation(s)
- Y L Huang
- Institute of Anatomy and Cell Biology, University of Göteborg, S-413 90, Göteborg, Sweden.
| | | | | |
Collapse
|
22
|
Mazer C, Muneyyirci J, Taheny K, Raio N, Borella A, Whitaker-Azmitia P. Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res 1997; 760:68-73. [PMID: 9237519 DOI: 10.1016/s0006-8993(97)00297-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies in the past have revealed serotonin to play a role in regulating the development and maturation of the mammalian brain, largely through the release of the astroglial protein S-100beta. S-100beta plays a role in neurite extension, microtubule and dendritic stabilization and regulation of the growth associated protein GAP-43, all of which are key elements in the production of synapses. Depletion of serotonin, and thus of S-100beta, during synaptogenesis should lead to a loss of synapses and the behaviors dependent on those synapses. The current study was undertaken to test this hypothesis. In order to assess the influence of serotonin we have looked at the synaptic density in the adult after depletion, by using immunodensitometry of synaptic markers (synaptophysin and MAP-2) and by studying behaviors thought to be highly dependent on synaptic plasticity and density. Male Sprague-Dawley rats were depleted of serotonin on postnatal days (PND) 10-20 by treating with the tryptophan hydroxylase inhibitor parachlorophenylalanine (PCPA; 100 mg/kg, s.c.). On PND's 30 and 62, animals were perfused for immunodensitometry. Littermates were used for behavioral testing. At PND 55-62, the animals were tested in an interchangeable maze with olfactory cues and in an eight-arm radial maze. Our results show a loss of both synaptic markers in the hippocampus on PND 30. At PND 62, the only remaining loss was of the dendritic marker MAP-2. The animals had deficits in both behaviors tested, suggestive of spacial learning deficits and of the failure to extinguish learned behaviors or to re-learn in a new set. Our findings show the long-term consequences of interfering with the role of serotonin in brain development on the morphology and function of the adult brain. These findings may have implications for human diseases, including schizophrenia, thought to be related to neurodevelopmental insults such as malnutrition, hypoxia, viruses or in utero drug exposure. Moreover, they provide further insights into the functioning of serotonin and S-100beta in development and aging.
Collapse
Affiliation(s)
- C Mazer
- Department of Psychiatry, State University of New York at Stony Brook, 11794-8101, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ueda S, Aikawa M, Kawata M, Naruse I, Whitaker-Azmitia PM, Azmitia EC. Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse (Polydactyly Nagoya). III. Transplantation study. Brain Res 1996; 738:15-23. [PMID: 8949922 DOI: 10.1016/0006-8993(96)00758-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hippocampus and caudo-dorsal cortex of the homozygote of polydactyly mutant mouse (Polydactyly Nagoya, Pdn/Pdn) were markedly reduced in S-100 beta positive astrocytes and serotonergic fibers as compared to the heterozygote (Pdn/+) and wild type (+/+) [39]. The Pdn/Pdn mice die within 2 days after birth, so it is impossible to examine postnatal changes. To demonstrate the developmental change of Pdn/Pdn hippocampal tissue, we transplanted hippocampal pieces of neonatal Pdn/Pdn and +/+ mice into the right and left hippocampus of the same adult +/+ mice, respectively, and immunocytochemically examined them. Two weeks after transplantation, +/+ hippocampal tissue contained a large number of glial fibrillary acidic protein (GFAP) and S-100 beta positive astrocytes and a number of serotonergic fibers. While Pdn/Pdn hippocampal tissue contained numerous GFAP positive astrocytes, S-100 beta positive astrocytes and serotonergic fibers were not observed. Two months after transplantation, GFAP and S-100 beta were expressed in the Pdn/Pdn hippocampal tissue similar to the +/+ tissue. Serotonergic fibers were distributed in the +/+ tissue, while no serotonergic fibers were observed in the Pdn/Pdn transplant tissue. In contrast, no difference was observed in the tyrosine hydroxylase positive fibers between Pdn/Pdn and +/+ grafts. The expression of 5-HT1A receptor-like immunoreactivity was higher in the +/+ tissue than that of Pdn/Pdn tissue. The present results suggest that the expression of S-100 beta in the astrocytes of early stage of transplantation is a critical for fiber ingrowth of serotonergic neurons and expressions of 5-HT1A receptor.
Collapse
Affiliation(s)
- S Ueda
- Department of Histology and Neurobiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Ueda S, Aikawa M, Ishizuya-Oka A, Nishimura A, Kawata M. Alteration of serotonergic innervation in the suprachiasmatic nucleus of the rat following removal of input fibers from retina and lateral geniculate nucleus. Neurosci Lett 1996; 211:97-100. [PMID: 8830853 DOI: 10.1016/0304-3940(96)12721-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the influence of afferent input to the suprachiasmatic nucleus (SCN) on the development of serotonergic fibers in the SCN, afferent fibers from the retina and lateral geniculate nucleus (LGN) were eliminated in neonatal rats. Eight weeks after lesion, the distribution pattern of serotonergic fibers in the SCN was examined immunohistochemically. Neither bilateral enucleation nor LGN ablation altered the serotonergic fiber distribution in the SCN as compared to the normal adult rat. However, following combined lesions of bilateral enucleation and bilateral LGN ablation, the density of serotonergic fibers decreased throughout the SCN. The present results indicate that both retino-hypothalamic and geniculo-hypothalamic fibers may play an important role in the development of serotonergic innervation in the SCN in vivo.
Collapse
Affiliation(s)
- S Ueda
- Department of Histology and Neurobiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | |
Collapse
|
25
|
Nishi M, Whitaker-Azmitia PM, Azmitia EC. Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5-HT 1A agonist, S100b, and corticosteroid receptor agonists. Synapse 1996; 23:1-9. [PMID: 8723130 DOI: 10.1002/(sici)1098-2396(199605)23:1<1::aid-syn1>3.0.co;2-e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Serotonin (5-HT) has been shown to modulate brain maturation during development and adult plasticity. This effect in the whole animal may be due to activation of 5-HT1A receptors and a corresponding increases in S100b and corticosterone. Synaptophysin, an integral protein of the synaptic vesicle membrane that correlates with synaptic density and neurotransmitter release, is reduced by depletion of 5-HT in the cortex and hippocampus of the adult rat. Injections of a 5-HT1A agonist or dexamethasone can reverse the loss of synaptophysin immunoreactivity (IR). In this study we used morphometric analysis of synaptophysin-IR to study the effects of the 5-HT1A agonist, ipsapirone, and the neuronal extension factor, S100b on hippocampal neurons grown in a serum and steroid free media. Both compounds increased the synaptophysin-IR at doses previously established to be highly specific. Ipsapirone (10(-9)M) was more effective on neuronal cell bodies staining and S100b (10 ng/ml) was more effective in increasing the number of synaptophysin-IR varicosities on neuronal processes. In addition both types of corticosteroid receptor agonists, at previously established specific doses, Ru28362 (10(-8) M) and aldosterone (10(-9) M) produced smaller increases compared to control groups in both the cell body staining and the number of varicosities. The effect of these differentiating factors on the expression of synaptophysin-IR suggests multiple regulation sites for producing and maintaining pre-synaptic elements in the brain.
Collapse
Affiliation(s)
- M Nishi
- Department of Biology, New York University, New York 10003, USA
| | | | | |
Collapse
|
26
|
Ueda S, Matsumoto Y, Ishizuya-Oka A, Aikawa M, Nishimura A, Kawata M. Organization of regenerating serotonergic fibers in the hippocampal formation. Brain Res Bull 1996; 39:89-99. [PMID: 8846118 DOI: 10.1016/0361-9230(95)02055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To evaluate the capacity of fiber outgrowth of serotonergic and dopaminergic neurons from the dorsal raphe tissue, the following three experiments were performed; (1) fetal mesencephalic raphe tissue was transplanted into the ventricle near the denervated hippocampal formation of adult rats, (2) fetal mesencephalic raphe and neonatal hippocampal tissues were transplanted into the anterior eye chamber of adult rats, and (3) fetal mesencephalic raphe tissue was explanted together with the neonatal hippocampal tissue. The extent of the fiber outgrowth was examined immunohistochemically using serotonin and tyrosine hydroxylase (TH) antisera. Three months after transplantation into the host brain, serotonin-immunoreactive (ir) fibers from raphe graft were densely distributed throughout the graft and in the host hippocampal formation, and TH-ir fibers were restricted to an area near the somata of TH-ir neurons. In particular, hyperinnervation of serotonin-ir fibers was observed in the molecular layer of the dentate gyrus. Two months after intraocular transplantation, mesencephalic raphe tissue contained a large number of serotonin- and TH-ir neurons and fibers. The distribution pattern of outgrowing serotonin-ir fibers in the hippocampal tissue was similar to that observed following intraventricular transplantation. Two weeks after explantation, the raphe tissue contained numerous serotonin-ir neurons and their fibers. These fibers extended into the hippocampal tissue in the same manner as the intraventricular and intraocular transplants. These results indicate that the intrinsic factors of hippocampal tissue influence the organization of serotonergic fibers in the hippocampal formation.
Collapse
Affiliation(s)
- S Ueda
- Department of Histology and Neurobiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Bennett-Clarke CA, Lane RD, Rhoades RW. Fenfluramine depletes serotonin from the developing cortex and alters thalamocortical organization. Brain Res 1995; 702:255-60. [PMID: 8846085 DOI: 10.1016/0006-8993(95)00867-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A previous experiment from our laboratory showed that neonatal destruction of cortical serotoninergic (5-HT) axons with 5,7-dihydroxytryptamine (5,7-DHT) reduced the size of the clusters of vibrissae-related thalamocortical axons. This result suggested an important role for 5-HT in thalamocortical development, but could be questioned because of potentially direct toxic effects of 5,7-DHT on thalamocortical axons. In the present study, 5-HT was depleted from the cortex using a different method, neonatal administration of +fenfluramine, and vibrissae-related patches of thalamocortical afferents were measured when animals reached 6 days of age. Fenfluramine reduced cortical 5-HT levels to 93.9 +/- 6.0% of normal (P < 0.01) and decreased the average area of vibrissae-related lamina IV patches by 23.8 +/- 4.4% (P < 0.05). Depletion of 5-HT with +fenfluramine did not significantly reduce body, brain, or cortical weight, or the overall dimensions of the somatosensory cortex. Thus, these results extend our previous studies by showing that thalamocortical organization can be altered when 5-HT is depleted without the potential for direct toxic effects on thalamic axons.
Collapse
Affiliation(s)
- C A Bennett-Clarke
- Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
28
|
|
29
|
Ueda S, Kokotos Leonardi ET, Bell J, Azmitia EC. Serotonergic sprouting into transplanted C-6 gliomas is blocked by S-100 beta antisense gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:365-8. [PMID: 7609624 DOI: 10.1016/0169-328x(94)00269-k] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
S-100 beta, a calcium binding protein produced by astrocytes, has been proposed to be a neuronotropic agent. In order to test the tropic effects of S-100 beta in vivo, the technique of cell transplantation was used. C6 glioma cells and C6 cells containing a S-100 beta antisense gene (C6AS) were transplanted into contralateral hippocampi. 5-HT immunoreactive, varicose fibers with a normal appearance penetrated into the glioma mass and were seen in high density around the C6 cell mass. However, 5-HT fibers with enlarged, abnormal varicosities were seen bordering C6AS tissue and were very rarely observed within the C6AS cell mass. Extracellular S-100 beta from normal C6 cells may function as a growth factor on sprouting serotonergic fibers.
Collapse
Affiliation(s)
- S Ueda
- Department of Biology, New York University, NY 10003, USA
| | | | | | | |
Collapse
|
30
|
Wagemann E, Schmidt-Kastner R, Block F, Sontag KH. Altered pattern of immunohistochemical staining for glial fibrillary acidic protein (GFAP) in the forebrain and cerebellum of the mutant spastic rat. J Chem Neuroanat 1995; 8:151-63. [PMID: 7598815 DOI: 10.1016/0891-0618(94)00042-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The spastic rat is a neurological mutant of the Han-Wistar strain with prominent spasticity, tremor, and ataxia. Neurodegeneration is found in the CA3 sector of the hippocampus and in Purkinje cells of the cerebellum. We examined the forebrain and cerebellum of spastic rats for glial reactions by using immunolabelling for the astrocytic marker, glial fibrillary acidic protein (GFAP). First, a map of the GFAP-distribution was made representing a systematic series of frontal sections in controls. Reactive astrocytes with increased GFAP should occur in the areas with established neuronal degeneration, but they could also demarcate further regions with pathology in this rat strain. Since the baseline levels of GFAP-immunoreactivity differ between brain regions, control rats and clinically normal littermates served as controls to judge relative increases in major structures. In the CA3 sector and hilus of the dorsal hippocampus, a massive gliosis was detected. In the cerebellum, a patchy increase of GFAP labelling in Bergmann glia was found. Further increases of GFAP-labelling in reactive astrocytes occurred in fiber tracts, the ventral thalamic nuclei, medial geniculate nuclei, pontine region and optic layer of the superior colliculus. Inconsistent changes were noted in cortex and pallidum. No defects of glial labelling or malformations in glial architectonics were found. The reactive changes of astroglial cells in hippocampus and cerebellum are in proportion to the neuronal degeneration. The glial reactions in the other brain regions possibly reflect a reaction to fiber degeneration and incipient neuronal degeneration or functional alterations of glial cells in response to neuronal dysfunction.
Collapse
Affiliation(s)
- E Wagemann
- Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany
| | | | | | | |
Collapse
|
31
|
Lauder JM. Ontogeny of neurotransmitter systems: Substrates for developmental disabilities? ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Ueda S, Hou XP, Whitaker-Azmitia PM, Azmitia EC. Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse (Polydactyly Nagoya). II. Co-cultures study. Brain Res 1994; 633:284-8. [PMID: 8137163 DOI: 10.1016/0006-8993(94)91550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The homozygote of a mouse strain with genetic polydactyly (Polydactyly Nagoya, Pdn) shows several brain abnormalities, and significant decrease of S-100 beta in the brain [17]. An accompanying paper [18] demonstrates that the hippocampus and caudo-dorsal cortex of homozygote (Pdn/Pdn) mouse were markedly reduced in S-100 beta positive astrocytes and serotonergic fibers, and the content of 5-HT and 5-HIAA of hippocampus and cortex of Pdn/Pdn mouse was lower than those of heterozygote (Pdn/+) or wild type (+/+) mice. To further clarify the effects of target tissues from different type brains on the development of serotonergic neurons, raphe neurons from Pdn/Pdn or +/+ newborn mice were co-cultured with hippocampus or cortex of +/+ or Pdn/Pdn newborn mice. The growth of the serotonergic neurons in the mesencephalic raphe tissue dissociated cultures was estimated by measuring the specific uptake of [3H]5-HT. The development of both genotypes (Pdn/Pdn and +/+) of serotonergic neurons was enhanced by co-cultures with target tissues (hippocampus and cortex) of +/+ brain. This effect was not observed in the co-cultures with Pdn/Pdn brain as a source of target tissue. The present results support the idea that the developmental defect of serotonergic fibers in the Pdn mutant mouse is caused by the deficiency of S-100 beta in the astrocyte of this mutant, and suggest that S-100 beta is a serotonergic growth factor. This mutant mouse is a useful in vivo model to study neural-glial neurotrophic interactions.
Collapse
Affiliation(s)
- S Ueda
- Department of Biology, New York University, NY 10003
| | | | | | | |
Collapse
|