1
|
Abstract
Cerebral ischemia triggers robust phosphorylation of cAMP response element-binding protein (CREB) and CRE-mediated gene expression in neurons. Glutamate receptor activation and subsequent calcium influx may activate CREB shortly after ischemia. CREB activation leads to expression of genes encoding neuroprotective molecules, such as the antiapoptotic protein Bcl-2, and contributes to survival of neurons after ischemic insult. Recent studies have suggested that CREB may be involved in acquisition of ischemic tolerance, a phenomenon that occurs after sublethal ischemic stress. CREB activation is also involved in the survival of newborn neurons in the dentate gyrus of the hippocampus after ischemia. Therefore, CREB-related therapeutics may be promising for brain protection and endogenous neurogenesis and could promote functional recovery in ischemic stroke patients. This minireview summarizes our current understanding for the role of CREB in regulating CRE-mediated gene expression during cerebral ischemia.
Collapse
Affiliation(s)
- Kazuo Kitagawa
- Stroke Division, Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
2
|
Qiang M, Ticku MK. Role of AP-1 in ethanol-induced N-methyl-d-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. J Neurochem 2005; 95:1332-41. [PMID: 16313514 DOI: 10.1111/j.1471-4159.2005.03464.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activator protein 1 (AP-1) has been reported to regulate the gene expression in a wide variety of cellular processes in response to stimuli. In this study, we investigated the DNA-protein binding activities and promoter activity in the N-methyl-D-aspartate R2B (NR2B) gene AP-1 site in normal and ethanol-treated cultured neurons. The identity of the AP-1 site as the functional binding factor is suggested by the specific binding of nuclear extract derived from cultured cortical neurons to the labeled probes and the specific antibody-induced supershift. Mutations in the core sequence resulted in a significantly reduced promoter activity and the ability to compete for the binding. Moreover, treatment of the cultured neuron with 75 mm ethanol for 5 days caused a significant increase in the AP-1 binding activity and promoter activity. The AP-1 DNA-binding complex in control and ethanol-treated nuclear extract was composed of c-Fos, FosB, c-Jun, JunD, and phosphorylated CREB (p-CREB). Western blot analysis showed that p-CREB and FosB significantly increased, whereas c-Jun decreased. The DNA affinity precipitation assay indicated that FosB, p-CREB, and c-Jun increased in the AP-1 complex following ethanol treatment. These results suggest that AP-1 is an active regulator of the NR2B transcription and ethanol-induced changes may result at multiple levels in the regulation including AP-1 proteins expression, CREB phosphorylation and perhaps reorganization of dimmers.
Collapse
Affiliation(s)
- Mei Qiang
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | |
Collapse
|
3
|
Abstract
Hypothermia to mitigate ischemic brain tissue damage has a history of about six decades. Both in clinical and experimental studies of hypothermia, two principal arbitrary patterns of core temperature lowering have been defined: mild (32-35 degrees C) and moderate hypothermia (30-33 degrees C). The neuroprotective effectiveness of postischemic hypothermia is typically viewed with skepticism because of conflicting experimental data. The questions to be resolved include the: (i) postischemic delay; (ii) depth; and (iii) duration of hypothermia. However, more recent experimental data have revealed that a protected reduction in brain temperature can provide sustained behavioral and histological neuroprotection, especially when thermoregulatory responses are suppressed by sedation or anesthesia. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute cerebral ischemia. But the pathophysiological mechanism of this protection remains yet unclear. Although reduction of metabolism could explain protection by deep hypothermia, it does not explain the robust protection connected with mild hypothermia. A thorough understanding of the experimental data of postischemic hypothermia would lead to a more selective and effective clinical therapy. For this reason, we here summarize recent experimental data on the application of hypothermia in cerebral ischemia, discuss problems to be solved in the experimental field, and try to draw parallels to therapeutic potentials and limitations.
Collapse
Affiliation(s)
- B Schaller
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
4
|
Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E. Melatonin‐induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late‐phase activation of NF‐κB and AP‐1. FASEB J 2003; 18:149-51. [PMID: 14597558 DOI: 10.1096/fj.03-0323fje] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is followed by massive production of reactive oxygen species (ROS), which mediate secondary cellular damage. Low molecular weight antioxidants (LMWA) constitute one of the defense mechanisms of the brain, and their levels correlate with post-TBI outcome. Melatonin, the main pineal hormone, possesses antioxidant properties. We investigated the effects of melatonin on neurobehavioral recovery, brain LMWA, and activation of the redox-sensitive transcription factors nuclear factor-kappaB (NF-kappaB) and AP-1 in mice subjected to closed head injury (CHI). Given 1 h after CHI, melatonin facilitated recovery during at least 1 wk (P<0.05) and decreased lesion size by approximately twofold (P<0.01). The dose response displayed a bell-shape, i.e., neuroprotection was achieved with 5 but not 1 or 10 mg/kg. At the neuroprotective dose, melatonin treatment was associated with sustained (4 days) elevation of brain LMWA, including ascorbic acid (P<0.05). In contrast, LMWA were unaffected by the administration of the neuroprotective endocannabinoid 2-arachidonoyl glycerol. Furthermore, melatonin did not alter early phase (24 h) CHI-induced activation of NF-kappaB and AP-1; however, it blocked the robust late-phase (8 days) activation of NF-kappaB and decreased that of AP-1 to below basal levels. Our results demonstrate that melatonin induces neuroprotection, presumably via potentiation of brain antioxidants and attenuation of NF-kappaB and AP-1 activation.
Collapse
Affiliation(s)
- Sara M Beni
- Department of Pharmacology, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
5
|
Butler TL, Kassed CA, Pennypacker KR. Signal transduction and neurosurvival in experimental models of brain injury. Brain Res Bull 2003; 59:339-51. [PMID: 12507684 DOI: 10.1016/s0361-9230(02)00926-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain injury and neurodegenerative disease are linked by their primary pathological consequence-death of neurons. Current approaches for the treatment of neurodegeneration are limited. In this review, we discuss animal models of human brain injury and molecular biological data that have been obtained from their analysis. In particular, signal transduction pathways that are associated with neurosurvival following injury to the brain are presented and discussed.
Collapse
Affiliation(s)
- T L Butler
- Department of Pharmacology and Therapeutics, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
6
|
Hinoi E, Balcar VJ, Kuramoto N, Nakamichi N, Yoneda Y. Nuclear transcription factors in the hippocampus. Prog Neurobiol 2002; 68:145-65. [PMID: 12450491 DOI: 10.1016/s0301-0082(02)00078-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the mammalian hippocampus, there is a trisynaptic loop that has been often referred to in studies on learning and memory mechanisms and their physiological correlate, the long-term potentiation (LTP). The three sets of synapses are formed by the fibers of perforant pathway terminating on granule cells and by the mossy fibers and Schaeffer collaterals making connections with the pyramidal cells. Each of the three types of synapses can develop LTP. LTP is accompanied by changes in gene expression and it is the nuclear transcription, involving specific transcription factors, that is the starting point for the series of biological amplifications and consolidations both necessary for such sustained changes. The transcription factors are proteins that control gene expression, development and functional formation in every eukaryotic cell. Two categories of transcription factors have been defined to date: general factors that comprise at least 20 proteins to form multiple preinitiation complex at the TATA box (TATA rich sequence) or regulatory factors that bind to promoter or enhancer regions at specific sites on the DNA close to, or distant from, the TATA box. Transcription factors have been divided into five different major classes according to unique protein motifs. These include basic domain, zinc-finger, helix-turn-helix, beta-Scaffold factors with minor groove contacts and other transcription factors not specifically classified. Much evidence has been accumulating in favor of the participation of several transcription factors in the consolidation of memory in the mammalian hippocampus following a spatial memory task. It is, therefore, of great importance that the involvement of transcription factors in de novo protein synthesis relevant to the synaptic mechanisms that mediate the formation of long-term memory should be summarized and discussed. No specific correlation between transduction of extracellular signals and expression of nuclear transcription factors, however, has been demonstrated to date.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
7
|
Hinoi E, Fujimori S, Yoneyama M, Yoneda Y. Blockade by N-methyl-D-aspartate of elevation of activator protein-1 binding after stress in rat adrenal gland. J Neurosci Res 2002; 70:161-71. [PMID: 12271465 DOI: 10.1002/jnr.10310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cold immobilization stress induced a marked elevation of expression of activator protein-1 (AP1) complex in rat hypothalamus, pituitary, adrenal, and gastric mucosa, but not in other discrete brain structures examined, when determined immediately after stress for 3 hr. Adrenal AP1 binding linearly increased with the duration of stress up to 6 hr, whereas the increase was seen in both adrenal cortex and medulla of rats stressed for 3 hr. In adrenals, the elevation exhibited decline profiles different from those of expression of cAMP response element binding protein. Western blotting revealed that stress for 3 hr induced significant increases in expression of the components of AP1 complex, c-Fos, c-Jun, and Jun-B proteins, in adrenals, without markedly affecting expression of Fos-B, Fra-2, and Jun-D proteins. The prior systemic administration of N-methyl-D-aspartate (NMDA) led to significant prevention of the elevation after stress for 3 hr in adrenals, whereas the NMDA antagonist dizocilpine alone induced a marked increase in adrenal AP1 binding, without altering the elevation by stress. These results suggest that stress may modulate de novo protein synthesis at the level of gene transcription by AP1 complex through a molecular mechanism associated with NMDA receptor channels in rat adrenal glands.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Department of Molecular Pharmacology, Kanazawa University Faculty of Pharmaceutical Sciences, Kanazawa, Ishikawa, Japan
| | | | | | | |
Collapse
|
8
|
Shizuki K, Ogawa K, Matsunobu T, Kanzaki J, Ogita K. Expression of c-Fos after noise-induced temporary threshold shift in the guinea pig cochlea. Neurosci Lett 2002; 320:73-6. [PMID: 11849767 DOI: 10.1016/s0304-3940(02)00059-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
c-Fos is known to be a component of a transcription factor, activator protein-1, which is induced by oxidative stress. Guinea pigs were exposed to 4 kHz band noise of 110 dB SPL for 1 or 5 h and the expression of c-Fos in the organ of Corti was determined using Western blotting analysis and immunocytochemistry. c-Fos was expressed only after the noise exposure. The c-Fos expression was mainly found in the Hensen's cells, Claudius' cells and Deiter's cells of the basal and second turns of the cochlea. Since the threshold shift was temporary, the expression of c-Fos is therefore considered to contribute to the survival or protective function of the organ of Corti.
Collapse
Affiliation(s)
- Ken Shizuki
- Department of Otolaryngology, National Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| | | | | | | | | |
Collapse
|
9
|
Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology 2001; 26:443-59. [PMID: 11337130 DOI: 10.1016/s0306-4530(01)00004-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposure to chronic stress is thought to play an important role in the etiology of depression. In this disorder, a disrupted negative feedback response to exogenous glucocorticoids on cortisol secretion has been indicated. However, the regulation of glucocorticoid negative feedback by chronic stress is not fully understood. In the present study, we investigated the effects of chronic stress administered by water immersion and restraint (2 h/day) for four weeks on the glucocorticoid feedback in rats. In the acutely (one-time) stressed rats, the basal plasma corticosterone (CORT) level was markedly elevated, remained at high levels for 5 h after the termination of stress, and then decreased. In the chronically stressed rats, the CORT level was initially elevated similarly, but rapidly decreased at 2 h. In the dexamethasone (DEX) suppression test, the peak CORT level in response to stress was not suppressed by DEX in the acutely stressed rats, but was significantly suppressed in the chronically stressed rats. In contrast, the suppressive effects of DEX on the basal CORT secretion in naive rats were attenuated in the chronically stressed rats. In the chronically stressed hippocampus, which plays an important role in the regulation of the glucocorticoid feedback response, the binding of [3H]DEX was decreased and the increased response of activator protein-1 induced by acute stress was abolished. These results suggest that chronic stress induces a hypersuppressive state for induced CORT secretion in response to acute stress, which is caused by partial habituation, coping, and adaptation to the stressor, whereas it induces a hyposuppressive state for the basal CORT secretion, which is caused by glucocorticoid receptor downregulation. These mechanisms may be involved in the stress-induced neural abnormalities observed in depression.
Collapse
Affiliation(s)
- K Mizoguchi
- Pharmacology Department, Central Research Laboratories, Tsumura and Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, 300-1192, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
McCabe JT, Burrell AS. Alterations of AP-1 and CREB protein DNA binding in rat supraoptic and paraventricular nuclei by acute and repeated hyperosmotic stress. Brain Res Bull 2001; 55:347-58. [PMID: 11489342 DOI: 10.1016/s0361-9230(01)00520-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrophoretic mobility shift assays were used to analyze Fos and CREB protein-DNA-interactions in the rat hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. After intraperitoneal administration of normal saline, PVN (but not SON) extracts exhibited a significant 183% increase in binding to the activational protein-1 (AP-1) canonical DNA binding sequence. Hypertonic saline treatment resulted in a approximately 2.5-fold increase in binding by tissue samples from both regions. AP-1 binding by SON extracts after two hypertonic saline injections caused a 307% increase in binding that was significantly greater than binding by PVN extracts (207%). Fos binding was equal in the SON after one and two hypertonic saline injections, but the PVN exhibited less of an increase after two injections. Binding to the canonical cyclic adenosine monophosphate regulatory element (CRE), and phosphorylated CREB (pCREB) supershift binding, indicated pCREB is constitutively expressed. Any experimental treatment (handling and an injection) caused an elevation in binding in the PVN. AP-1 protein complex DNA binding was increased after osmotic stimulation, and SON and PVN exhibit differences in AP-1 DNA binding kinetics, after repeated hypertonic saline stress. Changes in PVN tissue samples were subtle, and may reflect the fact that magnocellular and parvocellular neurons mediate, respectively, fluid homeostasis and stress responses.
Collapse
Affiliation(s)
- J T McCabe
- Department of Anatomy, Physiology and Genetics, F. E. Hébert School of Medicine, The Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
11
|
Cho S, Park EM, Kim Y, Liu N, Gal J, Volpe BT, Joh TH. Early c-Fos induction after cerebral ischemia: a possible neuroprotective role. J Cereb Blood Flow Metab 2001; 21:550-6. [PMID: 11333365 DOI: 10.1097/00004647-200105000-00009] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of c-Fos in neurodegeneration or neuroprotection after cerebral ischemia is controversial. To investigate whether early c-Fos induction after ischemia is associated with neuroprotection, rats were subjected to 10 minutes of transient forebrain ischemia and c-Fos expression was examined. Resistant dentate granule cells and neurons in CA2-4 displayed more robust immunoreactivity than vulnerable neurons in the CA1 region of hippocampus during early hours of reperfusion. By 6 hours after reperfusion, c-Fos immunoreactivity was greatly diminished in all areas of the hippocampus. Administration of N-acetyl-O-methyldopamine (NAMDA), a compound previously shown to protect CA1 neurons against ischemia, increased c-Fos immunoreactivity in the CA1 vulnerable region at 6 hours after ischemia and protected SK-N-BE(2)C neurons from oxygen glucose deprivation. Further in vitro study showed that NAMDA potentiated phorbol-12 myristate-13 acetate (PMA)-induced c-Fos expression, AP1 binding activity, and late gene expression determined by chloramphenicol acetyltransferase (CAT) activity from AP1 containing tyrosine hydroxylase promoter-CAT fusion gene in SK-N-BE(2)C neurons. In vivo and in vitro results showed that a neuroprotectant, NAMDA, in concert with another stimulus (for example, ischemia or PMA) up-regulates c-Fos expression and suggested that the early rise of NAMDA-induced c-Fos expression in vulnerable CA1 neurons may account for neuroprotection by means of up-regulating late gene expression for survival.
Collapse
Affiliation(s)
- S Cho
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at W. M. Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Yoneda Y, Kuramoto N, Kitayama T, Hinoi E. Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain. Prog Neurobiol 2001; 63:697-719. [PMID: 11165002 DOI: 10.1016/s0301-0082(00)00036-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-lasting alterations of neuronal functions could involve mechanisms associated with consolidation of transient extracellular signals through modulation of de novo synthesis of particular functional proteins in the brain. In eukaryotes, protein de novo synthesis is mainly under the control at the level of gene transcription by transcription factors in the cell nucleus. Transcription factors are nuclear proteins with an ability to recognize particular core nucleotides at the upstream and/or downstream of target genes, and thereby to modulate the activity of RNA polymerase II that is responsible for the formation of mRNA from double stranded DNA. Gel retardation electrophoresis is widely employed for conventional detection of DNA binding activities of a variety of transcription factors with different protein motifs. Extracellular ionotropic glutamate (Glu) signals lead to rapid and selective potentiation of DNA binding of the nuclear transcription factor activator protein-1 (AP1) that is a homo- and heterodimeric complex between Jun and Fos family members, in addition to inducing expression of the corresponding proteins, in a manner unique to each Glu signal in murine hippocampus. Therefore, extracellular Glu signals may be differentially transduced into the nucleus to express AP1 with different assemblies between Jun and Fos family members, and thereby to modulate de novo synthesis of the individual target proteins at the level of gene transcription in the hippocampus. Such mechanisms may be operative on synaptic plasticity as well as delayed neuronal death through consolidation of alterations of a variety of cellular functions induced by transient extracellular signals in the brain.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Molecular Pharmacology, Kanazawa University Faculty of Pharmaceutical Sciences, 13-1 Takara-machi, Kanazawa, 920-0934, Ishikawa, Japan.
| | | | | | | |
Collapse
|
13
|
Ogita K, Kitayama T, Okuda H, Yoneda Y. Effects of glutathione depletion by 2-cyclohexen-1-one on excitatory amino acids-induced enhancement of activator protein-1 DNA binding in murine hippocampus. J Neurochem 2001; 76:1905-15. [PMID: 11259509 DOI: 10.1046/j.1471-4159.2001.00212.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of glutathione in mechanisms associated with excitatory amino acid signaling to the nuclear transcription factor activator protein-1 (AP1) in the brain using mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHX). In the hippocampus of animals treated with CHX 2 h before, a significant increase was seen in enhancement of AP1 DNA binding when determined 2 h after the injection of kainic acid (KA) at low doses. The sensitization to KA was not seen in animals injected with CHX 24 h before, in coincidence with the recovery of glutathione contents to the normal levels. By contrast, CHX did not significantly affect the potentiation by NMDA of AP1 binding under any experimental conditions. Prior treatment with CHX resulted in facilitation of behavioral changes induced by KA without affecting those induced by NMDA. These results suggest that endogenous glutathione may be at least in part involved in molecular mechanisms underlying transcriptional control by KA, but not by NMDA, signals of cellular functions.
Collapse
Affiliation(s)
- K Ogita
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan.
| | | | | | | |
Collapse
|
14
|
Kitayama T, Ogita K, Yoneda Y. Sustained potentiation of AP1 DNA binding is not always associated with neuronal death following systemic administration of kainic acid in murine hippocampus. Neurochem Int 1999; 35:453-62. [PMID: 10524713 DOI: 10.1016/s0197-0186(99)00088-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice were intraperitoneally injected with kainic acid (KA), followed by dissection of frozen coronal sections and subsequent punching out of the pyramidal and granular cell layers in the hippocampus under a binocular microscope. Systemic administration of KA resulted in marked and sustained potentiation of binding of a radiolabeled double stranded oligonucleotide probe for the nuclear transcription factor activator protein-1 (AP1) in the pyramidal cell layers of the CA1 and CA3 subfields and the granule cell layers of the dentate gyrus 2-18 h later. Morphological evaluation using cresyl violet revealed marked losses of neuronal layers in the pyramidal CA1 and CA3 subfields, but not in the granular dentate gyrus, within 6 weeks after administration. Supershift analysis using antibodies against different Jun and Fos family members differentiated between AP1 DNA binding in hippocampal nuclear extracts obtained 2 and 18 h after the administration of KA. These results suggest that neuronal death may not always follow modulation of de novo synthesis of particular proteins through sustained potentiation of AP1 DNA binding which involves expression of different Jun and Fos family members in response to systemic administration of KA in murine hippocampus.
Collapse
Affiliation(s)
- T Kitayama
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | |
Collapse
|
15
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Azuma Y, Ogita K, Yoneda Y. Constitutive expression of cytoplasmic activator protein-1 with DNA binding activity and responsiveness to ionotropic glutamate signals in the murine hippocampus. Neuroscience 1999; 92:1295-308. [PMID: 10426485 DOI: 10.1016/s0306-4522(99)00090-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gel retardation electrophoresis revealed that cytosolic fractions contained DNA binding activity of the transcription factor activator protein-1 with profiles different from those reported in nuclear extracts in murine brain. In particular, activator protein-1 DNA binding was almost undetectable at 25 degrees C in the presence of both KCl and MgCl2 in cytosol fractions. Moreover, cytoplasmic activator protein-1 binding occurred at three different mobilities on the gel when determined at 2 degrees C in the absence of MgCl2. Systemic administration of N-methyl-D-aspartate and kainate led to marked potentiation of cytoplasmic activator protein-1 binding detected as slow bands in the murine hippocampus, without markedly affecting that as a fast band. Immunoblotting and supershift assays revealed much higher expression of both immunoreactive c-Jun and c-Fos in hippocampal cytosolic fractions in response to the administration of kainate than N-methyl-D-aspartate. These results suggest that activator protein-1 may be constitutively expressed in the cytoplasm with DNA binding activity and responsiveness to ionotropic glutamate signals in a manner different from that in the nucleus in the murine hippocampus.
Collapse
Affiliation(s)
- Y Azuma
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | |
Collapse
|
17
|
Yoneda Y, Ogita K, Azuma Y, Ikeda M, Tagami H, Manabe T. N-methyl-D-aspartate signaling to nuclear activator protein-1 through mechanisms different from those for kainate signaling in murine brain. Neuroscience 1999; 90:519-33. [PMID: 10215156 DOI: 10.1016/s0306-4522(98)00647-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein de novo synthesis is mainly under the control at the level of gene transcription by transcription factors in cell nuclei in eukaryotes. The systemic administration of N-methyl-D-aspartate resulted in selective but transient potentiation of binding of a radiolabeled double-stranded oligonucleotide probe for the nuclear transcription factor activator protein-1 in murine hippocampus, without markedly affecting binding of probes for other transcription factors. By contrast, kainic acid induced more potent and more persistent potentiation of activator protein- binding in the hippocampus than N-methyl-D-aspartate. The protein synthesis inhibitor cycloheximide was effective in significantly preventing the potentiation by N-methyl-D-aspartate, but not that by kainic acid at the doses used. Moreover, kainic acid induced much more and longer expression of immunoreactive c-Fos protein in the hippocampus than N-methyl-D-aspartate. However, neither N-methyl-D-aspartate nor kainate induced expression of cyclic AMP response element binding protein phosphorylated at serine133 in the hippocampus from 10 min to 24 h after the administration. Instead, kainate was more potent than N-methyl-D-aspartate in facilitating both dephosphorylation at serine and phosphorylation at tyrosine of particular nuclear proteins in the hippocampus. These results suggest that N-methyl-D-aspartate and kainate signals may be differentially transduced into cell nuclei to express the activator protein-1 complex through molecular mechanisms which differ from phosphorylation of cyclic AMP response element binding protein at serine133 but involve serine dephosphorylation and/or tyrosine phosphorylation of particular nuclear proteins in the murine hippocampus.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Hata R, Gass P, Mies G, Wiessner C, Hossmann KA. Attenuated c-fos mRNA induction after middle cerebral artery occlusion in CREB knockout mice does not modulate focal ischemic injury. J Cereb Blood Flow Metab 1998; 18:1325-35. [PMID: 9850145 DOI: 10.1097/00004647-199812000-00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To elucidate the mechanism of ischemia-induced signal transduction in vivo, we investigated the effect of the targeted disruption of the alpha and delta isoforms of the cAMP-responsive element-binding protein (CREB) on c-fos and heatshock protein (hsp) 72 gene induction. Permanent focal ischemia was induced by occlusion of the middle cerebral artery of the CREB mutant mice (CREB(-/-), n = 5) and the wild-type mice (n = 6). Three hours after onset of ischemia, the neurologic score was assessed and pictorial measurements of ATP and cerebral protein synthesis (CPS) were carried out to differentiate between the ischemic core (where ATP is depleted), the ischemic penumbra (where ATP is preserved but CPS is inhibited), and the intact tissue (where both ATP and CPS are preserved). There were no significant differences in neurologic score or in ATP, pH, and CPS between the two groups, suggesting that the sensitivity of both strains to ischemia is the same. Targeted disruption of the CREB gene significantly attenuated c-fos gene induction in the periischemic ipsilateral hemisphere but had no effect on either c-fos or hsp72 mRNA expression in the penumbra. The observations demonstrate that CREB expression, despite its differential effect on c-fos, does not modulate acute focal ischemic injury.
Collapse
Affiliation(s)
- R Hata
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | | | | | |
Collapse
|
19
|
Abstract
Although hypothermia as a means of cerebral protection against and resuscitation from ischemic damage has a history of approximately six decades, extensive studies, both in basic and clinical fields, on the mechanisms, effects and methods of mild hypothermia at temperatures no less than 31 degrees C have started only in the last decade. In experiments on rodents, hypothermia in the postischemic period that is introduced up to several hours after reperfusion and is maintained for one day followed by a slow rewarming, significantly protects hippocampal neurons against damage. The mode of action of hypothermia is apparently non-specific and multi-focal in widely progressing cascade reactions in ischemic cells; namely, suppressing: (1) glutamate surge followed by; (2) intraneuronal calcium mobilization; (3) sustained activation of glutamate receptors; (4) dysfunction of blood brain barrier; (5) proliferation of microglial cells; and (6) production of superoxide anions and nitric oxide. In addition, mild hypothermia modulates processes in ischemic condition at the level of cell nucleus, such as the binding of transcription factor AP-1 to DNA, and ameliorates the depression of protein synthesis. This non-specific and widely affecting manner might explain why hypothermia is superior to any medicine developed. Recent clinical trials of mild hypothermia in various individual institutions have revealed significantly beneficial outcomes in some cases, along with an accumulation of practical knowledge of techniques and treatments. Large scale randomized studies involving multiple institutions as well as exchange of informations and ideas are needed for further development of hypothermia treatment.
Collapse
Affiliation(s)
- K Kataoka
- Department of Physiology, Ehime University, School of Medicine, Japan
| | | |
Collapse
|
20
|
Kuramoto N, Azuma Y, Inoue K, Ogita K, Mitani A, Zhang L, Yanase H, Masuda S, Kataoka K, Yoneda Y. Correlation between potentiation of AP1 DNA binding and expression of c-Fos in association with phosphorylation of CREB at serine133 in thalamus of gerbils with ischemia. Brain Res 1998; 806:152-64. [PMID: 9739129 DOI: 10.1016/s0006-8993(98)00693-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein biosynthesis is mainly under the control at the level of gene transcription in eukaryotes. Transcription factors are nuclear proteins with abilities to modulate the activity of RNA polymerase II which is responsible for the formation of messenger RNA from double stranded DNA in the cell nuclei. Binding of a radiolabeled oligonucleotide probe for the transcription factor activator protein-1 (AP1) was transiently potentiated 1 to 6 h after the recirculation of blood supply in the thalamus and striatum, but not in the entorhinal cortex, olfactory bulb, frontal cortex, cerebellar cortex and medulla-pons, in gerbils with transient global forebrain ischemia for 5 min, in addition to the hippocampal subregions. The ischemic insult not only increased the immunoreactivity with an antibody against cyclic AMP response element binding protein (CREB) phosphorylated at serine133, but also induced the expression of both c-Jun and c-Fos family proteins 3 h after the recirculation in the thalamus. Limited proteolysis by Staphylococcus aureus (S. aureus) V8 protease revealed the expression of different partner proteins of AP1 in response to ischemic signals in the thalamus. Moreover, ischemia for 2 min led to more prolonged elevation of AP1 binding in the thalamus at least up to 12 h after the reperfusion than that seen with ischemia for 5 min. These results suggest that potentiation of AP1 DNA binding may at least in part involve mechanisms associated with the expression of c-Fos protein through phosphorylation of CREB at serine133 in the thalamus of gerbils with ischemia.
Collapse
Affiliation(s)
- N Kuramoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yoneda Y, Kuramoto N, Azuma Y, Ogita K, Mitani A, Zhang L, Yanase H, Masuda S, Kataoka K. Possible involvement of activator protein-1 DNA binding in mechanisms underlying ischemic tolerance in the CA1 subfield of gerbil hippocampus. Neuroscience 1998; 86:79-97. [PMID: 9692745 DOI: 10.1016/s0306-4522(98)00001-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transcription factors are nuclear proteins with an ability to recognize particular nucleotide sequences on double stranded genomic DNAs and thereby modulate the activity of RNA polymerase II which is responsible for the formation of messenger RNAs in cell nuclei. Gel retardation electrophoresis revealed that transient forebrain ischemia for 5 min led to drastic potentiation of binding of a radiolabelled double-stranded oligonucleotide probe for the transcription factor activator protein-1, in the thalamus as well as the CA1 and CA3 subfields and the dentate gyrus of the hippocampus of the gerbils previously given ischemia for 2 min two days before, which is known to induce tolerance to subsequent severe ischemia in the CA1 subfield. By contrast, ischemia for 5 min resulted in prolonged potentiation of activator protein-1 binding in the vulnerable CA1 subfield of the gerbils with prior ischemia for 5 min 14 days before, which is shown to induce delayed death of the pyramidal neurons exclusively in this subfield. Similar prolongation was seen with activator protein-1 binding in the vulnerable thalamus but not in the resistant CA3 subfield and dentate gyrus of the gerbils with such repeated ischemia for 5 min. Limited proteolysis by Staphylococcus aureus V8 protease as well as supershift assays using antibodies against c-Fos and c-Jun proteins demonstrated the possible difference in constructive partner proteins of activator protein-1 among nuclear extracts of the CA1 subfield obtained from gerbils with single, tolerated and repeated ischemia. These results suggest that de novo protein synthesis may underlie molecular mechanisms associated with acquisition of the ischemic tolerance through modulation at the level of gene transcription by activator protein-1 composed of different constructive partner proteins in the CA1 subfield. Possible participation of glial cells in the modulation is also suggested in particular situations.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Azuma Y, Nishiguchi M, Tagami H, Ogita K, Yoneda Y. Possible in vivo crosstalk between transcription factors with zinc-finger and leucine-zipper motifs in murine peripheral but not central excitable tissues. Neurochem Int 1998; 32:325-36. [PMID: 9596555 DOI: 10.1016/s0197-0186(97)00097-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In eukaryotes, de novo synthesis of proteins is mainly under control at the level of gene transcription by nuclear transcription factors with unique protein motifs such as leucine-zipper and zinc-finger. Binding of radiolabeled oligonucleotide probes for the "leucine-zipper" transcription factors, including activator protein-1 (AP1) and cyclic AMP response element binding protein (CREB), was markedly reduced in nuclear extracts of the adrenals from mice sacrificed 2 h after the subcutaneous injection of triamcinolone acetonide (TA), an agonist at glucocorticoid (GC) receptors which are also a transcription factor with "zinc-finger" motifs. The reduction was most significant 2 h after the administration, with recovery to the control level within 7 h after the injection. Moreover, the administration of TA invariably doubled immunoreactivities to an antibody against human GC receptors in nuclear fractions of the adrenal, pituitary and hypothalamus, with a concomitant reduction of those in cytosol fractions. Similar inhibition by TA was also seen with AP1 binding in the pituitary, while TA did not affect binding of radioprobes for AP1 and CREB in any discrete brain structures. These results suggest that systemic TA signals may be preferentially transduced into cell nuclei to attenuate DNA binding activities of AP1 through molecular mechanisms associated with crosstalk between transcription factors with different protein motifs in murine peripheral but not central excitable tissues.
Collapse
Affiliation(s)
- Y Azuma
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|
23
|
Panickar KS, Purushotham K, King MA, Rajakumar G, Simpkins JW. Hypoglycemia-induced seizures reduce cyclic AMP response element binding protein levels in the rat hippocampus. Neuroscience 1998; 83:1155-60. [PMID: 9502254 DOI: 10.1016/s0306-4522(97)00466-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic AMP response element binding protein (CREB) is a transcription factor that has been implicated in the activation of protein synthesis required for long-term memory. Since memory deficits are manifest following seizure, we undertook the present study to investigate the effects of hypoglycemia-induced seizure on CREB-immunoreactive neurons in several brain regions. We induced generalized seizures in male Long Evans rats (n=5) by injecting them with insulin (30 IU/kg, i.p). Animals were recovered by administration of 3 ml of 30% glucose within 5 min of the occurrence of seizure. Control animals (n=3) were injected with saline instead of insulin. All animals were perfused 90 min after recovery and the brains processed for CREB immunohistochemistry. Cell counts were determined for CREB-positive neurons using a computer-assisted program. When compared to control animals there was a 50% decrease (P<0.0001) in CREB-positive neurons in the CA1 region of the experimental animals. In the CA3 and dentate gyrus there was a 36% (P<0.001) and 25% decrease (P<0.001), respectively. Given the importance of hippocampus in memory-related processes and evidence that CREB is critical for memory formation, it is possible that seizures interfere with memory by disrupting CREB-dependent transcription.
Collapse
Affiliation(s)
- K S Panickar
- Department of Pharmacology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
24
|
Panickar KS, Guan G, King MA, Rajakumar G, Simpkins JW. 17?-estradiol attenuates CREB decline in the rat hippocampus following seizure. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(199712)33:7<961::aid-neu7>3.0.co;2-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Yoneda Y, Azuma Y, Inoue K, Ogita K, Mitani A, Zhang L, Masuda S, Higashihara M, Kataoka K. Positive correlation between prolonged potentiation of binding of double-stranded oligonucleotide probe for the transcription factor AP1 and resistance to transient forebrain ischemia in gerbil hippocampus. Neuroscience 1997; 79:1023-37. [PMID: 9219965 DOI: 10.1016/s0306-4522(97)00048-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gel retardation electrophoresis revealed that binding of a radiolabelled double-stranded oligonucleotide probe for the nuclear transcription factor activator protein-1 was markedly potentiated in the CA1 and CA3 subfields and the dentate gyrus of the hippocampus of the gerbils with transient forebrain ischemia for 5 min, which is known to induce delayed death of pyramidal neurons exclusively in the CA1 subfield. The potentiation was transient in the vulnerable CA1 subfield, but persistent up to 18 h in the resistant CA3 subfield and dentate gyrus. However, no significant alteration was detected in endogenous levels of cyclic AMP response element binding protein phosphorylated at serine133 in these three different hippocampal structures 3 h after the reperfusion. On the other hand, hypothermia during ischemia which is known to protect the CA1 subfield against ischemic damages, led to a prolonged elevation of the activator protein-1 binding up to 9 h after the reperfusion in this vulnerable subfield at least in part through expression of c-Fos protein. Moreover, activator protein-1 binding was significantly elevated in the CA1 subfield up to 12 h after forebrain ischemia for 2 min which is shown not to induce marked damages to the vulnerable subfield. These results suggest that prolonged elevation of DNA binding activity of activator protein-1 may be responsible for molecular mechanisms underlying the unique vulnerability and/or resistance of particular subfields to a transient ischemic insult in the gerbil hippocampus.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kataoka K, Mitani A, Yanase H, Zhang L, Higashihara M, Ogata T, Tsuji K, Nakamura Y, McRae A, Ogita K, Yoneda Y. Ischemic neuronal damage. How does mild hypothermia modulate it? MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 28:191-5. [PMID: 8871959 DOI: 10.1007/bf02815222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The significance of mild hypothermia as a therapeutic measure for ischemic brain damage is presented on the basis of different experimental results. An extracellular glutamate surge, a sustained activation of N-methyl-D-aspartate (NMDA) receptors, and an enhancement of DNA binding activity to transcription factor AP-1, all being key items directly linked to excitotoxic neuronal damage, are deeply affected by slightly lowering temperature (mild hypothermia [MH]). The cellular mechanism of MH seems rather nonspecific but tends to collectively involve these key items rendering neurons resistant to ischemic damage. Clinical application of MH should be a great challenge to relieve deadly effects on central neurons.
Collapse
Affiliation(s)
- K Kataoka
- Department of Physiology, Ehime University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nagamine K, Shibamoto S, Takeuchi K, Miyazawa K, Kitamura N, Chatani Y, Kohno M, Ito F. Dissociation of c-fos induction and mitogen-activated-protein kinase activation from the hepatocyte-growth-factor-induced motility response in human gastric carcinoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:476-81. [PMID: 8612619 DOI: 10.1111/j.1432-1033.1996.t01-1-00476.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The function of hepatocyte growth factor/scatter factor (HGF/SF) is to increase proliferation as well as to stimulate motility and disperse cell colonies of epithelial cells. In this study, we examined the motogenic and mitogenic responses of two human gastric carcinoma cell types, MKN7 and MKN74. Cell motility of both cell lines was markedly stimulated by HGF/SF. In contrast, HGF/SF stimulated cell growth of MKN74 cells, but did not stimulate growth of MKN7 cells. To address the cause of the difference in response of these cells, which may reflect some differences in signaling pathways downstream from the HGF/SF receptor, c-Met, we investigated the induction of the proto-oncogene c-fos. The level of c-fos mRNA increased and reached a maximum approximately 40 min after HGF/SF stimulation in MKN74 cells, and thereafter its level rapidly decreased. In contrast, the level of c-fos expression was very low irrespective of the stimulation in MKN7 cells. c-Fos protein was transiently induced only in MKN74 cells l h after treatment with HGF/SF, and its levels subsequently decreased. We subsequently examined the activation of mitogen-activated-protein kinase, which is a major mediator in the signaling pathway leading to the stimulation of c-fos transcription, after HGF/SF treatment in both cell lines. Mitogen-activated-protein kinase was markedly activated by this treatment in MKN74 cells, but was only slightly activated in MKN7 cells. These results suggest that although mitogen-activated-protein kinase activation and c-fos induction play an essential role in the signaling pathway leading to cell growth, they are not required for the motility response induced by HGF/SF.
Collapse
Affiliation(s)
- K Nagamine
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ogita K, Amizuka T, Azuma Y, Yoneda Y. Differentiation by magnesium ions of affinities of nuclear proteins for consensus core nucleotide element of the transcription factor c-Myc in murine brain. Neurochem Res 1996; 21:201-9. [PMID: 9182244 DOI: 10.1007/bf02529136] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The addition of divalent cations such as Mg(2+) and Ca(2+) ions markedly reduced binding of a radiolabeled double stranded oligonucleotide probe for the transcription factor c-Myc in the presence of 100 mM KCl in nuclear extracts of the mouse whole brain. Irrespective of the addition of MgCl(2), binding was selectively competed with the unlabeled probe for c-Myc having a double stranded conformation. Treatment with V8 protease differentially modulated binding of the probe for c-Myc determined in the presence and absence of added MgCl(2). Introduction of irreversible covalent bonding between the radiolabeled probe and nuclear proteins led to retarded mobility of the radioactive probe/protein complex in the presence of MgCl(2) on sodium dodecyl sulfate electrophoresis regardless of treatment with DNase. However, an antibody against the c-Myc protein affected neither mobility nor intensity of the radioactive band on gel retardation electrophoresis. Moreover, regional distribution was different from each other in mouse brain when determined in the presence and absence of added MgCl(2). These results suggest that magnesium ions may have an ability to differentiate between nuclear c-Myc family proteins with different affinities for the consensus core nucleotide element CACGTG in murine brain.
Collapse
Affiliation(s)
- K Ogita
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | |
Collapse
|