1
|
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019; 38:32-47. [PMID: 30669883 DOI: 10.1080/15368378.2019.1567526] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- a Department of Electronics , Engineering and Architecture Faculty of Mus Alparslan University , Mus , Turkey
| | - Hakki Murat Bilgin
- b Department of Physiology , Medical School of Dicle University , Diyarbakir , Turkey
| | - Veysi Akpolat
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- d Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Korkut Yegin
- e Department of Electrical and Electronics Engineering , Ege University , Izmir , Turkey
| | - Mehmet Cihan Yavas
- f Department of Biophysics , Medical School of Ahi Evran University , Kirsehir , Turkey
| | - Mehmet Zulkuf Akdag
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
2
|
Bartelt-Kirbach B, Slowik A, Beyer C, Golenhofen N. Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/αB-crystallin after transient middle cerebral artery occlusion in rats. Cell Stress Chaperones 2017; 22:653-663. [PMID: 28425051 PMCID: PMC5465040 DOI: 10.1007/s12192-017-0794-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke leads to cellular dysfunction, cell death, and devastating clinical outcomes. The cells of the brain react to such a cellular stress by a stress response with an upregulation of heat shock proteins resulting in activation of endogenous neuroprotective capacities. Several members of the family of small heat shock proteins (HspBs) have been shown to be neuroprotective. However, yet no systematic study examined all HspBs during cerebral ischemia. Here, we performed a comprehensive comparative study comprising all HspBs in an animal model of stroke, i.e., 1 h transient middle cerebral artery occlusion followed by 23 h of reperfusion. On the mRNA level out of the 11 HspBs investigated, HspB1/Hsp25, HspB3, HspB4/αA-crystallin, HspB5/αB-crystallin, HspB7/cvHsp, and HspB8/Hsp22 were significantly upregulated in the peri-infarct region of the cerebral cortex of infarcted hemispheres. HspB1 and HspB5 reached the highest mRNA levels and were also upregulated at the protein level, suggesting that these HspBs might be functionally most relevant. Interestingly, in the infarcted cortex, both HspB1 and HspB5 were mainly allocated to neurons and to a lesser extent to glial cells. Additionally, both proteins were found to be phosphorylated in response to ischemia. Our data suggest that among all HspBs, HspB1 and HspB5 might be most important in the neuronal stress response to ischemia/reperfusion injury in the brain and might be involved in neuroprotection.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
3
|
SHIMURA HIDEKI, TANAKA RYOTA, URABE TAKAO, HATTORI NOBUTAKA. Heat Shock Protein 27 (HSP27) As a Therapeutic Target in Ischemic Stroke and Neurodegenerative Disorders. JUNTENDO IJI ZASSHI 2017. [DOI: 10.14789/jmj.63.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- HIDEKI SHIMURA
- Department of Neurology, Juntendo University Urayasu Hospital
| | - RYOTA TANAKA
- Department of Neurology, Juntendo University Faculty of Medicine
| | - TAKAO URABE
- Department of Neurology, Juntendo University Urayasu Hospital
| | - NOBUTAKA HATTORI
- Department of Neurology, Juntendo University Faculty of Medicine
| |
Collapse
|
4
|
Esmekaya MA, Tuysuz MZ, Tomruk A, Canseven AG, Yücel E, Aktuna Z, Keskil S, Seyhan N. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure. J Chem Neuroanat 2016; 75:111-5. [PMID: 26836107 DOI: 10.1016/j.jchemneu.2016.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/28/2016] [Indexed: 11/15/2022]
Abstract
The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain.
Collapse
Affiliation(s)
| | | | - Arın Tomruk
- Department of Biophysics, Gazi University, Ankara, Turkey
| | | | - Engin Yücel
- Department of Neurosurgery, Baskent University, Alanya Training and Research Hospital, Antalya, TURKEY
| | - Zuhal Aktuna
- Department of Medical Pharmacology, Kırıkkale University, Kırıkkale, TURKEY
| | - Semih Keskil
- Department of Neurosurgery, Kırıkkale University, Kırıkkale, TURKEY
| | - Nesrin Seyhan
- Department of Biophysics, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Liu Y, Zhu S, Wang Y, Hu J, Xu L, Ding L, Liu G. Neuroprotective effect of ischemic preconditioning in focal cerebral infarction: relationship with upregulation of vascular endothelial growth factor. Neural Regen Res 2014; 9:1117-21. [PMID: 25206770 PMCID: PMC4146099 DOI: 10.4103/1673-5374.135313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/14/2022] Open
Abstract
Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic preconditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reperfusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after occlusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfu Wang
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jingquan Hu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lili Xu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Ding
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Guangjian Liu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
6
|
Bartelt-Kirbach B, Golenhofen N. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons. Cell Stress Chaperones 2014; 19:145-53. [PMID: 23959629 PMCID: PMC3857434 DOI: 10.1007/s12192-013-0452-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 01/17/2023] Open
Abstract
Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
7
|
Gruden G, Barutta F, Catto I, Bosco G, Caprioli MG, Pinach S, Fornengo P, Cavallo-Perin P, Davini O, Cerrato P, Bruno G. Serum levels of heat shock protein 27 in patients with acute ischemic stroke. Cell Stress Chaperones 2013; 18:531-3. [PMID: 23334892 PMCID: PMC3682014 DOI: 10.1007/s12192-013-0403-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/26/2022] Open
Abstract
Expression of intracellular heat shock protein 27 (Hsp27) rises in the brain of animal models of cerebral ischemia and stroke. Hsp27 is also released into the circulation and the aim of the present study was to investigated if serum Hsp27 (sHsp27) levels are altered in patients with acute ischemic stroke. sHsp27 was measured in 15 patients with acute ischemic stroke and in 14 control subjects comparable for age, sex, and cardiovascular risk factors. In patients, measurements were performed at admission and 1, 2, and 30 days thereafter. At admission, mean sHsp27 values were threefold higher in patients than in controls. In patients, sHsp27 values dropped after 24 h, rose again at 48 h, and markedly declined at 30 days, indicating the presence of a temporal trend of sHsp27 values following acute ischemic stroke.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Science, University of Turin, Corso Dogliotti 14, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Remote ischemic conditioning (RIC) is an intervention, in which intermittent episodes of ischemia and reperfusion in an organ or tissue distant from the target organ requiring protection, provide armour against lethal ischemia-reperfusion injury. Although the exact mechanisms underlying the protection mediated through RIC have not been clearly established, the release of humoral factors and the activation of neural pathways have been implicated. There is now clinical evidence suggesting that this form of protection can be induced by a simple, noninvasive, and cost-effective procedure such as inflation and deflation of a blood pressure cuff and that this intervention provides increased organ protection in a variety of clinical scenarios, for example, in myocardial infarction. Here we provide an overview of the history and evolution of RIC, the potential mechanisms underlying its protective effects, and published randomized clinical trials in cardiovascular procedures.
Collapse
|
9
|
Abisambra JF, Jinwal UK, Jones JR, Blair LJ, Koren J, Dickey CA. Exploiting the diversity of the heat-shock protein family for primary and secondary tauopathy therapeutics. Curr Neuropharmacol 2012; 9:623-31. [PMID: 22654720 PMCID: PMC3263456 DOI: 10.2174/157015911798376226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strategies are emerging that target this family of chaperones to modulate their pathobiology. This article focuses on the use of Hsp-based therapeutics for treating primary and secondary tauopathies like Alzheimer’s disease. It will particularly focus on the pharmacological targeting of the Hsp70/90 system and the value of manipulating Hsp27 for treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Jose F Abisambra
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
10
|
Phosphorylation of HSP27 by protein kinase D is essential for mediating neuroprotection against ischemic neuronal injury. J Neurosci 2012; 32:2667-82. [PMID: 22357851 DOI: 10.1523/jneurosci.5169-11.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 27 (HSP27) (or HSPB1) exerts cytoprotection against many cellular insults, including cerebral ischemia. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical downstream target of HSP27 conferring the neuroprotective effects of HSP27 against neuronal ischemia. However, the function of HSP27 is highly influenced by posttranslational modification, with differential cellular effects based on phosphorylation at specific serine residues. The role of phosphorylation in neuronal ischemic neuroprotection is currently unknown. We have created transgenic mice and viral vectors containing HSP27 mutated at three critical serine residues (Ser15, Ser78, and Ser82) to either alanine (HSP27-A, nonphosphorylatable) or aspartate (HSP27-D, phosphomimetic) residues. Under both in vitro and in vivo neuronal ischemic settings, overexpression of wild-type HSP27 (HSP27) and HSP27-D, but not HSP27-A, was neuroprotective and inhibited downstream ASK1 signaling pathways. Consistently, overexpressed HSP27 was phosphorylated by endogenous mechanisms when neurons were under ischemic stress, and single-point mutations identified Ser15 and Ser82 as critical for neuroprotection. Using a panel of inhibitors and gene knockdown approaches, we identified the upstream kinase protein kinase D (PKD) as the primary kinase targeting HSP27 directly for phosphorylation. PKD and HSP27 coimmunoprecipitated, and inhibition or knockdown of PKD abrogated the neuroprotective effects of HSP27 as well as the interaction with and inhibition of ASK1 signaling. Together, these data demonstrate that HSP27 requires PKD-mediated phosphorylation for its suppression of ASK1 cell death signaling and neuroprotection against ischemic injury.
Collapse
|
11
|
Stroke Preconditioning to Identify Endogenous Protective or Regenerative Mechanisms. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Ikeda Y, Matsuura T, Abe K. Neurological and pathological improvements of cerebral infarction in mice with platinum nanoparticles. J Neurosci Res 2011; 89:1125-33. [DOI: 10.1002/jnr.22622] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/07/2011] [Accepted: 01/15/2011] [Indexed: 11/06/2022]
|
13
|
Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage. Neurochem Int 2010; 57:844-50. [PMID: 20849898 DOI: 10.1016/j.neuint.2010.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/26/2010] [Accepted: 09/02/2010] [Indexed: 01/19/2023]
Abstract
UNLABELLED This study investigated the effect of geldanamycin post-treatment on the development of secondary brain injury and neurological deficits in a mouse model of intracerebral hemorrhage. CD-1 mice received stereotactic injection of collagenase type VII into the right basal ganglia. Treatment groups were administered 1 mg/kg (low dose) or 10 mg/kg (high dose) of geldanamycin. Mice were euthanized at two time-points: 24 h or 72 h. Blood-brain-barrier permeability, brain edema, and neurobehavioral deficits were assessed. Additionally, the effects of geldanamycin on heat shock protein 27 and 72; tumor necrosis factor-alpha and interleukin 1 beta expressions were evaluated. High dose geldanamycin significantly attenuated blood-brain barrier disruption and brain edema after intracerebral hemorrhage. Neurobehavioral outcomes were significantly improved in some parameters by high dose treatment. Molecular results showed a marked increase in heat shock protein 72 expression in ipsilateral brain of geldanamycin treated groups with a reduction in the pro-inflammatory tumor necrosis factor-alpha. CONCLUSION Geldanamycin post-treatment is neuroprotective in the mouse model of intracerebral hemorrhage. Geldanamycin administration results in reduction of inflammation, preservation of blood-brain-barrier and amelioration of neurobehavioral deficits after an insult possibly by upregulation of heat shock protein 72.
Collapse
|
14
|
Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010; 92:184-211. [PMID: 20685377 DOI: 10.1016/j.pneurobio.2010.05.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.
Collapse
Affiliation(s)
- R Anne Stetler
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, United States.
| | | | | | | | | | | | | |
Collapse
|
15
|
Stetler RA, Gao Y, Signore AP, Cao G, Chen J. HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med 2010; 9:863-72. [PMID: 19860665 DOI: 10.2174/156652409789105561] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The heat shock protein (HSP) family has long been associated with a generalized cellular stress response, particularly in terms of recognizing and chaperoning misfolded proteins. While HSPs in general appear to be protective, HSP27 has recently emerged as a particularly potent neuroprotectant in a number of diverse neurological disorders, ranging from ALS to stroke. Although its robust protective effect on a number of insults has been recognized, the mechanisms and regulation of HSP27's protective actions are still undergoing intense investigation. On the basis of recent studies, HSP27 appears to have a dynamic and diverse range of function in cellular survival. This review provides a forum to compare and contrast recent literature exploring the protective mechanism and regulation of HSP27, focusing on neurological disorders in particular, as they represent a range from protein aggregate-associated diseases to acute stress.
Collapse
Affiliation(s)
- R A Stetler
- Department of Neurology, University of Pittsburgh, 507 South Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
16
|
King M, Nafar F, Clarke J, Mearow K. The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of β-amyloid peptide. J Neurosci Res 2009; 87:3161-75. [DOI: 10.1002/jnr.22145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Kesaraju S, Schmidt-Kastner R, Prentice HM, Milton SL. Modulation of stress proteins and apoptotic regulators in the anoxia tolerant turtle brain. J Neurochem 2009; 109:1413-26. [PMID: 19476552 DOI: 10.1111/j.1471-4159.2009.06068.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Freshwater turtles survive prolonged anoxia and reoxygenation without overt brain damage by well-described physiological processes, but little work has been done to investigate the molecular changes associated with anoxic survival. We examined stress proteins and apoptotic regulators in the turtle during early (1 h) and long-term anoxia (4, 24 h) and reoxygenation. Western blot analyses showed changes within the first hour of anoxia; multiple stress proteins (Hsp72, Grp94, Hsp60, Hsp27, and HO-1) increased while apoptotic regulators (Bcl-2 and Bax) decreased. Levels of the ER stress protein Grp78 were unchanged. Stress proteins remained elevated in long-term anoxia while the Bcl-2/Bax ratio was unaltered. No changes in cleaved caspase 3 levels were observed during anoxia while apoptosis inducing factor increased significantly. Furthermore, we found no evidence for the anoxic translocation of Bax from the cytosol to mitochondria, nor movement of apoptosis inducing factor between the mitochondria and nucleus. Reoxygenation did not lead to further increases in stress proteins or apoptotic regulators except for HO-1. The apparent protection against cell damage was corroborated with immunohistochemistry, which indicated no overt damage in the turtle brain subjected to anoxia and reoxygenation. The results suggest that molecular adaptations enhance pro-survival mechanisms and suppress apoptotic pathways to confer anoxia tolerance in freshwater turtles.
Collapse
Affiliation(s)
- Shailaja Kesaraju
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | | | | | |
Collapse
|
18
|
Badin RA, Modo M, Cheetham M, Thomas DL, Gadian DG, Latchman DS, Lythgoe MF. Protective effect of post-ischaemic viral delivery of heat shock proteins in vivo. J Cereb Blood Flow Metab 2009; 29:254-63. [PMID: 18781161 PMCID: PMC2702130 DOI: 10.1038/jcbfm.2008.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heat shock proteins (HSPs) function as molecular chaperones involved in protein folding, transport and degradation and, in addition, they can promote cell survival both in vitro and in vivo after a range of stresses. Although some in vivo studies have suggested that HSP27 and HSP70 can be neuroprotective, current evidence is limited, particularly when HSPs have been delivered after an insult. The effect of overexpressing HSPs after transient occlusion of the middle cerebral artery in rats was investigated by delivering an attenuated herpes simplex viral vector (HSV-1) engineered to express HSP27 or HSP70 30 mins after tissue reperfusion. Magnetic resonance imaging scans were used to determine lesion size and cerebral blood flow at six different time points up to 1 month after stroke. Animals underwent two sensorimotor tests at the same time points to assess the relationship between lesion size and function. Results indicate that post-ischaemic viral delivery of HSP27, but not of HSP70, caused a statistically significant reduction in lesion size and induced a significant behavioural improvement compared with controls. This is the first evidence of effective post-ischaemic gene therapy with a viral vector expressing HSP27 in an experimental model of stroke.
Collapse
Affiliation(s)
- Romina A Badin
- RCS Unit of Biophysics, UCL Institute of Child Health, London, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Duszczyk M, Ziembowicz A, Gadamski R, Wieronska JM, Smialowska M, Lazarewicz JW. Changes in the NPY immunoreactivity in gerbil hippocampus after hypoxic and ischemic preconditioning. Neuropeptides 2009; 43:31-9. [PMID: 19012964 DOI: 10.1016/j.npep.2008.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/19/2008] [Accepted: 09/28/2008] [Indexed: 12/20/2022]
Abstract
Preconditioning with sublethal ischemia or hypoxia may reduce the high susceptibility of CA1 pyramidal neurons to ischemic injury. In this study, we tested the hypothesis that enhanced level of neuropeptide Y (NPY) might play a role in the mechanisms responsible for this induced tolerance. Changes in NPY immunoreactivity in the hippocampal formation of preconditioned Mongolian gerbils were compared with the level of tolerance to test ischemia. Tolerance was induced by preconditioning with 2-min of ischemia or with three trials of mild hypobaric hypoxia (360 Torr, 2 h), separated by 24 h, that were completed 48 h before the 3-min test ischemia. The number of NPY-positive neurons in the gerbil hippocampal formation was assessed 2, 4 and 7 days after preconditioning. Survival of the CA1 pyramidal neurons was examined 14 days after the insult. Our experiments demonstrated that ischemic and hypoxic preconditioning produced equal attenuation of the damage evoked by 3-min ischemia, although the pattern of NPY immunoreactivity in the hippocampus differed. Preconditioning ischemia resulted in a 20% rise in the number of NPY-positive neurons 2 days later that disappeared 4 days after the ischemic episode, while mild hypobaric hypoxia induced a twofold increase in the number of NPY-positive neurons that lasted for at least 7 days. Although induced tolerance to ischemia 2 days after ischemic or hypoxic preconditioning was accompanied by increased immunoreactivity of NPY, there was no correlation between its intensity and the level of neuroprotection.
Collapse
Affiliation(s)
- Malgorzata Duszczyk
- Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Cellular and molecular neurobiology of brain preconditioning. Mol Neurobiol 2009; 39:50-61. [PMID: 19153843 DOI: 10.1007/s12035-009-8051-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 01/08/2009] [Indexed: 12/11/2022]
Abstract
The tolerant brain which is a consequence of adaptation to repeated nonlethal insults is accompanied by the upregulation of protective mechanisms and the downregulation of prodegenerative pathways. During the past 20 years, evidence has accumulated to suggest that protective mechanisms include increased production of chaperones, trophic factors, and other antiapoptotic proteins. In contrast, preconditioning can cause substantial dampening of the organism's metabolic state and decreased expression of proapoptotic proteins. Recent microarray analyses have also helped to document a role of several molecular pathways in the induction of the brain refractory state. The present review highlights some of these findings and suggests that a better understanding of these mechanisms will inform treatment of a number of neuropsychiatric disorders.
Collapse
|
21
|
Saleh MC, Connell BJ, Saleh TM. Ischemic tolerance following low dose NMDA involves modulation of cellular stress proteins. Brain Res 2008; 1247:212-20. [PMID: 18992720 DOI: 10.1016/j.brainres.2008.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/30/2008] [Accepted: 10/04/2008] [Indexed: 11/28/2022]
Abstract
Mild NMDA receptor activation is correlated with neuroprotection in models of cerebral ischemia. Neuroprotection with NMDA manifests as a form of ischemic tolerance and involves the induction of cellular stress systems sensitive to disturbances in cellular calcium homeostasis. Unilateral micro-injection of 10, 160 and 320 microM NMDA into the prefrontal cortex of a rat 30 min prior to permanent occlusion of the middle cerebral artery (MCAO) significantly reduced the area of infarct observed after 4 h of ischemia. The highest dose of NMDA (320 microM) prevented the propagation of ischemic damage through a direct toxicity on neuronal tissue adjacent to the injection site as demonstrated in thionin-stained sections. As a result, the degree of ischemia-induced damage was similar to that measured in rats pretreated with the low dose of NMDA (10 microM). Expression of heat shock protein (HSP) 70 and glucose-regulated protein (GRP) 94 in cortical samples taken from the region of infarct following MCAO was significantly reduced in rats pretreated with 10 microM NMDA compared to saline-injected control rats and rats pretreated with higher doses of NMDA. Furthermore, 10 microM NMDA did not appear to influence expression of m-calpain or GRP78, however, higher doses of NMDA did significantly induce expression of both proteins as assessed by Western blotting. In summary, our data demonstrate an in vivo rodent model of ischemic tolerance in which 30 min of neuronal preconditioning with 10 microM NMDA confers protection against a 4 h period of MCAO-induced ischemia. This effect may involve modulation of cellular stress signals, in particular HSP70 and GRP94.
Collapse
Affiliation(s)
- Monique C Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada C1A 4P3
| | | | | |
Collapse
|
22
|
Walsh SR, Tang TY, Sadat U, Gaunt ME. Remote ischemic preconditioning in major vascular surgery. J Vasc Surg 2008; 49:240-3. [PMID: 18829224 DOI: 10.1016/j.jvs.2008.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 12/17/2022]
Abstract
Remote ischemic preconditioning is a physiologic mechanism in mammalian species whereby brief exposure to nonlethal ischemia in one tissue confers protection against a prolonged ischemic insult in a distant tissue. First described almost 15 years ago, it has been slow to translate into clinical practice. Several clinical trials have recently reported that remote ischemic preconditioning reduces myocardial injury after major cardiovascular surgery. In addition, a randomized trial in patients undergoing open abdominal aortic aneurysm repair reported a significant reduction in perioperative myocardial infarctions. Remote ischemic preconditioning is easily performed and likely to prove highly cost-effective. large-scale trials of the technique are warranted in patients undergoing major vascular surgery.
Collapse
Affiliation(s)
- Stewart R Walsh
- Cambridge Vascular Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
23
|
An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. J Plast Reconstr Aesthet Surg 2008; 61:503-11. [DOI: 10.1016/j.bjps.2007.11.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/11/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
24
|
Hemdan S, Almazan G. Dopamine-induced toxicity is synergistically potentiated by simultaneous HSP-90 and Akt inhibition in oligodendrocyte progenitors. J Neurochem 2008; 105:1223-34. [DOI: 10.1111/j.1471-4159.2008.05227.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Ubiquitin-mediated stress response in the spinal cord after transient ischemia. Stroke 2008; 39:1883-9. [PMID: 18388347 DOI: 10.1161/strokeaha.106.455832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Vulnerability of motor neurons in the spinal cord against ischemia is considered to play an important role in the development of delayed paraplegia after surgery of the thoracic aorta. However, the reasons for such vulnerability are not fully understood. Recently, the ubiquitin system has been reported to participate in neuronal cell death. In the present study, we investigated the expression of ubiquitin system molecules and discussed the relationship between the vulnerability and the ubiquitin system after transient ischemia in the spinal cord. METHODS Fifteen minutes of spinal cord ischemia in rabbits was applied with the use of a balloon catheter. In this model, the spinal motor neuron shows selectively delayed neuronal death, whereas other spinal neurons such as interneurons survive. Immunohistochemical analysis and Western blotting for ubiquitin system molecules, ubiquitin, deubiquitylating enzyme (ubiquitin carboxy-terminal hydrolase 1), and ubiquitin-ligase parkin were examined. RESULTS In cytoplasm, ubiquitin and ubiquitin carboxy-terminal hydrolase 1 were strongly induced both in interneuron and motor neuron at the early stage of reperfusion, but the sustained expression was observed only in motor neuron. Parkin was induced strongly at 3 hours after the reperfusion, but the immunoreactivity returned to the sham control level at 6 hours in both neurons. In the nuclei, ubiquitin, ubiquitin carboxy-terminal hydrolase 1, and parkin were strongly induced in interneuron, whereas no upregulation of these proteins was observed in motor neuron. CONCLUSIONS These results indicate that the vulnerability of motor neuron of the spinal cord might be partially attributed to the different response in ubiquitin-mediated stress response after transient ischemia.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate school of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | |
Collapse
|
26
|
Kobayashi MS, Asai S, Ishikawa K, Nishida Y, Nagata T, Takahashi Y. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain. ACTA ACUST UNITED AC 2008; 58:171-91. [PMID: 18440647 DOI: 10.1016/j.brainresrev.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 02/08/2008] [Accepted: 03/08/2008] [Indexed: 12/20/2022]
Abstract
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res 2008; 1187:1-11. [DOI: 10.1016/j.brainres.2007.09.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/12/2007] [Accepted: 09/22/2007] [Indexed: 12/25/2022]
|
28
|
Min DS, Choi JS, Kim HY, Shin MK, Kim MK, Lee MY. Ischemic preconditioning upregulates expression of phospholipase D2 in the rat hippocampus. Acta Neuropathol 2007; 114:157-62. [PMID: 17393174 DOI: 10.1007/s00401-007-0218-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/11/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
To investigate the possible involvement of phospholipase D2 (PLD2) in the induction of ischemic tolerance, we analyzed the distribution and time course of PLD2 expression in the rat hippocampus after a sublethal period of ischemia. Forebrain ischemia was induced by four-vessel occlusion for 3 min. Increased PLD2 immunoreactivity after this sublethal ischemia was observed in CA1 pyramidal neurons of the rat hippocampus. In tolerance-acquired CA1 neurons, PLD2 immunoreactivity was upregulated as early as 12 h post-ischemia and was most prominent at 1-3 days, with expression sustained for at least 7 days, as shown by a time course of immunoblotting and measurement of the enzymatic activity of PLD. PLD2 expression was also increased in ischemia-resistant CA3 neurons and dentate granule cells, although weaker staining intensity was noted. Further, we showed that, in cultured SK-N-BE(2)C human neuroblastoma cells, overexpression of PLD2 inhibited cell death by chemical hypoxia induced with potassium cyanide and deoxyglucose. These data suggest that upregulation of PLD2 might be involved in the neuroprotective mechanism of ischemic tolerance in the rat hippocampus.
Collapse
Affiliation(s)
- Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Pearce WJ. Cerebrovascular effects of ischemic preconditioning: endothelial survivin joins the fray. Am J Physiol Heart Circ Physiol 2007; 292:H2559-60. [PMID: 17400725 DOI: 10.1152/ajpheart.00367.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- William J Pearce
- Center for Perinatal Biology, Division of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
30
|
Abstract
Many stressful, but not lethal, stimuli activate endogenous protective mechanisms that significantly decrease the degree of injury to subsequent injurious stimuli. This protective mechanism is termed preconditioning and tolerance. It occurs across organ systems including the brain and nervous system. Preconditioning has been investigated in cell and animal models and recently been shown to potentially occur in human brain. Learning more about these powerful endogenous neuroprotective mechanisms could help identify new approaches to treat patients with stroke and other central nervous system disorders or injury. Cell and animal models are helping us to better understand the network response of gene and protein expression that activates the neuroprotective response.
Collapse
Affiliation(s)
- V L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
31
|
Yasui H, Asanuma T, Watanabe Y, Waki K, Inanami O, Kuwabara M. Oral administration of Antioxidant Biofactor (AOBtrade mark) ameliorates ischemia/reperfusion- induced neuronal death in the gerbil. Biofactors 2007; 29:113-21. [PMID: 17673828 DOI: 10.1002/biof.552029202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oxidative damage due to ischemia/reperfusion has been implicated as one of the leading causes for delayed neuronal cell death in a number of neurodegenerative diseases, including stroke. The purpose of this research was to investigate whether oral administration of a fermented grain food mixture (AOB(R)) might offer protective effects against ischemia/reperfusion-induced neuronal damage in Mongolian gerbils, a model known for delayed neuronal death in the hippocampal CA1 region. Histological analysis revealed that AOB administration ad libitum for 3 weeks (preoperative administration) and 1 week (postoperative administration) dose-dependently suppressed the induction of transient ischemia/reperfusion-induced neuronal cell death. TUNEL assay also revealed that AOB suppressed it by inhibiting the induction of apoptosis. A significant increase of superoxide dismutase-like (SOD-like) activity was observed in the hippocampal CA1 region of the AOB-treated gerbil. Furthermore, immunoblot analysis showed that AOB administration down-regulated the expression of heat shock proteins HSP27 and HSP70 in the same region. These results indicated that oral administration of AOB protected against ischemia/reperfusion-induced brain injury by minimizing oxidative damage via its SOD-like activity and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hironobu Yasui
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Blanco M, Lizasoain I, Sobrino T, Vivancos J, Castillo J. Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovasc Dis 2006; 21 Suppl 2:38-47. [PMID: 16651813 DOI: 10.1159/000091702] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ischemic preconditioning involves a brief exposure to ischemia in order to develop a tolerance to injurious effects of prolonged ischemia. The molecular mechanisms of neuroprotection that lead to ischemic tolerance are not yet completely understood. However, it seems that two distinct phases are involved. Firstly, a cellular defense function against ischemia may be developed by the mechanisms inherent to neurons such as posttranslational modification of proteins or expression of new proteins via a signal transduction system to the nucleus. Secondly, a stress response and synthesis of stress proteins (heat shock proteins) may be activated. These mechanisms are mediated by chaperones. The objective of ischemic preconditioning research is to identify the underlying endogenous protective cellular receptors and signaling cascades, with the long-term goal of allowing therapeutic augmentation of the endogenous protective mechanisms in cerebral ischemia and possibly development of new neuroprotective strategies for ischemic stroke treatment.
Collapse
Affiliation(s)
- Miguel Blanco
- Department of Neurology, Division of Vascular Neurology, Laboratory of Neurovascular Research, Hospital Clínico Universitario, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
33
|
DeGracia DJ, Rafols JA, Morley SJ, Kayali F. Immunohistochemical mapping of total and phosphorylated eukaryotic initiation factor 4G in rat hippocampus following global brain ischemia and reperfusion. Neuroscience 2006; 139:1235-48. [PMID: 16530975 DOI: 10.1016/j.neuroscience.2006.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 02/07/2023]
Abstract
Partial proteolysis and phosphorylation of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) occur in reperfused brain, but the contribution of eIF4G alterations to brain injury has not been established. A component of the complex delivering mRNA to the small ribosomal subunit, eIF4G is also found in stress granules. Stress granules sequester inactive 48S preinitiation complexes during stress-induced translation arrest. We performed double-labeling immunofluorescence histochemistry for total or ser 1108 phosphorylated eIF4G and the stress granule component T-cell internal antigen following normothermic, 10 min cardiac arrest-induced global brain ischemia and up to 4 h reperfusion in the rat. In cornu ammonis (Ammon's horn; CA) 1 at 90 min and 4 h reperfusion, eIF4G staining transformed from a homogeneous to an aggregated distribution. The number of eIF4G-containing stress granules differed between CA1 and CA3 during reperfusion. In hippocampal pyramidal neurons, phosphorylated eIF4G appeared exclusively in stress granules. Supragranular interneurons of the dentate gyrus showed a large increase in cytoplasmic eIF4G(P) following reperfusion. Immunoblot analysis with antisera against different portions of eIF4G showed a large increase in phosphorylated C-terminal eIF4G fragments, suggesting these accumulate in the cytoplasm of dentate gyrus interneurons. Thus, altered eIF4G subcellular compartmentalization may contribute to prolonged translation arrest in CA1 pyramidal neurons. Accumulation of phosphorylated eIF4G fragments may contribute to the vulnerability of dentate interneurons. Ischemia and reperfusion invoke different translational control responses in distinct hippocampal neuron populations, which may contribute to the differential ischemic vulnerabilities of these cells.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
34
|
Rickhag M, Wieloch T, Gidö G, Elmér E, Krogh M, Murray J, Lohr S, Bitter H, Chin DJ, von Schack D, Shamloo M, Nikolich K. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue. J Neurochem 2006; 96:14-29. [PMID: 16300643 DOI: 10.1111/j.1471-4159.2005.03508.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion following middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene induction phase occurred at 0-3 h of reperfusion, and the second at 9-15 h, and was validated by in situ hybridization. Four gene clusters displayed a progressive increase in expression over time and included 50 genes linked to cell motility, lipid synthesis and trafficking (i.e. ApoD, NPC1, G3P-dehydrogenase1, and Choline kinase) or cell death-regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up-regulation of the brain-derived neurotrophic factor (BDNF)-G-protein coupled receptor (GPCR)-mitogen-activated protein (MAP) kinase signaling pathways occurs in surviving tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity.
Collapse
Affiliation(s)
- Mattias Rickhag
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, University of Lund, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu C, Chen S, Kamme F, Hu B. Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience 2005; 134:69-80. [PMID: 15939539 PMCID: PMC3518067 DOI: 10.1016/j.neuroscience.2005.03.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 12/11/2022]
Abstract
Transient cerebral ischemia leads to protein aggregation mainly in neurons destined to undergo delayed neuronal death after ischemia. This study utilized a rat transient cerebral ischemia model to investigate whether ischemic preconditioning is able to alleviate neuronal protein aggregation, thereby protecting neurons from ischemic neuronal damage. Ischemic preconditioning was introduced by a sublethal 3 min period of ischemia followed by 48 h of recovery. Brains from rats with either ischemic preconditioning or sham-surgery were then subjected to a subsequent 7 min period of ischemia followed by 30 min, 4, 24, 48 and 72 h of reperfusion. Protein aggregation and neuronal death were studied by electron and confocal microscopy, as well as by biochemical analyses. Seven minutes of cerebral ischemia alone induced severe protein aggregation after 4 h of reperfusion mainly in CA1 neurons destined to undergo delayed neuronal death (which took place after 72 h of reperfusion). Ischemic preconditioning reduced significantly protein aggregation and virtually eliminated neuronal death in CA1 neurons. Biochemical analyses revealed that ischemic preconditioning decreased accumulation of ubiquitin-conjugated proteins (ubi-proteins) and reduced free ubiquitin depletion after brain ischemia. Furthermore, ischemic preconditioning also reduced redistribution of heat shock cognate protein 70 and Hdj1 from cytosolic fraction to protein aggregate-containing fraction after brain ischemia. These results suggest that ischemic preconditioning decreases protein aggregation after brain ischemia.
Collapse
Affiliation(s)
| | | | | | - B.R. Hu
- Corresponding author. Tel: +1-305-243-4854. (B. Hu)
| |
Collapse
|
36
|
Warzecha Z, Dembinski A, Ceranowicz P, Konturek SJ, Dembinski M, Pawlik WW, Tomaszewska R, Stachura J, Kusnierz-Cabala B, Naskalski JW, Konturek PC. Ischemic preconditioning inhibits development of edematous cerulein-induced pancreatitis: Involvement of cyclooxygenases and heat shock protein 70. World J Gastroenterol 2005; 11:5958-65. [PMID: 16273606 PMCID: PMC4436717 DOI: 10.3748/wjg.v11.i38.5958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether ischemic preconditioning (IP) affects the development of edematous cerulein-induced pancreatitis and to assess the role of cyclooxygenase-1 (COX-1), COX-2, and heat shock protein 70 (HSP 70) in this process.
METHODS: In male Wistar rats, IP was performed by clamping of celiac artery (twice for 5 min at 5-min intervals). Thirty minutes after IP or sham operation, acute pancreatitis was induced by cerulein. Activity of COX-1 or COX-2 was inhibited by resveratrol or rofecoxib, respectively (10 mg/kg).
RESULTS: IP significantly reduced pancreatic damage in cerulein-induced pancreatitis as demonstrated by the improvement of pancreas histology, reduction in serum lipase and poly-C ribonuclease activity, and serum concentration of pro-inflammatory interleukin (IL)-1β. Also, IP attenuated the pancreatitis-evoked fall in pancreatic blood flow and pancreatic DNA synthesis. Serum level of anti-inflammatory IL-10 was not affected by IP. Cerulein-induced pancreatitis and IP increased the content of HSP 70 in the pancreas. Maximal increase in HSP 70 was observed when IP was combined with cerulein-induced pancreatitis. Inhibition of COXs, especially COX-2, reduced the protective effect of IP in edematous pancreatitis.
CONCLUSION: Our results indicate that IP reduces pancreatic damage in cerulein-induced pancreatitis and this effect, at least in part, depends on the activity of COXs and pancreatic production of HSP 70.
Collapse
Affiliation(s)
- Zygmunt Warzecha
- Department of Physiology, Jagiellonian University Medical College, ul. Grzegorzecka 16, Kraków 31-531, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu W, Hirata K, Kawabuchi M. The occurrence of nitric oxide synthase-containing axonal baskets surrounding large neurons in rat dorsal root ganglia after sciatic nerve ligation. ACTA ACUST UNITED AC 2005; 68:29-40. [PMID: 15827376 DOI: 10.1679/aohc.68.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To clarify the possible role of nitric oxide (NO) induced in primary sensory neurons after peripheral axotomy, NO synthase (NOS) immunohistochemistry was carried out on rat L5 dorsal root ganglia after sciatic nerve ligation. The results were compared with the expression of 27-kDa heat shock protein (HSP27), a neuroprotective molecule. In intact animals, NOS-immunoreactive neurons represented about 2% of all dorsal root ganglion (DRG) neurons, whereas HSP27-immunoreactive neurons comprised about 14%. After sciatic nerve ligation, both neurons increased, in number and immunoreactivity, reaching a maximum at 2 weeks, when NOS- and HSP27-immunoreactive neurons represented about 33 and 66%, respectively. NOS-immunoreactive neurons then remained unchanged until 7 weeks although HSP27-immunoreactive neurons showed a slight decline. The increased NOS-immunoreactive neurons were preferentially small (100-500 microm(2)) and coexpressed with HSP27 (about 87%). On the other hand, in the proximal stump of sciatic nerves, numerous NOS-immunoreactive fibers with a regenerative profile appeared transiently (2-4 weeks). At higher magnification, an axonal sprout from the NOS-immunoreactive small DRG neurons was found to form a basket-like structure (or basket) mostly around the cell body of NOS-negative large neurons. Retrograde labeling with a fluorescent tracer showed that both neurons sent peripheral axon collaterals to the sciatic nerve. The appearance of this unique structure was most prominent after depletion of the NOS-immunoreactive regenerating fibers in the sciatic nerve (at 7-9 weeks). The findings suggest that NO might be involved in not only axonal regeneration but also the rewiring of two classes of DRG neurons after peripheral nerve injury.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
38
|
Woerly S, Awosika O, Zhao P, Agbo C, Gomez-Pinilla F, de Vellis J, Espinosa-Jeffrey A. Expression of Heat Shock Protein (HSP)-25 and HSP-32 in the Rat Spinal Cord Reconstructed with NeurogelTM. Neurochem Res 2005; 30:721-35. [PMID: 16187209 DOI: 10.1007/s11064-005-6866-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2005] [Indexed: 01/22/2023]
Abstract
We recently showed a successful reconstruction of the cat spinal cord using NeuroGel a polymer hydrogel bridge between the two spinal stumps. The polymer graft supports axonal elongation, myelination and angiogenesis up to 21 months, Wallerian degeneration was diminished and gliotic scarring was prevented. In the present study, we report the expression patterns of two stress proteins, (HSPs) HSP-25 and HSP-32 after spinal cord hemisection with and without reparative surgery with NeuroGel. Double immunofluorescence using cell specific markers for neurons, astrocytes and oligodendrocytes (OL), in combination with antibodies for HSP-25 and 32 showed that mainly neurons express both proteins. Both HSPs displayed different temporal expression patterns in the reconstructed spinal cords with a concomitant reduction of secondary damage. In conclusion, Neurogel reconstruction of the spine during the acute phase considerably reduces secondary damage resulting in a rapid and stable regenerative response.
Collapse
Affiliation(s)
- Stéphane Woerly
- Organogel Canada Ltee, 1400 Parc Technologique Blvd, GIP 4R7, Quebec, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Piao CS, Kim SW, Kim JB, Lee JK. Co-induction of alphaB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Exp Brain Res 2005; 163:421-9. [PMID: 15856211 DOI: 10.1007/s00221-004-2197-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 10/26/2004] [Indexed: 12/11/2022]
Abstract
alphaB-crystallin (alpha-BC), a member of the small heat-shock proteins (sHSP), is constitutively expressed in the vertebrate lens and in non-ocular tissues including the central nervous system (CNS). In this study we investigated the expression of alpha-BC in the rat brain after middle cerebral artery occlusion (MCAO). alpha-BC transcript and protein were transiently expressed 4 h after MCAO/reperfusion in the pyramidal neurons in the peri-infarct region of the ischemic hemisphere. Beginning 2 days after MCAO, significant alpha-BC induction appeared in reactive astrocytes in the penumbra, and this induction was sustained for several days. In addition, levels of MAPKAPK-2, one of the alpha-BC upstream kinases, and its phosphorylated form were upregulated gradually and peaked 4 days after ischemia/reperfusion injury. The immunohistochemical study indicated that alpha-BC was co-localized with MAPKAPK-2 and p-MAPKAPK-2. Furthermore, p38beta MAPK, an upstream kinase of MAPKAPK-2, which has been known to be involved in compensatory responses to stress, was also co-localized with alpha-BC in the penumbra. Our results suggest that the p38beta-dependent alpha-BC induction in neurons and astrocytes in the penumbra may play an important role in the postischemic brain.
Collapse
Affiliation(s)
- Chun-Shu Piao
- Department of Anatomy, Inha University School of Medicine, Jung-Gu Shinheung-Dong 3rd. St. 7-241, 400-712 Inchon, Korea
| | | | | | | |
Collapse
|
40
|
Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology 2004; 39:1533-43. [PMID: 15185294 DOI: 10.1002/hep.20197] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigated the effects of nitric oxide (NO) on hepatocellular killing after simulated ischemia/reperfusion and characterized signaling factors triggering cytoprotection by NO. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 hours and reoxygenated at pH 7.4 for 2 hours. During reoxygenation, some hepatocytes were exposed to combinations of NO donors (S-nitroso-N-acetylpenicillamine [SNAP] and others), a cGMP analogue (8-bromoguanosine-3,5-cGMP [8-Br-cGMP]), and a cGMP-dependent protein kinase inhibitor (KT5823). Cell viability was determined by way of propidium iodide fluorometry. Inner membrane permeabilization and mitochondrial depolarization were monitored by confocal microscopy. SNAP, but not oxidized SNAP, increased cGMP during reperfusion and decreased cell killing. Other NO donors and 8-Br-cGMP also prevented cell killing. Both guanylyl cyclase and cGMP-dependent kinase inhibition blocked the cytoprotection of NO. However, 5-hydroxydecanoate and diazoxide- mitochondrial K(ATP) channel modulators-did not affect NO-dependent cytoprotection or reperfusion injury. During reoxygenation, confocal microscopy showed mitochondrial repolarization, followed by depolarization, inner membrane permeabilization, and cell death. In the presence of either SNAP or 8-Br-cGMP, mitochondrial repolarization was sustained after reperfusion preventing inner membrane permeabilization and cell death. In isolated rat liver mitochondria, a cGMP analogue in the presence of a cytosolic extract and adenosine triphosphate blocked the Ca(2+)-induced mitochondrial permeability transition (MPT), an effect that was reversed by KT5823. In conclusion, NO prevents MPT-dependent necrotic killing of ischemic hepatocytes after reperfusion through a guanylyl cyclase and cGMP-dependent kinase signaling pathway, events that may represent the target of NO cytoprotection in preconditioning.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
41
|
Nishino K, Nowak TS. Time course and cellular distribution of hsp27 and hsp72 stress protein expression in a quantitative gerbil model of ischemic injury and tolerance: thresholds for hsp72 induction and hilar lesioning in the context of ischemic preconditioning. J Cereb Blood Flow Metab 2004; 24:167-78. [PMID: 14747743 DOI: 10.1097/01.wcb.0000100853.67976.8b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution and time course of expression of the heat shock/stress proteins, hsp27 and hsp72, were evaluated in a highly controlled gerbil model of ischemic injury and tolerance induction, in which the duration of ischemic depolarization in each hippocampus provides a precise quantitative index of insult severity. Gerbils were subjected to brief priming insults (2- to 3.5-minute depolarization) that produce optimal preconditioning, to severe test insults (6- to 8.5-minute depolarization) that produce complete CA1 neuron loss in naive animals, or to combined insults administered 1 week apart, after which almost complete tolerance to CA1 neuron injury is observed. Immunoreactivities of hsp27, hsp72, glial fibrillary acidic protein and microtubule-associated protein 2 (MAP2) were evaluated in animals perfused at defined intervals after the final insult in each treatment group, using a variation of established antigen-retrieval procedures that significantly improves detection of many proteins in vibratome brain sections. Hsp72 was detected in CA1 neurons of some hippocampi 2 to 4 days after preconditioning, but this was only seen after the longest priming depolarizations, whereas shorter insults that still induced optimal tolerance failed to induce hsp72. Hsp72 was induced after test insults in preconditioned hippocampi, but at a higher depolarization threshold than observed for naive animals. An astrocytic localization of hsp27 was observed in regions of neuron injury, as indicated by reduced MAP2 immunoreactivity, and was primarily restricted to dentate hilus after preconditioning insults. These results establish that limited hilar lesions are characteristic of optimal preconditioning, whereas prior neuronal expression of either hsp72 or hsp27 is not required for ischemic tolerance.
Collapse
Affiliation(s)
- Kazuhiko Nishino
- Department of Neurology, University of Tennessee, Memphis, 38163, USA
| | | |
Collapse
|
42
|
Pringle AK, Angunawela R, Wilde GJC, Mepham JA, Sundstrom LE, Iannotti F. Induction of 72 kDa heat-shock protein following sub-lethal oxygen deprivation in organotypic hippocampal slice cultures. Neuropathol Appl Neurobiol 2003. [DOI: 10.1111/j.1365-2990.1997.tb01298.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Bechtold DA, Brown IR. Induction of Hsp27 and Hsp32 stress proteins and vimentin in glial cells of the rat hippocampus following hyperthermia. Neurochem Res 2003; 28:1163-73. [PMID: 12834255 DOI: 10.1023/a:1024268126310] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In response to stressful stimuli, cells respond by inducing a set of heat shock (stress) proteins (hsps) that play important roles in repair and protective mechanisms. The present study investigates the expression patterns of Hsp27 and Hsp32 in the adult rat hippocampus following whole body hyperthermia. A pronounced induction of these low-molecular-weight stress proteins was apparent in populations of glial cells such as astrocytes and microglia that were identified using cell-specific markers (GFAP for astrocytes and the lectin GSA I-B4 for microglia). Hyperthermia also resulted in a robust induction of the intermediate filament protein, vimentin, in glial cells in the adult rat hippocampus. Interestingly, a rapid induction of both Hsp27 and vimentin was observed in the microvasculature, suggesting that hyperthermic stress may compromise the blood-brain barrier.
Collapse
Affiliation(s)
- David A Bechtold
- Center for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
44
|
Risuleo G, Cristofanilli M, Scarsella G. Acute ischemia/hypoxia in rat hippocampal neurons activates nuclear ubiquitin and alters both chromatin and DNA. Mol Cell Biochem 2003; 250:73-80. [PMID: 12962145 DOI: 10.1023/a:1024950317684] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated early alterations in rat neurons after experimental ischemic stress. Transient ischemia was generated by bilateral occlusion of the carotids after hypoxia. Data show a relevant increase of the nuclear level of ubiquitin 2 h post-stress as evaluated by immuno-cytolocalization. Ubiquitin returns to normal levels after 6 h. The increase in ischemic/hypoxic rats was localized preferentially in nuclei of hippocampal neurons, although some augmentation was also shown essentially in dendrites. The activation of ubiquitin system is related to a defective homeostasis and might trigger different degenerative processes. With respect to this, we observed chromatin alterations by densitometric analysis. The shown extensive DNA degeneration is consistent with the occurrence of necrotic phenomena at an early stage. However the parallel internucleosomal specific DNA fragmentation, strongly suggests that apoptotic events also occur. In any case both necrosis and apoptosis are likely to occur at same time, although apoptosis is less extensive, and the two phenomena take place in different neural cells.
Collapse
Affiliation(s)
- Gianfranco Risuleo
- Dipartimento di Genetica e Biologia Molecolare, Università degli Studi di Roma 'La Sapienza', Rome, Italy
| | | | | |
Collapse
|
45
|
Iijima K, Harada F, Hanada K, Nozawa-Inoue K, Aita M, Atsumi Y, Wakisaka S, Maeda T. Temporal expression of immunoreactivity for heat shock protein 25 (Hsp25) in the rat periodontal ligament following transection of the inferior alveolar nerve. Brain Res 2003; 979:146-52. [PMID: 12850581 DOI: 10.1016/s0006-8993(03)02889-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examined the immunohistochemical localization of heat shock protein 25 (Hsp25) during the regeneration of nerve fibers and Schwann cells in the periodontal ligament of the rat lower incisor following transection of the inferior alveolar nerve. In the untreated control group, the periodontal ligament of rat incisor did not contain any Hsp25-immunoreaction. On postoperative day 3 (PO 3d), a small number of Schwann cells with slender cytoplasmic processes exhibited Hsp25-immunoreactivity. From PO 5d to PO 21d, Hsp25-positive nerve fibers and Schwann cells drastically increased in number in the alveolar half of the ligament. Although the axons of some regenerating Ruffini-like endings also showed Hsp25-immunoreactions, the migrated Schwann cells were devoid of Hsp25-immunoreaction. Thereafter, Hsp25-positive structures decreased in number gradually to disappear from the periodontal ligament by PO 56d. This temporal expression of Hsp25 in the periodontal ligament well-reflected the regeneration process of the nerve fibers. Hsp25 in the regenerating nerve fibers and denervated Schwann cells most likely serves in modulating actin dynamics and as a cellular inhibitor of apoptosis, respectively.
Collapse
Affiliation(s)
- Kenji Iijima
- Division of Oral Anatomy, Department of Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, 951-8514, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dembiński A, Warzecha Z, Ceranowicz P, Tomaszewska R, Dembiński M, Pabiańczyk M, Stachura J, Konturek SJ. Ischemic preconditioning reduces the severity of ischemia/reperfusion-induced pancreatitis. Eur J Pharmacol 2003; 473:207-16. [PMID: 12892840 DOI: 10.1016/s0014-2999(03)01994-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In various organs, including heart, kidneys, brain, liver and stomach, preconditioning by brief exposure to ischemia protects the organ against damage evoked by subsequent severe ischemia. This study has been undertaken to check whether two brief ischemic periods protect the pancreas against severe ischemia/reperfusion-induced pancreatitis and, if so, what is the role of sensory and vagal nerves in this phenomenon. In male Wistar rats, the ischemic preconditioning of the pancreas was performed by clamping of celiac artery (2 x 5 min with 5 min interval). Thirty minutes after preconditioning or sham operation, the ischemia/reperfusion-induced pancreatitis was evoked by clamping of inferior splenic artery for 30 min using microvascular clips, followed by 1 h reperfusion. Sensory nerves ablation was induced 10 days before final experiments by capsaicin. Truncal vagotomy was performed 1 week before the experiment. Exposure to regular 30-min pancreatic ischemia followed by 1 h reperfusion led to the development of acute hemorrhagic pancreatitis. Ischemic preconditioning, applied prior to induction of pancreatitis, caused the reduction in plasma lipase, plasma interleukin-1beta and histological signs of pancreatic damage, as well as attenuated the reduction in pancreatic blood flow and DNA synthesis. Ablation of sensory nerves by capsaicin caused an aggravation of ischemia/reperfusion-induced pancreatic damage and attenuated a protective effect of ischemic preconditioning. Noxious effect of sensory nerves ablation on the pancreas was accompanied by the reduction in pancreatic blood flow and an increase in plasma interleukin-1beta. Similar but less pronounced deleterious effect on the pancreas was observed after vagotomy. We conclude that: (1) pancreatic ischemic preconditioning reduces the severity of ischemia/reperfusion-induced pancreatitis; (2) this effect seems to be related, at least in part, to the improvement of pancreatic blood flow and the reduction in the release of proinflammatory interleukin-1beta; (3) sensory and vagal nerves are involved in protective effect of ischemic preconditioning against pancreatic damage.
Collapse
Affiliation(s)
- Artur Dembiński
- Department of Physiology, Jagiellonian University Medical School, 16 Grzegórzecka Street, 31-531 Cracow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Valentim LM, Rodnight R, Geyer AB, Horn AP, Tavares A, Cimarosti H, Netto CA, Salbego CG. Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 2003; 118:379-86. [PMID: 12699774 DOI: 10.1016/s0306-4522(02)00919-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organotypic hippocampal cultures have been recently used to study in vitro ischaemic neuronal death. Sub-lethal periods of ischaemia in vivo confer resistance to lethal insults and many studies have demonstrated the involvement of heat shock proteins in this phenomenon. We used organotypic hippocampal cultures to investigate the involvement of heat shock protein (HSP) 27 in preconditioning to oxygen and glucose deprivation. Neuronal damage was assessed using propidium iodide fluorescence; HSP27 phosphorylation and immunocontent were obtained using (32)Pi labelling followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting. We observed that immunocontent of HSP27 was increased after lethal or sub-lethal treatment, indicating it is a response to metabolic stress. Treatments with 5 or 10 min of oxygen and glucose deprivation (OGD) or 1- microM N-methyl-D-aspartate (NMDA) induced tolerance to 40 min of OGD associated with an increase in HSP27 immunocontent and phosphorylation. These data suggest that, in vitro, phosphorylated HSP27 might be involved in preconditioning, probably acting as a modulator of actin filaments or by the blockage of neurodegenerative processes.
Collapse
Affiliation(s)
- L M Valentim
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hirata K, He J, Hirakawa Y, Liu W, Wang S, Kawabuchi M. HSP27 is markedly induced in Schwann cell columns and associated regenerating axons. Glia 2003; 42:1-11. [PMID: 12594732 DOI: 10.1002/glia.10105] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is well known that regenerating axons enter Schwann cell (SC) columns, within which they grow to reinnervate the appropriate targets. The current study detected a marked induction of a 27-kDa heat shock protein (HSP27) in the SC columns of crush-injured rat sciatic nerves. Immunohistochemical studies showed the first appearance of strong HSP27-immunoreactive linear structures in the proximal stump near an injury site 7 h after an operation. The HSP27-immunoreactive linear structures crossed the injury site to the distal stump 2 days after the operation. They then extended in a more proximal and more distal direction and were found to have propagated through the entire length of the nerve 1 week after the operation. This pattern of expression was maintained until 3 weeks after the operation. Double-immunofluorescent labeling and confocal laser microscopy confirmed that the linear structures consisted of SC columns and associated multiple axons. The HSP27-immunoreactive SC columns expressed glial fibrillary acidic protein, but not S-100 protein. Electron microscopy and immunoelectron microscopy demonstrated that reactive Schwann cells (SCs) and the associated axons with an outgrowing profile exhibited a strong immunoreactivity to HSP27, with the former containing a greater number of bundles of intermediate filaments. It is suggested that HSP27 may play an essential role in axonal outgrowth, especially by contributing to cytoskeletal dynamics in SCs.
Collapse
Affiliation(s)
- Kazuho Hirata
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Kosieradzki M, Ametani M, Southard JH, Mangino MJ. Is ischemic preconditioning of the kidney clinically relevant? Surgery 2003; 133:81-90. [PMID: 12563242 DOI: 10.1067/msy.2003.93] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Renal ischemic preconditioning (IPC) is a phenomenon whereby a brief period of ischemia and reperfusion (I/R) provides tolerance to subsequent periods of ischemia. IPC has been demonstrated to protect rodent kidneys during I/R. The applicability to large mammals, including human beings, is unclear. The objective of this study was to determine if renal IPC has a beneficial effect in a large animal model of warm I/R and hypothermic preservation injury, which occurs with renal allografting. METHODS Renal ischemia (45 minutes) and reperfusion was studied in untreated dogs and in dogs receiving IPC (10-minute/10-minute I/R). IPC was administered immediately before I/R (early IPC) or 24 hours before I/R (delayed IPC). In another group of dogs, pharmacologically induced IPC was attempted with local intra-arterial administration of dipyridamole (2.4 mg/kg/min) to increase local adenosine concentrations. Finally, IPC was induced in kidneys before harvest, cold stored for 24 hours in University of Wisconsin flush solution, and subsequently reperfused for 4 hours in allogeneic recipients. Renal functional parameters, including vascular resistance, glomerular filtration rate, urine production, oxygen consumption, and proximal tubular fluid reabsorption, were monitored during the reperfusion period and were compared with the control ischemic group. RESULTS Renal function significantly declined during I/R, relative to the nonischemic contralateral kidney but was not different with any form of IPC, relative to the ischemic control group not treated with IPC. IPC pretreatment also did not affect the preservation injury observed in cold-stored kidneys reperfused after transplantation. CONCLUSIONS It is concluded that IPC has no significantly measurable effects in warm or hypothermic renal I/R injury in large animals. The clinical usefulness of IPC in human renal ischemic conditions remains uncertain.
Collapse
Affiliation(s)
- Maciej Kosieradzki
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine, Madison, Wis, USA
| | | | | | | |
Collapse
|
50
|
Abstract
A brief period of cerebral ischemia confers transient tolerance to a subsequent ischemic challenge in the brain. This phenomenon of ischemic tolerance has been confirmed in various animal models of forebrain ischemia and focal cerebral ischemia. Since the ischemic tolerance afforded by preceding ischemia can bring about robust protection of the brain, the mechanism of tolerance induction has been extensively studied. It has been elucidated that ischemic tolerance protects neurons, and at the same time, it preserves brain function. Further experiments have shown that metabolic and physical stresses can also induce cross-tolerance to cerebral ischemia, but the protection by cross-tolerance is relatively modest. The underlying mechanism of ischemic tolerance still is not fully understood. Potential mechanisms may be divided into two categories: (1) A cellular defense function against ischemia may be enhanced by the mechanisms inherent to neurons. They may arise by posttranslational modification of proteins or by expression of new proteins via a signal transduction system to the nucleus. These cascades of events may strengthen the influence of survival factors or may inhibit apoptosis. (2) A cellular stress response and synthesis of stress proteins may lead to an increased capacity for health maintenance inside the cell. These proteins work as cellular "chaperones" by unfolding misfolded cellular proteins and helping the cell to dispose of unneeded denatured proteins. Recent experimental data have demonstrated the importance of the processing of unfolded proteins for cell survival and cell death. The brain may be protected from ischemia by using multiple mechanisms that are available for cellular survival. If tolerance induction can be manipulated and accelerated by a drug treatment that is safe and effective enough, it could greatly improve the treatment of stroke.
Collapse
Affiliation(s)
- Takaaki Kirino
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan.
| |
Collapse
|