1
|
Cao B, Scherrer G, Chen L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron 2022; 110:4108-4124.e6. [PMID: 36223767 PMCID: PMC9789181 DOI: 10.1016/j.neuron.2022.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023]
Abstract
Central sensitization caused by spinal disinhibition is a key mechanism of mechanical allodynia in neuropathic pain. However, the molecular mechanisms underlying spinal disinhibition after nerve injury remain unclear. Here, we show in mice that spared nerve injury (SNI), which induces mechanical hypersensitivity and neuropathic pain, triggers homeostatic reduction of inhibitory outputs from dorsal horn parvalbumin-positive (PV+) interneurons onto both primary afferent terminals and excitatory interneurons. The reduction in inhibitory outputs drives hyperactivation of the spinal cord nociceptive pathway, causing mechanical hypersensitivity. We identified the retinoic acid receptor RARα, a central regulator of homeostatic plasticity, as the key molecular mediator for this synaptic disinhibition. Deletion of RARα in spinal PV+ neurons or application of an RARα antagonist in the spinal cord prevented the development of SNI-induced mechanical hypersensitivity. Our results identify RARα as a crucial molecular effector for neuropathic pain and a potential target for its treatment.
Collapse
Affiliation(s)
- Bing Cao
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lu Chen
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Abstract
A substantial fraction of the human population suffers from chronic pain states, which often cannot be sufficiently treated with existing drugs. This calls for alternative targets and strategies for the development of novel analgesics. There is substantial evidence that the G protein-coupled GABAB receptor is involved in the processing of pain signals and thus has long been considered a valuable target for the generation of analgesics to treat chronic pain. In this review, the contribution of GABAB receptors to the generation and modulation of pain signals, their involvement in chronic pain states as well as their target suitability for the development of novel analgesics is discussed.
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, Girard AA, Boudreau D, Kianicka I, Gagnon M, Doyon N, Ribeiro-da-Silva A, De Koninck Y. Enhancing neuronal chloride extrusion rescues α2/α3 GABA A-mediated analgesia in neuropathic pain. Nat Commun 2020; 11:869. [PMID: 32054836 PMCID: PMC7018745 DOI: 10.1038/s41467-019-14154-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an α1-to-α2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the α2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis.
Collapse
Affiliation(s)
- Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Karine Bachand
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Isabel Plasencia-Fernandez
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Alexandre A Girard
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Dominic Boudreau
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Irenej Kianicka
- Chlorion Pharma, Laval, Québec, QC, Canada
- Laurent Pharmaceuticals Inc., Montreal, QC, Canada
| | - Martin Gagnon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Centre for Innovation, University of Otago, Dunedin, New Zealand
| | - Nicolas Doyon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Finite Element Interdisciplinary Research Group (GIREF), Université Laval, Québec, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada.
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada.
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Nasirinezhad F, Hosseini M, Karami Z, Janzadeh A, Yousefifard M. Comparative Efficacy of GABAA and GABAB Receptor Agonists in Pain Alleviation in a Spinal Cord Injury Model of Neuropathic Pain. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09826-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain. J Neural Transm (Vienna) 2019; 127:481-503. [PMID: 31641856 DOI: 10.1007/s00702-019-02090-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
A striking and debilitating property of the nervous system is that damage to this tissue can cause chronic intractable pain, which persists long after resolution of the initial insult. This neuropathic form of pain can arise from trauma to peripheral nerves, the spinal cord, or brain. It can also result from neuropathies associated with disease states such as diabetes, human immunodeficiency virus/AIDS, herpes, multiple sclerosis, cancer, and chemotherapy. Regardless of the origin, treatments for neuropathic pain remain inadequate. This continues to drive research into the underlying mechanisms. While the literature shows that dysfunction in numerous loci throughout the CNS can contribute to chronic pain, the spinal cord and in particular inhibitory signalling in this region have remained major research areas. This review focuses on local spinal inhibition provided by dorsal horn interneurons, and how such inhibition is disrupted during the development and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| |
Collapse
|
6
|
Sandercock DA, Barnett MW, Coe JE, Downing AC, Nirmal AJ, Di Giminiani P, Edwards SA, Freeman TC. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front Vet Sci 2019; 6:314. [PMID: 31620455 PMCID: PMC6760028 DOI: 10.3389/fvets.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8, and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n = 96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident 4 months after tail injury. Gene correlation network analysis revealed two co-expression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both “inflammatory pain” and “neuropathic pain.” In Cluster A, gene family members of ion channels e.g., voltage-gated potassium channels (VGPC) and receptors e.g., GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodeling, and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways.
Collapse
Affiliation(s)
- Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Coe
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Alison C Downing
- Edinburgh Genomics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierpaolo Di Giminiani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandra A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Electroacupuncture at Hua Tuo Jia Ji Acupoints Reduced Neuropathic Pain and Increased GABA A Receptors in Rat Spinal Cord. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8041820. [PMID: 30069227 PMCID: PMC6057337 DOI: 10.1155/2018/8041820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Chronic constriction injury- (CCI-) induced neuropathic pain is the most similar model to hyperalgesia in clinical observation. Neuropathic pain is a neuronal dysfunction in the somatosensory system that may lead to spontaneous pain. In this study, electroacupuncture (EA) was applied at bilateral L4 and L6 of Hua Tuo Jia Ji points (EX-B2) for relieving neuropathic pain in rats. Eighteen Sprague-Dawley rats were randomly assigned to three groups: sham, 2-Hz EA, and 15-Hz EA groups. Following von Frey and cold plate tests, both the 2- and the 15-Hz EA groups had significantly lower mechanical and thermal hyperalgesia than the sham group. Western blot analysis results showed that γ-aminobutyric acid A (GABAA), adenosine A1 receptor (A1R), transient receptor potential cation channel subfamily V member 1 (TRPV1), TRPV4, and metabotropic glutamate receptor 3 (mGluR3) were similar in the dorsal root ganglion of all three groups. Furthermore, levels of GABAA receptors were higher in the spinal cord of rats in the 2- and 15-Hz EA groups compared with the sham control group. This was not observed for A1R, TRPV1, TRPV4, or mGluR3 receptors. In addition, all the aforementioned receptors were unchanged in the somatosensory cortex of the study rats, suggesting a central spinal effect. The study results provide evidence to support the clinical use of EA for specifically alleviating neuropathic pain.
Collapse
|
8
|
GABA promotes survival and axonal regeneration in identifiable descending neurons after spinal cord injury in larval lampreys. Cell Death Dis 2018; 9:663. [PMID: 29950557 PMCID: PMC6021415 DOI: 10.1038/s41419-018-0704-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
The poor regenerative capacity of descending neurons is one of the main causes of the lack of recovery after spinal cord injury (SCI). Thus, it is of crucial importance to find ways to promote axonal regeneration. In addition, the prevention of retrograde degeneration leading to the atrophy/death of descending neurons is an obvious prerequisite to activate axonal regeneration. Lampreys show an amazing regenerative capacity after SCI. Recent histological work in lampreys suggested that GABA, which is massively released after a SCI, could promote the survival of descending neurons. Here, we aimed to study if GABA, acting through GABAB receptors, promotes the survival and axonal regeneration of descending neurons of larval sea lampreys after a complete SCI. First, we used in situ hybridization to confirm that identifiable descending neurons of late-stage larvae express the gabab1 subunit of the GABAB receptor. We also observed an acute increase in the expression of this subunit in descending neurons after SCI, which further supported the possible role of GABA and GABAB receptors in promoting the survival and regeneration of these neurons. So, we performed gain and loss of function experiments to confirm this hypothesis. Treatments with GABA and baclofen (GABAB agonist) significantly reduced caspase activation in descending neurons 2 weeks after a complete SCI. Long-term treatments with GABOB (a GABA analogue) and baclofen significantly promoted axonal regeneration of descending neurons after SCI. These data indicate that GABAergic signalling through GABAB receptors promotes the survival and regeneration of descending neurons after SCI. Finally, we used morpholinos against the gabab1 subunit to knockdown the expression of the GABAB receptor in descending neurons. Long-term morpholino treatments caused a significant inhibition of axonal regeneration. This shows that endogenous GABA promotes axonal regeneration after a complete SCI in lampreys by activating GABAB receptors.
Collapse
|
9
|
Ju J, Shin JY, Yoon JJ, Yin M, Yoon MH. Differential expression of spinal γ-aminobutyric acid and opioid receptors modulates the analgesic effects of intrathecal curcumin on postoperative/inflammatory pain in rats. Anesth Pain Med (Seoul) 2018. [DOI: 10.17085/apm.2018.13.1.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Romaus-Sanjurjo D, Valle-Maroto SM, Barreiro-Iglesias A, Fernández-López B, Rodicio MC. Anatomical recovery of the GABAergic system after a complete spinal cord injury in lampreys. Neuropharmacology 2018; 131:389-402. [PMID: 29317225 DOI: 10.1016/j.neuropharm.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Lampreys recover locomotion spontaneously several weeks after a complete spinal cord injury. Dysfunction of the GABAergic system following SCI has been reported in mammalian models. So, it is of great interest to understand how the GABAergic system of lampreys adapts to the post-injury situation and how this relates to spontaneous recovery. The spinal cord of lampreys contains 3 populations of GABAergic neurons and most of the GABAergic innervation of the spinal cord comes from these local cells. GABAB receptors are expressed in the spinal cord of lampreys and they play important roles in the control of locomotion. The aims of the present study were to quantify: 1) the changes in the number of GABAergic neurons and innervation of the spinal cord and 2) the changes in the expression of the gabab receptor subunits b1 and b2 in the spinal cord of the sea lamprey after SCI. We performed complete spinal cord transections at the level of the fifth gill of mature larval lampreys and GABA immunohistochemistry or gabab in situ hybridization experiments. Animals were analysed up to 10 weeks post-lesion (wpl), when behavioural analyses showed that they recovered normal appearing locomotion (stage 6 in the Ayer's scale of locomotor recovery). We observed a significant decrease in the number of GABA-ir cells and fibres 1 h after lesion both rostral and caudal to the lesion site. GABA-ir cell numbers and innervation were recovered to control levels 1 to 2 wpl. At 1, 4 and 10 wpl the expression of gabab1 and gabab2 transcripts was significantly decreased in the spinal cord compared to control un-lesioned animals. This is the first study reporting the quantitative long-term changes in the number of GABAergic cells and fibres and in the expression of gabab receptors in the spinal cord of any vertebrate following a traumatic SCI. Our results show that in lampreys there is a full recovery of the GABAergic neurons and a decrease in the expression of gabab receptors when functional recovery is achieved.
Collapse
Affiliation(s)
- D Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S M Valle-Maroto
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Kannampalli P, Poli SM, Boléa C, Sengupta JN. Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABA B receptor in a rat model of bladder pain. Neuropharmacology 2017; 126:1-11. [PMID: 28823612 DOI: 10.1016/j.neuropharm.2017.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Therapeutic use of GABAB receptor agonists for conditions like chronic abdominal pain, overactive bladder (OAB) and gastroesophageal reflux disease (GERD) is severely affected by poor blood-brain barrier permeability and potential side effects. ADX71441 is a novel positive allosteric modulator (PAM) of the GABAB receptor that has shown encouraging results in pre-clinical models of anxiety, pain, OAB and alcohol addiction. The present study investigates the analgesic effect of ADX71441 to noxious stimulation of the urinary bladder and colon in rats. In female Sprague-Dawley rats, systemic (i.p), but not intrathecal (i.t), administration of ADX71441 produced a dose-dependent decrease in viscero-motor response (VMR) to graded urinary bladder distension (UBD) and colorectal distension (CRD). Additionally, intra-cerebroventricular (i.c.v.) administration of ADX71441 significantly decreased the VMRs to noxious UBD. In electrophysiology experiments, the drug did not attenuate the responses of UBD-sensitive pelvic nerve afferent (PNA) fibers to UBD. In contrast, ADX71441 significantly decreased the responses of UBD-responsive lumbosacral (LS) spinal neurons in spinal intact rats. However, ADX71441 did not attenuate these LS neurons in cervical (C1-C2) spinal transected rats. During cystometrogram (CMG) recordings, ADX71441 (i.p.) significantly decreased the VMR to slow infusion without affecting the number of voiding contraction. These results indicate that ADX71441 modulate bladder nociception via its effect at the supra-spinal sites without affecting the normal bladder motility and micturition reflex in naïve adult rats.
Collapse
Affiliation(s)
- Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sonia-Maria Poli
- Addex Therapeutics, 14 Chemin des Aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | - Christelle Boléa
- Addex Therapeutics, 14 Chemin des Aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | - Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Hu C, Zhao YT, Zhang G, Xu MF. Antinociceptive effects of fucoidan in rat models of vincristine-induced neuropathic pain. Mol Med Rep 2016; 15:975-980. [DOI: 10.3892/mmr.2016.6071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 11/22/2016] [Indexed: 11/05/2022] Open
|
13
|
Serrano ID, Ramu VG, Pinto ART, Freire JM, Tavares I, Heras M, Bardaji ER, Castanho MARB. Correlation between membrane translocation and analgesic efficacy in kyotorphin derivatives. Biopolymers 2016; 104:1-10. [PMID: 25363470 DOI: 10.1002/bip.22580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 11/11/2022]
Abstract
Amidated kyotorphin (L-Tyr-L-Arg-NH2; KTP-NH2) causes analgesia when systemically administered. The lipophilic ibuprofen-conjugated derivative of KTP-NH2 has improved analgesic efficacy. However, fast degradation by peptidases impacts negatively in the pharmacodynamics of these drugs. In this work, selected derivatives of KTP and KTP-NH2 were synthesized to combine lipophilicity and resistance to enzymatic degradation. Eight novel structural modifications were tested for the potential to transverse lipid membranes and to evaluate their efficacy in vivo. The rationale behind the design of the pool of the eight selected molecules consisted in the addition of individual group at the N-terminus, namely the tert-butyloxycarbonyl (Boc), γ-aminobutyric acid (GABA), acetyl, butanoyl, and propanoyl or in the substitution of the tyrosine residue by an indole moiety and in the replacement of the peptidic bond by a urea-like bond in some cases. All the drugs used in the study are intrinsically fluorescent, which enables the use of spectrofluorimetry to sample the drugs in the permeation assays. The results show that the BOC and indolyl derivatives of KTP-NH2 have maximal ability to permeate membranes with concomitant maximal analgesic power. Overall, the results demonstrate that membrane permeation is correlated with analgesic efficacy. However, this is not the only factor accounting for analgesia. KTP-NH2 for instance has low passive permeation but is known to have central action. In this case, hypothetical transcytosis over the blood-brain barrier seems to depend on dipeptide transporters.
Collapse
Affiliation(s)
- Isa D Serrano
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 2016; 54:330-40. [DOI: 10.1038/sc.2015.225] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
15
|
Salte K, Lea G, Franek M, Vaculin S. Baclofen reversed thermal place preference in rats with chronic constriction injury. Physiol Res 2015; 65:349-55. [PMID: 26447518 DOI: 10.33549/physiolres.933008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic constriction injury to the sciatic nerve was used as an animal model of neuropathic pain. Instead of frequently used reflex-based tests we used an operant thermal place preference test to evaluate signs of neuropathic pain and the effect of baclofen administration in rats with neuropathy. Chronic constriction injury was induced by four loose ligations of the sciatic nerve. Thermal place preference (45 °C vs. 22 °C and 45 °C vs. 11 °C) was measured after the ligation and after the administration of baclofen in sham and experimental rats. Rats with the chronic constriction injury spent significantly less time on the colder plate compared to sham operated animals at the combination 45 °C vs. 11 °C. After administration of baclofen (10 mg/kg s.c.), the aversion to the colder plate in rats with chronic constriction injury disappeared. At the combination 45 °C vs. 22 °C, no difference in time spent on colder and/or warmer plate was found between sham and experimental animals. These findings show the importance of cold allodynia evaluation in rats with chronic constriction injury and the effectiveness of baclofen in this neuropathic pain model.
Collapse
Affiliation(s)
- K Salte
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Modulation of Spinal GABAergic Inhibition and Mechanical Hypersensitivity following Chronic Compression of Dorsal Root Ganglion in the Rat. Neural Plast 2015; 2015:924728. [PMID: 26451259 PMCID: PMC4584224 DOI: 10.1155/2015/924728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/09/2015] [Indexed: 01/23/2023] Open
Abstract
Chronic compression of dorsal root ganglion (CCD) results in neuropathic pain. We investigated the role of spinal GABA in CCD-induced pain using rats with unilateral CCD. A stereological analysis revealed that the proportion of GABA-immunoreactive neurons to total neurons at L4/5 laminae I-III on the injured side decreased in the early phase of CCD (post-CCD week 1) and then returned to the sham-control level in the late phase (post-CCD week 18). In the early phase, the rats showed an increase in both mechanical sensitivity of the hind paw and spinal WDR neuronal excitability on the injured side, and such increase was suppressed by spinally applied muscimol (GABA-A agonist, 5 nmol) and baclofen (GABA-B agonist, 25 nmol), indicating the reduced spinal GABAergic inhibition involved. In the late phase, the CCD-induced increase in mechanical sensitivity and neuronal excitability returned to pre-CCD levels, and such recovered responses were enhanced by spinally applied bicuculline (GABA-A antagonist, 15 nmol) and CGP52432 (GABA-B antagonist, 15 nmol), indicating the regained spinal GABAergic inhibition involved. In conclusion, the alteration of spinal GABAergic inhibition following CCD and leading to a gradual reduction over time of CCD-induced mechanical hypersensitivity is most likely due to changes in GABA content in spinal GABA neurons.
Collapse
|
17
|
Dieb W, Hafidi A. Mechanism of GABA involvement in post-traumatic trigeminal neuropathic pain: activation of neuronal circuitry composed of PKCγ interneurons and pERK1/2 expressing neurons. Eur J Pain 2014; 19:85-96. [PMID: 24890317 DOI: 10.1002/ejp.525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND GABA disinhibition within the spinal dorsal horn has been implicated in pain hypersensitivity on injury in different neuropathic models. However, GABA alteration has been explored in only one study on trigeminal neuropathic pain. METHODS The present study investigated the implication of GABA in trigeminal dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN), and explored the cellular and molecular mechanisms by which GABA dysfunction induced DMA. RESULTS Our data demonstrated a significant decrease in labelling in two GABA cell markers, glutamate acid decarboxylase (GAD67), and parvalbumin, in the medullary dorsal horn (MDH) of allodynic rats in comparison to sham rats. Increasing GABA by intracisternal injections of vigabatrin (VGB), a blocker of the catabolic enzyme GABA transaminase, alleviated pain behaviour and restored normal GABA cell marker expression in allodynic MDH. Interestingly, intracisternal VGB administration also significantly decreased PKCγ staining, i.e., of its phosphorylated active form and the number of pERK1/2 positive cells within the MDH. These two markers were highly expressed in allodynic MDH. CONCLUSION The circuitry composed of PKCγ and pERK1/2 cells is silent under physiological conditions but is activated after CCI-IoN, therefore, switching touch stimuli to pain sensation. The decrease of GABA transmission constituted a key factor in the activation of this neuronal circuitry, which opens the gate for non-noxious stimuli to reach nociceptive projection neurons in lamina I.
Collapse
Affiliation(s)
- W Dieb
- Neuropsycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université d'Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
18
|
Fukuhara K, Katafuchi T, Yoshimura M. Effects of baclofen on mechanical noxious and innocuous transmission in the spinal dorsal horn of the adult rat: in vivo patch-clamp analysis. Eur J Neurosci 2013; 38:3398-407. [PMID: 23961926 DOI: 10.1111/ejn.12345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/30/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022]
Abstract
The effects of a GABAB agonist, baclofen, on mechanical noxious and innocuous synaptic transmission in the substantia gelatinosa (SG) were investigated in adult rats with the in vivo patch-clamp technique. Under current-clamp conditions, perfusion with baclofen (10 μm) on the surface of the spinal cord caused hyperpolarisation of SG neurons and a decrease in the number of action potentials elicited by pinch and touch stimuli applied to the receptive field of the ipsilateral hindlimb. The suppression of action potentials was preserved under blockade of postsynaptic G-proteins, although baclofen-induced hyperpolarisation was completely blocked. These findings suggest presynaptic effects of baclofen on the induced action potentials. Under voltage-clamp conditions, application of baclofen reduced the frequency, but not the amplitude, of miniature excitatory postsynaptic currents (mEPSCs), whereas the GABAB receptor antagonist CGP55845 increased the frequency of mEPSCs without affecting the amplitude. Furthermore, application of a GABA uptake inhibitor, nipecotic acid, decreased the frequency of mEPSCs; this effect was blocked by CGP55845, but not by the GABAA antagonist bicuculline. Both the frequency and the amplitude of the pinch-evoked barrage of excitatory postsynaptic currents (EPSCs) were suppressed by baclofen in a dose-dependent manner. The frequency and amplitude of touch-evoked EPSCs was also suppressed by baclofen, but the suppression was significantly smaller than that of pinch-evoked EPSCs. We conclude that mechanical noxious transmission is presynaptically blocked through GABAB receptors in the SG, and is more effectively suppressed than innocuous transmission, which may account for a part of the mechanism of the efficient analgesic effects of baclofen.
Collapse
Affiliation(s)
- Kaori Fukuhara
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | |
Collapse
|
19
|
Kramer PR, Bellinger LL. Reduced GABAA receptor α6 expression in the trigeminal ganglion enhanced myofascial nociceptive response. Neuroscience 2013; 245:1-11. [PMID: 23602886 DOI: 10.1016/j.neuroscience.2013.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Activation of the GABAA receptor results in inhibition of neuronal activity. One subunit of this multi-subunit receptor termed alpha 6 (Gabrα6) contributed to inflammatory temporomandibular joint (TMJ) nociception but TMJ disorders often include myofascial pain. To address Gabrα6 role in myofascial pain we hypothesized that Gabrα6 has an inhibitory role in myofascial nociceptive responses similar to inflammatory TMJ arthritis. To test this hypothesis a, myofascial nociceptive response was induced by placing a ligature bilaterally on the tendon attachment of the anterior superficial part of a male rat's masseter muscle. Four days after ligature placement Gabrα6 expression was reduced by infusing the trigeminal ganglia (TG) with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). After siRNA infusion nociceptive behavioral responses were measured, i.e., feeding behavior and head withdrawal after pressing upon the region above the ligature with von Frey filaments. Neuronal activity in the TG and trigeminal nucleus caudalis and upper cervical region (Vc-C1) was measured by quantitating the amount of phosphorylated extracellular signal-regulated kinase (p-ERK). Total Gabrα6 and GABAA receptor contents in the TG and Vc-C1 were determined. Gabrα6 siRNA infusion reduced Gabrα6 and GABAA receptor expression and significantly increased the nociceptive response in both nociceptive assays. Gabrα6 siRNA infusion also significantly increased TG p-ERK expression of the ligated rats. From these results we conclude GABAA receptors consisting of the Gabrα6 subunit inhibit TG nociceptive sensory afferents in the trigeminal pathway and have an important role in the regulation of myofascial nociception.
Collapse
Affiliation(s)
- P R Kramer
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, United States.
| | | |
Collapse
|
20
|
Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO J 2012; 31:3239-51. [PMID: 22692127 DOI: 10.1038/emboj.2012.161] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/07/2012] [Indexed: 11/09/2022] Open
Abstract
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de-dimerization in pathological conditions. We show here that 14-3-3ζ, a GABAB1-binding protein, dissociates the GABAB heterodimer, resulting in the impairment of GABAB signalling in spinal neurons. In the dorsal spinal cord of neuropathic rats, 14-3-3ζ is overexpressed and weakens GABAB inhibition. Using anti-14-3-3ζ siRNA or competing peptides disrupts 14-3-3ζ/GABAB1 interaction and restores functional GABAB heterodimers in the dorsal horn. Importantly, both strategies greatly enhance the anti-nociceptive effect of intrathecal Baclofen in neuropathic rats. Taken together, our data provide the first example of endogenous regulation of a GPCR oligomeric state and demonstrate its functional impact on the pathophysiological process of neuropathic pain sensitization.
Collapse
|
21
|
Puri J, Vinothini P, Reuben J, Bellinger LL, Ailing L, Peng YB, Kramer PR. Reduced GABA(A) receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity. Neuroscience 2012; 213:179-90. [PMID: 22521829 DOI: 10.1016/j.neuroscience.2012.03.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
Abstract
Trigeminal ganglia neurons express the GABA(A) receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund's adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception.
Collapse
Affiliation(s)
- J Puri
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen SH, Tsai YJ, Lin CT, Wang HY, Li SF, Lue JH. Changes in GABA and GABA(B) receptor expressions are involved in neuropathy in the rat cuneate nucleus following median nerve transection. Synapse 2012; 66:561-72. [PMID: 22290688 DOI: 10.1002/syn.21539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/20/2012] [Indexed: 01/17/2023]
Abstract
This study examined the relationship between changes in GABA transmission and behavioral abnormalities after median nerve transection. Following unilateral median nerve transection, the percentage of GABA-like immunoreactive neurons in the cuneate nucleus and that of GABA(B) receptor-like immunoreactive neurons in the dorsal root ganglion in the injured side decreased and reached a nadir at 4 weeks after median nerve transection. Four weeks after bilateral median nerve transection and intraperitoneal application with saline, baclofen (2 mg kg⁻¹), or phaclofen (2 mg kg⁻¹) before unilateral electrical stimulation of the injured median nerve, we investigated the level of neuropeptide Y release and c-Fos expression in the stimulated side of the cuneate nucleus. The neuropeptide Y release level and the number of c-Fos-like immunoreactive neurons in the baclofen group were significantly attenuated, whereas those in the phaclofen group had increased compared to the saline group. These findings indicate that median nerve transection reduces GABA transmission, promoting injury-induced neuropeptide Y release and consequently evoking c-Fos expression in cuneate nucleus neurons. Furthermore, this study used the CatWalk method to assess behavioral abnormalities in rats following median nerve transection. These abnormalities were reversed by baclofen treatment. Overall, the results suggest that baclofen treatment block neuropeptide Y release, subsequently lessening c-Fos expression in cuneate neurons and consequently attenuating neuropathic signal transmission to the thalamus.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Janssen SP, Gerard S, Raijmakers ME, Truin M, Van Kleef M, Joosten EA. Decreased intracellular GABA levels contribute to spinal cord stimulation-induced analgesia in rats suffering from painful peripheral neuropathy: the role of KCC2 and GABA(A) receptor-mediated inhibition. Neurochem Int 2012; 60:21-30. [PMID: 22107704 DOI: 10.1016/j.neuint.2011.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/18/2011] [Accepted: 11/08/2011] [Indexed: 02/02/2023]
Abstract
Elevated spinal extracellular γ-aminobutyric acid (GABA) levels have been described during spinal cord stimulation (SCS)-induced analgesia in experimental chronic peripheral neuropathy. Interestingly, these increased GABA levels strongly exceeded the time frame of SCS-induced analgesia. In line with the former, pharmacologically-enhanced extracellular GABA levels by GABA(B) receptor agonists in combination with SCS in non-responders to SCS solely could convert these non-responders into responders. However, similar treatment with GABA(A) receptor agonists and SCS is known to be less efficient. Since K⁺ Cl⁻ cotransporter 2 (KCC2) functionality strongly determines proper GABA(A) receptor-mediated inhibition, both decreased numbers of GABA(A) receptors as well as reduced KCC2 protein expression might play a pivotal role in this loss of GABA(A) receptor-mediated inhibition in non-responders. Here, we explored the mechanisms underlying both changes in extracellular GABA levels and impaired GABA(A) receptor-mediated inhibition after 30 min of SCS in rats suffering from partial sciatic nerve ligation (PSNL). Immediately after cessation of SCS, a decreased spinal intracellular dorsal horn GABA-immunoreactivity was observed in responders when compared to non-responders or sham SCS rats. One hour later however, GABA-immunoreactivity was already increased to similar levels as those observed in non-responder or sham SCS rats. These changes did not coincide with alterations in the number of GABA-immunoreactive cells. C-Fos/GABA double-fluorescence clearly confirmed a SCS-induced activation of GABA-immunoreactive cells in responders immediately after SCS. Differences in spinal dorsal horn GABA(A) receptor-immunoreactivity and KCC2 protein levels were absent between all SCS groups. However, KCC2 protein levels were significantly decreased compared to sham PSNL animals. In conclusion, reduced intracellular GABA levels are only present during the time frame of SCS in responders and strongly point to a SCS-mediated on/off GABAergic release mechanism. Furthermore, a KCC2-dependent impaired GABA(A) receptor-mediated inhibition seems to be present both in responders and non-responders to SCS due to similar KCC2 and GABA(A) receptor levels.
Collapse
Affiliation(s)
- S P Janssen
- Pain Management and Research Center, Department of Anesthesiology, Maastricht University Medical Center, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Peripheral and spinal GABAergic regulation of incisional pain in rats. Pain 2012; 153:129-141. [DOI: 10.1016/j.pain.2011.09.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/30/2011] [Accepted: 09/30/2011] [Indexed: 11/17/2022]
|
25
|
Chen SH, Tsai YJ, Wang HY, Lin CT, Li SF, Lue JH. Decreases of glycine receptor expression induced by median nerve injury in the rat cuneate nucleus contribute to NPY release and c-Fos expression. Life Sci 2011; 90:278-88. [PMID: 22178676 DOI: 10.1016/j.lfs.2011.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/07/2011] [Accepted: 11/23/2011] [Indexed: 11/15/2022]
Abstract
AIMS This study aimed to investigate temporal changes in glycine and its receptor expressions in cuneate neurons after median nerve transection (MNT), and the effects of glycine on neuropeptide Y (NPY) release and c-Fos expression in the cuneate nucleus (CN). MAIN METHODS Immunohistochemistry methods were used to appraise changes of glycine- and GlyR-like immunoreactive (LI) neurons in the CN after MNT. The alterations in NPY and c-Fos expressions were used to assess the effects of saline, glycine or strychnine treatment. The CatWalk method was used to assess the efficiency of glycine treatment on the neuropathic signs of rats with MNT. KEY FINDINGS Approximately half of GlyR-LI neurons were fluorogold-labeled cuneothalamic projection neurons in the CN. Following MNT, the number of GlyR-LI neurons significantly decreased in the injured side of CN at 2 and 4 weeks, but the number of glycine-LI neurons remained unchanged. Four weeks after MNT given with electrical stimulation, strychnine significantly decreased the NPY reduction level in the stimulated side CN compared to that of the saline group. However, numbers of c-Fos-LI neurons in the glycine and strychnine groups were both significantly less than that in the saline group. But the paw print width and area in CatWalk analysis showed only a moderate recovery. SIGNIFICANCE We conjecture that glycine increases glycine-mediated postsynaptic inhibition of cuneate neurons, and also blocks GABAergic neurons containing GlyRs which mediate presynaptic inhibition causing temperate NPY release. Consequently, the compromise results showed a weak reduction in c-Fos expression and a slight amelioration of neuropathic behaviors.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen Ai Road, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Janssen SP, Truin M, Van Kleef M, Joosten EA. Differential GABAergic disinhibition during the development of painful peripheral neuropathy. Neuroscience 2011; 184:183-94. [PMID: 21496475 DOI: 10.1016/j.neuroscience.2011.03.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 11/27/2022]
Abstract
An impaired spinal GABAergic inhibitory function is known to be pivotal in neuropathic pain (NPP). At present, data concerning time-dependent alterations within the GABAergic system itself and post-synaptic GABA(A) receptor-mediated inhibitory transmission are highly controversial, likely related to the experimental NPP model used. Furthermore, it is unknown whether the severity of NPP is determined by the degree of these GABAergic disturbances. In the present study we therefore examined in one experimental animal model whether anatomical changes within the spinal GABAergic system and its GABA(A) receptor-mediated inhibitory function are gradually aggravated during the development of partial sciatic nerve injury (PSNL)-induced NPP and are related to the severity of PSNL-induced hypersensitivity. Three and 16 days after a unilateral PSNL (early and late NPP, respectively), GABA-immunoreactivity (GABA-IR) and the number of GABA-IR neuronal profiles were determined in Rexed laminae 1-3 of lumbar spinal cord cryosections. Additionally, the efficiency of dorsal horn GABA(A) receptor-induced inhibition was examined by cation chloride cotransporter 2 (KCC2) immunoblotting. NPP-induced hypersensitivity was only observed at the ipsilateral side, both at early and late time points. During early NPP, a decrease in ipsilateral dorsal horn GABA-IR was observed without alterations in the number of GABA-IR neuronal profiles or KCC2 protein levels. In contrast, bilateral increases in spinal GABA-IR accompanied by an unchanged number of GABA-IR interneurons were observed during late NPP. This was furthermore attended with decreased ipsilateral KCC2 levels. Moreover, the degree of hypersensitivity was not related to disturbances within the spinal GABAergic system at all time points examined. In conclusion, our anatomical data suggest that a dysfunctional GABA production is likely to be involved in early NPP whereas late NPP is characterized by a combined dysfunctional GABA release and decreased KCC2 levels, the latter suggesting an impaired GABA(A) receptor-mediated inhibition.
Collapse
Affiliation(s)
- S P Janssen
- Pain Management and Research Center, Department of Anesthesiology, Maastricht University Medical Center, P. Debyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Vector-mediated release of GABA attenuates pain-related behaviors and reduces Na(V)1.7 in DRG neurons. Eur J Pain 2011; 15:913-20. [PMID: 21486703 DOI: 10.1016/j.ejpain.2011.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/03/2011] [Accepted: 03/17/2011] [Indexed: 01/15/2023]
Abstract
Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a non-replicating herpes simplex virus (HSV)-based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. Continuous release of GABA from vector transduced cells in vivo prevented the increase in the voltage-gated sodium channel isoform 1.7 (Na(V)1.7) protein that is characteristic of PDN. In vitro, infection of primary DRG neurons with vG prevented the increase in Na(V)1.7 resulting from exposure to hyperglycemia. The effect of vector-mediated GABA on Na(V)1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABA(B) receptor effect that was blocked by pertussis toxin-(PTX) interference with Gα((i/o)) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector-mediated release of enkephalin also prevents the increase in Na(V)1.7 in DRG exposed to hyperglycemia in vitro or in vivo, the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent.
Collapse
|
28
|
Wang XL, Zhang Q, Zhang YZ, Liu YT, Dong R, Wang QJ, Guo YX. Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neurosci Lett 2011; 490:112-5. [PMID: 21184807 DOI: 10.1016/j.neulet.2010.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
Diabetic neuropathic pain is a common clinical problem and remains difficult to treat with classic analgesics. Spinal dorsal horn neurons are important in mediating nociceptive signaling, and the hyperactivity of these neurons is critical in diabetic neuropathy. In this study, we determined the GABA(B) receptor expression level in dorsal horn neurons in streptozotocin (STZ)-induced diabetes in rats by using reverse-transcription polymerase chain reaction (RT-PCR) and western blot analyses. Mean blood glucose concentrations were significantly higher and the paw withdrawal threshold was significantly lower in STZ-treated rats than in saline-treated rats. Immunohistochemical staining showed that the GABA(B) receptor was extensively expressed in the spinal dorsal horn neurons. The GABA(B1) mRNA level decreased in a time-dependent manner in STZ-treated rats compared with saline-treated controls. Furthermore, the protein expression level revealed by western blot analysis was lower in STZ-treated rats than in saline-treated rats. These data suggest that GABA(B) receptors are downregulated in the spinal dorsal horn in this model of STZ-induced diabetic neuropathic pain. The reduction of GABA(B) expression may contribute to the hyperactivity of spinal dorsal horn neurons and diabetic neuropathic pain.
Collapse
Affiliation(s)
- Xiu-Li Wang
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, HeBei Province 050011, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
GABAergic pathway in a rat model of chronic neuropathic pain: Modulation after intrathecal transplantation of a human neuronal cell line. Neurosci Res 2011; 69:111-20. [DOI: 10.1016/j.neures.2010.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 12/30/2022]
|
30
|
Wei H, Hao B, Huang JL, Ma AN, Li XY, Wang YX, Pertovaara A. Intrathecal administration of a gap junction decoupler, an inhibitor of Na+–K+–2Cl− cotransporter 1, or a GABAA receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacol Biochem Behav 2010; 97:377-83. [DOI: 10.1016/j.pbb.2010.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 01/28/2023]
|
31
|
Martin YB, Malmierca E, Avendaño C, Nuñez A. Neuronal disinhibition in the trigeminal nucleus caudalis in a model of chronic neuropathic pain. Eur J Neurosci 2010; 32:399-408. [PMID: 20704591 DOI: 10.1111/j.1460-9568.2010.07302.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms underlying neuropathic facial pain syndromes are incompletely understood. We used a unilateral chronic constriction injury of the rat infraorbital nerve (CCI-IoN) as a facial neuropathic model. Pain-related behavior of the CCI-IoN animals was tested at 8, 15 and 26 days after surgery (dps). The response threshold to mechanical stimulation with von Frey hairs on the injured side was reduced at 15 and 26 dps, indicating the presence of allodynia. We performed unitary recordings in the caudalis division of the spinal trigeminal nucleus (Sp5C) at 8 or 26 dps, and examined spontaneous activity and responses to mechanical and thermal stimulation of the vibrissal pad. Neurons were identified as wide dynamic range (WDR) or low-threshold mechanoreceptive (LTM) according to their response to tactile and/or noxious stimulation. Following CCI-IoN, WDR neurons, but not LTM neurons, increased their spontaneous activity at 8 and 26 dps, and both types of Sp5C neurons increased their responses to tactile stimuli. In addition, the on-off tactile response in neurons recorded after CCI-IoN was followed by afterdischarges that were not observed in control cases. Compared with controls, the response inhibition observed during paired-pulse stimulation was reduced after CCI-IoN. Immunohistochemical studies showed an overall decrease in GAD65 immunoreactivity in Sp5C at 26 dps, most marked in laminae I and II, suggesting that following CCI-IoN the inhibitory circuits in the sensory trigeminal nuclei are depressed. Consequently, our results strongly suggest that disinhibition of Sp5C neurons plays a relevant role in the appearance of allodynia after CCI-IoN.
Collapse
Affiliation(s)
- Yasmina B Martin
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Hochman S, Shreckengost J, Kimura H, Quevedo J. Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms. Ann N Y Acad Sci 2010; 1198:140-52. [PMID: 20536928 DOI: 10.1111/j.1749-6632.2010.05436.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary afferent neurotransmission is the fundamental first step in the central processing of sensory stimuli and is controlled by pre- and postsynaptic inhibitory mechanisms. Presynaptic inhibition (PSI) is probably the more powerful form of inhibitory control in all primary afferent fibers. A major mechanism producing afferent PSI is via a channel-mediated depolarization of their intraspinal terminals, which can be recorded extracellularly as a dorsal root potential (DRP). Based on measures of DRP latency it has been inferred that this primary afferent depolarization (PAD) of low-threshold afferents is mediated by minimally trisynaptic pathways with pharmacologically identified GABAergic interneurons forming last-order axo-axonic synapses onto afferent terminals. There is still no "squeaky clean" evidence of this organization. This paper describes recent and historical work that supports the existence of PAD occurring by more direct pathways and with a complex pharmacology that questions the proprietary role of GABA and GABA(A) receptors in this process. Cholinergic transmission in particular may contribute significantly to PAD, including via direct release from primary afferents.
Collapse
Affiliation(s)
- Shawn Hochman
- Department of Physiology, Emory University, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
33
|
Lee J, Back SK, Lim EJ, Cho GC, Kim MA, Kim HJ, Lee MH, Na HS. Are spinal GABAergic elements related to the manifestation of neuropathic pain in rat? THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:59-69. [PMID: 20473376 DOI: 10.4196/kjpp.2010.14.2.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 11/15/2022]
Abstract
Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists (1 microg bicuculline/rat and 5 microg phaclofen/rat), agonists (1 microg muscimol/rat and 0.5 microg baclofen/rat) or GABA transporter (GAT) inhibitors (20 microg NNC-711/rat and 1 microg SNAP-5114/rat) into naïve or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABA(A) and GABA(B)) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naïve animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.
Collapse
Affiliation(s)
- Jaehee Lee
- Medical Science Research Center and Department of Physiology, Korea University College of Medicine, Seoul 136-705, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Daemen MA, Hoogland G, Cijntje JM, Spincemaille GH. Upregulation of the GABA-transporter GAT-1 in the spinal cord contributes to pain behaviour in experimental neuropathy. Neurosci Lett 2008; 444:112-5. [DOI: 10.1016/j.neulet.2008.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/23/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
36
|
Munro G, Lopez-Garcia JA, Rivera-Arconada I, Erichsen HK, Nielsen EØ, Larsen JS, Ahring PK, Mirza NR. Comparison of the novel subtype-selective GABAA receptor-positive allosteric modulator NS11394 [3'-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile] with diazepam, zolpidem, bretazenil, and gaboxadol in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 2008; 327:969-81. [PMID: 18791060 DOI: 10.1124/jpet.108.144568] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal administration of GABA(A) receptor modulators, such as the benzodiazepine drug diazepam, partially alleviates neuropathic hypersensitivity that manifests as spontaneous pain, allodynia, and hyperalgesia. However, benzodiazepines are hindered by sedative impairments and other side effect issues occurring mainly as a consequence of binding to GABA(A) receptors containing the alpha(1) subunit. Here, we report on the novel subtype-selective GABA(A) receptor-positive modulator NS11394 [3'-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile], which possesses a functional efficacy selectivity profile of alpha(5) > alpha(3) > alpha(2) > alpha(1) at GABA(A) alpha subunit-containing receptors. Oral administration of NS11394 (1-30 mg/kg) to rats attenuated spontaneous nociceptive behaviors in response to hindpaw injection of formalin and capsaicin, effects that were blocked by the benzodiazepine site antagonist flumazenil. Ongoing inflammatory nociception, observed as hindpaw weight-bearing deficits after Freund's adjuvant injection, was also completely reversed by NS11394. Likewise, hindpaw mechanical allodynia was fully reversed by NS11394 in two rat models of peripheral neuropathic pain. Importantly, NS11394-mediated antinociception occurred at doses 20 to 40-fold lower than those inducing minor sedative or ataxic impairments. In contrast, putative antinociception associated with administration of either diazepam, zolpidem, or gaboxadol only occurred at doses producing intolerable side effects, whereas bretazenil was completely inactive despite minor influences on motoric function. In electrophysiological studies, NS11394 selectively attenuated spinal nociceptive reflexes and C-fiber-mediated wind-up in vitro pointing to involvement of a spinal site of action. The robust therapeutic window seen with NS11394 in animals suggests that compounds with this in vitro selectivity profile could have potential benefit in clinical treatment of pain in humans.
Collapse
Affiliation(s)
- G Munro
- NeuroSearch A/S, Ballerup, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008; 86:22-47. [PMID: 18602968 DOI: 10.1016/j.pneurobio.2008.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 06/11/2008] [Indexed: 02/01/2023]
Abstract
Since the initial description by Wall [Wall, P.D., 1967. The laminar organization of dorsal horn and effects of descending impulses. J. Neurophysiol. 188, 403-423] of tonic descending inhibitory control of dorsal horn neurons, several studies have aimed to characterize the role of various brain centers in the control of nociceptive input to the spinal cord. The role of brainstem centers in pain inhibition has been well documented over the past four decades. Lesion to peripheral nerves results in hypersensitivity to mild tactile or cold stimuli (allodynia) and exaggerated response to nociceptive stimuli (hyperalgesia), both considered as cardinal signs of neuropathic pain. The increased interest in animal models for peripheral neuropathy has raised several questions concerning the rostral conduction of the neuropathic manifestations and the role of supraspinal centers, especially brainstem, in the inhibitory control or in the abnormal contribution to the maintenance and facilitation of neuropathic-like behavior. This review aims to summarize the data on the ascending and descending modulation of neuropathic manifestations and discusses the recent experimental data on the role of supraspinal centers in the control of neuropathic pain. In particular, the review emphasizes the importance of the reciprocal interconnections between the analgesic areas of the brainstem and the pain-related areas of the forebrain. The latter includes the cerebral limbic areas, the prefrontal cortex, the intralaminar thalamus and the hypothalamus and play a critical role in the control of pain considered as part of an integrated behavior related to emotions and various homeostatic regulations. We finally speculate that neuropathic pain, like extrapyramidal motor syndromes, reflects a disorder in the processing of somatosensory information.
Collapse
|
38
|
Schechtmann G, Song Z, Ultenius C, Meyerson BA, Linderoth B. Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain 2008; 139:136-145. [PMID: 18472215 DOI: 10.1016/j.pain.2008.03.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 11/20/2022]
Abstract
The mechanisms underlying the pain relieving effect of spinal cord stimulation (SCS) on neuropathic pain remain unclear. We have previously demonstrated that suppression of tactile hypersensitivity produced by SCS may be potentiated by i.t. clonidine in a rat model of mononeuropathy. Since the analgesic effect of this drug is mediated mainly via cholinergic mechanisms, a study exploring the possible involvement of the spinal cholinergic system in SCS was undertaken. The effect of SCS was assessed with von Frey filaments in rats displaying tactile hypersensitivity after partial ligation of the sciatic nerve and both SCS-responding and non-responding as well as normal rats were subjected to microdialysis in the dorsal horn. Acetylcholine (ACh) was analyzed with HPLC before, during and after SCS. SCS produced significantly increased release of ACh in the dorsal horn in rats responding to SCS whereas the release was unaffected in the non-responding animals. Furthermore, the basal release of ACh was significantly lower in nerve lesioned than in normal rats. In another group of rats it was found that the response to SCS was completely eliminated by i.t. atropine and a muscarinic M(4) receptor antagonist while a partial attenuation was produced by M(1) and M(2) antagonists. Blocking of nicotinic receptors did not influence the SCS effect. In conclusion, the attenuating effect of SCS on pain related behavior is associated with the activation of the cholinergic system in the dorsal horn and mediated via muscarinic receptors, particularly M(4,) while nicotinic receptors appear not to be involved.
Collapse
Affiliation(s)
- Gastón Schechtmann
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet and University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Changes in synaptic effectiveness of myelinated joint afferents during capsaicin-induced inflammation of the footpad in the anesthetized cat. Exp Brain Res 2008; 187:71-84. [PMID: 18251018 DOI: 10.1007/s00221-008-1281-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/10/2008] [Indexed: 12/20/2022]
Abstract
The present series of experiments was designed to examine, in the anesthetized cat, the extent to which the synaptic efficacy of knee joint afferents is modified during the state of central sensitization produced by the injection of capsaicin into the hindlimb plantar cushion. We found that the intradermic injection of capsaicin increased the N2 and N3 components of the focal potentials produced by stimulation of intermediate and high threshold myelinated fibers in the posterior articular nerve (PAN), respectively. This facilitation lasted several hours, had about the same time course as the paw inflammation and was more evident for the N2 and N3 potentials recorded within the intermediate zone in the L6 than in the L7 spinal segments. The capsaicin-induced facilitation of the N2 focal potentials, which are assumed to be generated by activation of fibers signaling joint position, suggests that nociception may affect the processing of proprioceptive and somato-sensory information and, probably also, movement. In addition, the increased effectiveness of these afferents could activate, besides neurons in the intermediate region, neurons located in the more superficial layers of the dorsal horn. As a consequence, normal joint movements could produce pain representing a secondary hyperalgesia. The capsaicin-induced increased efficacy of the PAN afferents producing the N3 focal potentials, together with the reduced post-activation depression that follows high frequency autogenetic stimulation of these afferents, could further contribute to the pain sensation from non-inflamed joints during skin inflammation in humans. The persistence, after capsaicin, of the inhibitory effects produced by stimulation of cutaneous nerves innervating non-inflamed skin regions may account for the reported reduction of the articular pain sensations produced by trans-cutaneous stimulation.
Collapse
|
40
|
Pan HL, Wu ZZ, Zhou HY, Chen SR, Zhang HM, Li DP. Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther 2007; 117:141-61. [PMID: 17959251 DOI: 10.1016/j.pharmthera.2007.09.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 01/17/2023]
Abstract
The heterotrimeric G-protein-coupled receptors (GPCR) represent the largest and most diverse family of cell surface receptors and proteins. GPCR are widely distributed in the peripheral and central nervous systems and are one of the most important therapeutic targets in pain medicine. GPCR are present on the plasma membrane of neurons and their terminals along the nociceptive pathways and are closely associated with the modulation of pain transmission. GPCR that can produce analgesia upon activation include opioid, cannabinoid, alpha2-adrenergic, muscarinic acetylcholine, gamma-aminobutyric acidB (GABAB), groups II and III metabotropic glutamate, and somatostatin receptors. Recent studies have led to a better understanding of the role of these GPCR in the regulation of pain transmission. Here, we review the current knowledge about the cellular and molecular mechanisms that underlie the analgesic actions of GPCR agonists, with a focus on their effects on ion channels expressed on nociceptive sensory neurons and on synaptic transmission at the spinal cord level.
Collapse
Affiliation(s)
- Hui-Lin Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77225, United States.
| | | | | | | | | | | |
Collapse
|
41
|
Wang XL, Zhang HM, Chen SR, Pan HL. Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. J Physiol 2007; 579:849-61. [PMID: 17218355 PMCID: PMC2151355 DOI: 10.1113/jphysiol.2006.126102] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperactivity of spinal dorsal horn neurons plays an important role in the development of diabetic neuropathic pain. However, little is known as to whether synaptic input to spinal dorsal horn neurons is altered in diabetic neuropathy. Also, the function of GABAB receptors in the control of synaptic input to dorsal horn neurons in diabetes remains poorly understood. To determine the changes in synaptic input to dorsal horn neurons and the GABAB)receptor function in streptozotocin-induced diabetes, we performed whole-cell recording (GDP-beta-S included in the internal solution) on lamina II neurons in rat spinal cord slices. The frequency of glutamatergic mEPSCs and the amplitude of monosynaptic EPSCs evoked from the dorsal root were significantly higher in diabetic than in control rats. On the other hand, the basal frequency and amplitude of GABAergic spontaneous IPSCs and mIPSCs and those of glycinergic spontaneous IPSCs and mIPSCs did not differ significantly between control and diabetic rats. The GABAB agonist baclofen produced a significantly greater reduction in dorsal root-evoked EPSCs and the frequency of mEPSCs in control than in diabetic rats. However, the inhibitory effect of baclofen on GABAergic and glycinergic spontaneous IPSCs and mIPSCs was not significantly different in the two groups. These findings suggest that increased glutamatergic input from primary afferents to dorsal horn neurons may contribute to synaptic plasticity and central sensitization in diabetic neuropathic pain. Furthermore, the function of presynaptic GABAB receptors at primary afferent terminals, but not that on GABAergic and glycinergic interneurons, in the spinal cord is reduced in diabetic neuropathy.
Collapse
Affiliation(s)
- Xiu-Li Wang
- Department of Anaesthesiology and Pain Medicine, Unit 409, The University of Texas M. D. Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Schoffnegger D, Heinke B, Sommer C, Sandkühler J. Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury. J Physiol 2006; 577:869-78. [PMID: 17053034 PMCID: PMC1890379 DOI: 10.1113/jphysiol.2006.118034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aberrant GABAergic inhibition in spinal dorsal horn may underlie some forms of neuropathic pain. Potential, but yet unexplored, mechanisms include reduced excitability, abnormal discharge patterns or altered synaptic input of spinal GABAergic neurons. To test these hypotheses, we quantitatively compared active and passive membrane properties, firing patterns in response to depolarizing current steps and synaptic input of GABAergic neurons in spinal dorsal horn lamina II of neuropathic and of control animals. Transgenic mice were used which expressed enhanced green fluorescent protein (EGFP) controlled by the GAD67 promoter, thereby labelling one-third of all spinal GABAergic neurons. In all neuropathic mice included in this study, chronic constriction injury of one sciatic nerve led to tactile allodynia and thermal hyperalgesia. Control mice were sham-operated. Membrane excitability of GABAergic neurons from neuropathic or sham-treated animals was indistinguishable. The most frequent firing patterns observed in neuropathic and sham-operated animals were the initial burst (neuropathic: 46%, sham-treated: 42%), the gap (neuropathic: 31%, sham-treated: 29%) and the tonic firing pattern (neuropathic: 16%, sham-treated: 24%). The synaptic input from dorsal root afferents was similar in neuropathic and in control animals. Thus, a reduced membrane excitability, altered firing patterns or changes in synaptic input of this group of GABAergic neurons in lamina II of the spinal cord dorsal horn are unlikely causes for neuropathic pain.
Collapse
Affiliation(s)
- Doris Schoffnegger
- Center for Brain Research, Department of Neurophysiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
43
|
Potes CS, Neto FL, Castro-Lopes JM. Inhibition of pain behavior by GABAB receptors in the thalamic ventrobasal complex: Effect on normal rats subjected to the formalin test of nociception. Brain Res 2006; 1115:37-47. [PMID: 16938274 DOI: 10.1016/j.brainres.2006.07.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 07/14/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The ventrobasal complex of the thalamus (VB) participates in the transmission and modulation of noxious information. Recent data suggested that GABA(B) receptors in the VB might be involved in the modulation of neuronal activity in response to chronic noxious input. However, in acute inflammatory pain, the role of GABA(B) receptors in the VB remains unknown. The formalin test of nociception was performed in rats stereotaxically injected in the VB contralateral to the formalin-injected paw, with saline (controls), baclofen (0.5 and 0.875 microg), a specific GABA(B) receptor agonist or CGP35348 (25 microg), a GABA(B) receptor antagonist. Control animals exhibited phase 1 (acute pain) and phase 2 (tonic pain) nociception-related activities as previously described. The higher dose of baclofen induced a significant decrease of all pain-related behaviors in both phases of the test and had no observable effects on the animals' motor function, while the lower dose could not reduce the total pain-related activities. Injection of CGP35348 prior to baclofen reduced the antinociceptive effect caused by baclofen during phase 2 in the paw-jerks and in total pain-related activities. CGP35348 alone had antinociceptive effects in both phases, though less pronounced than baclofen 0.875 microg in the total pain-related activities during phase 2. Data demonstrate that both the blockade and the activation of GABA(B) receptors in the VB of rats induce antinociception in acute and tonic pain. An important role for GABA(B) receptors on the thalamic processing of nociceptive input in the VB is suggested.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
44
|
Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Activation of Spinal GABA Receptors Attenuates Chronic Central Neuropathic Pain after Spinal Cord Injury. J Neurotrauma 2006; 23:1111-24. [PMID: 16866624 DOI: 10.1089/neu.2006.23.1111] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the role of the spinal GABAergic system in central neuropathic painlike outcomes following spinal cord injury (SCI) produced by a spinal hemitransection at T13 of the rat. After SCI, mechanical allodynia develops bilaterally in both hind paws of the rat, lasting longer than 40 days, as evidenced by an increase in paw withdrawal frequency in response to a weak von Frey filament. In naive rats, intrathecal (i.t.) administration in the lumbar spinal cord of GABAA and GABAB receptor antagonists, bicuculline (1-5 microg) and phaclofen (0.1-5 microg), respectively, causes a dose-dependent increase in the magnitude of mechanical allodynia. The SCI-induced mechanical allodynia in both hind-paws is attenuated by i.t. administration in the lumbar spinal cord of GABAA or GABAB receptor agonists, muscimol (1 microg) or baclofen (0.5 microg), respectively. In electrophysiological experiments, rats with SCI show a bilateral increase in hyperexcitability in response to natural stimuli in wide dynamic range (WDR) neurons in the lumbar spinal dorsal horn. The topical application of muscimol (1 microg) or baclofen (0.5 microg) onto the lumbar cord surface reduce the SCIinduced increased responsiveness of WDR neurons. Inhibitory effects of muscimol and baclofen on both the behavioral mechanical allodynia and the hyperexcitability in WDR neuron with SCI compared to controls, were antagonized by pre-treatment of bicuculline (10 microg) and phaclofen (5 microg), respectively. This study provides behavioral and electrophysiological evidence for the important role of the loss of spinal inhibitory tone, mediated by activation of both GABAA and GABAB receptors, in the development of central neuropathic pain following SCI.
Collapse
Affiliation(s)
- Young Seob Gwak
- Department of Physiology, Brain Research Institute, and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
45
|
Potes CS, Neto FL, Castro-Lopes JM. Administration of baclofen, a γ-aminobutyric acid type B agonist in the thalamic ventrobasal complex, attenuates allodynia in monoarthritic rats subjected to the ankle-bend test. J Neurosci Res 2006; 83:515-23. [PMID: 16400658 DOI: 10.1002/jnr.20737] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
gamma-Aminobutyric acid type B (GABAB) receptors are involved in the modulation of neuronal activity in response to chronic noxious input. However, the effect of their activation in chronic inflammatory pain in relay thalamic nuclei such as the ventrobasal complex (VB) is not known. In this study, experimental groups of 2, 4, and 14 days monoarthritic (MA) rats were injected with saline (controls) or baclofen (0.875 microg), a specific GABAB receptor agonist, in the VB contralateral to the inflamed joint, and the ankle-bend test was performed. Ankle-bend scores in control animals were near the maximum and were rather constant throughout the entire experimental period, indicating severe nociception. The same was observed in 2 days MA rats injected with baclofen. In the 4 days MA group, the response to baclofen injection was inconsistent among different animals, whereas, in 14 days MA rats, baclofen caused clear antinociceptive effects. Additionally, a 0.5 microg dose of baclofen was tested in 14 days MA rats, but no effect was observed, whereas a 1.25 mug dose produced visible side effects. Baclofen injections that did not target the VB but reached neighboring nuclei were ineffective in reducing nociception. Data demonstrate that the activation of the GABAB receptors by baclofen in the VB of MA rats leads to a decrease of nociception. Moreover, the response depends on the time course of the disease, suggesting the occurrence of different excitatory states of thalamic VB neurons. In conclusion, GABAB receptors in the VB play an important role in chronic inflammatory pain processing.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
46
|
Engle MP, Gassman M, Sykes KT, Bettler B, Hammond DL. Spinal nerve ligation does not alter the expression or function of GABA(B) receptors in spinal cord and dorsal root ganglia of the rat. Neuroscience 2006; 138:1277-87. [PMID: 16427742 PMCID: PMC1471878 DOI: 10.1016/j.neuroscience.2005.11.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/02/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
Loss of GABA-mediated inhibition in the spinal cord is thought to mediate allodynia and spontaneous pain after nerve injury. Despite extensive investigation of GABA itself, relatively little is known about how nerve injury alters the receptors at which GABA acts. This study examined levels of GABA(B) receptor protein in the spinal cord dorsal horn, and in the L4 and L5 (lumbar designations) dorsal root ganglia one to 18 weeks after L5 spinal nerve ligation. Mechanical allodynia was maximal by 1 week and persisted at blunted levels for at least 18 weeks after injury. Spontaneous pain behaviors were evident for 6 weeks. Western blotting of dorsal horn detected two isoforms of the GABA(B(1)) subunit and a single GABA(B(2)) subunit. High levels of GABA(B(1a)) and low levels of GABA(B(1b)) protein were present in the dorsal root ganglia. However, GABA(B(2)) protein was not detected in the dorsal root ganglia, consistent with the proposed existence of an atypical receptor composed of GABA(B(1)) homodimers. The levels of GABA(B(1a)), GABA(B(1b)), and GABA(B(2)) protein in the ipsilateral dorsal horn were unchanged at any time after injury. Immunohistochemical staining also did not detect a change in GABA(B(1)) or GABA(B(2)) subunits in dorsal horn segments having a robust loss of isolectin B4 staining. The levels of GABA(B(1a)) protein were also unchanged in the L4 or L5 dorsal root ganglia at any time after spinal nerve ligation. Levels of GABA(B(2)) remained undetectable. Finally, baclofen-stimulated binding of guanosine-5'-(gamma-O-thio)triphosphate in dorsal horn did not differ between sham and ligated rats. Collectively, these results argue that a loss of GABA(B) receptor-mediated inhibition, particularly of central terminals of primary afferents, is unlikely to mediate the development or maintenance of allodynia or spontaneous pain behaviors after spinal nerve injury.
Collapse
Affiliation(s)
| | - Martin Gassman
- Pharmazentrum University of Basel, Basel CH-4056 Switzerland
| | | | | | - Donna L. Hammond
- Departments of Anesthesia and
- Pharmacology The University of Iowa, Iowa City, IA 52242, USA
- Address Correspondence to: Donna L. Hammond, Ph.D. Department of Anesthesia 200 Hawkins Drive 6 JCP The University of Iowa Iowa City, IA 52242 319-384-7127 (voice) 319-356-2940 (fax)
| |
Collapse
|
47
|
Jeon YH, Yoon DM, Nam TS, Leem JW, Paik GS. Spinal and Peripheral GABA-A and B Receptor Agonists for the Alleviation of Mechanical Hypersensitivity following Compressive Nerve Injury in the Rat. Korean J Pain 2006. [DOI: 10.3344/kjp.2006.19.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Young Hoon Jeon
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- The Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Duck Mi Yoon
- Department of Anesthesiology & Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- The Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Taick Sang Nam
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- The Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- The Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joong Woo Leem
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- The Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- The Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Gwang Se Paik
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- The Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Winkler I, Blotnik S, Shimshoni J, Yagen B, Devor M, Bialer M. Efficacy of antiepileptic isomers of valproic acid and valpromide in a rat model of neuropathic pain. Br J Pharmacol 2005; 146:198-208. [PMID: 15997234 PMCID: PMC1576263 DOI: 10.1038/sj.bjp.0706310] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antiepileptic drugs (AEDs) are often utilized in the treatment of neuropathic pain. The major AED valproic acid (VPA) is of particular interest as it is thought to engage a variety of different neural mechanisms simultaneously. However, the clinical use of VPA is limited by two rare but life-threatening side effects: teratogenicity and hepatotoxicity. We synthesized VPA's corresponding amide: valpromide (VPD), two of VPAs isomers and their corresponding amides; valnoctic acid (VCA), valnoctamide (VCD), diisopropyl acetic acid (DIA), diisopropylacetamide (DID), and VPD's congener: N-methyl-VPD (MVPD). VCD, DID and VPD are nonteratogenic, potentially nonhepatotoxic, and exhibit better anticonvuslant potency than VPA. In this study, we assessed the antiallodynic activity of these compounds in comparison to VPA and gabapentin (GBP) using the rat spinal nerve ligation model of neuropathic pain (SNL, Chung model). VCA and MVPD were inactive. However, VPD (20-100 mg kg(- 1)), VCD (20-100 mg kg(- 1)) and DID (20-90 mg kg(- 1)) produced dose-related reversal of tactile allodynia with ED50 values of 61, 52 and 58 mgkg(- 1), respectively. All the amides were more potent than VPA (ED50=269 mgkg(- 1)). The antiallodynic effect of VPA, VPD, VCD and DID was obtained at plasma concentrations of 125, 24, 18 and 7 mg l(- 1), respectively, with a good pharmacokinetic-pharmacodynamic correlation and a minimal lag response. VCD and DID were found to have minimal motor and sedative side effects at analgesic doses, and were equipotent to GBP, currently the leading drug in neuropathic pain treatment. Consequently, VCD and DID have potential to become new drugs for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ilan Winkler
- Department of Pharmaceutics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simcha Blotnik
- Department of Pharmaceutics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jakob Shimshoni
- Department of Pharmaceutics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boris Yagen
- Department of Medicinal Chemistry and Natural Products, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Pharmacy and David R Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marshall Devor
- Department of Cell and Animal Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meir Bialer
- Department of Pharmaceutics, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Pharmacy and David R Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- Author for correspondence:
| |
Collapse
|
49
|
Kommalage M, Höglund AU. Involvement of spinal GABA receptors in the regulation of intraspinal acetylcholine release. Eur J Pharmacol 2005; 525:69-73. [PMID: 16297380 DOI: 10.1016/j.ejphar.2005.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/08/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
It has been shown that analgesics such as morphine, lidocaine and clonidine increase the release of spinal acetylcholine. Acetylcholine may therefore play an important role in the regulation of spinal pain threshold. Since behavioral as well as in vitro studies have shown a clear involvement of GABA (gamma-amino butyric acid) receptors in the regulation of spinal nociceptive mechanisms, the present study focused on the role of GABA receptors for spinal acetylcholine release control. GABA receptor agonists and antagonists were infused via a spinal microdialysis probe and acetylcholine release was measured. The GABA(A) receptor agonist muscimol decreased acetylcholine release and the antagonist bicuculline increased acetylcholine release. The GABA(B) receptor agonist baclofen decreased acetylcholine release whereas the antagonist saclofen did not change acetylcholine release. The results suggest that both GABA receptor subtypes have an inhibitory role on spinal dorsal horn acetylcholine release and that the GABA(A) receptors are tonically regulating acetylcholine release.
Collapse
Affiliation(s)
- Mahinda Kommalage
- Department of Neuroscience, Division of Comparative Medicine, Uppsala University, BMC, Box 572, S-75123, Uppsala, Sweden
| | | |
Collapse
|
50
|
Winkler I, Sobol E, Yagen B, Steinman A, Devor M, Bialer M. Efficacy of antiepileptic tetramethylcyclopropyl analogues of valproic acid amides in a rat model of neuropathic pain. Neuropharmacology 2005; 49:1110-20. [PMID: 16055160 DOI: 10.1016/j.neuropharm.2005.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/08/2005] [Accepted: 06/13/2005] [Indexed: 11/24/2022]
Abstract
Antiepileptic drugs (AEDs) are widely utilized in the management of neuropathic pain. The AED valproic acid (VPA) holds out particular promise as it engages a variety of different anticonvulsant mechanisms simultaneously. However, the clinical use of VPA is limited by two rare but potentially life-threatening side effects: teratogenicity and hepatotoxicity. We have synthesized several tetramethylcyclopropyl analogues of VPA amides that are non-teratogenic, and are likely to be non-hepatotoxic, and that exhibit good antiepileptic efficacy. In the present study we have assessed the antiallodynic activity of these compounds in comparison to VPA and gabapentin (GBP) using the rat spinal nerve ligation (SNL) model of neuropathic pain. TMCA (2,2,3,3-tetramethylcyclopropanecarboxylic acid, 100-250 mg/kg), TMCD (2,2,3,3-tetramethylcyclopropanecarboxamide, 40-150 mg/kg), MTMCD (N-methyl-TMCD, 20-100 mg/kg), and TMCU (2,2,3,3-tetramethylcyclopropanecarbonylurea, 40-240 mg/kg) all showed dose-related reversal of tactile allodynia, with ED(50) values of 181, 85, 41, and 171 mg/kg i.p., respectively. All were more potent than VPA (ED(50)=269 mg/kg). An antiallodynic effect was obtained for TMCD, MTMCD and TMCU at plasma concentrations as low as 23, 6 and 22 mg/L, respectively. MTMCD was found to be non-toxic, non-sedative and equipotent to gabapentin, currently the leading AED in neuropathic pain treatment. Tetramethylcyclopropyl analogues of VPA amides have potential to become a new series of drugs for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ilan Winkler
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|