1
|
Qin Y, Zhou H, Yang Y, Guo T, Zhou Y, Zhang Y, Ma L. Metabolome and Its Mechanism Profiling in the Synergistic Toxic Effects Induced by Co-Exposure of Tenuazonic Acid and Patulin in Caco-2 Cells. Toxins (Basel) 2024; 16:319. [PMID: 39057959 PMCID: PMC11281550 DOI: 10.3390/toxins16070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tenuazonic acid (TeA), usually found in cereals, fruits, vegetables, oil crops, and their products, was classified as one of the highest public health problems by EFSA as early as 2011, but it has still not been regulated by legislation due to the limited toxicological profile. Moreover, it has been reported that the coexistence of TeA and patulin (PAT) has been found in certain agricultural products; however, there are no available data about the combined toxicity. Considering that the gastrointestinal tract is the physiological barrier of the body, it would be the first target site at which exogenous substances interact with the body. Thus, we assessed the combined toxicity (cell viability, ROS, CAT, and ATP) in Caco-2 cells using mathematical modeling (Chou-Talalay) and explored mechanisms using non-targeted metabolomics and molecular biology methods. It revealed that the co-exposure of TeA + PAT (12.5 μg/mL + 0.5 μg/mL) can induce enhanced toxic effects and more severe oxidative stress. Mechanistically, the lipid and amino acid metabolisms and PI3K/AKT/FOXO signaling pathways were mainly involved in the TeA + PAT-induced synergistic toxic effects. Our study not only enriches the scientific basis for the development of regulatory policies but also provides potential targets and treatment options for alleviating toxicities.
Collapse
Affiliation(s)
- Yuxian Qin
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| |
Collapse
|
2
|
Sajid M, Mehmood S, Yuan Y, Yue T. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metab Rev 2019; 51:105-120. [PMID: 30857445 DOI: 10.1080/03602532.2019.1589493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patulin is a mycotoxin produced by a number of filamentous fungal species. It is a polyketide secondary metabolite which can gravely cause human health problems and food safety issues. This review deals with the occurrence of patulin in major food commodities from 2008 to date, including historical aspects, source, occurrence, regulatory limits and its toxicity. Most importantly, an overview of the recent research progress about the biodegradation strategies for contaminated food matrices is provided. The physical and chemical approaches have some drawbacks such as safety issues, possible losses in the nutritional quality, chemical hazards, limited efficacy, and high cost. The biological decontamination based on elimination or degradation of patulin using yeast, bacteria, and fungi has shown good results and it seems to be attractive since it works under mild and environment-friendly conditions. Further studies are needed to make clear the detoxification pathways by available potential biosorbents and to determine the practical applications of these methods at a commercial level to remove patulin from food products with special reference to their effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Marina Sajid
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Sajid Mehmood
- d State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection , Northwest A&F University , Yangling , China
| | - Yahong Yuan
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Tianli Yue
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| |
Collapse
|
3
|
|
4
|
Yang Q, Li Y, Apaliya MT, Zheng X, Serwah BNA, Zhang X, Zhang H. The Response of Rhodotorula mucilaginosa to Patulin Based on Lysine Crotonylation. Front Microbiol 2018; 9:2025. [PMID: 30233516 PMCID: PMC6129574 DOI: 10.3389/fmicb.2018.02025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Patulin (PAT) is a mycotoxin produced by some Penicillium, Aspergillus, and Byssochlamys species. Rhodotorula mucilaginosa is able to degrade PAT in vivo as well as in vitro, up till date, the process and molecular mechanism(s) involved patulin degradation still remains unknown. Protein lysine crotonylation (Kcr) plays an important role in regulating chromatin dynamics, gene expression, and metabolic pathways in mammals and eukaryotes. Investigation of the Kcr changes accompanying degradation of patulin in R. mucilaginosa were observed to investigate the mechanisms of patulin inhibition. Tandem mass tag (TMT) labeling and Kcro affinity enrichment, followed by high-resolution LC-MS/MS analysis, were used to perform quantitative lysine crotonylome analysis on R. mucilaginosa. Consequently, 1691 lysine crotonylation sites in 629 protein groups were identified, among which we quantified 1457 sites in 562 proteins. Among the quantified proteins, 79 and 46 crotonylated proteins were up-regulated and down-regulated, respectively. The differentially up expressed modified proteins were mainly involved in tricarboxylic acid cycle and gluconeogenic pathway. The differentially down expressed Kcr proteins were mainly classified to ribosome and carbohydrate transport and metabolism. Bioinformatic analyses were performed to annotate the quantifiable lysine crotonylated targets. Moreover, interaction networks and high confidence domain architectures of crotonylated proteins were investigated with the aid of bioinformatic tools, and these results showed that there was an increase in the number of yeasts with crotonylated proteins. The results also provided information on the various roles of crotonylation, which are involved in PAT degradation.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Yulin Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Maurice T. Apaliya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Zheng X, Yang Q, Zhao L, Apaliya MT, Zhang X, Zhang H. Crosstalk between proteins expression and lysine acetylation in response to patulin stress in Rhodotorula mucilaginosa. Sci Rep 2017; 7:13490. [PMID: 29044224 PMCID: PMC5647337 DOI: 10.1038/s41598-017-14078-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
The proteomic and lysine acetylation (Kac) changes, accompanying degradation of patulin in Rhodotorula mucilaginosa were analyzed using tandem mass tagging and N6-acetyllysine affinity enrichment followed by LC-MS/MS. Proteomic results showed that expression level of short-chain reductase protein and glutathione S-transferase involved in detoxification was significantly up-regulated. In addition, the expression levels of zinc-binding oxidoreductase and quinone oxidoreductase that are involved in antioxidant process, ABC transport and MFS transport responsible for chemical transport were activated when treated with patulin. The quantitative real time PCR (qRT-PCR) result also indicated these genes expression levels were increased when treated with patulin. Kac changes accompanying degradation of patulin in R. mucilaginosa were also observed. Totally, 130 Kac sites in 103 proteins were differentially expressed under patulin stress. The differentially up expressed modified proteins were mainly involved in tricarboxylic acid cycle and nuclear acid biosynthesis. The differentially down expressed Kac proteins were mainly classified to ribosome, oxidative phosphorylation, protein synthesis and defense to stress process. Our results suggest that patulin exposure prompt R. mucilaginosa to produce a series of actions to resist or degrade patulin, including Kac. In addition, the Kac information in R. mucilaginosa and Kac in response to patulin stress was firstly revealed.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Maurice Tibiru Apaliya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Pal S, Singh N, Ansari KM. Toxicological effects of patulin mycotoxin on the mammalian system: an overview. Toxicol Res (Camb) 2017; 6:764-771. [PMID: 30090541 DOI: 10.1039/c7tx00138j] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
The mycotoxin PAT (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is a secondary metabolic product of molds such as Penicillium, Aspergillus, and Byssochlamys species. PAT is a common contaminant of fruit and vegetable based products, most notably apples. Despite PAT's original discovery as an antibiotic, it has come under heavy scrutiny for its potential to impart negative health effects. Studies investigating these health effects have proved its toxic potential. PAT occurrence in the food commodities poses a serious threat and necessitates novel and cost-effective mitigation methods to remove it from food products. It also creates a demand to improve handling and food processing techniques. With this being the case, several studies have been devoted to understanding the key biological and chemical attributes of PAT. While past research has elucidated a great deal, PAT contamination continues to be a challenge for the food industry. Here, we review its influence within the mammalian system, including its regulation, incidences of experimental evidence of PAT toxicity, its interaction with intracellular components, and the effects of PAT induced systemic toxicity on vital organs. Finally, key areas where future PAT research should focus to best control the PAT contamination problem within the food industry have been addressed.
Collapse
Affiliation(s)
- Saurabh Pal
- Environmental Carcinogenesis Laboratory , Food , Drug , and Chemical Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Vishvigyan Bhawan , 31 , Mahatma Gandhi Marg , P.O. Box#80 , Lucknow-226001 , Uttar Pradesh , India . ; ; Tel: +91-522-2627586 ext. 543.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-IITR , Lucknow Campus , India
| | - Neha Singh
- Environmental Carcinogenesis Laboratory , Food , Drug , and Chemical Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Vishvigyan Bhawan , 31 , Mahatma Gandhi Marg , P.O. Box#80 , Lucknow-226001 , Uttar Pradesh , India . ; ; Tel: +91-522-2627586 ext. 543.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-IITR , Lucknow Campus , India
| | - Kausar Mahmood Ansari
- Environmental Carcinogenesis Laboratory , Food , Drug , and Chemical Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Vishvigyan Bhawan , 31 , Mahatma Gandhi Marg , P.O. Box#80 , Lucknow-226001 , Uttar Pradesh , India . ; ; Tel: +91-522-2627586 ext. 543
| |
Collapse
|
7
|
Ismaiel AA, Papenbrock J. Effect of Patulin from Penicillium vulpinum on the Activity of Glutathione-S-Transferase and Selected Antioxidative Enzymes in Maize. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E825. [PMID: 28737668 PMCID: PMC5551263 DOI: 10.3390/ijerph14070825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The mycotoxin patulin (PAT) was purified from Penicillium vulpinum CM1 culture that has been isolated from a soil cultivated with maize. The effect of PAT and of a fungal culture filtrate on the activities of glutathione-S-transferase (GST) and some antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) was investigated in roots and shoots of 8-day-old maize seedlings. PAT and culture filtrate caused significant reduction effects in a dose-related manner on the total GST activity. Upon application of the high PAT concentration (25 μg·mL-1) and of the concentrated fungal filtrate (100%, v/v), the reduction in GST activity of roots was 73.8-76.0% and of shoots was 60-61.7%. Conversely, significant increases in the activities of antioxidant enzymes were induced. Application of 25 μg·PAT·mL-1 increased APX, GR, DHAR, and MDHAR activity of root by 2.40-, 2.00-, 1.24-, and 2.16-fold, respectively. In shoots, the enzymatic activity was increased by 1.57-, 1.45-, 1.45-, and 1.61-fold, respectively. Similar induction values of the enzymatic activity were obtained upon application of the concentrated fungal filtrate. This is the first report describing the response of GST and antioxidant enzyme activities of plant cells to PAT toxicity.
Collapse
Affiliation(s)
- Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Jutta Papenbrock
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| |
Collapse
|
8
|
Zhong Y, Jin C, Gan J, Wang X, Shi Z, Xia X, Peng X. Apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway. Toxicon 2017; 137:106-113. [PMID: 28734981 DOI: 10.1016/j.toxicon.2017.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 11/24/2022]
Abstract
Mycotoxins like patulin (PAT) are among the most significant food contaminant with regard to public health. This study aimed to evaluate the protective effect of apigenin (API), one of the most bioactive flavonoids in plant-derived food, on PAT-induced apoptosis in HEK293 cells. Cells were treated under basic conditions, 8 μM PAT without or with API (2.5, 5 and 10 μM) concomitantly for 10 h. API exerted renoprotective effect by inhibiting intracellular reactive oxygen species (ROS) accumulation, modulating oxidative phosphorylation especially elevating the expression of ATP synthase, re-establishing mitochondrial membrane potential (MMP) and maintaining higher intracellular ATP level, accompanied by p53, Bax downregulation and Bcl-2 upregulation. Thereby, cytochrome c release from mitochondria to cytoplasm was reduced, causing inhibition of initiator caspases-9 and executioner caspases (3, 6 and 7) expression and enzyme activities. Results revealed dietary apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Gan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaorui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenqiang Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Kalafová A, Bulla J, Bučko O, Emrichová J, Zbyňovská K, Petruška P, Schneidgenová M, Chrastinová Ľ, Ondruška Ľ, Jurčík R, Mellen M, Capcarová M. Quality of meat of rabbits after application of epicatechin and patulin. POTRAVINARSTVO 2015. [DOI: 10.5219/450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to determinate the effect of epicatechin and patulin on selected parameters of meat quality of rabbits. Adult female rabbits (n=25), maternal albinotic line (crossbreed Newzealand white, Buskat rabbit, French silver) and paternal acromalictic line (crossbreed Nitra's rabbit, Californian rabbit, Big light silver) were used in experiment. Animals were divided into five groups: control group (C) and experimental groups E1, E2, E3, and E4. Animals from experimental groups E1, E2, E3, E4 received patulin through intramuscular injection (10 µg.kg-1) twice a week and animals from groups E2, E3, E4 received epicatechin three times a week through intramuscular injection. After 30 days animals were slaughtered. For analysing of meat quality the samples of Musculus longissimus dorsi (50 g) were used. Application of epicatechin and patulin to rabbits had slight or no effect on the pH levels in stomach, small intestine, large intestine and urinary bladder contents, however differences among the groups were insignificant (p ˃0.05). Application of epicatechin and patulin to rabbits had slight or no effect on total water, protein, fat and differences among the groups were insignificant (p >0.05). The values of amino acids concentrations were not influenced after application of epicatechin and patulin. The fatty acid profiles in animals after application of different doses of epicatechin and 10 µg.kg-1 patulin were similar (p >0.05). Concentration of cholesterol increased in experimental groups in comparison with the control group, but differences were insignificant (p >0.05). pH levels of meat of rabbits in experimental group E3 was lower when compared with the control group, but differences was not significant (p >0.05). Electric conductivity parameter was increased in each experimental group (in E3 the highest) against the control but without significant differences (p >0.05). Colour L parameter was slightly decreased in experimental groups with comparison to the control group (in E3 the lowest). Generally we can conclude that intramuscular application of epicatechin or patulin did not affect parameters of meat quality as well as pH values of internal organs content. Further investigations are needed to prove the final answer concerning the health promoting effects of epicatechin and patulin.
Collapse
|
10
|
Kim JH, Chan KL, Mahoney N, Campbell BC. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Ann Clin Microbiol Antimicrob 2011; 10:23. [PMID: 21627838 PMCID: PMC3127747 DOI: 10.1186/1476-0711-10-23] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Collapse
Affiliation(s)
- Jong H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St,, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
11
|
Dong Q, Manns DC, Feng G, Yue T, Churey JJ, Worobo RW. Reduction of patulin in apple cider by UV radiation. J Food Prot 2010; 73:69-74. [PMID: 20051206 DOI: 10.4315/0362-028x-73.1.69] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of the mycotoxin patulin in processed apple juice and cider presents a continual challenge to the food industry as both consumer health and product quality issues. Although several methods for control and/or elimination of patulin have been proposed, no unifying method has been commercially successful for reducing patulin burdens while maintaining product quality. In the present study, exposure to germicidal UV radiation was evaluated as a possible commercially viable alternative for the reduction and possible elimination of the patulin mycotoxin in fresh apple cider. UV exposure of 14.2 to 99.4 mJ/cm(2) resulted in a significant and nearly linear decrease in patulin levels while producing no quantifiable changes in the chemical composition (i.e., pH, Brix, and total acids) or organoleptic properties of the cider. For the range of UV doses tested, patulin levels decreased by 9.4 to 43.4%; the greatest reduction was achieved after less than 15 s of UV exposure. The method of UV radiation (the CiderSure 3500 system) is an easily implemented, high-throughput, and cost-effective method that offers simultaneous UV pasteurization of cider and juice products and reduction and/or elimination of patulin without unwanted alterations in the final product.
Collapse
Affiliation(s)
- Qingfang Dong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
12
|
Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT. An overview of mycotoxin contamination in foods and its implications for human health. TOXIN REV 2010. [DOI: 10.3109/15569541003598553] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal Bioanal Chem 2009; 394:1361-73. [DOI: 10.1007/s00216-009-2765-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
|
14
|
McLaughlin J, Lambert D, Padfield PJ, Burt JP, O’Neill CA. The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro 2009; 23:83-9. [DOI: 10.1016/j.tiv.2008.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/13/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
|
15
|
|
16
|
Liu BH, Wu TS, Yu FY, Wang CH. Mycotoxin Patulin Activates the p38 Kinase and JNK Signaling Pathways in Human Embryonic Kidney Cells. Toxicol Sci 2005; 89:423-30. [PMID: 16306151 DOI: 10.1093/toxsci/kfj049] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Patulin (PAT), a mycotoxin mainly produced by Penicillium and Aspergillus, is frequently detected in moldy fruits and fruit products. Exposure of human embryonic kidney (HEK293) cells to PAT led to a dose- and time-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), p38 kinase and c-Jun N-terminal kinase (JNK). The phosphorylated forms of MAPK kinase 4 (MKK4), c-Jun, and ATF-2 were also seen in PAT-treated cultures. The cell death caused by PAT was significantly reduced by the p38 kinase inhibitor, SB203580, but not by the JNK inhibitor, SP600125. Neither p38 kinase nor JNK played a role in the PAT-induced DNA damage. In PAT-treated cells, inactivation of double-stranded RNA-activated protein kinase R (PKR) by the inhibitor, adenine, markedly suppressed JNK and ERK phosphorylation. Treatment of HEK293 cells with PAT-cysteine adduct, a chemical derivative of PAT, showed no effect on MAPK signaling pathways, cell viability, or DNA integrity. These results indicate that PAT causes rapid activation of p38 kinase and JNK in HEK293 cells, but only the p38 kinase signaling pathway contributes to the PAT-induced cell death. PKR also plays a role in PAT-mediated MAPK activation.
Collapse
Affiliation(s)
- Biing-Hui Liu
- Department of Life Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | |
Collapse
|
17
|
Moake MM, Padilla-Zakour OI, Worobo RW. Comprehensive Review of Patulin Control Methods in Foods. Compr Rev Food Sci Food Saf 2005; 4:8-21. [DOI: 10.1111/j.1541-4337.2005.tb00068.x] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Mahfoud R, Maresca M, Garmy N, Fantini J. The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol Appl Pharmacol 2002; 181:209-18. [PMID: 12079430 DOI: 10.1006/taap.2002.9417] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Patulin is a mycotoxin mainly found in apple and apple products. In addition to being toxic for animals, mutagenic, carcinogenic and teratogenic, patulin induces intestinal injuries, including epithelial cell degeneration, inflammation, ulceration, and hemorrhages. In a study of the cellular mechanisms associated with the intestinal toxicity of patulin, two human epithelial intestinal cell lines (HT-29-D4 and Caco-2-14) were exposed to the mycotoxin. Micromolar concentrations of patulin were found to induce a rapid and dramatic decrease of transepithelial resistance (TER) in both cell lines without major signs of toxicity as assessed by the LDH release assay. Since TER reflects the organization of tight junctions, these data indicate that patulin affected the barrier function of the intestinal epithelium. The inhibitory effect of patulin on TER was closely associated with its reactivity for SH groups: (i) cysteine and glutathione prevented the cells from patulin injury; (ii) patulin toxicity was potentiated by buthionine sulfoximine, a specific glutathione-depleting agent; (iii) treatment of the cells with N-ethylmaleimide, a compound known to react with SH groups, resulted in a marked decrease of TER. Moreover, the inhibitory effect of patulin on TER was mimicked and potentiated by phenylarsine oxide, a specific inhibitor of protein tyrosine phosphatase (PTP). This cellular enzyme is a key regulator of intestinal epithelial barrier function. The active site of PTP contains a cysteine residue (Cys215) that is essential for phosphatase activity. Sulfhydryl-reacting compounds such as acetaldehyde decrease TER through covalent modification of Cys215 of PTP. We propose that the toxicity of patulin for intestinal cells involves, among other potential mechanisms, an inactivation of the active site of PTP.
Collapse
Affiliation(s)
- Radhia Mahfoud
- Institut Méditerranéen de Recherche en Nutrition, UMR-INRA 1111, Faculté des Sciences de St Jérôme, 13397 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
19
|
Beretta B, Gaiaschi A, Galli CL, Restani P. Patulin in apple-based foods: occurrence and safety evaluation. FOOD ADDITIVES AND CONTAMINANTS 2000; 17:399-406. [PMID: 10945107 DOI: 10.1080/026520300404815] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Patulin is a mycotoxin produced by certain species of Penicillium and Aspergillus, often detectable in mouldy fruits and their derivatives. On the basis of a PMTDI of 0.4 microgram/kg bw, limit values of 50 micrograms/kg or 50 micrograms/l of patulin have been set in fruit derivatives. To estimate the quantity of patulin that can be taken in with the diet, we analysed by HPLC samples of apples and apple derivatives which are most likely to be contaminated with patulin. In apple juices and in homogenized baby-foods, the mycotoxin concentration was always below the established limits, while in some samples of juice with pulp the mycotoxin content exceeded the safe levels. In rotten apples, not only was the amount of patulin extraordinarily high in the rotten area, but the mycotoxin had also spread to the part unaffected by mould. The data presented in this study indicate that the intake of patulin with apple derivatives is usually below the tolerable level of 0.4 microgram/kg bw/day, but since the patulin content in apples can vary considerably, the quality of fruits used in the production of apple derivatives should be strictly controlled in order not to exceed the safe limits.
Collapse
Affiliation(s)
- B Beretta
- Laboratory of Toxicology, University of Milan, Italy
| | | | | | | |
Collapse
|
20
|
Chapter 7 Thin-Layer Chromatography of Mycotoxins. CHROMATOGRAPHY OF MYCOTOXINS - TECHNIQUES AND APPLICATIONS 1993. [DOI: 10.1016/s0301-4770(08)60567-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Burghardt RC, Barhoumi R, Lewis EH, Bailey RH, Pyle KA, Clement BA, Phillips TD. Patulin-induced cellular toxicity: a vital fluorescence study. Toxicol Appl Pharmacol 1992; 112:235-44. [PMID: 1539161 DOI: 10.1016/0041-008x(92)90193-v] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms of patulin-induced cellular toxicity in an immortalized rat granulosa cell line were examined using several vital fluorescence bioassays. Monochlorobimane and 5-chloromethylfluorescein diacetate were used to monitor cellular glutathione (GSH) levels and revealed dose- and time-dependent depletion of GSH by patulin. A significant reduction in the fluorescence of the monochlorobimane-GSH conjugate by 0.1 microM patulin was observed between 1 and 2 hr. Similar GSH depletion by the mycotoxin was also observed in parallel studies on a liver (Clone 9) and a renal (LLC-PK1) cell line, although reduction of fluorescence occurred within 1 hr at the same dosage. Analysis of the electrical potential-dependent partitioning of rhodamine 123 into mitochondria also revealed significant effects of patulin within 1 hr at 0.1 microM. An initial dose-dependent reduction in mitochondrial fluorescence was followed by loss of selective partitioning of the fluorophore into mitochondria at higher doses and/or a longer exposure of cells to patulin. The reduction in mitochondrial fluorescence was paralleled by a dose-dependent decrease in intracellular pH detected with 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Analysis of [Ca2+]i with indo-1 and fluo-3 revealed a significant dose-dependent influx of Ca2+ at 10 microM and an alteration of the pattern of ionomycin-induced Ca2+ influx at 1.0 microM following patulin treatment. A carboxyfluorescein fluorescence photobleaching assay was used to examine the effects of patulin on gap junction-mediated intercellular communication. Dose-dependent reduction in intercellular communication was observed within 2 hr with 1.0 microM patulin. These observations indicate that the fluorescence assays used in this study provide a sensitive index of toxicity caused by exposure to patulin. Further, the toxic effects of patulin may involve direct effects on cellular glutathione levels and mitochondrial function in addition to direct effects on the plasma membrane.
Collapse
Affiliation(s)
- R C Burghardt
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station 77843-4458
| | | | | | | | | | | | | |
Collapse
|
22
|
Riley RT, Hinton DM, Showker JL, Rigsby W, Norred WP. Chronology of patulin-induced alterations in membrane function of cultured renal cells, LLC-PK. Toxicol Appl Pharmacol 1990; 102:128-41. [PMID: 2153317 DOI: 10.1016/0041-008x(90)90090-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In a previous study we compared the effects of patulin (PAT) and ouabain, a specific inhibitor of the Na(+)-K+ ATPase, and found significant differences with regard to the kinetics of Na+ influx and K+ efflux, and sulfhydryl reactivity in LLC-PK1 cells. The purpose of the present study was to determine the relationship between Na+ influx, K+ efflux, membrane potential ([3H]tetraphenylphosphonium accumulation), cellular viability [lactate dehydrogenase (LDH) release], and changes in cell morphology (blebs). The effects of PAT are concentration and time dependent. At concentrations of PAT above 10 microM there is a transient increase in intracellular electronegativity (less than 1 hr) followed by a sustained depolarization (greater than 1 hr) which is correlated with complete Na+ influx, K+ efflux, total LDH release, and bleb formation. However, at PAT concentrations of 5-10 microM there is a sustained increased intracellular electronegativity (4-8 hr) which is associated with partial Na+ influx and K+ efflux, no significant LDH release, and relatively few blebs. The hyperpolarizing effect may be a result of increased permeability to K+ relative to Na+. At times and concentrations which result in increased intracellular electronegativity, PAT has no effect on [3H]ouabain binding and thus increased Na+/K+ pump turnover does not seem to be the cause of the transient hyperpolarizing effect of PAT. These results are consistent with the hypothesis that PAT causes alterations in plasma membrane permeability which favor K+ efflux relative to Na+ influx. The toxic effects of PAT are irreversible in LLC-PK1 cells after even short pretreatment with PAT. The primary toxic lesion appears to be at some level other than that involving inhibition of macromolecular synthesis, perhaps the plasma membrane itself.
Collapse
Affiliation(s)
- R T Riley
- Russell Research Center, United States Department of Agriculture, Athens, Georgia 30613
| | | | | | | | | |
Collapse
|
23
|
Hinton DM, Riley RT, Showker JL, Rigsby WE. Patulin-induced ion flux in cultured renal cells and reversal by dithiothreitol and glutathione: a scanning electron microscopy (SEM) X-ray microanalysis study. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1989; 4:47-54. [PMID: 2549248 DOI: 10.1002/jbt.2570040109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patulin (PAT), a compound produced by certain species of Aspergillus, Penicillium, and Byssochlamys, is frequently found associated with agricultural commodities. PAT has many effects on membrane function, including the inhibition of the isolated Na+-K+ ATPase. In this study, a scanning electron microscope equipped with an energy dispersive spectroscopy X-ray microanalysis system was used to examine individual cultured renal epithelial cells (LLC-PK1) in order to determine the effects of PAT on the relative intracellular ion concentrations. The estimated EC50 (60 min) for both sodium influx and potassium efflux was between 10 and 50 microns for ouabain. For PAT, the EC50 (60 min) was 250 microns for sodium influx and 100 microns for potassium efflux. However, 1 mM patulin at 240 min caused complete reversal of the sodium and potassium content of cells, and 1 mM ouabain at 240 min did not. The effect of patulin on sodium and potassium flux was both concentration and time dependent and was reversed by dithiothreitol and glutathione. PAT (250 microM) but not ouabain (250 microM) induced massive blebbing of LLC-PK1 cells. Thus, the interaction of PAT with cellular membranes involves both alterations in the regulation of intracellular ion content and the cytoskeleton. We hypothesize that patulin alters intracellular ion content via Na+-K+ ATPase and non-Na+-K+ ATPase mechanisms.
Collapse
Affiliation(s)
- D M Hinton
- Toxicology and Mycotoxins Research Unit, Russell Research Center, USDA/ARS, Athens, GA 30613
| | | | | | | |
Collapse
|