1
|
Tassis PD, Reisinger N, Nagl V, Tzika E, Schatzmayr D, Mittas N, Basioura A, Michos I, Tsakmakidis IA. Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro. Toxins (Basel) 2022; 14:toxins14070497. [PMID: 35878236 PMCID: PMC9317656 DOI: 10.3390/toxins14070497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are described as detrimental factors to sow and boar fertility. In comparison, literature reports on the impact of modified forms of DON and ZEN, such as de-epoxy-DON (DOM-1) and hydrolyzed ZEN (HZEN), on swine reproduction are scarce. The aim of our study was to compare the effects of DON, DOM-1, ZEN and HZEN on boar semen in vitro. To this end, pooled boar semen ejaculates from two adult boars were treated with either 50.6 μM DON, 62.8 μM ZEN or equimolar concentrations of DOM-1 and HZEN, respectively (dilution volume of v/v 0.7% DMSO in all cases). Effects on semen motility, morphology, viability, hypo-osmotic swelling test reaction and DNA integrity were investigated hourly up to four hours of incubation. DON negatively affected particular parameters evaluated with a computer-assisted sperm analysis system (CASA), such as immotile spermatozoa and progressive motile spermatozoa, whereas those effects were absent in the case of DOM-1 treatment. In contrast to HZEN, ZEN affected almost all CASA parameters. Furthermore, only ZEN decreased the proportion of viable spermatozoa and increased the proportion of spermatozoa with abnormalities. In conclusion, DON and ZEN negatively affected boar semen in vitro, whereas equimolar concentrations of DOM-1 and HZEN did not induce harmful effects.
Collapse
Affiliation(s)
- Panagiotis D. Tassis
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (E.T.); (I.M.); (I.A.T.)
- Correspondence:
| | - Nicole Reisinger
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (N.R.); (V.N.); (D.S.)
| | - Veronika Nagl
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (N.R.); (V.N.); (D.S.)
| | - Eleni Tzika
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (E.T.); (I.M.); (I.A.T.)
| | - Dian Schatzmayr
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (N.R.); (V.N.); (D.S.)
| | - Nikolaos Mittas
- Department of Chemistry, School of Science, International Hellenic University, 65404 Kavala, Greece;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Ilias Michos
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (E.T.); (I.M.); (I.A.T.)
| | - Ioannis A. Tsakmakidis
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (E.T.); (I.M.); (I.A.T.)
| |
Collapse
|
2
|
Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxin, as one of the most common pollutants in foodstuffs, poses great threat to food security and human health. Specifically, deoxynivalenol (DON) and zearalenone (ZEN)-two mycotoxin contaminants with considerable toxicity widely existing in food products-have aroused broad public concerns. Adding to this picture, modified forms of DON and ZEN, have emerged as another potential environmental and health threat, owing to their higher re-transformation rate into parent mycotoxins inducing accumulation of mycotoxin in humans and animals. Given this, a better understanding of the toxicity of modified mycotoxins is urgently needed. Moreover, the lack of toxicity data means a proper risk assessment of modified mycotoxins remains challenging. To better evaluate the toxicity of modified DON and ZEN, we have reviewed the relationship between their structures and toxicities. The toxicity mechanisms behind modified DON and ZEN have also been discussed; briefly, these involve acute, subacute, chronic, and combined toxicities. In addition, this review also addresses the global occurrence of modified DON and ZEN, and summarizes novel methods-including in silico analysis and implementation of relative potency factors-for risk assessment of modified DON and ZEN. Finally, the health risk assessment of modified DON and ZEN has also been discussed comprehensively.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hao-Nan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang-Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
3
|
Shuai C, Li L, Yanhui H, Jin W, Zilong L, Xiaoxue S, Yuchong Z, Jinying C. Study on the degradation of deoxynivalenol in corn and wheat both in the lab and barn by low concentration ozone. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Shuai
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Li Li
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Hao Yanhui
- Sinograin Weinan Depot Co. Ltd. Weinan China
| | - Wang Jin
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Liao Zilong
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Shan Xiaoxue
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Zhang Yuchong
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Chen Jinying
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| |
Collapse
|
4
|
Yang Y, Xu Y, Wu S, Qiu T, Blaženović I, Sun J, Zhang Y, Sun X, Ji J. Evaluation of the toxicity and chemical alterations of deoxynivalenol degradation products under ozone treatment. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Mungamuri SK, Mavuduru VA. Role of epigenetic alterations in aflatoxin‐induced hepatocellular carcinoma. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/lci2.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathish Kumar Mungamuri
- Division of Food Safety Indian Council of Medical Research (ICMR) ‐ National Institute of Nutrition (NIN) Hyderabad Telangana India
| | | |
Collapse
|
6
|
Park SH, Moon Y. Enterocyte-Based Bioassay via Quantitative Combination of Proinflammatory Sentinels Specific to 8-keto-trichothecenes. Front Immunol 2020; 11:1530. [PMID: 32765531 PMCID: PMC7378738 DOI: 10.3389/fimmu.2020.01530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Type B 8-keto-trichothecenes are muco-active mycotoxins that exist as inevitable contaminants in cereal-based foodstuffs. Gut-associated inflammation is an early frontline response during human and animal exposure to these mycotoxins. Despite various tools for chemical identification, optimized biomonitoring of sentinel response-associated biomarkers is required to assess the specific proinflammatory actions of 8-keto-trichothecenes in the gut epithelial barrier. In the present study, intoxication with 8-keto-trichothecenes in human intestinal epithelial cells was found to trigger early response gene 1 product (EGR-1) that plays crucial roles in proinflammatory chemokine induction. In contrast, epithelial exposure to 8-keto-trichothecenes resulted in downregulated expression of nuclear factor NF-kappa-B p65 protein, a key transcription factor, during general inflammatory responses in the gut. Based on the early molecular patterns of expression, the inflammation-inducing activity of 8-keto-trichothecenes was quantified using intestinal epithelial cells with dual reporters for EGR-1 and p65 proteins. EGR-1-responsive elements were linked to luciferase reporter while p65 promoter was bound to secretory alkaline phosphatase (SEAP) reporter. In response to conventional inflammagens such as endotoxins and cytokines such as TNF-α, both luciferase and SEAP activity were elevated in a dose-dependent manner. However, as expected from the mechanistic evaluation, 8-keto-trichothecene-exposed dual reporters of luciferase and SEAP displayed contrasting expression patterns. Furthermore, 8-keto-trichothecene-elevated EGR-1-responsive luciferase activity was improved by deficiency of PSMA3, an α-type subunit of the 20S proteasome core complex for ubiquitin-dependent EGR-1 degradation. This molecular event-based dual biomonitoring in epithelial cells is a promising supplementary tool for detecting typical molecular inflammatory pathways in response to 8-keto-trichothecenes in the food matrix.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan, South Korea.,Biomedical Research Institute, Pusan National University, Yangsan, South Korea
| |
Collapse
|
7
|
Adsorption of Deoxynivalenol (DON) from Corn Steep Liquor (CSL) by the Microsphere Adsorbent SA/CMC Loaded with Calcium. Toxins (Basel) 2020; 12:toxins12040208. [PMID: 32218143 PMCID: PMC7232427 DOI: 10.3390/toxins12040208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
The occurrence of deoxynivalenol (DON) in animal feed is a serious issue for the livestock industry. Approaches using mycotoxin adsorbents are key to decreasing mycotoxin carryover from contaminated feed to animals. In this paper, a novel functional microsphere adsorbent comprising an alginate/carboxymethyl cellulose sodium composite loaded with calcium (SA/CMC-Ca) was prepared by an emulsification process to adsorb DON from polluted corn steep liquor (CSL) containing DON at a concentration of 3.60 μg/mL. Batch experiments were conducted under different experimental conditions: CSL volumes, reaction times, desorption times, and microsphere recyclability. Results showed that 5 g of microspheres reacted with 5 mL of DON-polluted CSL for 5 min, the microspheres can be recycled 155 times, and the maximum DON adsorption for the microspheres was 2.34 μg/mL. During recycling, microspheres were regenerated by deionized water every time; after the microspheres were cleaned, DON in the deionized water was degraded by sodium hydroxide (NaOH) at 70 °C for 1 h at pH 12. The mechanism for physical adsorption and hydrogen bonding was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). To the best of our knowledge, this is the first report showing that the microsphere adsorbent SA/CMC-Ca adsorbs DON. Therefore, we suggest that using microsphere absorbents would be a possible way to address DON-contaminated CSL issues in animal feed.
Collapse
|
8
|
Li TX, Xiong YM, Chen X, Yang YN, Wang Y, Jia XW, Yang XP, Tan LL, Xu CP. Antifungal Macrocyclic Trichothecenes from the Insect-Associated Fungus Myrothecium roridum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13033-13039. [PMID: 31730339 DOI: 10.1021/acs.jafc.9b04507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three new macrocyclic trichothecenes possessing rare 6'-ketal moieties, roridoxins A-C (1-3), and five known compounds (4-8) were isolated from the insect-associated fungus Myrothecium roridum. Their structures were confirmed by a combination of NMR and HRESIMS data, while their absolute configurations were unambiguously determined by single-crystal X-ray analysis and electronic circular dichroism experiments. Trichothecenes 1 and 3 showed potent antifungal activities against four strains of phytopathogenic fungi. In addition, 1, 3, 5, and 6 were found to significantly inhibit the cell growth of Candida albicans with minimal inhibitory concentration values from 8.8 to 18.5 μg/mL. Moreover, they were able to inhibit the biofilm formation of C. albicans better than the positive control.
Collapse
Affiliation(s)
- Tian-Xiao Li
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Ya-Mei Xiong
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Xin Chen
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Ya-Nan Yang
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Ying Wang
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Xue-Wei Jia
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Xue-Peng Yang
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Lan-Lan Tan
- Technical Center of China Tobacco Sichuan Industrial Co., Ltd. , Chengdu 610051 , China
| | - Chun-Ping Xu
- College of Food and Biological Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| |
Collapse
|
9
|
Structure Elucidation and Toxicity Analysis of the Degradation Products of Deoxynivalenol by Gaseous Ozone. Toxins (Basel) 2019; 11:toxins11080474. [PMID: 31443171 PMCID: PMC6723297 DOI: 10.3390/toxins11080474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
Fusarium Head Blight (FHB) or scab is a fungal disease of cereal grains. Wheat scab affects the yield and quality of wheat and produces mycotoxins such as deoxynivalenol (DON), which can seriously threaten human and animal health. In this study, gaseous ozone was used to degrade DON in wheat scab and the degradation products of ozonolysis were analyzed by ultra-performance liquid chromatography quadrupole-orbitrap mass spectrometry (UHPLC Q-Orbitrap). Toxicology analyses of the degradation products were also studied using structure-activity relationships. Ozone (8 mg L-1 concentration) was applied to 2 μg mL-1 of DON in ultrapure water, resulted in 95.68% degradation within 15 s. Ten ozonized products of DON in ultrapure water were analyzed and six main products (C15H18O7, C15H18O9, C15H22O9, C15H20O10, C15H18O8, and C15H20O9) were analyzed at varying concentrations of ozone and DON. Structural formulae were assigned to fragmentation products generated by MS2 and Mass Frontier® software. According to structure-activity relationship studies, the toxicities of the ozonized products were significantly decreased due to de-epoxidation and the attack of ozone at the C9-10 double bond in DON. Based on the results of the study above, we can find that gaseous ozone is an efficient and safe technology to degrade DON, and these results may provide a theoretical basis for the practical research of detoxifying DON in scabby wheat and other grains.
Collapse
|
10
|
Yu K, Zhang J, Cao Z, Ji Q, Han Y, Song M, Shao B, Li Y. Lycopene attenuates AFB 1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice. Food Funct 2019; 9:6427-6434. [PMID: 30462120 DOI: 10.1039/c8fo01301b] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress is an important molecular mechanism for kidney injury in aflatoxin B1 (AFB1) nephrotoxicity. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor for regulating the cellular oxidative stress response, which has been confirmed in animal models. Lycopene (LYC), a natural carotenoid, has received extensive attention due to its antioxidant effect with the activation of Nrf2. However, the role of LYC in protecting against AFB1-induced renal injury is unknown. To evaluate the chemoprotective effect of LYC on AFB1-induced renal injury, forty-eight male mice were randomly divided into 4 groups and treated with LYC (5 mg per kg of bodyweight) and/or AFB1 (0.75 mg per kg of bodyweight) by intragastric administration for 30 days. AFB1 and LYC were respectively dissolved in olive oil. We found that AFB1 exposure significantly increased the serum concentrations of blood urea nitrogen (BUN) and serum creatinine (SCR), and caused damage to the renal structure. Notably, LYC potentially alleviated AFB1-induced kidney lesions through attenuating AFB1-induced oxidative stress. Renal nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target gene (CAT, NQO1, SOD1, GSS, GCLM and GCLC) translation and protein expression were ameliorated by pretreatment with LYC in AFB1-exposed mice. These results suggested that LYC potentially alleviates AFB1-induced renal injury. This effect may be attributed to the enhancement of renal antioxidant capacity with the activation of the Nrf2 antioxidant signaling pathway.
Collapse
Affiliation(s)
- Kaiyuan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
12
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
13
|
He JW, Bondy GS, Zhou T, Caldwell D, Boland GJ, Scott PM. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food Chem Toxicol 2015; 84:250-9. [PMID: 26363308 DOI: 10.1016/j.fct.2015.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Microbial detoxification of deoxynivalenol (DON) represents a new approach to treating DON-contaminated grains. A bacterium Devosia mutans 17-2-E-8 was capable of completely transforming DON into a major product 3-epi-DON and a minor product 3-keto-DON. Evaluation of toxicities of these DON-transformation products is an important part of hazard characterization prior to commercialization of the biotransformation application. Cytotoxicities of the products were demonstrated by two assays: a MTT bioassay assessing cell viability and a BrdU assay assessing DNA synthesis. Compared with DON, the IC50 values of 3-epi-DON and 3-keto-DON were respectively 357 and 3.03 times higher in the MTT bioassay, and were respectively 1181 and 4.54 times higher in the BrdU bioassay. Toxicological effects of 14-day oral exposure of the B6C3F1 mouse to DON and 3-epi-DON were also investigated. Overall, there were no differences between the control (free of toxin) and the 25 mg/kg bw/day or 100 mg/kg bw/day 3-epi-DON treatments in body and organ weights, hematology and organ histopathology. However, in mice exposed to DON (2 mg/kg bw/day), white blood cell numbers and serum immunoglobulin levels were altered relative to controls, and lesions were observed in adrenals, thymus, stomach, spleen and colon. Taken together, in vitro and in vivo studies indicate that 3-epi-DON is substantially less toxic than DON.
Collapse
Affiliation(s)
- Jian Wei He
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Genevieve S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.
| | - Don Caldwell
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Greg J Boland
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Peter M Scott
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Malachova A, van Egmond H, Berthiller F, Krska R. Determination of nivalenol in food and feed: an update. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Based on the recent scientific opinion published by the EFSA CONTAM panel on the risks to human and animal health related to the presence of nivalenol in food and feed, this article provides an update on the determination of this Fusarium mycotoxin. After a brief introduction into the chemistry of nivalenol, chromatographic methods as well as other approaches are being discussed. Methods for the determination of nivalenol are well established and can be applied for the analysis of cereals, food, feed and biological samples. Accurate quantification of nivalenol is mostly carried out by liquid chromatography coupled with (multi-stage) mass spectrometry (MS) often within a multi-analyte approach. Some novel techniques, such as direct analysis in real time (DART) MS and electrochemical methods, have shown potential to determine nivalenol, but applications for routine measurements are not yet available. None of the currently available analytical methods has been formally validated in interlaboratory validation studies. While a certified calibrant for nivalenol is available, no matrix reference materials have been developed. Due to the scarcity of appropriate antibodies also no rapid immunochemical methods specific for nivalenol have become available.
Collapse
Affiliation(s)
- A. Malachova
- Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - H.P. van Egmond
- RIKILT Institute of Food Safety, Wageningen University and Research Center, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - F. Berthiller
- Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - R. Krska
- Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
15
|
Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3262] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Samsudin NIP, Abdullah N. A preliminary survey on the occurrence of mycotoxigenic fungi and mycotoxins contaminating red rice at consumer level in Selangor, Malaysia. Mycotoxin Res 2012; 29:89-96. [PMID: 23242851 DOI: 10.1007/s12550-012-0154-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/27/2022]
Abstract
Red rice is a fermented product of Monascus spp. It is widely consumed by Malaysian Chinese who believe in its pharmacological properties. The traditional method of red rice preparation disregards safety regulation and renders red rice susceptible to fungal infestation and mycotoxin contamination. A preliminary study was undertaken aiming to determine the occurrence of mycotoxigenic fungi and mycotoxins contamination on red rice at consumer level in Selangor, Malaysia. Fifty red rice samples were obtained and subjected to fungal isolation, enumeration, and identification. Citrinin, aflatoxin, and ochratoxin-A were quantitated by ELISA based on the presence of predominant causal fungi. Fungal loads of 1.4 × 10(4) to 2.1 × 10(6) CFU/g exceeded Malaysian limits. Monascus spp. as starter fungi were present in 50 samples (100%), followed by Penicillium chrysogenum (62%), Aspergillus niger (54%), and Aspergillus flavus (44%). Citrinin was present in 100% samples (0.23-20.65 mg/kg), aflatoxin in 92% samples (0.61-77.33 μg/kg) and Ochratoxin-A in 100% samples (0.23-2.48 μg/kg); 100% citrinin and 76.09% aflatoxin exceeded Malaysian limits. The presence of mycotoxigenic fungi served as an indicator of mycotoxins contamination and might imply improper production, handling, transportation, and storage of red rice. Further confirmatory analysis (e.g., HPLC) is required to verify the mycotoxins level in red rice samples and to validate the safety status of red rice.
Collapse
Affiliation(s)
- Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor darul Ehsan, Malaysia
| | | |
Collapse
|
17
|
McLean M. The phytotoxicity ofFusarium metabolites: An update since 1989. Mycopathologia 2012; 133:163-79. [PMID: 20882471 DOI: 10.1007/bf02373024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/1995] [Accepted: 03/23/1996] [Indexed: 10/24/2022]
Abstract
The present article summarises the published phytotoxic effects of severalFusarium metabolites (mycotoxins, phytotoxins, antibiotics and pigments) since 1989. The phytotoxicity of many of the commonly isolated metabolites cannot be disputed, but their role in pathogenesis ofFusarium-induced plant diseases is uncertain. Plant species/varieties differ in their susceptibililty resistance to these toxinsin vitro, as well as toFusarium pathogens under field conditions. Such variations in plant response may reflect resistance mechanisms that operate at several levels, including an initial ability to prevent fungal invasion; prevention of fungal spread and toxin tolerance or degradation. Little is known about the mode of action of most of these metabolites on either animal or plant cells. Several novelFusarium metabolites have been isolated in the past few years. Many are toxic to animals and cell lines, but assessment of their phytotoxicity has largely been neglected. Since many plant pathogenic Fusaria produce a plethora of metabolites, the additive or synergistic actions of toxins in combination must be considered in plant pathology.
Collapse
Affiliation(s)
- M McLean
- Department of Physiology, Faculty of Medicine, University of Natal, Durban, South Africa,
| |
Collapse
|
18
|
Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Res 2012; 28:191-8. [DOI: 10.1007/s12550-012-0134-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
19
|
Hsp70 expression as biomarkers of oxidative stress: Mycotoxins’ exploration. Toxicology 2011; 287:1-7. [DOI: 10.1016/j.tox.2011.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/05/2011] [Indexed: 12/12/2022]
|
20
|
Gowrinathan Y, Pacan J, Hawke A, Zhou T, Sabour P. Toxicity assay for deoxynivalenol usingCaenorhabditis elegans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1235-41. [PMID: 21749231 DOI: 10.1080/19440049.2011.587836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Y. Gowrinathan
- a Guelph Food Research Centre, 93 Stone Road, West, Guelph, ON , Canada , N1G 5C9
| | - J.C. Pacan
- a Guelph Food Research Centre, 93 Stone Road, West, Guelph, ON , Canada , N1G 5C9
| | - A. Hawke
- a Guelph Food Research Centre, 93 Stone Road, West, Guelph, ON , Canada , N1G 5C9
| | - T. Zhou
- a Guelph Food Research Centre, 93 Stone Road, West, Guelph, ON , Canada , N1G 5C9
| | - P.M. Sabour
- a Guelph Food Research Centre, 93 Stone Road, West, Guelph, ON , Canada , N1G 5C9
| |
Collapse
|
21
|
Bernabucci U, Colavecchia L, Danieli PP, Basiricò L, Lacetera N, Nardone A, Ronchi B. Aflatoxin B1 and fumonisin B1 affect the oxidative status of bovine peripheral blood mononuclear cells. Toxicol In Vitro 2011; 25:684-91. [DOI: 10.1016/j.tiv.2011.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/28/2022]
|
22
|
Suzuki T, Iwahashi Y. Gene expression profile of MAP kinase PTC1 mutant exposed to deoxynivalenol. CHEM-BIO INFORMATICS JOURNAL 2011. [DOI: 10.1273/cbij.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute
| | - Yumiko Iwahashi
- Applied Microbiology Division, National Food Research Institute
| |
Collapse
|
23
|
Effects of deoxynivalenol (DON) and related compounds on bovine peripheral blood mononuclear cells (PBMC) in vitro and in vivo. Mycotoxin Res 2010; 27:49-55. [DOI: 10.1007/s12550-010-0074-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/24/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
|
24
|
Yang H, Park SH, Choi HJ, Do KH, Kim J, An TJ, Lee SH, Moon Y. Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicol Lett 2010; 198:317-23. [DOI: 10.1016/j.toxlet.2010.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
25
|
Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol 2010; 10:182. [PMID: 20576129 PMCID: PMC2912857 DOI: 10.1186/1471-2180-10-182] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background Contamination of grains with trichothecene mycotoxins, especially deoxynivalenol (DON), has been an ongoing problem for Canada and many other countries. Mycotoxin contamination creates food safety risks, reduces grain market values, threatens livestock industries, and limits agricultural produce exports. DON is a secondary metabolite produced by some Fusarium species of fungi. To date, there is a lack of effective and economical methods to significantly reduce the levels of trichothecene mycotoxins in food and feed, including the efforts to breed Fusarium pathogen-resistant crops and chemical/physical treatments to remove the mycotoxins. Biological approaches, such as the use of microorganisms to convert the toxins to non- or less toxic compounds, have become a preferred choice recently due to their high specificity, efficacy, and environmental soundness. However, such approaches are often limited by the availability of microbial agents with the ability to detoxify the mycotoxins. In the present study, an approach with PCR-DGGE guided microbial selection was developed and used to isolate DON -transforming bacteria from chicken intestines, which resulted in the successful isolation of several bacterial isolates that demonstrated the function to transform DON to its de-epoxy form, deepoxy-4-deoxynivalenol (DOM-1), a product much less toxic than DON. Results The use of conventional microbiological selection strategies guided by PCR-DGGE (denaturing gradient gel electrophoresis) bacterial profiles for isolating DON-transforming bacteria has significantly increased the efficiency of the bacterial selection. Ten isolates were identified and isolated from chicken intestines. They were all able to transform DON to DOM-1. Most isolates were potent in transforming DON and the activity was stable during subculturing. Sequence data of partial 16S rRNA genes indicate that the ten isolates belong to four different bacterial groups, Clostridiales, Anaerofilum, Collinsella, and Bacillus. Conclusions The approach with PCR-DGGE guided microbial selection was effective in isolating DON-transforming bacteria and the obtained bacterial isolates were able to transform DON.
Collapse
Affiliation(s)
- Hai Yu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maresca M, Fantini J. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 2010; 56:282-94. [PMID: 20466014 DOI: 10.1016/j.toxicon.2010.04.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/30/2010] [Accepted: 04/25/2010] [Indexed: 12/19/2022]
Abstract
Mycotoxins are fungal metabolites able to affect the functions of numerous tissues and organs in animals and humans, including intestinal and immune systems. However, the potential link between exposure to some mycotoxins and human chronic intestinal inflammatory diseases, such as celiac and Crohn's diseases or ulcerative colitis, has not been investigated. Instead, several theories based on bacterial, immunological or neurological events have been elaborated to explain the etiology of these pathologies. Here we reviewed the literature on mycotoxin-induced intestinal dysfunctions and compared these perturbations to the impairments of intestinal functions typically observed in human chronic intestinal inflammatory diseases. Converging evidence based on various cellular and animal studies show that several mycotoxins induce intestinal alterations that are similar to those observed at the onset and during the progression of inflammatory bowel diseases. Although epidemiologic evidence is still required, existing data are sufficient to suspect a role of some food-associated mycotoxins in the induction and/or persistence of human chronic intestinal inflammatory diseases in genetically predisposed patients.
Collapse
Affiliation(s)
- Marc Maresca
- CRN2M, CNRS UMR 6231, INRA USC 2027, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Université d'Aix-Marseille 2 et Aix-Marseille 3, Faculté des Sciences de St-Jérôme, 13397 Marseille Cedex 20, France.
| | | |
Collapse
|
27
|
Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci Technol 2010. [DOI: 10.1016/j.tifs.2009.08.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Doyle PJ, Saeed H, Hermans A, Gleddie SC, Hussack G, Arbabi-Ghahroudi M, Seguin C, Savard ME, MacKenzie CR, Hall JC. Intracellular expression of a single domain antibody reduces cytotoxicity of 15-acetyldeoxynivalenol in yeast. J Biol Chem 2009; 284:35029-39. [PMID: 19783651 PMCID: PMC2787364 DOI: 10.1074/jbc.m109.045047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/08/2009] [Indexed: 11/06/2022] Open
Abstract
15-Acetyldeoxynivalenol (15-AcDON) is a low molecular weight sesquiterpenoid trichothecene mycotoxin associated with Fusarium ear rot of maize and Fusarium head blight of small grain cereals. The accumulation of mycotoxins such as deoxynivalenol (DON) and 15-AcDON within harvested grain is subject to stringent regulation as both toxins pose dietary health risks to humans and animals. These toxins inhibit peptidyltransferase activity, which in turn limits eukaryotic protein synthesis. To assess the ability of intracellular antibodies (intrabodies) to modulate mycotoxin-specific cytotoxocity, a gene encoding a camelid single domain antibody fragment (V(H)H) with specificity and affinity for 15-AcDON was expressed in the methylotropic yeast Pichia pastoris. Cytotoxicity and V(H)H immunomodulation were assessed by continuous measurement of cellular growth. At equivalent doses, 15-AcDON was significantly more toxic to wild-type P. pastoris than was DON. In turn, DON was orders of magnitude more toxic than 3-acetyldeoxynivalenol. Intracellular expression of a mycotoxin-specific V(H)H within P. pastoris conveyed significant (p = 0.01) resistance to 15-AcDON cytotoxicity at doses ranging from 20 to 100 mug.ml(-1). We also documented a biochemical transformation of DON to 15-AcDON to account for the attenuation of DON cytotoxicity at 100 and 200 mug.ml(-1). The proof of concept established within this eukaryotic system suggests that in planta V(H)H expression may lead to enhanced tolerance to mycotoxins and thereby limit Fusarium infection of commercial agricultural crops.
Collapse
Affiliation(s)
- Patrick J. Doyle
- From the Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1
| | - Hanaa Saeed
- Eastern Cereal and Oilseed Research Centre, Agriculture and AgriFood Canada, Ottawa, Ontario K1A 0C6, and
| | - Anne Hermans
- Eastern Cereal and Oilseed Research Centre, Agriculture and AgriFood Canada, Ottawa, Ontario K1A 0C6, and
| | - Steve C. Gleddie
- Eastern Cereal and Oilseed Research Centre, Agriculture and AgriFood Canada, Ottawa, Ontario K1A 0C6, and
| | - Greg Hussack
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Mehdi Arbabi-Ghahroudi
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Charles Seguin
- Eastern Cereal and Oilseed Research Centre, Agriculture and AgriFood Canada, Ottawa, Ontario K1A 0C6, and
| | - Marc E. Savard
- Eastern Cereal and Oilseed Research Centre, Agriculture and AgriFood Canada, Ottawa, Ontario K1A 0C6, and
| | - C. Roger MacKenzie
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - J. Christopher Hall
- From the Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
29
|
Bräse S, Encinas A, Keck J, Nising CF. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem Rev 2009; 109:3903-90. [DOI: 10.1021/cr050001f] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefan Bräse
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Arantxa Encinas
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Julia Keck
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Carl F. Nising
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
30
|
Dall’Asta C, Faccini A, Galaverna G, Corradini R, Dossena A, Marchelli R. Complexation of zearalenone and zearalenols with native and modified β-cyclodextrins. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9572-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Kim EJ, Jeong SH, Cho JH, Ku HO, Pyo HM, Kang HG, Choi KH. Plasma haptoglobin and immunoglobulins as diagnostic indicators of deoxynivalenol intoxication. J Vet Sci 2008; 9:257-66. [PMID: 18716445 PMCID: PMC2811837 DOI: 10.4142/jvs.2008.9.3.257] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study aimed to discover potential biomarkers for dioxynivalenol (DON) intoxication. B6C3F1 male mice were orally exposed to 0.83, 2.5 and 7.5 mg/kg body weight (bw) DON for 8 days and the differential protein expressions in their blood plasma were determined by SELDI - Time-of-Flight/Mass Spectrometry (TOF/MS) and the immunoglobulins (Igs) G, A, M and E in the serum were investigated. 11.7 kDa protein was significantly highly expressed according to DON administration and this protein was purified by employing a methyl ceramic HyperD F column with using optimization buffer for adsorption and desorption. The purified protein was identified as a haptoglobin precursor by peptide mapping with using LC/Q-TOF/MS and MALDI-TOF/MS and this was confirmed by western blotting and ELISA. IgG and IgM in serum were decreased in a dose-dependent manner and IgA was decreased at 7.5 mg/kg bw DON administration, but the IgE level was not changed. To compare the expressions of haptoglobin and the Igs patterns between aflatoxin B1 (AFB1), zearalenone (ZEA) and DON intoxications, rats were orally administered with AFB1 1.0, ZEA 240 and DON 7.5 mg/kg bw for 8 days. Haptoglobin was increased only at DON 7.5 mg/kg bw, while it was slightly decreased at ZEA 240 mg/kg bw and it was not detected at all at AFB1 1.0 mg/kg bw. IgG and IgA were decreased by DON, but IgG, IgA, IgM and IgE were all increased by AFB1. No changes were observed by ZEA administration. These results show that plasma haptoglobin could be a diagnostic biomarker for DON intoxication when this is combined with examining the serum Igs.
Collapse
Affiliation(s)
- Eun Joo Kim
- National Veterinary Research & Quarantine Service, Anyang 430-824, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Sergeiko A, Poroikov VV, Hanuš LO, Dembitsky VM. Cyclobutane-containing alkaloids: origin, synthesis, and biological activities. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2008; 2:26-37. [PMID: 19696873 PMCID: PMC2709475 DOI: 10.2174/1874104500802010026] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 11/22/2022]
Abstract
Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery.
Collapse
Affiliation(s)
- Anastasia Sergeiko
- Institute of Biomedical Chemistry, Russian Academy of the Medical Sciences, Moscow 119121, Russia
| | - Vladimir V Poroikov
- Institute of Biomedical Chemistry, Russian Academy of the Medical Sciences, Moscow 119121, Russia
| | - Lumir O Hanuš
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
33
|
Abstract
Trichothecene mycotoxins produced by the Fusarium genus are highly toxic to humans and animals. They are commonly found in cereals worldwide, which is not only a concern for food safety, but also highly relevant to the livestock industry. Controlling trichothecenes in food and feed has been a challenge since the toxins are markedly stable under different environmental conditions. Thermal processing is usually ineffective, and chemical treatments generally are expensive and often result in side effects. Previous studies on innovative biological approaches, such as the use of microorganisms and enzymes, to convert the toxins into non or less toxic compounds have shown promise. This review will briefly describe the chemical structures and toxicity of trichothecenes, and examine the microorganisms, including both bacteria and fungi, from various natural sources that are able to detoxify the toxins as either mixed cultures or a pure culture of single isolates. Finally, challenges and innovative strategies in the development of technology to detoxify trichothecenes by microorganisms are described.
Collapse
Affiliation(s)
- T. Zhou
- Food Research Program, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, N1G 5C9 Ontario, Canada
| | - J. He
- Food Research Program, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, N1G 5C9 Ontario, Canada
| | - J. Gong
- Food Research Program, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, N1G 5C9 Ontario, Canada
| |
Collapse
|
34
|
Luft P, Oostingh GJ, Gruijthuijsen Y, Horejs-Hoeck J, Lehmann I, Duschl A. Patulin influences the expression of Th1/Th2 cytokines by activated peripheral blood mononuclear cells and T cells through depletion of intracellular glutathione. ENVIRONMENTAL TOXICOLOGY 2008; 23:84-95. [PMID: 18214930 DOI: 10.1002/tox.20309] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Patulin is a mold toxin secreted mainly by fungi of the Penicillium species. Exposure generally results from consumption of moldy fruits and fruit products. Since recent studies identified mold exposure as a risk factor for allergic diseases, we examined the effects of patulin on human peripheral blood mononuclear cells (PBMC) prepared from buffy coats of healthy donors. Cells were stimulated with CD3- and CD28-specific antibodies in the presence or absence of patulin. Effects of patulin on PBMCs were evaluated by proliferation, viability assays, and cytokine ELISAs. The presence of 50 ng/mL patulin strongly decreased the amounts of several cytokines in the supernatant of stimulated PBMCs. This decrease in cytokine secretion was not due to cytotoxic effects of patulin. Moreover, the extent of the reduction of cytokine amounts was cytokine specific, affecting some (IL-4, IL-13, IFNgamma, and IL-10), but not others (IL-8, IL-5). We show that all effects could be abolished by adding thiol containing compounds. A depletion of intracellular GSH could be measured after incubation of cells with patulin. Taken together, our data indicate that patulin modulates the functional activation of PBMCs with respect to proliferation and cytokine secretion patterns by depletion of intracellular GSH. The depletion of intracellular glutathione may influence the balance between Th1 and Th2 cells and have implications for allergic diseases.
Collapse
Affiliation(s)
- Petra Luft
- Department of Molecular Biology, University of Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Kim EJ, Jeong SH, Ku HO, Kang HG, Cho JH. Clinical and Toxico-pathological Parameters for Deoxynivalenol Intoxication in B6C3F1 Mice. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Abstract
The present review describes research on novel natural cyclobutane-containing alkaloids and synthetic compounds isolated from terrestrial and marine species. More than 210 compounds have been confirmed to show antimicrobial, antibacterial, anticancer, and other activities. Structures, origins, biosynthesis, photodimerization, and biological activities of a selection of cyclobutane-containing alkaloids and selected synthetic analogs of natural alkaloids are reviewed.
Collapse
|
37
|
Chan WH, Shiao NH. Effect of citrinin on mouse embryonic development in vitro and in vivo. Reprod Toxicol 2007; 24:120-5. [PMID: 17572064 DOI: 10.1016/j.reprotox.2007.04.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 11/23/2022]
Abstract
Citrinin (CTN), a mycotoxin that is often found as a natural contaminant in foodstuffs and animal feeds, has been demonstrated to have cytotoxic and genotoxic effects on various mammalian cells. In this study, we examined the cytotoxic effects of CTN on mouse blastocysts and subsequent early development in vitro and in vivo. Blastocysts treated with 15 or 30 microM CTN showed significant increases in apoptosis and significant decreases in total cell number. In addition, CTN-pretreated blastocysts showed a significantly lower implantation success rate. Treatment with 30 microM CTN was associated with increased resorption of postimplantation embryos and decreased fetal weight. Our results collectively indicate that CTN-induced apoptosis in the mouse blastocyst reduced cell number and retarded early postimplantation development. The extent to which CTN may have teratogenic potential in early human development is not known.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| | | |
Collapse
|
38
|
El Golli E, Hassen W, Bouslimi A, Bouaziz C, Ladjimi MM, Bacha H. Induction of Hsp 70 in Vero cells in response to mycotoxins. Toxicol Lett 2006; 166:122-30. [PMID: 16870361 DOI: 10.1016/j.toxlet.2006.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/22/2022]
Abstract
This paper analysed the toxicity mechanisms of several mycotoxins using Hsp 70 expression, cytoprotection of Vero cells by sub-lethal heat shock (sub-LHS) and Vitamin E. Our aim was (i) to determine whether Citrinin (CTN), Zearalenone (ZEN) and T2 toxin (T2) could induce the expression of Hsp 70, (ii) to check whether or not elevated levels of Hsp and Vitamin E pre-treatment could provide cytoprotection from these mycotoxins, and finally (iii) to emphasize the eventual involvement of oxidative stress on mycotoxin's toxicity. Our study demonstrated that the three examined mycotoxins induced Hsp 70 expression in a dose-dependent manner. A cytoprotective effect of Hsp 70 was obtained when Vero cells were exposed to sub-lethal heat shock followed by a 12h recovery prior to mycotoxins treatment and evidenced by a reduction of their cytolethality. This cytoprotection suggested that Hsp 70 might constitute an important cellular defence mechanism. A cytoprotective action was also obtained although at lesser extent, when cells were pre-treated with an antioxidant agent, the Vitamin E before mycotoxins treatment. This Vitamin E cytoprotection evoked the involvement of oxidative stress in mycotoxins induced toxicity, which was further, confirmed by the reduction of Hsp 70 expression when cells were pre-treated with Vitamin E prior to mycotoxins. Our data clearly shows that oxidative stress is certainly involved in the toxicity of the three studied mycotoxins, Citrinin, Zearalenone and T2 toxin and may therefore constitutes a relevant part in their toxicities; however, at variable extent from one mycotoxin to another.
Collapse
Affiliation(s)
- Emna El Golli
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, Monastir 5000, Tunisia
| | | | | | | | | | | |
Collapse
|
39
|
Yuan Q, Pestka JJ, Hespenheide BM, Kuhn LA, Linz JE, Hart LP. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody. Appl Environ Microbiol 1999; 65:3279-86. [PMID: 10427007 PMCID: PMC91492 DOI: 10.1128/aem.65.8.3279-3286.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibody 6F5 (mAb 6F5), which recognizes the mycotoxin deoxynivalenol (DON) (vomitoxin), was used to select for peptides that mimic the mycotoxin by employing a library of filamentous phages that have random 7-mer peptides on their surfaces. Two phage clones selected from the random peptide phage-displayed library coded for the amino acid sequences SWGPFPF and SWGPLPF. These clones were designated DONPEP.2 and DONPEP.12, respectively. The results of a competitive enzyme-linked immunosorbent assay (ELISA) suggested that the two phage displayed peptides bound to mAb 6F5 specifically at the DON binding site. The amino acid sequence of DONPEP.2 plus a structurally flexible linker at the C terminus (SWGPFPFGGGSC) was synthesized and tested to determine its ability to bind to mAb 6F5. This synthetic peptide (designated peptide C430) and DON competed with each other for mAb 6F5 binding. When translationally fused with bacterial alkaline phosphatase, DONPEP.2 bound specifically to mAb 6F5, while the fusion protein retained alkaline phosphatase activity. The potential of using DONPEP.2 as an immunochemical reagent in a DON immunoassay was evaluated with a DON-spiked wheat extract. When peptide C430 was conjugated to bovine serum albumin, it elicited antibody specific to peptide C430 but not to DON in both mice and rabbits. In an in vitro translation system containing rabbit reticulocyte lysate, synthetic peptide C430 did not inhibit protein synthesis but did show antagonism toward DON-induced protein synthesis inhibition. These data suggest that the peptides selected in this study bind to mAb 6F5 and that peptide C430 binds to ribosomes at the same sites as DON.
Collapse
Affiliation(s)
- Q Yuan
- Departments of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
40
|
McLean M. The phytotoxicity of selected mycotoxins on mature, germinatingZea mays embryos. Mycopathologia 1995; 132:173-83. [DOI: 10.1007/bf01103984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1995] [Accepted: 12/09/1995] [Indexed: 11/30/2022]
|
41
|
Barnard DL, Huffman JH, Morris JL, Wood SG, Hughes BG, Sidwell RW. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral Res 1992; 17:63-77. [PMID: 1310583 DOI: 10.1016/0166-3542(92)90091-i] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A number of anthraquinones, anthrones and anthraquinone derivatives were evaluated for antiviral activity against human cytomegalovirus (HCMV) as well as for cytotoxicity. Of those compounds evaluated, quinalizarin, emodin, rhein, hypericin, protohypericin, alizarin, emodin bianthrone and emodin anthrone showed antiviral activity against a normal laboratory HCMV strain, AD-169. When tested against a ganciclovir-resistant strain of HCMV, the EC50 values for quinalizarin, rhein and alizarin were superior to the values obtained for the AD-169 strain of HCMV. These results suggest that these compounds will be useful as prototypes for synthesizing a class of anti-HCMV drugs that are effective against ganciclovir-sensitive and -resistant strains of HCMV.
Collapse
|