1
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:molecules28030969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
|
3
|
|
4
|
Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res 2016; 57:1953-1975. [PMID: 27677946 DOI: 10.1194/jlr.r071233] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
Human epidemiologic and genetic evidence using the Mendelian randomization approach in large-scale studies now strongly supports that elevated lipoprotein (a) [Lp(a)] is a causal risk factor for cardiovascular disease, that is, for myocardial infarction, atherosclerotic stenosis, and aortic valve stenosis. The Mendelian randomization approach used to infer causality is generally not affected by confounding and reverse causation, the major problems of observational epidemiology. This approach is particularly valuable to study causality of Lp(a), as single genetic variants exist that explain 27-28% of all variation in plasma Lp(a). The most important genetic variant likely is the kringle IV type 2 (KIV-2) copy number variant, as the apo(a) product of this variant influences fibrinolysis and thereby thrombosis, as opposed to the Lp(a) particle per se. We speculate that the physiological role of KIV-2 in Lp(a) could be through wound healing during childbirth, infections, and injury, a role that, in addition, could lead to more blood clots promoting stenosis of arteries and the aortic valve, and myocardial infarction. Randomized placebo-controlled trials of Lp(a) reduction in individuals with very high concentrations to reduce cardiovascular disease are awaited. Recent genetic evidence documents elevated Lp(a) as a cause of myocardial infarction, atherosclerotic stenosis, and aortic valve stenosis.
Collapse
Affiliation(s)
- Børge G Nordestgaard
- Department of Clinical Biochemistry and Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry and Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, Kerr KF, Pechlivanis S, Budoff MJ, Harris TB, Malhotra R, O'Brien KD, Kamstrup PR, Nordestgaard BG, Tybjaerg-Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Liu Y, Sjogren M, van der Pals J, Kälsch H, Mühleisen TW, Nöthen MM, Cupples LA, Caslake M, Di Angelantonio E, Danesh J, Rotter JI, Sigurdsson S, Wong Q, Erbel R, Kathiresan S, Melander O, Gudnason V, O'Donnell CJ, Post WS. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med 2013; 368:503-12. [PMID: 23388002 PMCID: PMC3766627 DOI: 10.1056/nejmoa1109034] [Citation(s) in RCA: 688] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Limited information is available regarding genetic contributions to valvular calcification, which is an important precursor of clinical valve disease. METHODS We determined genomewide associations with the presence of aortic-valve calcification (among 6942 participants) and mitral annular calcification (among 3795 participants), as detected by computed tomographic (CT) scanning; the study population for this analysis included persons of white European ancestry from three cohorts participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (discovery population). Findings were replicated in independent cohorts of persons with either CT-detected valvular calcification or clinical aortic stenosis. RESULTS One SNP in the lipoprotein(a) (LPA) locus (rs10455872) reached genomewide significance for the presence of aortic-valve calcification (odds ratio per allele, 2.05; P=9.0×10(-10)), a finding that was replicated in additional white European, African-American, and Hispanic-American cohorts (P<0.05 for all comparisons). Genetically determined Lp(a) levels, as predicted by LPA genotype, were also associated with aortic-valve calcification, supporting a causal role for Lp(a). In prospective analyses, LPA genotype was associated with incident aortic stenosis (hazard ratio per allele, 1.68; 95% confidence interval [CI], 1.32 to 2.15) and aortic-valve replacement (hazard ratio, 1.54; 95% CI, 1.05 to 2.27) in a large Swedish cohort; the association with incident aortic stenosis was also replicated in an independent Danish cohort. Two SNPs (rs17659543 and rs13415097) near the proinflammatory gene IL1F9 achieved genomewide significance for mitral annular calcification (P=1.5×10(-8) and P=1.8×10(-8), respectively), but the findings were not replicated consistently. CONCLUSIONS Genetic variation in the LPA locus, mediated by Lp(a) levels, is associated with aortic-valve calcification across multiple ethnic groups and with incident clinical aortic stenosis. (Funded by the National Heart, Lung, and Blood Institute and others.).
Collapse
Affiliation(s)
- George Thanassoulis
- Department of Medicine and the Research Institute, McGill University Health Centre, Montreal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Enas EA, Chacko V, Senthilkumar A, Puthumana N, Mohan V. Elevated lipoprotein(a)--a genetic risk factor for premature vascular disease in people with and without standard risk factors: a review. Dis Mon 2006; 52:5-50. [PMID: 16549089 DOI: 10.1016/j.disamonth.2006.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Enas A Enas
- CADI Research Foundation, Lisle, Illinois, USA
| | | | | | | | | |
Collapse
|
7
|
Wang W, Lee ET, Alaupovic P, Blackett P, Blevins KS. Correlation between lipoprotein(a) and other risk factors for cardiovascular disease and diabetes in Cherokee Indians: the Cherokee Diabetes Study. Ann Epidemiol 2005; 15:390-7. [PMID: 15840553 DOI: 10.1016/j.annepidem.2005.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 01/11/2005] [Indexed: 11/16/2022]
Abstract
PURPOSE To study the age and gender effects on the distribution of lipoprotein (a) [Lp(a)] and its relationship with other cardiovascular disease (CVD) and diabetes risk factors in the participants of the Cherokee Diabetes Study (CDS) (1995-2000). METHODS The CDS is a population based cross-sectional study of diabetes and its risk factors in Cherokee Indians aged 5 to 40 years of Oklahoma. Lp(a) levels were measured in 2205 participants. RESULTS The median Lp(a) (mg/dL) levels in the females were not significantly different among four age groups (5-9, 10-19, 20-29, and 30-40 years). However, the 20- to 29-year-old males had significantly lower Lp(a) levels than the males 10 to 19 and 30 to 40 years old. Females had significantly higher Lp(a) levels than males in the 20- to 29-year-old age group only. In the 5- to 19-year-old children/adolescents, Lp(a) levels were significantly negatively correlated with the degree of Indian heritage (DIH) and positively correlated with total cholesterol (TC), low-density lipoproteins (LDL), and apolipoprotein B (apoB) in girls, but not in boys. In the young adults aged 20 to 29 years, Lp(a) levels were significantly correlated with DIH, body mass index (BMI), waist-hip ratio (WHR), percentage of body fat (PBF), systolic blood pressure (SBP), triglycerides (TG), 2-hour plasma glucose (2hPG), and insulin in males, and DIH, PBF, TC, LDL, TG, and insulin in females. In adults aged 30 to 40 years, Lp(a) levels were significantly correlated with DIH, TG, and LDL in females, and DIH and insulin in males. CONCLUSION In the girls, Lp(a) levels appear to be associated with several CVD and diabetes risk factors at an early age (5-19 years), while in the boys, the association occurs at older ages (> 19 years). There are significant age and gender differences regarding the distribution of Lp(a) and its correlates in the 5 to 9, 10 to 19, and 20 to 29-year-old age groups, but the differences tend to be weaker in the 30- to 40-year-old age group. For the same age and gender groups, Lp(a) concentrations in Cherokee Indians were much lower than those reported in blacks and slightly lower than those in whites. In Cherokee Indians, the Lp(a) levels were consistently and positively correlated with LDL, and negatively correlated with DIH, TG, and insulin.
Collapse
Affiliation(s)
- Wenyu Wang
- College of Public Health, University of Oklahoma, Oklahoma City, OK 73190-5005, USA.
| | | | | | | | | |
Collapse
|
8
|
D'Angelo A, Geroldi D, Hancock MA, Valtulina V, Cornaglia AI, Spencer CA, Emanuele E, Calligaro A, Koschinsky ML, Speziale P, Visai L. The apolipoprotein(a) component of lipoprotein(a) mediates binding to laminin: contribution to selective retention of lipoprotein(a) in atherosclerotic lesions. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:1-10. [PMID: 15708348 DOI: 10.1016/j.bbalip.2004.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 10/08/2004] [Accepted: 10/14/2004] [Indexed: 11/16/2022]
Abstract
Lipoprotein(a) [Lp(a)] entrapment by vascular extracellular matrix may be important in atherogenesis. We sought to determine whether laminin, a major component of the basal membrane, may contribute to Lp(a) retention in the arterial wall. First, immunohistochemistry experiments were performed to examine the relative distribution of Lp(a) and laminin in human carotid artery specimens. There was a high degree of co-localization of Lp(a) and laminin in atherosclerotic specimens, but not in non-atherosclerotic sections. We then studied the binding interaction between Lp(a) and laminin in vitro. ELISA experiments showed that native Lp(a) particles and 17K and 12K recombinant apolipoprotein(a) [r-apo(a)] variants interacted strongly with laminin whereas LDL, apoB-100, and the truncated KIV(6-P), KIV(8-P), and KIV(9-P) r-apo(a) variants did not. Overall, the ELISA data demonstrated that Lp(a) binding to laminin is mediated by apo(a) and a combination of the lysine analogue epsilon-aminocaproic acid and salt effectively decreases apo(a) binding to laminin. Secondary binding analyses with 125I-labeled r-apo(a) revealed equilibrium dissociation constants (K(d)) of 180 and 360 nM for the 17K and 12K variants binding to laminin, respectively. Such similar K(d) values between these two r-apo(a) variants suggest that isoform size does not appear to influence apo(a) binding to laminin. In summary, our data suggest that laminin may bind to apo(a) in the atherosclerotic intima, thus contributing to the selective retention of Lp(a) in this milieu.
Collapse
Affiliation(s)
- Angela D'Angelo
- Molecular Medicine Laboratory, University of Pavia, IRCCS Policlinico San Matteo, Piazzale Golgi 2, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chironi G, Simon A, Denarié N, Védie B, Séné V, Mégnien JL, Levenson J. Determinants of progression of coronary artery calcifications in asymptomatic men at high cardiovascular risk. Angiology 2002; 53:677-83. [PMID: 12463621 DOI: 10.1177/000331970205300608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extended coronary artery calcifications (CAC) are predictive for cardiovascular complications but little is known about factors likely to influence CAC deposit. An analysis was undertaken to assess the cardiovascular risk factors that are capable of predicting CAC change over time. A retrospective analysis of CAC change was carried out in 55 asymptomatic men who underwent sequential electron beam computed tomographic measurement of CAC score a mean of 3.3 years apart. To ensure maximal accuracy in CAC change analysis, patients were included who had an initial CAC score of 10 or greater and with difference between both scores of 20% or greater of the initial score. The annual change rate in CAC score was calculated by dividing the change in CAC score by the interval between scores. Subjects' risk factors were analyzed and included body mass index, blood pressure, blood lipids and glucose, plasma lipoprotein(a) and fibrinogen, smoking status, and family history of coronary heart disease. The annual change rate in CAC score correlated positively with lipoprotein(a) (r = 0.42, p<0.01) and with initial CAC score (r = 0.46, p<0.001) and these associations persisted in multivariate analysis (p = 0.01, p = 0.001 respectively, R2 = 0.31). In contrast, no association existed between annual CAC change and baseline values and follow-up changes of other risk factors. The association of lipoprotein(a) with CAC progression in symptom-free patients with preexisting coronary calcifications provides new insights into the progression of coronary artery disease and may be useful for planning therapy and follow-up.
Collapse
Affiliation(s)
- Gilles Chironi
- Centre de Médecine Préventive Cardiovasculaire and CRI INSERM, Paris, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang W, Hu D, Lee ET, Fabsitz RR, Welty TK, Robbins DC, Howard BV. Lipoprotein(a) in American Indians is low and not independently associated with cardiovascular disease. The Strong Heart Study. Ann Epidemiol 2002; 12:107-14. [PMID: 11880218 DOI: 10.1016/s1047-2797(01)00273-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To evaluate the distribution of lipoprotein(a) (Lp(a)) and assess its association to cardiovascular disease (CVD) in American Indians. METHODS Lp(a) was measured in 3991 American Indians (aged 45-74 years with no prior history of CVD at baseline) from 13 communities in Arizona, Oklahoma, and South/North Dakota. They were followed prospectively from 1989 to 1997 for CVD. The distribution of Lp(a) was examined by center, sex, and diabetic status. Spearman correlation coefficients and Cox regression models were used to evaluate the association of Lp(a) to CVD. RESULTS A total of 388 participants subsequently developed CVD. Median Lp(a) concentration in American Indians was 3.0 mg/dl. This was almost half of that in whites and one sixth in blacks from the CARDIA study measured by the same method. Nondiabetic participants had significantly higher Lp(a) levels than diabetic participants for both genders. Lp(a) levels were higher in women than in men for nondiabetic participants, but there was no gender difference for diabetic participants. Correlation analysis showed Lp(a) was significantly negatively correlated with the degree of Indian heritage, insulin, triglycerides (TG), fasting plasma glucose (FPG), and 2-hour plasma glucose (2hPG), and positively with low-density lipoproteins (LDL), apoprotein B (apoB), and fibrinogen (FIB). In Cox regression models, adjusting for other risk factors, Lp(a) was no longer a significant predictor of CVD in either diabetic or nondiabetic participants. CONCLUSIONS The lower concentration of Lp(a) in American Indians and the high correlation with Indian heritage confirm the concept that Lp(a) concentration is in large part genetically determined. Lp(a) concentration is not an independent predictor of CVD among American Indians; it is higher in those who develop CVD because of its positive correlation with LDL, apoB, and FIB.
Collapse
Affiliation(s)
- Wenyu Wang
- Center for American Indian Health Research, College of Public Health, University of Oklahoma, Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
High plasma lipoprotein(a) [Lp(a)] levels have been implicated as an independent risk factor for coronary artery disease in Caucasians, Chinese, Africans, and Indians. Apo(a) that evolved from a duplicated plasminogen gene during recent primate evolution is responsible for the concentration of Lp(a) in the artery wall leading to atherosclerosis, by virtue of its ability to bind to the extracellular matrix and its role in stimulating the proliferation and migration of human smooth muscle cells. Several types of polymorphisms, size as well as sequence changes both in the coding and regulatory sequences, have been reported to influence the variability of Lp(a) concentration. Apo(a) exhibits genetic size polymorphism varying between 300 and 800 kDa that could be attributed to the number of k-4 VNTR (variable number of transcribed kringle-4 repeats). An inverse relationship between Lp(a) level and apo(a) allele sizes is a general trend in all ethnic populations although apo(a) allele size distribution could be significantly variable in ethnic types. A negative correlation between the number of pentanucleotide TTTTA(n) repeat (PNR) sequences in the regulatory region of the apo(a) gene and Lp(a) level has also been observed in Caucasians and Indians, but not in African Americans. However, a significant linkage disequilibrium was noted between the PNR number and k-4 VNTR. In order to correlate the role of apo(a) gene polymorphisms to apo(a) gene regulation, we have proposed that liver-specific transcriptional activators and repressors might contribute to the differential expression of apo(a) gene, in an individual-specific manner.
Collapse
Affiliation(s)
- U Pati
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi, 67, India
| | | |
Collapse
|
12
|
Dass CR, Jessup W. Apolipoprotein A-I, cyclodextrins and liposomes as potential drugs for the reversal of atherosclerosis. A review. J Pharm Pharmacol 2000; 52:731-61. [PMID: 10933125 DOI: 10.1211/0022357001774606] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Several studies have revealed that high-density lipoprotein (HDL) is the most reliable predictor for susceptibility to cardiovascular disease. Since apolipoprotein A-I (apoA-I) is the major protein of HDL, it is worthwhile evaluating the potential of this protein to reduce the lipid burden of lesions observed in the clinic. Indeed, apoA-I is used extensively in cell culture to induce cholesterol efflux. However, while there is a large body of data emanating from in-vitro and cell-culture studies with apoA-I, little animal data and scant clinical trials examining the potential of this apolipoprotein to induce cholesterol (and other lipid) efflux exists. Importantly, the effects of oxysterols, such as 7-ketocholesterol (7KC), on cholesterol and other lipid efflux by apoA-I needs to be investigated in any attempt to utilise apoA-I as an agent to stimulate efflux of lipids. Lessons may be learnt from studies with other lipid acceptors such as cyclodextrins and phospholipid vesicles (PLVs, liposomes), by combination with other effluxing agents, by remodelling the protein structure of the apolipoprotein, or by altering the composition of the lipoprotein intended for administration in-vivo. Akin to any other drug, the usage of this apolipoprotein in a therapeutic context has to follow the traditional sequence of events, namely an evaluation of the biodistribution, safety and dose-response of the protein in animal trials in advance of clinical trials. Mass production of the apolipoprotein is now a simple process due to the advent of recombinant DNA technology. This review also considers the potential of cyclodextrins and PLVs for use in inducing reverse cholesterol transport in-vivo. Finally, the potential of cyclodextrins as delivery agents for nucleic acid-based constructs such as oligonucleotides and plasmids is discussed.
Collapse
Affiliation(s)
- C R Dass
- Johnson and Johnson Research, Strawberry Hills, Australia.
| | | |
Collapse
|
13
|
Nielsen LB. Atherogenecity of lipoprotein(a) and oxidized low density lipoprotein: insight from in vivo studies of arterial wall influx, degradation and efflux. Atherosclerosis 1999; 143:229-43. [PMID: 10217351 DOI: 10.1016/s0021-9150(99)00064-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The accumulation of atherogenic lipoproteins in the arterial intima is pathognomonic of atherosclerosis. Modification of LDL by covalent linkage of apo(a) (resulting in the formation of Lp(a)) or oxidation probably enhances its atherogenecity. Although the metabolism of LDL in arterial intima has been rather extensively characterized, little has been known about the interaction of Lp(a) and oxidized LDL (ox-LDL) with the arterial wall. The present paper reviews a series of recent in vivo studies of the interaction of Lp(a) and ox-LDL with the arterial wall. The results have identified several factors that affect the accumulation of Lp(a) and ox-LDL in the arterial intima and have provided fresh insight into unique metabolic characteristics of Lp(a) and ox-LDL that may explain the large atherogenic potential of these modified LDL species.
Collapse
Affiliation(s)
- L B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Abstract
Since its identification by Kåre Berg in 1963, lipoprotein(a) [Lp(a)] has become a focus of research interest owing to the results of case-control and prospective studies linking elevated plasma levels of this lipoprotein with the development of coronary artery disease. Lp(a) contains a low-density lipoprotein (LDL)-like moiety, in which the apolipoprotein B-100 component is covalently linked to the unique glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) is composed of repeated loop-shaped units called kringles, the sequences of which are highly similar to a kringle motif present in the fibrinolytic proenzyme plasminogen. Variability in the number of repeated kringle units in the apo(a) molecule gives rise to different-sized Lp(a) isoforms in the population. Based on the similarity of Lp(a) to both LDL and plasminogen, it has been hypothesized that the function of this unique lipoprotein may represent a link between the fields of atherosclerosis and thrombosis. However, determination of the function of Lp(a) in vivo remains elusive. Although Lp(a) has been shown to accumulate in atherosclerotic lesions, its contribution to the development of atheromas is unclear. This uncertainty is related in part to the structural complexity of the apo(a) component of Lp(a) (particularly apo(a) isoform size heterogeneity), which also poses a challenge for standardization of the measurement of Lp(a) in plasma. The fact that plasma Lp(a) levels are largely genetically determined and vary widely among different ethnic groups adds scientific interest to the ongoing study of this enigmatic particle. Most recently, the identification of proteolytic fragments of apo(a) in both plasma and urine has fueled speculation about the origin of these fragments and their possible function in the atherosclerotic process.
Collapse
Affiliation(s)
- S M Marcovina
- Department of Medicine, University of Washington, Seattle 98103-9103, USA
| | | |
Collapse
|
15
|
Abstract
Although lipoprotein(a) (Lp[a]) has been recognized as an atherothrombogenic factor, the underlying mechanisms for this pathogenicity have not been clearly defined. Plasma levels have received most of the attention in this regard; however, discrepancies among population studies have surfaced. Particularly limited is the information on the fate of Lp(a) that enters the arterial wall, in terms of mechanisms of endothelial transport and interactions with cells and macromolecules of the extracellular matrix. A typical Lp(a) represents a low-density lipoprotein (LDL)-like particle having as a protein moiety apo B-100 linked by a single interchain disulfide bond to a unique multikringle glycoprotein, called apolipoprotein(a) (apo[a]). In vitro studies have shown that Lp(a) can be dissected into its constituents, LDL and apo(a). In turn, the latter can be cleaved by enzymes of the elastase and metalloproteinase families into fragments that exhibit a differential behavior in terms of binding to macromolecules of the extracellular matrix: fibrinogen, fibronectin, and proteoglycans. By immunochemical criteria, apo(a) predominantly localizes in areas of human arteries affected by the atherosclerotic process, where elastase and metalloproteinase enzymes operate and where apo(a) fragments are potentially generated. The accumulation of these fragments in the vessel wall is likely to depend on their affinity for the constituents of the extracellular matrix. Thus, factors that modulate inflammation and inflammation-mediated fragmentation of Lp(a)/apo(a) may play an important role in the cardiovascular pathogenicity of Lp(a). This pathogenicity may be attenuated by measures directed at preventing the activation of those vascular cells that secrete enzymes with a proteolytic potential for Lp(a)/apo(a), namely, leukocytes, macrophages, and T cells.
Collapse
Affiliation(s)
- A M Scanu
- Department of Medicine, The University of Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Klezovitch O, Edelstein C, Zhu L, Scanu AM. Apolipoprotein(a) binds via its C-terminal domain to the protein core of the proteoglycan decorin. Implications for the retention of lipoprotein(a) in atherosclerotic lesions. J Biol Chem 1998; 273:23856-65. [PMID: 9726998 DOI: 10.1074/jbc.273.37.23856] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is known that lipoprotein(a) (Lp(a)) binds to proteoglycans, the mechanism for this binding has not been fully elucidated. In order to shed light on this subject, we examined the interactions of decorin, a proteoglycan with a well defined protein core and a single glycosaminoglycan (GAG) chain, with Lp(a) and derivatives, namely Lp(a) deprived of apo(a), or Lp(a-), free apo(a), and the two main proteolytic fragments, F1 and F2. By circular dichroism criteria, the decorin preparations used had the same secondary structure as that previously reported for native decorin. Authentic low density lipoprotein from the same human donor was used as a control. In a solid phase system, Lp(a-)and low density lipoprotein bound to decorin in a comparable manner. This binding required Ca2+/Mg2+ ions, was lysine-mediated, and was markedly decreased in the presence of GAG-depleted decorin, suggesting the ionic nature of the interaction likely involving apoB100 and the GAG component of decorin. Free apo(a) also bound to decorin; however, the binding was neither cation-dependent nor lysine-mediated, unaffected by sialic acid depletion of apo(a), and markedly decreased when either reduced and alkylated apo(a) or reduced and alkylated decorin was used in the assay. Of note, the binding of apo(a) was unaffected when it was incubated with a spectrally native decorin that had been renatured from either 4 M guanidine hydrochloride by extensive dialysis or cooled from 65 to 25 degrees C. On the other hand, the binding significantly increased when decorin was depleted of GAGs, which by themselves had no affinity for apo(a). The binding of apo(a) to the decorin protein core was also elicited by the C-terminal domain of apo(a), and it was favored by high NaCl concentrations, 1 to 2 M. No binding was exhibited by the N-terminal domain accounting for the lack of effect of apo(a) size polymorphism on the binding. In the case of whole Lp(a), the binding to immobilized decorin was mostly GAG-dependent and ionic in nature. A minor contribution by apo(a) was detected when GAG-depleted decorin was used in the assay. Our results indicate that the binding of Lp(a) to decorin involves interactions both electrostatic (apoB100-GAG) and hydrophobic (apo(a)-decorin protein core), and that the binding of apo(a) requires decorin protein core to be in its native state.
Collapse
Affiliation(s)
- O Klezovitch
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
17
|
Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 1998; 273:2738-46. [PMID: 9446580 DOI: 10.1074/jbc.273.5.2738] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subendothelial aggregation and retention of low density lipoprotein (LDL) are key events in atherogenesis, but the mechanisms in vivo are not known. Previous studies have shown that treatment of LDL with bacterial sphingomyelinase (SMase) in vitro leads to the formation of lesion-like LDL aggregates that become retained on extracellular matrix and stimulate macrophage foam cell formation. In addition, aggregated human lesional LDL, but not unaggregated lesional LDL or plasma LDL, shows evidence of hydrolysis by an arterial wall SMase in vivo, and several arterial wall cell types secrete a SMase (S-SMase). S-SMase, however, has a sharp acid pH optimum using a standard in vitro SM-micelle assay. Thus, a critical issue regarding the potential role of S-SMase in atherogenesis is whether the enzyme can hydrolyze lipoprotein-SM, particularly at neutral pH. We now show that S-SMase can hydrolyze and aggregate native plasma LDL at pH 5.5 but not at pH 7.4. Remarkably, LDL modified by oxidation, treatment with phospholipase A2, or enrichment with apolipoprotein CIII, which are modifications associated with increased atherogenesis, is hydrolyzed readily by S-SMase at pH 7.4. In addition, lipoproteins from the plasma of apolipoprotein E knock-out mice, which develop extensive atherosclerosis, are highly susceptible to hydrolysis and aggregation by S-SMase at pH 7.4; a high SM:PC ratio in these lipoproteins appears to be an important factor in their susceptibility to S-SMase. Most importantly, LDL extracted from human atherosclerotic lesions, which is enriched in sphingomyelin compared with plasma LDL, is hydrolyzed by S-SMase at pH 7.4 10-fold more than same donor plasma LDL, suggesting that LDL is modified in the arterial wall to increase its susceptibility to S-SMase. In summary, atherogenic lipoproteins are excellent substrates for S-SMase, even at neutral pH, making this enzyme a leading candidate for the arterial wall SMase that hydrolyzes LDL-SM and causes subendothelial LDL aggregation.
Collapse
Affiliation(s)
- S L Schissel
- Department of Anatomy, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Djurovic S, Schjetlein R, Wisløff F, Haugen G, Husby H, Berg K. Plasma concentrations of Lp(a) lipoprotein and TGF-beta1 are altered in preeclampsia. Clin Genet 1997; 52:371-6. [PMID: 9520129 DOI: 10.1111/j.1399-0004.1997.tb04356.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was performed to investigate the possible association between preeclampsia and the plasma concentrations of Lp(a) lipoprotein and TGF-beta1 in a large series of patients. Additionally, correlation between the concentrations of these molecules and the severity of preeclampsia or fetal growth retardation was evaluated. Following clinical examination and biochemical analyses, both electroimmunoassay and RIA technique were used for quantitative determinations of plasma Lp(a) lipoprotein. ELISA technique was used to measure the active form of TGF-beta1 in plasma of pregnant normotensive and preeclamptic women. We examined 154 women with preeclampsia (preeclampsia group) and 76 healthy, pregnant normotensive women (control group). The preeclampsia group was further divided into the following subgroups: mild preeclampsia, severe preeclampsia and preeclampsia with fetal growth retardation. Plasma levels of Lp(a) lipoprotein were lower in the total preeclampsia group as well as in all preeclampsia subgroups (5.45+/-7.41, 5.58+/-8.02, 5.08+/-5.38, and 4.32+/-5.28 mg/dl in the total preeclampsia group, and in subgroups with mild preeclampsia, severe preeclampsia, and preeclampsia with fetal growth retardation, respectively) than in the control group (7.84+/-9.26 mg/dl) as determined by quantitative electroimmunoassay. Corresponding results were obtained with a radioimmunoassay (166.03+/-200.2 U/l in the total preeclampsia group vs. 229.18+/-257.7 U/l in controls). There was good correlation between the two methods used for Lp(a) lipoprotein measurement. The differences between controls and the total preeclampsia group as well as each preeclampsia subgroup were statistically significant by a non-parametric test (one-way Kruskal-Wallis test). Plasma concentrations of the active form of TGF-beta1 were increased in all preeclampsia subgroups as well as in the total group (5.63+/-1.68 ng/ml) compared to controls (4.67+/-1.33 ng/ml). This increase in TGF-beta1 was statistically highly significant. Plasma concentrations of Lp(a) lipoprotein and the active form of TGF-beta1 did not differ significantly between the preeclampsia subgroups. The outcome of this study may suggest involvement of both parameters in the pathophysiology of preeclampsia and may substantiate the notion of a multifactorial etiology of the disease.
Collapse
Affiliation(s)
- S Djurovic
- Institute of Medical Genetics, University of Oslo, and Department of Medical Genetics, Norway.
| | | | | | | | | | | |
Collapse
|
19
|
Hughes SD, Lou XJ, Ighani S, Verstuyft J, Grainger DJ, Lawn RM, Rubin EM. Lipoprotein(a) vascular accumulation in mice. In vivo analysis of the role of lysine binding sites using recombinant adenovirus. J Clin Invest 1997; 100:1493-500. [PMID: 9294116 PMCID: PMC508329 DOI: 10.1172/jci119671] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the mechanism by which lipoprotein(a) [Lp(a)] contributes to vascular disease remains unclear, consequences of its binding to the vessel surface are commonly cited in postulated atherogenic pathways. Because of the presence of plasminogen-like lysine binding sites (LBS) in apo(a), fibrin binding has been proposed to play an important role in Lp(a)'s vascular accumulation. Indeed, LBS are known to facilitate Lp(a) fibrin binding in vitro. To examine the importance of apo(a) LBS in Lp(a) vascular accumulation in vivo, we generated three different apo(a) cDNAs: (a) mini apo(a), based on wild-type human apo(a); (b) mini apo(a) containing a naturally occurring LBS defect associated with a point mutation in kringle 4-10; and (c) human- rhesus monkey chimeric mini apo(a), which contains the same LBS defect in the context of several additional changes. Recombinant adenovirus vectors were constructed with the various apo(a) cDNAs and injected into human apoB transgenic mice. At the viral dosage used in these experiments, all three forms of apo(a) were found exclusively within the lipoprotein fractions, and peak Lp(a) plasma levels were nearly identical (approximately 45 mg/dl). In vitro analysis of Lp(a) isolated from the various groups of mice confirmed that putative LBS defective apo(a) yielded Lp(a) unable to bind lysine-Sepharose. Quantitation of in vivo Lp(a) vascular accumulation in mice treated with the various adenovirus vectors revealed significantly less accumulation of both types of LBS defective Lp(a), relative to wild-type Lp(a). These results indicate a correlation between lysine binding properties of Lp(a) and vascular accumulation, supporting the postulated role of apo(a) LBS in this potentially atherogenic characteristic of Lp(a).
Collapse
Affiliation(s)
- S D Hughes
- Ernest Orlando Lawrence Berkeley National Laboratory, Life Sciences Division, Human Genome Center, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pillarisetti S, Paka L, Obunike JC, Berglund L, Goldberg IJ. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix. J Clin Invest 1997; 100:867-74. [PMID: 9259586 PMCID: PMC508259 DOI: 10.1172/jci119602] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vessel wall subendothelial extracellular matrix, a dense mesh formed of collagens, fibronectin, laminin, and proteoglycans, has important roles in lipid and lipoprotein retention and cell adhesion. In atherosclerosis, vessel wall heparan sulfate proteoglycans (HSPG) are decreased and we therefore tested whether selective loss of HSPG affects lipoprotein retention. A matrix synthesized by aortic endothelial cells and a commercially available matrix (Matrigel; , Rutherford, NJ) were used. Treatment of matrix with heparinase/heparitinase (1 U/ml each) increased LDL binding by approximately 1.5-fold. Binding of lipoprotein (a) [Lp(a)] to both subendothelial matrix and Matrigel(R) increased 2-10-fold when the HSPG were removed by heparinase treatment. Incubation of endothelial cells with oxidized LDL (OxLDL) or lysolecithin resulted in decreased matrix proteoglycans and increased Lp(a) retention by matrix. The effect of OxLDL or lysolecithin on endothelial PG was abolished in the presence of HDL. The decrease in matrix HSPG was associated with production of a heparanase-like activity by OxLDL-stimulated endothelial cells. To test whether removal of HSPG exposes fibronectin, a candidate Lp(a) binding protein in the matrix, antifibronectin antibodies were used. The increased Lp(a) binding after HSPG removal was inhibited 60% by antifibronectin antibodies. Similarly, the increased Lp(a) binding to matrix from OxLDL-treated endothelial cells was inhibited by antifibronectin antibodies. We hypothesize that atherogenic lipoproteins stimulate endothelial cell production of heparanase. This enzyme reduces HSPG which in turn promotes Lp(a) retention.
Collapse
Affiliation(s)
- S Pillarisetti
- Division of Preventive Medicine and Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032, USA.
| | | | | | | | | |
Collapse
|
21
|
Nielsen LB, Grønholdt ML, Schroeder TV, Stender S, Nordestgaard BG. In vivo transfer of lipoprotein(a) into human atherosclerotic carotid arterial intima. Arterioscler Thromb Vasc Biol 1997; 17:905-11. [PMID: 9157954 DOI: 10.1161/01.atv.17.5.905] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to compare the atherogenic potential of lipoprotein(a) [Lp(a)] and LDL by measuring the intimal clearance of these two plasma lipoproteins in the atherosclerotic intima of the human carotid artery in vivo. Autologous 131I-Lp(a) and 125I-LDL were mixed and reinjected intravenously 3 hours before elective surgical removal of the arterial intima in four patients. The intimal clearance of Lp(a) and LDL was 229+/-48 and 405+/-127 nL/cm2 per hour, respectively (paired t test; P=.12). The mass accumulation of Lp(a) (114+/-32 ng/cm2 per hour) was on average one 15th that of LDL (paired t test; P=.06), mainly reflecting a low plasma concentration of Lp(a) compared with LDL in the human subjects studied. In accordance with our previous observation in rabbits, there was a positive association between the intimal clearance of LDL and that of Lp(a) (r=.97, P=.03). Accordingly, high plasma levels of Lp(a) may share with LDL the potential for causing lipid accumulation in the arterial intima in humans.
Collapse
Affiliation(s)
- L B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Herlev, Denmark
| | | | | | | | | |
Collapse
|
22
|
Koschinsky ML, Marcovina SM. Lipoprotein(a): structural implications for pathophysiology. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1997; 27:14-23. [PMID: 9144023 DOI: 10.1007/bf02827238] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The assembly between a low-density lipoprotein particle and apolipoprotein(a), a highly carbohydrate-rich protein, gives origin to a peculiar class of lipoproteins, only found in the hedgehog, primates, and humans, termed lipoprotein(a). Apolipoprotein(a), which shares a high degree of sequence homology with the fibrinolytic proenzyme plasminogen, is linked to the apolipoprotein B-100 component of low-density lipoprotein via a disulfide bond and confers distinct biochemical and metabolic properties to lipoprotein(a). Because of its peculiar structural features and the observed correlation between high lipoprotein(a) levels and the development of a variety of atherosclerotic disorders, this lipoprotein has become the focus of an intense research effort. Although accumulation of lipoprotein(a) in the vessel wall at sites of vascular injury has been clearly evidenced, the mechanism(s) by which lipoprotein(a) exerts its pathogenic effect in this milieu remain largely unknown. It has been hypothesized that the pathological effect of lipoprotein(a) is related either to its similarity to low-density lipoprotein (i.e., a pro-atherogenic effect) or to the apolipoprotein(a) similarity to plasminogen (i.e., a pro-thrombotic/anti-fibrinolytic effect). However, it is probable that both components contribute to the pathogenicity of lipoprotein(a). The fact that lipoprotein(a) levels are largely genetically determined, varying widely among individuals and racial groups, adds additional elements to the scientific interest that surrounds this lipoprotein. Both clinical and biochemical studies of lipoprotein(a) have been complicated by the high degree of structural heterogeneity of apolipoprotein(a), which is considered the most polymorphic protein in human plasma. Our aim in this paper is to provide an overview of the most salient structural features of lipoprotein(a) and their possible pathophysiological implications.
Collapse
Affiliation(s)
- M L Koschinsky
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
23
|
Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest 1996; 98:1455-64. [PMID: 8823312 PMCID: PMC507573 DOI: 10.1172/jci118934] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aggregation and retention of LDL in the arterial wall are key events in atherogenesis, but the mechanisms in vivo are not known. Previous work from our laboratories has shown that exposure of LDL to bacterial sphingomyelinase (SMase) in vitro leads to the formation of LDL aggregates that can be retained by extracellular matrix and that are able to stimulate macrophage foam cell formation. We now provide evidence that retained LDL is hydrolyzed by an arterial-wall SMase activity. First, we demonstrated that SMase-induced aggregation is caused by an increase in particle ceramide content, even in the presence of excess sphingomyelin (SM). This finding is compatible with previous data showing that lesional LDL is enriched in SM, though its ceramide content has not previously been reported. To address this critical compositional issue, the ceramide content of lesional LDL was assayed and, remarkably, found to be 10-50-fold enriched compared with plasma LDL ceramide. Furthermore, the ceramide was found exclusively in lesional LDL that was aggregated; unaggregated lesional LDL, which accounted for 20-25% of the lesional material, remained ceramide poor. When [3H]SM-LDL was incubated with strips of rabbit aorta ex vivo, a portion of the LDL was retained, and the [3H]SM of this portion, but not that of unretained LDL, was hydrolyzed to [3H]ceramide by a nonlysosomal arterial hydrolase. In summary, LDL retained in atherosclerotic lesions is acted upon by an arterial-wall SMase, which may participate in LDL aggregation and possibly other SMase-mediated processes during atherogenesis.
Collapse
Affiliation(s)
- S L Schissel
- Department of Anatomy & Cell Biology, College of Physicians & Surgeons, Columbia University, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
24
|
Nielsen LB, Stender S, Jauhiainen M, Nordestgaard BG. Preferential influx and decreased fractional loss of lipoprotein(a) in atherosclerotic compared with nonlesioned rabbit aorta. J Clin Invest 1996; 98:563-71. [PMID: 8755669 PMCID: PMC507462 DOI: 10.1172/jci118824] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim was to investigate the atherogenic potential of lipoprotein(a) (Lp(a)) and to further our understanding of the atherogenic process by measuring rates of transfer into the intima-inner media (i.e., intimal clearance) and rates of loss from the intima-inner media (i.e., fractional loss) of Lp(a) and LDL using cholesterol-fed rabbits with nonlesioned (n = 13) or atherosclerotic aortas (n = 12). In each rabbit, 131I-Lp(a) (or 131I-LDL) was injected intravenously 26 h before and 125I-Lp(a) (or 125I-LDL) 3 h before the aorta was removed and divided into six consecutive segments of similar size. The intimal clearance of Lp(a) and LDL was similar and markedly increased in atherosclerotic compared with nonlesioned aortas (ANOVA, effect of atherosclerosis: P < 0.0001). Fractional losses of labeled Lp(a) and labeled LDL in atherosclerotic aorta were on average 25 and 43%, respectively, of that in nonlesioned aortas (ANOVA, effect of atherosclerosis: P < 0.0001). Fractional loss of Lp(a) was 73% of that of LDL (ANOVA, effect of type of lipoprotein: P = 0.07). These data suggest that the development of atherosclerosis is associated with increased influx as well as decreased fractional loss of Lp(a) and LDL from the intima. Accordingly, Lp(a) may share with LDL the potential for causing atherosclerosis.
Collapse
Affiliation(s)
- L B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Nielsen LB, Stender S, Kjeldsen K, Nordestgaard BG. Specific accumulation of lipoprotein(a) in balloon-injured rabbit aorta in vivo. Circ Res 1996; 78:615-26. [PMID: 8635219 DOI: 10.1161/01.res.78.4.615] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To explore whether lipoprotein(a), Lp(a), may accumulate preferentially to LDL in the arterial wall at sites of injury, cholesterol-fed rabbits were injected intravenously with radiolabeled Lp(a) and/or LDL 3.1 +/- 0.1 days (mean +/- SEM, n = 30) after a balloon injury of the thoracic aorta. After 5 to 10 minutes' exposure to labeled lipoproteins, more labeled LDL than labeled Lp(a) was recovered in the intima-inner media of the balloon-injured segment (n = 9; paired t test, P < .0001); however, the amount of tightly bound labeled lipoprotein was similar for the two lipoprotein fractions. In the second set of experiments, 131I-Lp(a) (or 131I-LDL) was injected 26 hours before and 125I-Lp(a) (or 125I-LDL) 3 hours before the aorta was removed. Permeability and fractional loss of labeled Lp(a) (n = 8) versus LDL (n = 7) in the balloon-injured aortic intima-inner media were: permeability, 0.46 +/- 0.10 microL/cm2 per hour versus 1.41 +/- 0.32 microL/cm2 per hour (nonpaired t test, P < .0001); and fractional loss, 0.12 +/- 0.02 h-1 versus 0.44 +/- 0.05 h-1 (nonpaired t test, P = .0001), respectively. Finally, after 23 hours' exposure to labeled lipoproteins, the total accumulation and the amount of tightly bound labeled Lp(a) in the balloon-injured intima-inner media were, respectively, 174% (n = 6; ANOVA, P = .03) and 256% ANOVA, P = .005) of the values for labeled LDL. For labeled Lp(a) in the balloon-injured compared with the normal aortic intima-inner media, the recovery after 5 to 10 minutes, the permeability, and the accumulation after 23 hours were all increased, whereas the fractional loss was unchanged. These data suggest that the accumulation of Lp(a) is much larger in injured vessels than in normal vessels. Moreover, the data support the idea of a specific accumulation of Lp(a) compared with LDL in injured vessels.
Collapse
Affiliation(s)
- L B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- D J Grainger
- Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
27
|
Lawn RM, Boonmark NW, Schwartz K, Lindahl GE, Wade DP, Byrne CD, Fong KJ, Meer K, Patthy L. The recurring evolution of lipoprotein(a). Insights from cloning of hedgehog apolipoprotein(a). J Biol Chem 1995; 270:24004-9. [PMID: 7592597 DOI: 10.1074/jbc.270.41.24004] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lipoprotein Lp(a), a major inherited risk factor for atherosclerosis, consists of a low density lipoprotein-like particle containing apolipoprotein B-100 plus the distinguishing component apolipoprotein(a) (apo(a)). Human apo(a) contains highly repeated domains related to plasminogen kringle four plus single kringle five and protease-like domains. Apo(a) is virtually confined to primates, and the gene may have arisen during primate evolution. One exception is the occurrence of an Lp(a)-like particle in the hedgehog. Cloning of the hedgehog apo(a)-like gene shows that it is distinctive in form and evolutionary history from human apo(a), but that it has acquired several common features. It appears that the primate and hedgehog apo(a) genes evolved independently by duplication and modification of different domains of the plasminogen gene, providing a novel type of "convergent" molecular evolution.
Collapse
Affiliation(s)
- R M Lawn
- Falk Cardiovascular Research Center, Stanford University School of Medicine, California 94305-5246, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Lipoprotein (a) is similar to low-density lipoprotein but is unique in having an additional apolipoprotein called apolipoprotein (a) (apo(a)) covalently linked to it. apo(a), which is a member of the plasminogen gene superfamily, has a protease domain which cannot be activated to cause fibrinolysis. Its sequence of kringles is much longer than that of plasminogen and there is remarkable genetic variation in its length. The consequent inherited differences in apo(a) molecular mass are largely responsible for the wide range of serum Lp(a) concentrations in different individuals with low levels predominating in Europid populations. Physiologically Lp(a) may participate in haemocoagulation or in wound-healing. Epidemiological evidence that it is a risk factor for atherosclerosis, particularly in populations with high serum LDL levels, has led to research to uncover its role in atherogenesis and thrombosis. Diseases such as renal disease, and probably atherogenesis and thrombosis. Diseases such as renal disease, and probably atherosclerosis itself, are associated with an increase in Lp(a) above its genetically determined level and it remains a subject of speculation as to whether such increases are as closely involved in atherothrombosis as are spontaneously high levels resulting from low-molecular-mass apo(a) variants.
Collapse
|
29
|
Nielsen LB, Nordestgaard BG, Stender S, Niendorf A, Kjeldsen K. Transfer of lipoprotein(a) and LDL into aortic intima in normal and in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 1995; 15:1492-502. [PMID: 7670965 DOI: 10.1161/01.atv.15.9.1492] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study the relative atherogenic potential of lipoprotein(a) [Lp(a)], the transfer of Lp(a) and LDL into the arterial wall was compared in normal rabbits, cholesterol-fed rabbits, and normal rabbits in which the plasma concentration of Lp(a) before injection of labeled lipoproteins was increased by an intravenous mass injection of 45 mg Lp(a). Aorta was removed either 60 minutes or 180 minutes after intravenous injection of a mixed preparation of human 125I-Lp(a) and 131I-LDL; intimal clearance was calculated as radioactivity in aortic intima/inner media divided by the average concentration of the appropriate radioactivity in plasma and by the length of the exposure time. The intimal clearance of labeled Lp(a) and LDL in the aortic arch after 60 minutes of exposure was 87 +/- 9 and 47 +/- 7 nL.cm-2.h-1 (n = 9) in normal rabbits and 82 +/- 14 and 62 +/- 10 nL.cm-2.h-1 (n = 10) in cholesterol-fed rabbits; after 180 minutes of exposure, the intimal clearance of labeled Lp(a) and LDL was 62 +/- 14 and 84 +/- 21 nL.cm-2.h-1 (n = 6) and 30 +/- 6 and 47 +/- 12 nL.cm-2.h-1 (n = 4) in cholesterol-fed and Lp(a)-injected rabbits, respectively. Linear regression analysis showed positive associations between intimal clearance of the two lipoproteins in all four groups of rabbits in the aortic arch, the thoracic aorta, and the abdominal aorta. Aortic immunoreactivity of human apolipoprotein(a) was detected in the intima in association with fatty streak lesions, predominantly within the cytoplasm of foam cells. These results suggest that Lp(a) is transferred into the aortic intima by a mechanism similar to that for LDL and that Lp(a) can be taken up by intimal foam cells; however, Lp(a) and LDL may be metabolized differently upon entrance into the arterial wall.
Collapse
Affiliation(s)
- L B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
30
|
Abstract
In seeking an explanation of the inverse relationship between serum high density lipoprotein (HDL) concentration and coronary heart disease (CHD) incidence, most investigations have been directed at its role in reverse cholesterol transport. However, recently it has become clear that HDL has the potential to limit oxidative modification of low density lipoprotein (LDL) whether induced by transition metals or by cells in tissue culture. In view of the current theory that oxidative modification of LDL is an important element in atherogenesis, this suggests another potential mechanism by which HDL might impede the development of CHD. HDL is the major carrier of cholesteryl ester hydroperoxides, but more than this it appears to have the prolonged capacity to decrease the total amount of lipid peroxides generated on LDL during oxidation while the quantity accumulating on HDL itself reaches an early plateau. These effects are not explained by chain-breaking antioxidants present in HDL and are likely to involve an enzymic mechanism. Several enzymes are present on HDL: paraoxonase, lecithin:cholesterol acyl transferase, platelet activating factor acetylhydrolase, phospholipase D and protease. Apolipoproteins, such as apolipoprotein AI, could also have enzymic activity. Evidence that some of these might act to metabolise lipid peroxidation products, such as oxidised phospholipids and lyso-phosphatidylcholine, is discussed in this review.
Collapse
Affiliation(s)
- M I Mackness
- Department of Medicine, Manchester Royal Infirmary, UK
| | | |
Collapse
|
31
|
Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995; 15:551-61. [PMID: 7749869 PMCID: PMC2924812 DOI: 10.1161/01.atv.15.5.551] [Citation(s) in RCA: 936] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K J Williams
- Division of Endocrinology and Metabolic Diseases, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA
| | | |
Collapse
|
32
|
Qiao JH, Xie PZ, Fishbein MC, Kreuzer J, Drake TA, Demer LL, Lusis AJ. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1994; 14:1480-97. [PMID: 8068611 DOI: 10.1161/01.atv.14.9.1480] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report comprehensive pathological studies of atheromatous lesions in various inbred mouse strains fed a high-fat, high-cholesterol diet and in two genetically engineered strains that develop spontaneous lesions on a low-fat chow diet. Coronary and aortic lesions were studied with respect to anatomic locations, lesion severity, calcification, and lipofuscin deposition. Surprisingly, the genetic determinants for coronary fatty lesion formation differed in part from those for aortic lesion development. This suggests the existence of genetic factors acting locally as well as systematically in lesion development. We used immunohistochemical analyses to determine the cellular and molecular compositions of the lesions. The aortic lesions contained monocyte/macrophages, lipid, apolipoprotein B, serum amyloid A proteins, and immunoglobulin M and showed expression of vascular cell adhesion molecule-1 and tumor necrosis factor-alpha, all absent in normal arteries. In certain strains, advanced lesions developed in which smooth muscle cells were commonly observed. The lesions in mice targeted for a null mutation in the apolipoprotein E gene were much larger, more widely dispersed, and more fibrous, cellular, and calcified in nature than the lesions in laboratory inbred strains. When apolipoprotein A-II transgenic mice were maintained on a low-fat chow diet, the lesions in these mice were relatively small and located in the very proximal regions of the aorta. There were clear differences in the occurrence of arterial wall calcification among genetically distinct inbred mouse strains, indicating for the first time a genetic component in this clinically significant trait. Analysis of a genetic cross indicated a complex pattern of calcification inheritance with incomplete penetrance.
Collapse
Affiliation(s)
- J H Qiao
- Department of Medicine, University of California, Los Angeles (UCLA), School of Medicine 90024-1679
| | | | | | | | | | | | | |
Collapse
|
33
|
Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature 1994; 370:460-2. [PMID: 8047165 DOI: 10.1038/370460a0] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A HIGH concentration of serum lipoprotein(a) is a risk factor for atherosclerosis. Lipoprotein(a) consists of low-density lipoprotein with the additional protein component, apolipoprotein(a), a homologue of plasminogen. Lipoprotein(a) and apolipoprotein(a) enhance proliferation of human vascular smooth muscle cells (hVSMCs) in culture by inhibiting activation of plasminogen to plasmin, thus blocking the proteolytic activation of transforming growth factor-beta (TGF-beta), an autocrine inhibitor of hVSMC proliferation. The hypothesis that this pathway is a key step in atherogenesis is tested on transgenic mice expressing the human apolipoprotein(a) gene. We show here that the activation of TGF-beta is inhibited in the aortic wall and serum of mice expressing apolipoprotein(a), as a consequence of apolipoprotein(a) inhibition of plasminogen activation. These effects are closely correlated with VSMC activation.
Collapse
Affiliation(s)
- D J Grainger
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | |
Collapse
|