1
|
Furuya K, Hirata H, Kobayashi T, Ishiguro H, Sokabe M. Volume-regulated anion channels conduct ATP in undifferentiated mammary cells and promote tumorigenesis in xenograft nude mouse. Front Cell Dev Biol 2025; 12:1519642. [PMID: 39882260 PMCID: PMC11774906 DOI: 10.3389/fcell.2024.1519642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells. In breast cell lines, ATP was released with a slowly rising diffuse pattern, whereas in primary cultured cells, ATP was intermittently released with transient-sharp peaks. The diffuse ATP release pattern changed to a transient-sharp pattern by cholera toxin treatment and the reverse change was induced by transforming growth factor (TGF) β treatment. DCPIB, an inhibitor of volume-regulated anion channels (VRACs), suppressed the diffuse pattern. The inflammatory mediator sphingosine-1-phosphate (S1P) induced a diffuse ATP release pattern isovolumetrically. Knockdown of the A isoform of leucine-rich repeat-containing protein 8 (LRRC8A), the essential molecular entity of VRACs, using shRNA suppressed the diffuse pattern. In the nude mouse xenograft model, LRRC8A knockdown suppressed the tumorigenesis of subcutaneously implanted breast cancer cells. These results suggest that abundantly expressed VRACs are a conduit of ATP release in undifferentiated cells, including cancer cells.
Collapse
Affiliation(s)
- Kishio Furuya
- Department Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Information Systems Labs, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, Japan
| | - Takeshi Kobayashi
- Department Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Information Systems Labs, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, Japan
| |
Collapse
|
2
|
Neumann NM, Kim DM, Huebner RJ, Ewald AJ. Collective cell migration is spatiotemporally regulated during mammary epithelial bifurcation. J Cell Sci 2023; 136:jcs259275. [PMID: 36602106 PMCID: PMC10112963 DOI: 10.1242/jcs.259275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-β signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-β1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-β signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-β1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-β signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.
Collapse
Affiliation(s)
- Neil M. Neumann
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel M. Kim
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Huebner
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew J. Ewald
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Sun X, Bernhardt SM, Glynn DJ, Hodson LJ, Woolford L, Evdokiou A, Yan C, Du H, Robertson SA, Ingman WV. Attenuated TGFB signalling in macrophages decreases susceptibility to DMBA-induced mammary cancer in mice. Breast Cancer Res 2021; 23:39. [PMID: 33761981 PMCID: PMC7992865 DOI: 10.1186/s13058-021-01417-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates mammary gland development and cancer progression through endocrine, paracrine and autocrine mechanisms. TGFB1 also plays roles in tumour development and progression, and its increased expression is associated with an increased breast cancer risk. Macrophages are key target cells for TGFB1 action, also playing crucial roles in tumourigenesis. However, the precise role of TGFB-regulated macrophages in the mammary gland is unclear. This study investigated the effect of attenuated TGFB signalling in macrophages on mammary gland development and mammary cancer susceptibility in mice. METHODS A transgenic mouse model was generated, wherein a dominant negative TGFB receptor is activated in macrophages, in turn attenuating the TGFB signalling pathway specifically in the macrophage population. The mammary glands were assessed for morphological changes through wholemount and H&E analysis, and the abundance and phenotype of macrophages were analysed through immunohistochemistry. Another cohort of mice received carcinogen 7,12-dimethylbenz(a)anthracene (DMBA), and tumour development was monitored weekly. Human non-neoplastic breast tissue was also immunohistochemically assessed for latent TGFB1 and macrophage marker CD68. RESULTS Attenuation of TGFB signalling resulted in an increase in the percentage of alveolar epithelium in the mammary gland at dioestrus and an increase in macrophage abundance. The phenotype of macrophages was also altered, with inflammatory macrophage markers iNOS and CCR7 increased by 110% and 40%, respectively. A significant decrease in DMBA-induced mammary tumour incidence and prolonged tumour-free survival in mice with attenuated TGFB signalling were observed. In human non-neoplastic breast tissue, there was a significant inverse relationship between latent TGFB1 protein and CD68-positive macrophages. CONCLUSIONS TGFB acts on macrophage populations in the mammary gland to reduce their abundance and dampen the inflammatory phenotype. TGFB signalling in macrophages increases mammary cancer susceptibility potentially through suppression of immune surveillance activities of macrophages.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/adverse effects
- Animals
- Disease Susceptibility
- Disease-Free Survival
- Epithelial Cells/metabolism
- Estrous Cycle
- Female
- Humans
- Inflammation
- Macrophages/metabolism
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Signal Transduction
- Smad2 Protein/metabolism
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Xuan Sun
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Leigh J Hodson
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Sarah A Robertson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.
- Discipline of Surgery, The Queen Elizabeth Hospital, DX465702, 28 Woodville Rd., Woodville, 5011, Australia.
| |
Collapse
|
4
|
Zabala M, Lobo NA, Antony J, Heitink LS, Gulati GS, Lam J, Parashurama N, Sanchez K, Adorno M, Sikandar SS, Kuo AH, Qian D, Kalisky T, Sim S, Li L, Dirbas FM, Somlo G, Newman A, Quake SR, Clarke MF. LEFTY1 Is a Dual-SMAD Inhibitor that Promotes Mammary Progenitor Growth and Tumorigenesis. Cell Stem Cell 2020; 27:284-299.e8. [DOI: 10.1016/j.stem.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
|
5
|
Landua JD, Moraes R, Carpenter EM, Lewis MT. Hoxd10 Is Required Systemically for Secretory Activation in Lactation and Interacts Genetically with Hoxd9. J Mammary Gland Biol Neoplasia 2020; 25:145-162. [PMID: 32705545 PMCID: PMC7392944 DOI: 10.1007/s10911-020-09454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
Targeted disruption of the murine Hoxd10 gene (ΔHoxd10) leads to a high frequency of localized (gland-to-gland or regionally within a gland) lactation impairment in homozygous mutant mice as a single gene mutation. The effect of Hoxd10 disruption was enhanced by simultaneous disruption of Hoxd9 (ΔHoxd9/d10), a mutation shown previously to have no effect on mammary function as a single gene alteration. Mammary glands of homozygous ΔHoxd10 and ΔHoxd9/d10 females were indistinguishable from those of wild type littermate and age-matched control mice in late pregnancy. However, in lactation, 47% of homozygous ΔHoxd10 females, and 100% of homozygous ΔHoxd9/d10 females, showed localized or complete failure of two or more glands to undergo lactation-associated morphological changes and to secrete milk. Affected regions of ΔHoxd10 and ΔHoxd9/d10 mutants showed reduced prolactin receptor expression, reduced signal transducer and activator transcription protein 5 (STAT5) phosphorylation, reduced expression of downstream milk proteins, mislocalized glucose transporter 1 (GLUT1), increased STAT3 expression and phosphorylation, recruitment of leukocytes, altered cell cycle status, and increased apoptosis relative to unaffected regions and wild type control glands. Despite these local effects on alveolar function, transplantation results and hormone analysis indicate that Hoxd10 primarily has systemic functions that confer attenuated STAT5 phosphorylation on both wild type and ΔHoxd10 transplants when placed in ΔHoxd10 hosts, thereby exacerbating an underlying propensity for lactation failure in C57Bl/6 mice.
Collapse
Affiliation(s)
- John D Landua
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dan L Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Room N1210; BCM600, Houston, TX, 77030, USA
| | - Ricardo Moraes
- Center for Cell and Gene Therapy, Texas Children's Feigin Center, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Ellen M Carpenter
- Division of Undergraduate Education, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA, 22314, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dan L Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Room N1210; BCM600, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Chamberlin T, Thompson V, Hillers-Ziemer LE, Walton BN, Arendt LM. Obesity reduces mammary epithelial cell TGFβ1 activity through macrophage-mediated extracellular matrix remodeling. FASEB J 2020; 34:8611-8624. [PMID: 32359100 PMCID: PMC7317547 DOI: 10.1096/fj.202000228rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor for breast cancer in postmenopausal and high‐risk premenopausal women. Changes within the obese breast microenvironment may increase breast cancer risk. Transforming growth factor beta‐1 (TGFβ1) is a major regulator of mammary epithelial stem/progenitor cells, and its activity is dysregulated under conditions of obesity. Using a high‐fat diet model of obesity in mice and breast tissue from women, we observed that TGFβ1 activity is reduced in breast epithelial cells in obesity. Breast ducts and lobules demonstrated increased decorin in the extracellular matrix (ECM) surrounding epithelial cells, and we observed that decorin and latent TGFβ1 complexed together. Under conditions of obesity, macrophages expressed higher levels of decorin and were significantly increased in number surrounding breast epithelial cells. To investigate the relationship between macrophages and decorin expression, we treated obese mice with either IgG control or anti‐F4/80 antibodies to deplete macrophages. Mice treated with anti‐F4/80 antibodies demonstrated reduced decorin surrounding mammary ducts and enhanced TGFβ1 activity within mammary epithelial cells. Given the role of TGFβ1 as a tumor suppressor, reduced epithelial TGFβ1 activity and enhanced TGFβ1 within the ECM of obese mammary tissue may enhance breast cancer risk.
Collapse
Affiliation(s)
- Tamara Chamberlin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Thompson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brenna N Walton
- Program in Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Program in Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
8
|
Galoppo GH, Canesini G, Tavalieri YE, Stoker C, Kass L, Luque EH, Muñoz-de-Toro M. Bisphenol A disrupts the temporal pattern of histofunctional changes in the female reproductive tract of Caiman latirostris. Gen Comp Endocrinol 2017; 254:75-85. [PMID: 28947387 DOI: 10.1016/j.ygcen.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022]
Abstract
Recently, we have described the ontogeny of histofunctional differentiation changes in the oviduct of Caiman latirostris. The expression of estrogen receptor alpha and progesterone receptor shows that the caiman oviduct could be a target of the action of xenoestrogens such as the widely environmentally present Bisphenol A (BPA), early in life. The aims of this study were: to complement oviduct characterization by establishing the ontogenetic changes in androgen receptor (AR) expression and assessing the effects of early postnatal exposure to 17-β-estradiol (E2) or BPA on the histofunctional features of the oviduct. AR was expressed in all the stages studied. The spatial pattern of AR immunostaining changed from neonatal to juvenile caimans. In the luminal epithelium, changes were at the subcellular level, from cytoplasmic to nuclear. In the subepithelium, although both cytoplasmic and nuclear AR expression was observed, changes were mainly at tissue level, from the subepithelial compartment to the outer muscular layer. The oviduct was highly sensitive to E2 and BPA at the early postnatal developmental stage. E2- and BPA-exposed caimans showed increased luminal epithelial height and higher proliferative activity. Changes in histomorphological features (measured by a scoring system), steroid hormone receptors, collagen remodeling and muscle-associated proteins suggest a precocious oviduct histofunctional differentiation in E2- and BPA-exposed caimans. The modification of the temporal pattern of oviductal biomarkers suggests that organizational changes could impair C. latirostris reproductive health later in life. The alterations in the caiman female reproductive tract exposed to BPA highlight the importance of preserving aquatic environments from plastic pollution.
Collapse
Affiliation(s)
- Germán H Galoppo
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Guillermina Canesini
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Yamil E Tavalieri
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Laura Kass
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina.
| |
Collapse
|
9
|
Sun X, Ingman WV. Cytokine networks that mediate epithelial cell-macrophage crosstalk in the mammary gland: implications for development and cancer. J Mammary Gland Biol Neoplasia 2014; 19:191-201. [PMID: 24924120 DOI: 10.1007/s10911-014-9319-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 05/19/2014] [Indexed: 01/28/2023] Open
Abstract
Dynamic interactions between the hormone responsive mammary gland epithelium and surrounding stromal macrophage populations are critical for normal development and function of the mammary gland. Macrophages are versatile cells capable of diverse roles in mammary gland development and maintenance of homeostasis, and their function is highly dependent on signals within the local cytokine microenvironment. The mammary epithelium secretes a number of cytokines, including colony stimulating factor 1 (CSF1), transforming growth factor beta 1 (TGFB1), and chemokine ligand 2 (CCL2) that affect the abundance, phenotype and function of macrophages. However, aberrations in these interactions have been found to increase the risk of tumour formation, and utilisation of stromal macrophage support by tumours can increase the invasive and metastatic potential of the cancer. Studies utilising genetically modified mouse models have shed light on the significance of epithelial cell-macrophage crosstalk, and the cytokines that mediate this communication, in mammary gland development and tumourigenesis. This article reviews the current status of our understanding of the roles of epithelial cell-derived cytokines in mammary gland development and cancer, with a focus on the crosstalk between epithelial cells and the local macrophage population.
Collapse
Affiliation(s)
- Xuan Sun
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
10
|
Lazarus KA, Brown KA, Young MJ, Zhao Z, Coulson RS, Chand AL, Clyne CD. Conditional overexpression of liver receptor homolog-1 in female mouse mammary epithelium results in altered mammary morphogenesis via the induction of TGF-β. Endocrinology 2014; 155:1606-17. [PMID: 24564400 DOI: 10.1210/en.2013-1948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that belongs to the NR5A subgroup of nuclear receptors. LRH-1 induces key genes to regulate metabolic process, ovarian function, cancer cell proliferation, and steroidogenesis. In the breast, LRH-1 modulates and synergizes with endogenous estrogen signaling to promote breast cancer cell proliferation. We used small interfering RNA knockdown strategies to deplete LRH-1 in breast cancer cells and followed with microarray analysis to identify LRH-1-dependent mechanisms. We identified key genes involved in TGF-β signaling to be highly responsive to LRH-1 knockdown. This relationship was validated in 2 breast cancer cell lines overexpressing LRH-1 in vitro and in a novel transgenic mouse with targeted LRH-1 overexpression in mammary epithelial cells. Notably, TGF-β signaling was activated in LRH-1-overexpressing breast cancer cells and mouse mammary glands. Further analyses of mammary gross morphology revealed a significant reduction in mammary lateral budding after LRH-1 overexpression. These findings suggest that the altered mammary morphogenesis in LRH-1 transgenic animals is mediated via enhanced TGF-β expression. The regulation of TGF-β isoforms and SMAD2/3-mediated downstream signaling by LRH-1 also implicates a potential contribution of LRH-1 in breast cancer. Collectively, these data demonstrate that LRH-1 regulates TGF-β expression and downstream signaling in mouse mammary glands.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- MCF-7 Cells
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mice
- Mice, Transgenic
- Morphogenesis
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Smad Proteins, Receptor-Regulated/metabolism
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Kyren A Lazarus
- Cancer Drug Discovery Laboratory (K.A.L., M.J.Y., Z.Z., R.S.C., A.L.C., C.D.C.) and Metabolism and Cancer Laboratory (K.A.B.), Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia; Environmental and Biotechnology Centre (K.A.L.), Swinburne University, Hawthorn, Victoria 3122, Australia; and Department of Biochemistry and Molecular Biology (C.D.C.), Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee YH, Schiemann WP. Chemotherapeutic Targeting of the Transforming Growth Factor-β Pathway in Breast Cancers. BREAST CANCER MANAGEMENT 2014; 3:73-85. [PMID: 25904986 DOI: 10.2217/bmt.13.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor (TGF-β) is a multifunctional cytokine that plays essential roles in regulating mammary gland development, morphogenesis, differentiation, and involution. TGF-β also regulates mammary gland homeostasis and prevents its transformation by prohibiting dysregulated cell cycle progression, and by inducing apoptosis; it also creates cell microenvironments that readily inhibit cell migration, invasion, and metastasis. Interestingly, while early-stage mammary tumors remain sensitive to the tumor suppressing activities of TGF-β, late-stage breast cancers become insensitive to the anticancer functions of this cytokine and instead rely upon TGF-β to drive disease and metastatic progression. This switch in TGF-β function is known as the "TGF-β Paradox" and represents the rationale for developing chemotherapies to inactivate the TGF-β pathway and its oncogenic functions in late-stage breast cancers. Here we outline the molecular mechanisms that manifest the "TGF-β Paradox" and discuss the challenges associated with the development and use of anti-TGF-β agents to treat breast cancer patients.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland, OH 44106
| |
Collapse
|
12
|
Chandramouli A, Simundza J, Pinderhughes A, Hiremath M, Droguett G, Frendewey D, Cowin P. Ltbp1L is focally induced in embryonic mammary mesenchyme, demarcates the ductal luminal lineage and is upregulated during involution. Breast Cancer Res 2013; 15:R111. [PMID: 24262428 PMCID: PMC3978911 DOI: 10.1186/bcr3578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Latent TGFβ binding proteins (LTBPs) govern TGFβ presentation and activation and are important for elastogenesis. Although TGFβ is well-known as a tumor suppressor and metastasis promoter, and LTBP1 is elevated in two distinct breast cancer metastasis signatures, LTBPs have not been studied in the normal mammary gland. Methods To address this we have examined Ltbp1 promoter activity throughout mammary development using an Ltbp1L-LacZ reporter as well as expression of both Ltbp1L and 1S mRNA and protein by qRT-PCR, immunofluorescence and flow cytometry. Results Our data show that Ltbp1L is transcribed coincident with lumen formation, providing a rare marker distinguishing ductal from alveolar luminal lineages. Ltbp1L and Ltbp1S are silent during lactation but robustly induced during involution, peaking at the stage when the remodeling process becomes irreversible. Ltbp1L is also induced within the embryonic mammary mesenchyme and maintained within nipple smooth muscle cells and myofibroblasts. Ltbp1 protein exclusively ensheaths ducts and side branches. Conclusions These data show Ltbp1 is transcriptionally regulated in a dynamic manner that is likely to impose significant spatial restriction on TGFβ bioavailability during mammary development. We hypothesize that Ltbp1 functions in a mechanosensory capacity to establish and maintain ductal luminal cell fate, support and detect ductal distension, trigger irreversible involution, and facilitate nipple sphincter function.
Collapse
|
13
|
Guo CL. Mechanical models for the self-organization of tubular patterns. BIOMATTER 2013; 3:e24926. [PMID: 23719257 PMCID: PMC3749282 DOI: 10.4161/biom.24926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 01/11/2023]
Abstract
Organogenesis, such as long tubule self-organization, requires long-range coordination of cell mechanics to arrange cell positions and to remodel the extracellular matrix. While the current mainstream in the field of tissue morphogenesis focuses primarily on genetics and chemical signaling, the influence of cell mechanics on the programming of patterning cues in tissue morphogenesis has not been adequately addressed. Here, we review experimental evidence and propose quantitative mechanical models by which cells can create tubular patterns.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Department of Bioengineering; California Institute of Technology; Pasadena, CA USA
| |
Collapse
|
14
|
Sun X, Robertson SA, Ingman WV. Regulation of epithelial cell turnover and macrophage phenotype by epithelial cell-derived transforming growth factor beta1 in the mammary gland. Cytokine 2013; 61:377-88. [PMID: 23290315 DOI: 10.1016/j.cyto.2012.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 11/07/2012] [Accepted: 12/04/2012] [Indexed: 12/31/2022]
Abstract
Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates cell proliferation, apoptosis and immune system responses. In the breast, the mammary epithelium is the primary source of TGFB1 and increased expression is associated with increased breast cancer risk. This study was conducted to investigate the roles of epithelial cell-derived TGFB1 in regulation of epithelial cell activity and macrophage phenotype in the mammary gland. Tgfb1 null mutant and wildtype mammary epithelium was transplanted into contra-lateral sides of the cleared mammary gland of TGFB1 replete scid mice. Transplanted tissue was analysed for markers of proliferation and apoptosis to determine the effect of Tgfb1 null mutation on epithelial cell turnover, and was analysed by immunohistochemistry to investigate the location, abundance and phenotype of macrophages. The number of proliferating and dying ductal epithelial cells, determined by BrdU and TUNEL, was increased by 35% and 3.3-fold respectively in mammary gland transplanted with Tgfb1 null epithelium compared to wildtype epithelium (p<0.05). Abundance of F4/80+ macrophages in between Tgfb1 null epithelial cells compared to wildtype epithelial cells was increased by 50%. The number of iNOS+ and CCR7+ cells in the stroma surrounding Tgfb1 null alveolar epithelium was increased by 78% and 2-fold respectively, and dendriform MHC class II+ cells within ductal epithelium were decreased by 30%. We conclude that epithelial cell-derived TGFB1 in the mammary gland has two functions: (1) regulation of cellular turnover of epithelial cells, and (2) regulation of local macrophage phenotype. These findings shed new light on the diversity of roles of TGFB1 in the mammary gland which are likely to impact on breast cancer risk.
Collapse
Affiliation(s)
- Xuan Sun
- School of Paediatrics and Reproductive Health, University of Adelaide, Australia.
| | | | | |
Collapse
|
15
|
Sampayo R, Recouvreux S, Simian M. The hyperplastic phenotype in PR-A and PR-B transgenic mice: lessons on the role of estrogen and progesterone receptors in the mouse mammary gland and breast cancer. VITAMINS AND HORMONES 2013; 93:185-201. [PMID: 23810007 DOI: 10.1016/b978-0-12-416673-8.00012-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progesterone receptor (PR) belongs to the superfamily of steroid receptors and mediates the action of progesterone in its target tissues. In the mammary gland, in particular, PR expression is restricted to the luminal epithelial cell compartment. The generation of estrogen receptor-α (ER) and PR knockout mice allowed the specific characterization of the roles of each of these in mammary gland development: ER is critical for ductal morphogenesis, whereas PR has a key role in lobuloalveolar differentiation. To further study the role PR isoforms have in mammary gland biology, transgenic mice overexpressing either the "A" (PR-A) or the "B" (PR-B) isoforms of PR were generated. Overexpression of the A isoform of PR led to increased side branching, multilayered ducts, loss of basement membrane integrity, and alterations in matrix metalloproteinase activation in the mammary gland. Moreover, levels of TGFβ1 and p21 were diminished and those of cyclin D1 increased. Interestingly, the phenotype was counteracted by antiestrogens, suggesting that ER is essential for the manifestation of the hyperplasias. Mice overexpressing the B isoform of PR had limited ductal growth but retained the ability to differentiate during pregnancy. Levels of latent and active TGFβ1 were increased compared to PR-A transgenics. The phenotypes of these transgenic mice are further discussed in the context of the impact of progesterone on mammary stem cells and breast cancer. We conclude that an adequate balance between the A and B isoforms of PR is critical for tissue homeostasis. Future work to further understand the biology of PR in breast biology will hopefully lead to new and effective preventive and therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Rocio Sampayo
- Área Investigación, Instituto de Oncología "Angel H. Roffo", Avda. San Martin 5481, Buenos Aires, Argentina
| | | | | |
Collapse
|
16
|
Vinod C, Jyothy A, Vijay Kumar M, Raghu Raman R, Nallari P, Venkateshwari A. Heterozygosity for TGF β1 -509C/T Polymorphism is associated with risk for breast cancer in South Indian population. Tumour Biol 2012; 34:99-105. [PMID: 23001908 DOI: 10.1007/s13277-012-0516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022] Open
Abstract
Transformation growth factor β1 is a multipotent cytokine that mediates the development, differentiation, and neoplasm of the mammary gland. TGF β1 is known to exert both tumor suppressive and progressive effect at different stages of carcinogenesis. Several studies have shown the association of TGF β1 expression with breast cancer markers like estrogen receptor (ER), progesterone receptor (PR), and Her2/neu. TGF β1 expression is known to be influenced by -509C/T promoter polymorphism. Hence, the present study is aimed to evaluate the possible role of TGF β1 -509C/T promoter polymorphism in breast cancer and its association with ER, PR, and Her2 status based on case-control study in South Indian population from Andhra Pradesh. Our study revealed a significant increase of CT genotype in breast cancer patients compared to controls (CT vs. CC: χ (2) = 6.054, P = 0.014, OR 2.005, 95 % CI 1.182-3.403). However, there was no correlation between TGF β1 -509C/T polymorphism and other factors like age at onset, ER, PR, Her2 status, etc. Further, CT genotype was found to be associated with increased risk in advanced stages of breast cancer (CC vs. CT: OR 2.315, 95 % CI 1.143-4.688) and a border line significance with postmenopausal women (CT vs. CC: χ (2) = 3.128, P = 0.07, OR 2.095, 95 % CI 0.991-4.428).
Collapse
Affiliation(s)
- Cingeetham Vinod
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, 500016, India
| | | | | | | | | | | |
Collapse
|
17
|
Chomwisarutkun K, Murani E, Brunner R, Ponsuksili S, Wimmers K. QTL region-specific microarrays reveal differential expression of positional candidate genes of signaling pathways associated with the liability for the inverted teat defect. Anim Genet 2012; 44:139-48. [PMID: 22690698 DOI: 10.1111/j.1365-2052.2012.02378.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2012] [Indexed: 01/23/2023]
Abstract
The inverted teat defect is the most common disorder of the mammary complex in pigs. It is characterized by the failure of teats to protrude from the udder surface, preventing normal milk flow and thus limiting the rearing capacity and increasing the risk of mastitis. The inverted teat defect is a liability trait with a complex mode of inheritance. We previously identified QTL for inverted teats. As a complementary approach that integrates map-based efforts to identify candidate genes for the inverted teat defect with function-driven expression analysis, application-specific microarrays were constructed that cover 1525 transcripts mapping in QTL regions on pig chromosomes 2, 3, 4, 6 and 11. About 950 transcripts were expressed in epithelial and mesenchymal teat tissue. The expression of three categories of teats was compared: normal teats of both non-affected and affected animals and inverted teats of affected animals. In epithelium and mesenchyme, 62 and 24 genes respectively were significantly differentially expressed (DE). The majority of biofunctions to which a significant number of DE genes were assigned are related to the following: (1) cell maintenance, proliferation, differentiation and replacement; (2) organismal, organ and tissue development; or (3) genetic information and nucleic acid processing. Moreover, the DE genes belong almost exclusively to canonical pathways related to signaling rather than metabolic pathways. This is in line with findings obtained by genome-wide catalogue microarrays. This study adds another piece to the puzzle of the etiology of inverted teats by indicating that causal genetic variation leading to the disorder is likely among the genes encoding for members of the signaling cascades of growth factors.
Collapse
Affiliation(s)
- K Chomwisarutkun
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
18
|
Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc Natl Acad Sci U S A 2012; 109:5576-82. [PMID: 22427356 DOI: 10.1073/pnas.1114781109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enabling long-range transport of molecules, tubules are critical for human body homeostasis. One fundamental question in tubule formation is how individual cells coordinate their positioning over long spatial scales, which can be as long as the sizes of tubular organs. Recent studies indicate that type I collagen (COL) is important in the development of epithelial tubules. Nevertheless, how cell-COL interactions contribute to the initiation or the maintenance of long-scale tubular patterns is unclear. Using a two-step process to quantitatively control cell-COL interaction, we show that epithelial cells developed various patterns in response to fine-tuned percentages of COL in ECM. In contrast with conventional thoughts, these patterns were initiated and maintained by traction forces created by cells but not diffusive factors secreted by cells. In particular, COL-dependent transmission of force in the ECM led to long-scale (up to 600 μm) interactions between cells. A mechanical feedback effect was encountered when cells used forces to modify cell positioning and COL distribution and orientations. Such feedback led to a bistability in the formation of linear, tubule-like patterns. Using micro-patterning technique, we further show that the stability of tubule-like patterns depended on the lengths of tubules. Our results suggest a mechanical mechanism that cells can use to initiate and maintain long-scale tubular patterns.
Collapse
|
19
|
Ching S, Kashinkunti S, Niehaus MD, Zinser GM. Mammary adipocytes bioactivate 25-hydroxyvitamin D₃ and signal via vitamin D₃ receptor, modulating mammary epithelial cell growth. J Cell Biochem 2012; 112:3393-405. [PMID: 21769914 DOI: 10.1002/jcb.23273] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vitamin D(3) receptor (VDR) is present in all microenvironments of the breast, yet it is hypothesized to signal through the epithelium to regulate hormone induced growth and differentiation. However, the influence or contribution of the other microenvironments within the breast that express VDR, like the breast adipose tissue, are yet to be investigated. We hypothesized that the breast adipocytes express the signaling components necessary to participate in vitamin D(3) synthesis and signaling via VDR, modulating ductal epithelial cell growth and differentiation. We utilized human primary breast adipocytes and VDR wild type (WT) and knockout (KO) mice to address whether breast adipocytes participate in vitamin D(3) -induced growth regulation of the ductal epithelium. We report in this study that breast primary adipocytes express VDR, CYP27B1 (1α-hydroxylase, 1α-OHase), the enzyme that generates the biologically active VDR ligand, 1α,25-dihydroxyvitamin D(3) (1,25D(3) ), and CYP24 (24-hydroxylase, 24-OHase), a VDR-1,25D(3) induced target gene. Furthermore, the breast adipocytes participate in bioactivating 25-hydroxyvitamin D(3) (25D(3) ) to the active ligand, 1,25D(3) , and secreting it to the surrounding microenvironment. In support of this concept, we report that purified mammary ductal epithelial fragments (organoids) from VDR KO mice, co-cultured with WT breast adipocytes, were growth inhibited upon treatment with 25D(3) or 1,25D(3) compared to vehicle alone. Collectively, these results demonstrate that breast adipocytes bioactivate 25D(3) to 1,25D(3) , signal via VDR within the adipocytes, and release an inhibitory factor that regulates ductal epithelial cell growth, suggesting that breast adipose tissue contributes to vitamin D(3) -induced growth regulation of ductal epithelium.
Collapse
Affiliation(s)
- Stephen Ching
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
20
|
Keely PJ. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 2011; 16:205-19. [PMID: 21822945 PMCID: PMC3885166 DOI: 10.1007/s10911-011-9226-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is necessary for development of the mammary gland, and to maintain the normal architecture and function of the gland. Cells adhere to the ECM via the integrin family of trans-membrane receptors, which signal to control mammary-specific gene expression and regulate cell proliferation and survival. During tumor formation, the ECM is extensively remodeled and signaling through integrins is altered such that cells become proliferative and invasive. A key regulator of whether integrin-mediated adhesion will promote tumor suppression or tumor formation is the stiffness of the stromal ECM. The normal mammary gland is typically surrounded by a loose collagenous stroma. An increase in the deposition of collagen and other stromal components is associated with mammographic density, which is one of the greatest risk factors for developing breast carcinoma. Several groups have demonstrated that increased stromal ECM density results in a matrix that is stiffer. Cells sense the stiffness of their surrounding ECM by Rho-mediated contraction of the actin-myosin cytoskeleton. If the surrounding ECM is stiffer than the cell's ability to contract it, then the tensile forces that result are able to drive the clustering of integrins and assemble adhesion signaling complexes. The result is subsequent activation of signaling pathways including FAK, ERK, and PI3K that drive cell proliferation and survival. In contrast, focal complexes are not formed in a compliant matrix, and activation of FAK and pERK is diminished, resulting in control of proliferation. Signaling from FAK moreover regulates p53 and miR-200 members, which control apoptosis and epithelial phenotype, such that a compliant matrix is predicted to promote normal mammary gland architecture and suppress tumor formation.
Collapse
Affiliation(s)
- Patricia J Keely
- Department of Cell and Regenerative Biology, Laboratory for Cellular and Molecular Biology, & Laboratory for Optical and Computational Instrumentation, University of Wisconsin, 227D Bock Laboratories, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Pavlovich A, Boghaert E, Nelson CM. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp Cell Res 2011; 317:1872-84. [PMID: 21459084 PMCID: PMC3123406 DOI: 10.1016/j.yexcr.2011.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/21/2011] [Accepted: 03/27/2011] [Indexed: 01/17/2023]
Abstract
During the branching morphogenesis process that builds epithelial trees, signaling from stimulatory and inhibitory growth factors is integrated to control branch initiation and extension into the surrounding stroma. Here, we examined the relative roles played by these stimulatory and inhibitory signals in the patterning of branch initiation and extension of model mammary epithelial tubules in culture. We found that although several growth factors could stimulate branching, they did not determine the sites at which new branches formed or the lengths to which branches extended. Instead, branch initiation and extension were defined by two separate signals downstream of the inhibitory morphogen, transforming growth factor (TGF)-β. Branch initiation was controlled by signaling through p38 mitogen-activated protein kinase, whereas branch extension was controlled by Smad-mediated induction of a second diffusible inhibitor, Wnt5a. These data suggest that mammary epithelial branching is patterned predominately by repulsive signaling, and that TGFβ activates multiple inhibitory pathways to refine the architecture of the tree.
Collapse
Affiliation(s)
- Amira Pavlovich
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Eline Boghaert
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| |
Collapse
|
22
|
Dunphy KA, Schneyer AL, Hagen MJ, Jerry DJ. The role of activin in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia 2011; 16:117-26. [PMID: 21475961 DOI: 10.1007/s10911-011-9214-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022] Open
Abstract
TGFβ contributes to mammary gland development and has paradoxical roles in breast cancer because it has both tumor suppressor and tumor promoter activity. Another member of the TGFβ superfamily, activin, also has roles in the developing mammary gland, but these functions, and the role of activin in breast cancer, are not well characterized. TGFβ and activin share the same intracellular signaling pathways, but divergence in their signaling pathways are suggested. The purpose of this review is to compare the spatial and temporal expression of TGFβ and activin during mammary gland development, with consideration given to their functions during each developmental period. We also review the contributions of TGFβ and activin to breast cancer resistance and susceptibility. Finally, we consider the systemic contributions of activin in regulating obesity and diabetes; and the impact this regulation has on breast cancer. Elevated levels of activin in serum during pregnancy and its influence on pregnancy associated breast cancer are also considered. We conclude that evidence demonstrates that activin has tumor suppressing potential, without definitive indication of tumor promoting activity in the mammary gland, making it a good target for development of therapeutics.
Collapse
Affiliation(s)
- Karen A Dunphy
- Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, MA, USA.
| | | | | | | |
Collapse
|
23
|
Nguyen DH, Martinez-Ruiz H, Barcellos-Hoff MH. Consequences of epithelial or stromal TGFβ1 depletion in the mammary gland. J Mammary Gland Biol Neoplasia 2011; 16:147-55. [PMID: 21590374 DOI: 10.1007/s10911-011-9218-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 01/21/2023] Open
Abstract
Transforming growth factor β1 (TGFβ) affects stroma and epithelial composition and interactions that mediate mammary development and determine the course of cancer. The reduction of TGFβ in Tgfβ1 heterozygote mice, which are healthy and long-lived, provides an important model to dissect the contribution of TGFβ in mammary gland biology and cancer. We used both intact mice and mammary chimeras in conjunction with Tgfβ1 genetic depletion and TGFβ neutralizing antibodies to evaluate how stromal or epithelial TGFβ depletion affect mammary development and response to physiological stimuli. Our studies of radiation carcinogenesis have revealed new aspects of TGFβ biology and suggest that the paradoxical TGFβ switch from tumor suppressor to tumor promoter can be resolved by assessing distinct stromal versus epithelial actions.
Collapse
Affiliation(s)
- David H Nguyen
- Endocrinology Graduate Group, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
24
|
Abstract
The pubertal mammary gland is an ideal model for experimental morphogenesis. The primary glandular branching morphogenesis occurs at this time, integrating epithelial cell proliferation, differentiation, and apoptosis. Between birth and puberty, the mammary gland exists in a relatively quiescent state. At the onset of puberty, rapid expansion of a pre-existing rudimentary mammary epithelium generates an extensive ductal network by a process of branch initiation, elongation, and invasion of the mammary mesenchyme. It is this branching morphogenesis that characterizes pubertal mammary gland growth. Tissue-specific molecular networks interpret signals from local cytokines/growth factors in both the epithelial and stromal microenvironments. This is largely orchestrated by secreted ovarian and pituitary hormones. Here, we review the major molecular regulators of pubertal mammary gland development.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Bimolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Ireland
| | | |
Collapse
|
25
|
Visbal AP, LaMarca HL, Villanueva H, Toneff MJ, Li Y, Rosen JM, Lewis MT. Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened. Dev Biol 2011; 352:116-27. [PMID: 21276786 PMCID: PMC3057274 DOI: 10.1016/j.ydbio.2011.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 11/18/2022]
Abstract
The Hedgehog (Hh) signaling network is critical for patterning and organogenesis in mammals, and has been implicated in a variety of cancers. Smoothened (Smo), the gene encoding the principal signal transducer, is overexpressed frequently in breast cancer, and constitutive activation in MMTV-SmoM2 transgenic mice caused alterations in mammary gland morphology, increased proliferation, and changes in stem/progenitor cell number. Both in transgenic mice and in clinical specimens, proliferative cells did not usually express detectable Smo, suggesting the hypothesis that Smo functioned in a non-cell autonomous manner to stimulate proliferation. Here, we employed a genetically tagged mouse model carrying a Cre-recombinase-dependent conditional allele of constitutively active Smo (SmoM2) to test this hypothesis. MMTV-Cre- or adenoviral-Cre-mediated SmoM2 expression in the luminal epithelium, but not in the myoepithelium, was required for the hyper-proliferative phenotypes. High levels of proliferation were observed in cells adjacent or in close-proximity to Smo expressing cells demonstrating that SmoM2 expressing cells were stimulating proliferation via a paracrine or juxtacrine mechanism. In contrast, Smo expression altered luminal cell differentiation in a cell-autonomous manner. SmoM2 expressing cells, purified by fluorescence activated cell sorting (FACS) via the genetic fluorescent tag, expressed high levels of Ptch2, Gli1, Gli2, Jag2 and Dll-1, and lower levels of Notch4 and Hes6, in comparison to wildtype cells. These studies provide insight into the mechanism of Smo activation in the mammary gland and its possible roles in breast tumorigenesis. In addition, these results also have potential implications for the interpretation of proliferative phenotypes commonly observed in other organs as a consequence of hedgehog signaling activation.
Collapse
Affiliation(s)
- Adriana P. Visbal
- Developmental Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Heather L. LaMarca
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael J. Toneff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M. Rosen
- Developmental Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael T. Lewis
- Developmental Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
26
|
Moses H, Barcellos-Hoff MH. TGF-beta biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 2011; 3:a003277. [PMID: 20810549 DOI: 10.1101/cshperspect.a003277] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transforming growth factor-β1 (TGF-β) was first implicated in mammary epithelial development by Daniel and Silberstein in 1987 and in breast cancer cells and hormone resistance by Lippman and colleagues in 1988. TGF-β is critically important for mammary morphogenesis and secretory function through specific regulation of epithelial proliferation, apoptosis, and extracellular matrix. Differential TGF-β effects on distinct cell types are compounded by regulation at multiple levels and the influence of context on cellular responses. Studies using controlled expression and conditional-deletion mouse models underscore the complexity of TGF-β biology across the cycle of mammary development and differentiation. Early loss of TGF-β growth regulation in breast cancer evolves into fundamental deregulation that mediates cell interactions and phenotypes driving invasive disease. Two outstanding issues are to understand the mechanisms of biological control in situ and the circumstances by which TGF-β regulation is subverted in neoplastic progression.
Collapse
Affiliation(s)
- Harold Moses
- Department of Cancer Biology and Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
27
|
Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 2010; 15:301-18. [PMID: 20811805 DOI: 10.1007/s10911-010-9189-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland's unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.
Collapse
Affiliation(s)
- Ori Maller
- Department of Medicine, Division of Medical Oncology, University of Colorado-Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | | | | |
Collapse
|
28
|
Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, Godwin AK, Korach KS, Visvader JE, Kaestner KH, Abdul-Karim FW, Montano MM, Keri RA. FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development 2010; 137:2045-54. [PMID: 20501593 PMCID: PMC2875844 DOI: 10.1242/dev.043299] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2010] [Indexed: 01/19/2023]
Abstract
FOXA1, estrogen receptor alpha (ERalpha) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERalpha and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERalpha expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERalpha and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERalpha expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERalpha-positive breast cancers, at least in part, through its control of ERalpha expression.
Collapse
Affiliation(s)
- Gina M. Bernardo
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kristen L. Lozada
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - John D. Miedler
- Department of Pathology, University Hospitals-Case Medical Center, Cleveland, OH, 44106, USA
| | - Gwyndolen Harburg
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Sylvia C. Hewitt
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jonathan D. Mosley
- Department of Internal Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew K. Godwin
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kenneth S. Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jane E. Visvader
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Fadi W. Abdul-Karim
- Department of Pathology, University Hospitals-Case Medical Center, Cleveland, OH, 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ruth A. Keri
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 2009; 21:49-59. [PMID: 20018551 DOI: 10.1016/j.cytogfr.2009.11.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transforming growth factor beta (TGF-beta) has been studied with regard to the regulation of cell behavior for over three decades. A large body of research has been devoted to the regulation of epithelial cell and derivative carcinoma cell populations in vitro and in vivo. TGF-beta has been shown to inhibit epithelial cell cycle progression and promote apoptosis that together significantly contribute to the tumor suppressive role for TGF-beta during carcinoma initiation and progression. TGF-beta is also able to promote an epithelial to mesenchymal transition that has been associated with increased tumor cell motility, invasion and metastasis. However, it has now been shown that loss of carcinoma cell responsiveness to TGF-beta stimulation can also promote metastasis. Interestingly, enhanced metastasis in the absence of a carcinoma cell response to TGF-beta stimulation has been shown to involve increased chemokine production resulting in recruitment of pro-metastatic myeloid derived suppressor cell (MDSC) populations to the tumor microenvironment at the leading invasive edge. When present, MDSCs enhance angiogenesis, promote immune tolerance and provide matrix degrading enzymes that promote tumor progression and metastasis. Further, the recruitment of MDSC populations in this context likely enhances the classic role for TGF-beta in immune suppression since the MDSCs are an abundant source of TGF-beta production. Importantly, it is now clear that carcinoma-immune cell cross-talk initiated by TGF-beta signaling within the carcinoma cell is a significant determinant worth consideration when designing therapeutic strategies to manage tumor progression and metastasis.
Collapse
|
30
|
Stroma in breast development and disease. Semin Cell Dev Biol 2009; 21:11-8. [PMID: 19857593 DOI: 10.1016/j.semcdb.2009.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 10/12/2009] [Indexed: 12/21/2022]
Abstract
It is increasingly apparent that normal and malignant breast tissues require complex local and systemic stromal interactions for development and progression. During development, mammary cell fate specification and differentiation require highly regulated contextual signals derived from the stroma. Likewise, during breast carcinoma development, the tissue stroma can provide tumor suppressing and tumor-promoting environments that serve to regulate neoplastic growth of the epithelium. This review focuses on the role of the stroma as a mediator of normal mammary development, as well as a critical regulator of malignant conversion and progression in breast cancer. Recognition of the important role of the stroma during the progression of breast cancers leads to the possibility of new targets for treatment of the initial breast cancer lesion as well as prevention of recurrence.
Collapse
|
31
|
Nelson CM. Geometric control of tissue morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:903-10. [PMID: 19167433 PMCID: PMC2683193 DOI: 10.1016/j.bbamcr.2008.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 11/29/2008] [Accepted: 12/19/2008] [Indexed: 01/16/2023]
Abstract
Morphogenesis is the dynamic and regulated change in tissue form that leads to creation of the body plan and development of mature organs. Research over the past several decades has uncovered a multitude of genetic factors required for morphogenesis in animals. The behaviors of individual cells within a developing tissue are determined by combining these genetic signals with information from the surrounding microenvironment. At any point in time, the local microenvironment is influenced by macroscale tissue geometry, which sculpts long range signals by affecting gradients of morphogens and mechanical stresses. The geometry of a tissue thus acts as both a template and instructive cue for further morphogenesis.
Collapse
Affiliation(s)
- Celeste M Nelson
- Department of Chemical Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544, USA.
| |
Collapse
|
32
|
BIERIE BRIAN, GORSKA AGNIESZKAE, STOVER DANIELG, MOSES HAROLDL. TGF-beta promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol 2009; 219:57-68. [PMID: 19086032 PMCID: PMC3038423 DOI: 10.1002/jcp.21646] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transforming growth factor beta (TGF-beta) ligands are known to regulate virgin mammary development and contribute to initiation of post-lactation involution. However, the role for TGF-beta during the second phase of mammary involution has not been addressed. Previously, we have used an MMTV-Cre transgene to delete exon 2 from the Tgfbr2 gene in mammary epithelium, however we observed a gradual loss of T beta RII deficient epithelial cells that precluded an accurate study of the role for TGF-beta signaling during involution timepoints. Therefore, in order to determine the role for TGF-beta during the second phase of mammary involution we have now targeted T beta RII ablation within mammary epithelium using the WAP-Cre transgene [T beta RII(WKO)Rosa26R]. Our results demonstrated that TGF-beta regulates commitment to cell death during the second phase of mammary involution. Importantly, at day 3 of mammary involution the Na-Pi type IIb co-transporter (Npt2b), a selective marker for active lactation in luminal lobular alveolar epithelium, was completely silenced in the WAP-Cre control and T beta RII(WKO)Rosa26R tissues. However, by day 7 of involution the T beta RII(WKO)Rosa26R tissues had distended lobular alveoli and regained a robust Npt2b signal that was detected at the apical luminal surface. The Npt2b abundance and localization positively correlated with elevated WAP mRNA expression, suggesting that the distended alveoli were the result of an active lactation program rather than residual milk protein and lipid accumulation. In summary, the results suggest that an epithelial cell response to TGF-beta signaling regulates commitment to cell death and suppression of lactation during the second phase of mammary involution.
Collapse
Affiliation(s)
- BRIAN BIERIE
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - AGNIESZKA E. GORSKA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | | | - HAROLD L. MOSES
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
- Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
33
|
Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:353-60. [PMID: 19034633 DOI: 10.1007/s10911-008-9103-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022] Open
Abstract
Although the pubertal surge of estrogen is the immediate stimulus to mammary development, the action of estrogen depends upon the presence of pituitary growth hormone and the ability of GH to stimulate production of IGF-I in the mammary gland. Growth hormone binds to its receptor in the mammary fat pad, after which production of IGF-I mRNA and IGF-I protein occurs. It is likely that IGF-I then works through paracrine means to stimulate formation of TEBs, which then form ducts by bifurcating or trifurcating and extending through the mammary fat pad. By the time pubertal development is complete a tree-like structure of branching ducts fills the rodent mammary fat pad. In addition to requiring IGF-I in order to act, estradiol also directly synergizes with IGF-I to enhance formation of TEBs and ductal morphogenesis. Together they increase IRS-1 phosphorylation and cell proliferation, and inhibit apoptosis. In fact, the entire process of ductal morphogenesis, in oophorectomized IGF-I(-/-) knockout female mice, can occur as a result of the combined actions of estradiol and IGF-I. IGF-I also permits progesterone action in the mammary gland. Together they have been shown to stimulate a form of ductal morphogenesis, which is anatomically different from the kind induced by IGF-I and estradiol. Although both progesterone and estradiol synergize with IGF-I by increasing IGF-I action parameters, there must be other, as yet unknown mechanisms that account for the anatomical differences in the different forms of ductal morphogenesis observed (hyperplasia in response to IGF-I plus estradiol and single layered ducts in response to IGF-I plus progesterone).
Collapse
|
34
|
Liapis G, Mylona E, Alexandrou P, Giannopoulou I, Nikolaou I, Markaki S, Keramopoulos A, Nakopoulou L. Effect of the different phosphorylated Smad2 protein localizations on the invasive breast carcinoma phenotype. APMIS 2007; 115:104-14. [PMID: 17295676 DOI: 10.1111/j.1600-0463.2007.apm_517.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Smad2 participates in the TGF-beta signaling pathway, where it cooperates with transcription factors to regulate expression of defined genes. The purpose of this study was to investigate the expression pattern of phosphorylated Smad2 (pSmad2) in association with clinicopathological parameters and biological markers of proliferation and invasion. Immunohistochemistry was applied on paraffin-embedded sections from 164 patients with invasive breast carcinomas to detect the expression of the proteins pSmad2, ER, PR, Ki67, topoisomerase IIa, ERK2, catenin-p120, MMP-14 and TIMP-2. pSmad2 protein was detected in the nuclei of the malignant cells (68.1%) and in the tumor fibroblasts (55.2%). Nuclear pSmad2 was inversely correlated with histological grade and LN (p=0.047 and p=0.05) as well as with Ki67 and topoIIa (p=0.003 and p=0.021, respectively). There was also an inverse relation between nuclear pSmad2 and normal immunoexpression of the adhesion molecule catenin-p120 (p=0.028). Both nuclear and stromal pSmad2 were positively correlated with ERK2 of tumor fibroblasts (p=0.008 and p=0.0001, respectively), while stromal pSmad2 was furthermore related to stromal MMP-14 and tumor TIMP-2 (p=0.006 and p=0.022, respectively). Patients with high expression of cancerous pSmad2 tended to have a better prognosis, although statistic significance was never reached. pSmad2 was found to play a dual role, according to its distribution. Nuclear localization was thus found to be related to a less aggressive tumor phenotype, whereas stromal location was associated with an invasive phenotype.
Collapse
Affiliation(s)
- George Liapis
- Department of Pathology of the Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shipp A, Lawrence G, Gentry R, McDonald T, Bartow H, Bounds J, Macdonald N, Clewell H, Allen B, Van Landingham C. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit Rev Toxicol 2006; 36:481-608. [PMID: 16973444 DOI: 10.1080/10408440600851377] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acrylamide (ACR) is used in the manufacture of polyacrylamides and has recently been shown to form when foods, typically containing certain nutrients, are cooked at normal cooking temperatures (e.g., frying, grilling or baking). The toxicity of ACR has been extensively investigated. The major findings of these studies indicate that ACR is neurotoxic in animals and humans, and it has been shown to be a reproductive toxicant in animal models and a rodent carcinogen. Several reviews of ACR toxicity have been conducted and ACR has been categorized as to its potential to be a human carcinogen in these reviews. Allowable levels based on the toxicity data concurrently available had been developed by the U.S. EPA. New data have been published since the U.S. EPA review in 1991. The purpose of this investigation was to review the toxicity data, identify any new relevant data, and select those data to be used in dose-response modeling. Proposed revised cancer and noncancer toxicity values were estimated using the newest U.S. EPA guidelines for cancer risk assessment and noncancer hazard assessment. Assessment of noncancer endpoints using benchmark models resulted in a reference dose (RfD) of 0.83 microg/kg/day based on reproductive effects, and 1.2 microg/kg/day based on neurotoxicity. Thyroid tumors in male and female rats were the only endpoint relevant to human health and were selected to estimate the point of departure (POD) using the multistage model. Because the mode of action of acrylamide in thyroid tumor formation is not known with certainty, both linear and nonlinear low-dose extrapolations were conducted under the assumption that glycidamide or ACR, respectively, were the active agent. Under the U.S. EPA guidelines (2005), when a chemical produces rodent tumors by a nonlinear or threshold mode of action, an RfD is calculated using the most relevant POD and application of uncertainty factors. The RfD was estimated to be 1.5 microg/kg/day based on the use of the area under the curve (AUC) for ACR hemoglobin adducts under the assumption that the parent, ACR, is the proximate carcinogen in rodents by a nonlinear mode of action. When the mode of action in assumed to be linear in the low-dose region, a risk-specific dose corresponding to a specified level of risk (e.g., 1 x 10-5) is estimated, and, in the case of ACR, was 9.5 x 10-2 microg ACR/kg/day based on the use of the AUC for glycidamide adduct data. However, it should be noted that although this review was intended to be comprehensive, it is not exhaustive, as new data are being published continuously.
Collapse
Affiliation(s)
- A Shipp
- ENVIRON International Corporation, 602 East Georgia Street, Ruston, LA 07290, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Michael L, Davies JA. Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat 2004; 204:241-55. [PMID: 15061751 PMCID: PMC1571296 DOI: 10.1111/j.0021-8782.2004.00285.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Branched epithelia determine the anatomy of many mammalian organs; understanding how they develop is therefore an important element of understanding organogenesis as a whole. In recent years, much progress has been made in identifying paracrine factors that regulate branching morphogenesis in many organs, but comparatively little attention has been paid to the mechanisms of morphogenesis that translate these signals into anatomical change. Localized cell proliferation is a potentially powerful mechanism for directing the growth of a developing system to produce a specific final morphology. We have examined the pattern of cell proliferation in the ureteric bud system of the embryonic murine metanephric kidneys developing in culture. We detect a zone of high proliferation at the site of the presumptive ureteric bud even before it emerges from the Wolffian duct and later, as ureteric bud morphogenesis continues, proliferation is localized mainly in the very tips of the branching epithelium. Blocking cell cycling using methotrexate inhibits ureteric bud emergence. The proliferative zone is present at ureteric bud tips only when they are undergoing active morphogenesis; if branching is inhibited either by treatment with natural negative regulators (TGF-beta) or with antagonists of natural positive regulators (GDNF, glycosaminoglycans) then proliferation at the tips falls back to levels characteristic of the stalks behind them. Our results suggest that localized proliferation is an important morphogenetic mechanism in kidney development.
Collapse
Affiliation(s)
- Lydia Michael
- Genes and Development Group, University of Edinburgh College of Medicine, UK.
| | | |
Collapse
|
37
|
Musters S, Coughlan K, McFadden T, Maple R, Mulvey T, Plaut K. Exogenous TGF-β1 Promotes Stromal Development in the Heifer Mammary Gland. J Dairy Sci 2004; 87:896-904. [PMID: 15259224 DOI: 10.3168/jds.s0022-0302(04)73234-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to determine the local effects of transforming growth factor-beta1 (TGF-beta1) on mammary epithelial and stromal cell proliferation and expression of the TGF-beta1 responsive genes c-myc and fibronectin. A single slow-release plastic pellet containing 5 microg of TGF-beta1 and 20 mg of BSA was implanted in the parenchyma of the right rear quarter of the mammary gland of 9-mo-old prepubertal heifers. A control pellet containing 20 mg of BSA was implanted in the left rear quarter of each heifer. All heifers were treated with bromodeoxyuridine (BrdU) at 4, 12.5, and 22 h after the pellets were implanted to label proliferating cells. Two hours after the last BrdU injection, the animals were euthanatized, and their mammary glands were recovered. Proliferation of mammary stromal cells was significantly higher in TGF-beta1-treated quarters than in BSA-treated, control quarters (3.5 vs. 1.8% BrdU-positive cells). This result coincided with a lack of significant effect of TGF-beta1 on proliferation of mammary epithelial cells and apoptosis. By quantitative reverse transcriptase-polymerase chain reaction, we found that c-myc gene expression was unchanged after TGF-beta1 treatment, but fibronectin gene expression was increased 3-fold in TGF-beta1-treated quarters compared with BSA-treated, control quarters. Thus, we concluded that TGF-beta1 selectively acts on the stromal compartment of the bovine mammary gland by increasing cell proliferation and gene expression of the extracellular matrix protein fibronectin.
Collapse
Affiliation(s)
- S Musters
- Department of Animal Science, University of Vermont, Burlington 05405, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ciftci K, Su J, Trovitch PB. Growth factors and chemotherapeutic modulation of breast cancer cells. J Pharm Pharmacol 2003; 55:1135-41. [PMID: 12956904 DOI: 10.1211/002235703322277177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A variety of molecules including growth factors are involved in the metastasis of breast cancer cells to bone. We have investigated the effects of osteoblast derived growth factors, such as insulin-like growth factor-1 (IGF-1) and transforming growth factor beta-1 (TGF-beta1), on doxorubicin (adriamycin)-induced apoptosis and growth arrest of estrogen receptor positive (ER+) (MCF-7) and negative (ER-) (MDA-MB-435) breast cancer cell lines. Human breast normal epithelial (MCF-10A), breast cancer (MCF-7) and metastatic breast cancer (MDA-MB-435) cell lines were exposed to different doses of doxorubicin (0.1, 1 or 10 microM) at various exposure times (12, 24 or 48 h). The doxorubicin cytotoxicity was found to be higher in cancer cell lines (MDA-MB-435 and MCF-7) compared with normal breast epithelial cells (MCF-10A cells). Doxorubicin appeared to exert a blockade of MCF-7 and MDA-MB-435 cells at the G2/M phase, and induced apoptosis in MDA-MB-435 (29 +/- 4.2% vs 3.4 +/- 1.9% control) as assessed by flow cytometry, DNA fragmentation and terminal deoxynucleotidyl-transferase mediated deoxyuridine 5-triphosphate and biotin nick-end labelling (TUNEL) assays. Estradiol (E2) stimulated the growth of MCF-7 cells and increased the distribution of the cells at the G2/M and S phases. Exogenous IGF-1 partially neutralized the doxorubicin cytotoxicity in both cancer cell lines (MCF-7 and MDA-MB-435). Similarly, TGF-beta1 partially neutralized the doxorubicin cytotoxicity in MDA-MB-435 cells by reducing the number of cells at the <G1 phase (from 29% to 6.4%) and enhanced the doxorubicin blockade of MCF-7 (E2-) at the G0/G1 phase. Results showed that the osteoblast-derived growth factors could affect the chemotherapy response of breast cancer cells, thereby allowing for the possibility of chemotherapeutic modulation.
Collapse
Affiliation(s)
- Kadriye Ciftci
- Temple University, School of Pharmacy, Department of Pharmaceutical Sciences, 3307 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
39
|
Plaut K, Dean A, Patnode T, Casey T. Effect of Transforming Growth Factor-beta (TGF-β) on Mammary Development. J Dairy Sci 2003. [DOI: 10.3168/jds.s0022-0302(03)74036-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
D'Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB, Cox JD, Wang JY, Ha SI, Keister BA, Chodosh LA. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol 2002; 16:2034-51. [PMID: 12198241 DOI: 10.1210/me.2002-0073] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epidemiological studies have repeatedly demonstrated that women who undergo an early first full-term pregnancy have a significantly reduced lifetime risk of breast cancer. Similarly, rodents that have previously undergone a full-term pregnancy are highly resistant to carcinogen-induced breast cancer compared with age-matched nulliparous controls. Little progress has been made, however, toward understanding the biological basis of this phenomenon. We have used DNA microarrays to identify a panel of 38 differentially expressed genes that reproducibly distinguishes, in a blinded manner, between the nulliparous and parous states of the mammary gland in multiple strains of mice and rats. We find that parity results in the persistent down-regulation of multiple genes encoding growth factors, such as amphiregulin, pleiotrophin, and IGF-1, as well as the persistent up-regulation of the growth-inhibitory molecule, TGF-beta3, and several of its transcriptional targets. Our studies further indicate that parity results in a persistent increase in the differentiated state of the mammary gland as well as lifelong changes in the hematopoietic cell types resident within the gland. These findings define a developmental state of the mammary gland that is refractory to carcinogenesis and suggest novel hypotheses for the mechanisms by which parity may modulate breast cancer risk.
Collapse
Affiliation(s)
- Celina M D'Cruz
- Departments of Cancer Biology, of Cell and Developmental Biology, and of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol 2002; 247:11-25. [PMID: 12074549 DOI: 10.1006/dbio.2002.0669] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammary gland development initiates postnatally with the development of terminal end buds (TEBs) at the end of the rudimentary ducts. These grow out through the fat pad and bifurcate to lay down the rudimentary ductal tree. At the initiation of their development, TEBs recruit to their surrounding stroma a substantial population of macrophages. Using mice homozygous for a null mutation in the gene for the macrophage growth factor, colony stimulating factor-1 (CSF-1), that are severely depleted in macrophages, we demonstrated that CSF-1-regulated macrophages are required for normal branching morphogenesis in the mammary gland. However, these mice have a pleiotropic phenotype as a result of the generalized macrophage deficiency. To test that the effect of the mutation observed in the mammary gland was organ-autonomous, we developed a tetracycline-binary system whereby CSF-1 was specifically expressed in the mammary epithelium under the regulation of the MMTV-promoter. This restored mammary macrophage populations but not those in other tissues and corrected the branching morphogenesis defect. Inhibition of CSF-1 expression by tetracycline treatment for varying periods suggested that CSF-1-regulated macrophages are required throughout early mammary gland development. These data show that macrophages acting locally are required for branching morphogenesis of the mammary gland.
Collapse
Affiliation(s)
- Andrew Van Nguyen
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park, New York, New York, 10461, USA
| | | |
Collapse
|
42
|
Zhao H, Patra A, Tanaka Y, Li LC, Dahiya R. Transforming growth factor-beta(s) and their receptors in aging rat prostate. Biochem Biophys Res Commun 2002; 294:464-9. [PMID: 12051734 DOI: 10.1016/s0006-291x(02)00484-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We hypothesize that rat fetal urogenital sinus mesenchyme (UGM) can induce prostatic growth of growth quiescent adult rat prostate through modulations of TGFbetas and their receptors. To test this hypothesis, prostatic ducts from aging rat prostate (4, 12, 17, 22, and 27 months) were combined with fetal rat UGM and grafted under renal capsule of athymic nude mice. At 1, 3, and 5 months the tissue recombinants were harvested from renal capsule and analyzed for their growth. The gene and protein expression of TGFbeta1, 2, 3 and their receptors, TbetaR-I and TbetaR-II, were analyzed by RT-PCR and immunohistochemistry, respectively. The results of these experiments demonstrate that prostate ducts when combined with rat UGM formed larger grafts as compared to control (prostatic ducts without UGM). The older rat prostate recombinants (17, 22, and 27 months) formed larger grafts (159 mg/graft) as compared to younger rat prostate (4 and 12 months) grafts (51 mg/graft). The mRNA and protein expression for TbetaR-I and TbetaR-II in 22 and 27 months rat prostate tissue recombinants were significantly lower than 4, 12, and 17 month tissue recombinants. However, mRNA expression for TGFbeta1, TGFbeta2, and TGFbeta3 did not change with aging rat tissue recombinants. The protein expression for TGFbeta1 was significantly up-regulated whereas TGFbeta2 and TGFbeta3 were down-regulated with aging prostate tissue recombinants. The present study demonstrates for the first time that rat fetal UGM differentially induces growth of aging rat prostate in a tissue recombinant model. The mechanisms of induction may be through up-regulation of TGFbeta1 and down-regulation of TGFbeta2, and TGFbeta3. However, the action of TGFbetas may be through TbetaR-I and TbetaR-II independent pathways since these receptors were lacking or low in older rat prostate tissue recombinants. These findings are important in understanding the mechanisms of UGM mediated prostatic growth.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Urology, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
43
|
Daniel CW, Robinson S, Silberstein GB. The transforming growth factors beta in development and functional differentiation of the mouse mammary gland. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 501:61-70. [PMID: 11787732 DOI: 10.1007/978-1-4615-1371-1_7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transforming growth factors beta (TGF-beta) are multifunctional regulators with diverse effects on a variety of developmental processes and differentiated functions. In the mammary gland, a considerable amount of evidence has accumulated indicating that TGF-beta plays a critical role during several phases of the mammary cycle. TGF-beta regulates growth and patterning of the mammary ductal tree in the virgin mouse. During pregnancy, TGF-beta is required for alveolar development and functional differentiation, while at the same time inhibiting secretion of milk proteins. At parturition this inhibition is lifted, permitting initiation of lactation.
Collapse
Affiliation(s)
- C W Daniel
- Department of Biology, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
44
|
Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Hui C, Daniel CW. The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 2001; 238:133-44. [PMID: 11783999 DOI: 10.1006/dbio.2001.0410] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog signal transduction network performs critical roles in mediating cell-cell interactions during embryogenesis and organogenesis. Loss-of-function or misexpression mutation of hedgehog network components can cause birth defects, skin cancer, and other tumors. The Gli gene family (Gli1, Gli2, and Gli3) encodes zinc finger transcription factors that act as mediators of hedgehog signal transduction. In this study, we investigate the role of Gli2 in mammary gland development. Mammary expression of Gli2 is developmentally regulated in a tissue compartment-specific manner. Expression is exclusively stromal during virgin stages of development but becomes both epithelial and stromal during pregnancy and lactation. The null phenotype with respect to both ductal and alveolar development was examined by transplantation rescue of embryonic mammary glands into physiologically normal host females. Glands derived from both wild type and null embryo donors showed ductal outgrowths that developed to equivalent extents in virgin hosts. However, in null transplants, ducts were frequently distended or irregularly shaped and showed a range of histological alterations similar to micropapillary ductal hyperplasias in the human breast. Alveolar development during pregnancy was not overtly affected by loss of Gli2 function. Ductal defects were not observed when homozygous null epithelium was transplanted into a wild type stromal background, indicating that Gli2 function is required primarily in the stroma for proper ductal development. DeltaGli2 heterozygotes also demonstrated an elevated frequency and severity of focal ductal dysplasia relative to that of wild type littermate- and age-matched control animals.
Collapse
Affiliation(s)
- M T Lewis
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 2001; 128:3117-31. [PMID: 11688561 PMCID: PMC2785713 DOI: 10.1242/dev.128.16.3117] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a crucial role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.
Collapse
Affiliation(s)
- Marina Simian
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yohei Hirai
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marc Navre
- Affymax Research Institute, Santa Clara, CA 95051, USA
| | - Zena Werb
- Department of Anatomy, Box 0750, University of California, San Francisco, CA 94143, USA
| | - Andre Lochter
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
46
|
Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3:400-8. [PMID: 11283614 DOI: 10.1038/35070086] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-beta (TGFbeta) is a cytokine that arrests epithelial cell division by switching off the proto-oncogene c-myc and rapidly switching on cyclin-dependent kinase (CDK) inhibitors such as p15INK4b. Gene responses to TGFbeta involve Smad transcription factors that are directly activated by the TGFbeta receptor. Why downregulation of c-myc expression by TGFbeta is required for rapid activation of p15INK4b has remained unknown. Here we provide evidence that TGFbeta signalling prevents recruitment of Myc to the p15INK4b transcriptional initiator by Myc-interacting zinc-finger protein 1 (Miz-1). This relieves repression and enables transcriptional activation by a TGFbeta-induced Smad protein complex that recognizes an upstream p15INK4b promoter region and contacts Miz-1. Thus, two separate TGFbeta-dependent inputs - Smad-mediated transactivation and relief of repression by Myc - keep tight control over p15INK4b activation.
Collapse
Affiliation(s)
- J Seoane
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ilan N, Cheung L, Miller S, Mohsenin A, Tucker A, Madri JA. Pecam-1 is a modulator of stat family member phosphorylation and localization: lessons from a transgenic mouse. Dev Biol 2001; 232:219-32. [PMID: 11254359 DOI: 10.1006/dbio.2001.0186] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PECAM-1 (CD31) is a member of the immunoglobin (Ig) superfamily of cell adhesion molecules whose expression is restricted to hematopoietic and vascular cells. PECAM-1 can recruit adapter and signaling molecules via its immunoreceptor tyrosine activation motif (ITAM), suggesting that PECAM-1 plays a role in signal transduction pathways. To study the involvement of PECAM-1 in signaling cascades in vivo, we used the major histocompatibility (MHC) I gene promoter to target ectopic PECAM-1 expression in transgenic mice. We noted an attenuation of mammary gland development at early stages of virgin ductal branching morphogenesis. STAT5a, a modulator of milk protein gene expression during lactation, was localized to the nuclei of ductal epithelial cells of 6-week-old virgin PECAM-1 transgenics, but not in control mice. This correlated with decreases in ductal epithelial cell proliferation and induction of p21, an inhibitor of cell cycle progression. Using in vitro model systems we demonstrated PECAM-1/STAT5a association and found that residue Y701 in PECAM-1's cytoplasmic tail is important for PECAM-1/STAT5 association and that PECAM-1 modulates increases in STAT5a tyrosine phosphorylation levels. We suggest that by serving as a scaffolding, PECAM-1 can bring substrates (STAT5a) and enzymes (a kinase) into close proximity, thereby modulating phosphorylation levels of selected proteins, as previously noted for beta-catenin.
Collapse
Affiliation(s)
- N Ilan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kenney NJ, Smith GH, Lawrence E, Barrett JC, Salomon DS. Identification of Stem Cell Units in the Terminal End Bud and Duct of the Mouse Mammary Gland. J Biomed Biotechnol 2001; 1:133-143. [PMID: 12488607 PMCID: PMC129060 DOI: 10.1155/s1110724301000304] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mouse mammary gland may undergo cycles of proliferation, terminal differentiation, tissue remodeling, and more importantly malignant transformation.Mammary epithelial stem cells and their progeny participate in these processes.Mammary epithelial stem cells are multipotent, exhibit properties of self renewal (up to 7 divisions)and may exist either as long-lived nondividing cells or as proliferating-differentiating cells. The focus of this study was to locate stem cells by identifying them as long-lived, label-retaining mammary epithelial cells (LRCs)in growth active (developing)or growth static (aged)mammary ducts. Initially, primary epithelial cells were pulse labeled with either fluorescent tracker dye and/or BrdU. Cells were then transplanted into cleared juvenile syngeneic mammary fat pads and held for 5 weeks or 8 weeks. In this study, we demonstrate that LRCs are stem cells and their progeny (transitional cells)are arranged as transitional units (TUs). Additionally, TUs are located every 250 +/- 75 &mgr;m in ducts or in the terminal end bud 200-600 &mgr;m in diameter. Molecules expressed in TUs were Zonula Occludens-1 and alpha-catenin proteins which were significantly detected in 75%-91% (P <0.001)of the LRCs cells that make up the TU. These data suggest that transitional units may be a group of label-retaining stem cells and maybe involved in the developmental or cancer process.
Collapse
|
49
|
Pollard JW. Tumour-stromal interactions. Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res 2001; 3:230-7. [PMID: 11434874 PMCID: PMC138687 DOI: 10.1186/bcr301] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Revised: 04/26/2001] [Accepted: 05/17/2001] [Indexed: 11/24/2022] Open
Abstract
The mammary gland undergoes morphogenesis through the entire reproductive life of mammals. In mice, ductal outgrowth from the nipple across the fat pad results in an intricate, well spaced ductal tree that further ramifies and develops alveolar structures during pregnancy. Ductal morphogenesis is regulated by the concerted action of circulating steroid and polypeptide hormones, and local epithelial-mesenchymal inductive signals. Transforming growth factor (TGF)-beta1-3 and hepatocyte growth factor (HGF)/scatter factor (SF) are important components of this latter signaling pathway. TGF-beta1 and TGF-beta3 have roles in both promotion and inhibition of branching morphogenesis that are dependent on concentration and context. HGF/SF promotes ductal outgrowth and tubule formation in the mammary gland. These data suggest that these two growth factors have complementary roles in promoting mammary ductal morphogenesis and in maintaining ductal spacing. In addition, TGF-beta3 triggers apoptosis in the alveolar epithelia, which is a necessary component of mammary gland involution and return of the ductal structure to a virgin-like state after lactation.
Collapse
Affiliation(s)
- J W Pollard
- Departments of Developmental and Molecular Biology, and OB/GYN and Women's Health, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
50
|
Abstract
Epithelial tissues such as kidney, lung, and breast arise through branching morphogenesis of a pre-existing epithelial structure. They share common morphological stages and a need for regulation of a similar set of developmental decisions--where to start; when, where, and in which direction to branch; and how many times to branch--decisions requiring regulation of cell proliferation, apoptosis, invasiveness, and cell motility. It is likely that similar molecular mechanisms exist for the epithelial branching program. Here we focus on the development of the collecting system of the kidney, where, from recent data using embryonic organ culture, cell culture models of branching morphogenesis, and targeted gene deletion experiments, the outlines of a working model for branching morphogenesis begin to emerge. Key branching morphogenetic molecules in this model include growth factors, transcription factors, distal effector molecules (such as extracellular matrix proteins, integrins, proteinases and their inhibitors), and genes regulating apoptosis and cell proliferation.
Collapse
Affiliation(s)
- M Pohl
- Department of Pediatrics, University of California, San Diego, La Jolla 92093-0693, USA
| | | | | | | |
Collapse
|