1
|
Liu L, Yin L, Yuan Y, Tang Y, Lin Z, Liu Y, Yang J. Developmental Characteristics of Skeletal Muscle during the Embryonic Stage in Chinese Yellow Quail ( Coturnix japonica). Animals (Basel) 2023; 13:2317. [PMID: 37508093 PMCID: PMC10376076 DOI: 10.3390/ani13142317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The quail is an important research model, and the demand for quail meat has been increasing in recent years; therefore, it is worthwhile investigating the development of embryonic skeletal muscle and the expression patterns of regulatory genes. In this study, the expression of MyoD and Pax7 in the breast muscle (m. pectoralis major) and leg muscle (m. biceps femoris) of quail embryos on days 10 through 17 were determined using qRT-PCR. Paraffin sections of embryonic muscle were analyzed to characterize changes over time. Results showed that MyoD and Pax7 were expressed in both breast and leg muscles and played a significant role in embryonic muscle development. Compared to breast muscle, leg muscle grew faster and had greater weight and myofiber size. The findings suggested that embryonic day 12 (E12) may be a key point for muscle development. Correlation analysis showed that MyoD expression was significantly negatively correlated with muscle and embryo weight, whereas Pax7 gene expression had no significant correlation with these characteristics. These fundamental results provide a theoretical basis for understanding the characteristics and transition points of skeletal muscle development in quail embryos and an important reference for farmers raising quail from eggs.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaohan Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiandong Yang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Florkowska A, Meszka I, Zawada M, Legutko D, Proszynski TJ, Janczyk-Ilach K, Streminska W, Ciemerych MA, Grabowska I. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Res Ther 2020; 11:238. [PMID: 32552916 PMCID: PMC7301568 DOI: 10.1186/s13287-020-01742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo. For this reason, we used teratomas to study early and advanced stages of in vivo ESC myogenic differentiation and the role of Pax7 in this process. Pax7 transcription factor plays a crucial role in the formation and differentiation of skeletal muscle precursor cells during embryonic development. It controls the expression of other myogenic regulators and also acts as an anti-apoptotic factor. It is also involved in the formation and maintenance of satellite cell population. Methods In vivo approach we used involved generation and analysis of pluripotent stem cell-derived teratomas. Such model allows to analyze early and also terminal stages of tissue differentiation, for example, terminal stages of myogenesis, including the formation of innervated and vascularized mature myofibers. Results We determined how the lack of Pax7 function affects the generation of different myofiber types. In Pax7−/− teratomas, the skeletal muscle tissue occupied significantly smaller area, as compared to Pax7+/+ ones. The proportion of myofibers expressing Myh3 and Myh2b did not differ between Pax7+/+ and Pax7−/− teratomas. However, the area of Myh7 and Myh2a myofibers was significantly lower in Pax7−/− ones. Molecular characteristic of skeletal muscles revealed that the levels of mRNAs coding Myh isoforms were significantly lower in Pax7−/− teratomas. The level of mRNAs encoding Pax3 was significantly higher, while the expression of Nfix, Eno3, Mck, Mef2a, and Itga7 was significantly lower in Pax7−/− teratomas, as compared to Pax7+/+ ones. We proved that the number of satellite cells in Pax7−/− teratomas was significantly reduced. Finally, analysis of neuromuscular junction localization in samples prepared with the iDISCO method confirmed that the organization of neuromuscular junctions in Pax7−/− teratomas was impaired. Conclusions Pax7−/− ESCs differentiate in vivo to embryonic myoblasts more readily than Pax7+/+ cells. In the absence of functional Pax7, initiation of myogenic differentiation is facilitated, and as a result, the expression of mesoderm embryonic myoblast markers is upregulated. However, in the absence of functional Pax7 neuromuscular junctions, formation is abnormal, what results in lower differentiation potential of Pax7−/− ESCs during advanced stages of myogenesis.
Collapse
Affiliation(s)
- Anita Florkowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Igor Meszka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Zawada
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Diana Legutko
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Proszynski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Present Address: Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Arifuzzaman M, Ito A, Ikeda K, Kawabe Y, Kamihira M. Fabricating Muscle–Neuron Constructs with Improved Contractile Force Generation. Tissue Eng Part A 2019; 25:563-574. [DOI: 10.1089/ten.tea.2018.0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Md Arifuzzaman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kazushi Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Liu L, Zhang C, Wang W, Xi N, Wang Y. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation. Soft Robot 2018; 5:748-760. [DOI: 10.1089/soro.2018.0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, Emerging Technologies Institute, University of Hong Kong Pokfulam, Hong Kong, Hong Kong
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
5
|
Paerhati P, Ito A, Yoshioka K, Iwamoto K, Fujiwara S, Horie M, Kawabe Y, Kamihira M. Neural differentiation of mouse induced pluripotent stem cells using cadherin gene-engineered PA6 feeder cells. J Biosci Bioeng 2018; 127:633-640. [PMID: 30391238 DOI: 10.1016/j.jbiosc.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/22/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
Abstract
Investigating neural differentiation of pluripotent stem cells, including induced pluripotent stem (iPS) cells, is of importance for studying early neural development and providing a potential source of cells for nerve regeneration. Stromal cell-derived inducing activity (SDIA) using PA6 stromal cells promotes neural differentiation of iPS cells. Thus, we hypothesized that cadherin gene-engineered PA6 feeder cells will enhance the performance of SDIA by facilitating cell-cell interactions. Consequently, we created cadherin gene-engineered PA6 cells. Efficiency of neural differentiation from mouse iPS cells on PA6 feeder cells overexpressing E-cadherin gene (46%) or N-cadherin gene (27%) was significantly higher compared with parental PA6 feeder cells (19%). In addition, efficiency of motor neuron differentiation from mouse iPS cells on cadherin-gene engineered feeder cells (E-cadherin, 7.4%; N-cadherin, 11%) was significantly higher compared with parental PA6 feeder cells (4.1%). Altogether, these results indicate that cadherin gene-engineered feeder cells are a potent tool for promoting neural differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Paerwen Paerhati
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kantaro Yoshioka
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaori Iwamoto
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sho Fujiwara
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanobu Horie
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep 2017; 7:17279. [PMID: 29222527 PMCID: PMC5722906 DOI: 10.1038/s41598-017-17490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.
Collapse
|
7
|
Banan Sadeghian R, Ebrahimi M, Salehi S. Electrical stimulation of microengineered skeletal muscle tissue: Effect of stimulus parameters on myotube contractility and maturation. J Tissue Eng Regen Med 2017. [PMID: 28622706 DOI: 10.1002/term.2502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Skeletal muscle tissues engineered in vitro are aneural, are short in the number of fibres required to function properly and degenerate rapidly. Electrical stimulation has been widely used to compensate for such a lack of neural activity, yet the relationship between the stimulation parameters and the tissue response is subject to debate. Here we studied the effect of overnight electrical stimulation (training) on the contractility and maturity of aligned C2C12 myotubes developed on micropatterned gelatin methacryloyl (GelMA) substrates. Bipolar rectangular pulse (BRP) trains with frequency, half-duration and applied pulse train amplitudes of f = 1 Hz, ton = 0.5 ms and Vapp = {3 V, 4 V, 4.5 V}, respectively, were applied for 12 h to the myotubes formed on the microgrooved substrates. Aligned myotubes were contracting throughout the training period for Vapp ≥ 4 V. Immediately after training, the samples were subjected to series of BRPs with 2 ≤ Vapp ≤ 5 V and 0.2 ≤ ton ≤ 0.9 ms, during which myotube contraction dynamics were recorded. Analysis of post-training contraction revealed that only the myotubes trained at Vapp = 4 V displayed consistent and repeatable contraction profiles, showing the dynamics of myotube contractility as a function of triggering pulse voltage and current amplitudes, duration and imposed electrical energy. In addition, myotubes trained at Vapp = 4 V displayed amplified expression levels of genes pertinent to sarcomere development correlated with myotube maturation. Our findings are imperative for a better understanding of the influence of electrical pulses on the maturation of microengineered myotubes.
Collapse
Affiliation(s)
| | - Majid Ebrahimi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Kasper AM, Turner DC, Martin NRW, Sharples AP. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. J Cell Physiol 2017; 233:1985-1998. [DOI: 10.1002/jcp.25840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas M. Kasper
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Daniel C. Turner
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Neil R. W. Martin
- Musculoskeletal Biology Research Group, School of Sport, Exercise, and Health Sciences; Loughborough University; Loughborough UK
| | - Adam P. Sharples
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
9
|
Abstract
Skeletal muscle development has been the focus of intensive study for many decades. Recent advances in genetic manipulation of the mouse have increased our understanding of the cell signalling involved in the development of muscle progenitors which give rise to adult skeletal muscles and their stem cell populations. However, the influence of a vital tissue type – the peripheral nerve—has largely been ignored since its earliest descriptions. Here we carefully describe the timing in which myogenic progenitors expressing Pax3 and Pax7 (the earliest markers of myogenic cells) enter the limb buds of rat and mouse embryos, as well as the spatiotemporal relationship between these progenitors and the ingrowing peripheral nerve. We show that progenitors expressing Pax3 enter the limb bud one full day ahead of the first neurites and that Pax7-expressing progenitors (associated with secondary myogenesis in the limb) are first seen in the limb bud at the time of nerve entry and in close proximity to the nerve. The initial entry of the nerve also coincides with the first expression of myosin heavy chain showing that the first contact between nerves and myogenic cells correlates with the onset of myogenic differentiation. Furthermore, as the nerve grows into the limb, Pax3 expression is progressively replaced by Pax7 expression in myogenic progenitors. These findings indicate that the ingrowing nerve enters the limb presumptive muscle masses earlier than what was generally described and raises the possibility that nerve may influence the differentiation of muscle progenitors in rodent limbs.
Collapse
|
10
|
Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles. Ann Biomed Eng 2013; 42:1391-405. [PMID: 24366526 DOI: 10.1007/s10439-013-0966-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022]
Abstract
The field of tissue engineering involves design of high-fidelity tissue substitutes for predictive experimental assays in vitro and cell-based regenerative therapies in vivo. Design of striated muscle tissues, such as cardiac and skeletal muscle, has been particularly challenging due to a high metabolic demand and complex cellular organization and electromechanical function of the native tissues. Successful engineering of highly functional striated muscles may thus require creation of biomimetic culture conditions involving medium perfusion, electrical and mechanical stimulation. When optimized, these external cues are expected to synergistically and dynamically activate important intracellular signaling pathways leading to accelerated muscle growth and development. This review will discuss the use of different types of tissue culture bioreactors aimed at providing conditions for enhanced structural and functional maturation of engineered striated muscles.
Collapse
|
11
|
Tokita M, Nakayama T. Development of the trigeminal motor neurons in parrots: implications for the role of nervous tissue in the evolution of jaw muscle morphology. J Morphol 2013; 275:191-205. [PMID: 24123304 DOI: 10.1002/jmor.20208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 11/12/2022]
Abstract
Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Program in Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
12
|
Weimer K, Theobald J, Campbell KS, Esser KA, DiMario JX. Genome-wide expression analysis and EMX2 gene expression in embryonic myoblasts committed to diverse skeletal muscle fiber type fates. Dev Dyn 2013; 242:1001-20. [PMID: 23703830 PMCID: PMC3763492 DOI: 10.1002/dvdy.23988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Primary skeletal muscle fibers form during embryonic development and are characterized as fast or slow fibers based on contractile protein gene expression. Different avian primary muscle fiber types arise from myoblast lineages committed to formation of diverse fiber types. To understand the basis of embryonic muscle fiber type diversity and the distinct myoblast lineages that generate this diversity, gene expression analyses were conducted on differentiated muscle fiber types and their respective myoblast precursor lineages. RESULTS Embryonic fast muscle fibers preferentially expressed 718 genes, and embryonic fast/slow muscle fibers differentially expressed 799 genes. Fast and fast/slow myoblast lineages displayed appreciable diversity in their gene expression profiles, indicating diversity of precursor myoblasts. Several genes, including the transcriptional regulator EMX2, were differentially expressed in both fast/slow myoblasts and muscle fibers vs. fast myoblasts and muscle fibers. EMX2 was localized to nuclei of fast/slow myoblasts and muscle fibers and was not detected in fast lineage cells. Furthermore, EMX2 overexpression and knockdown studies indicated that EMX2 is a positive transcriptional regulator of the slow myosin heavy chain 2 (MyHC2) gene promoter activity in fast/slow muscle fibers. CONCLUSIONS These results indicate the presence of distinct molecular signatures that characterize diverse embryonic myoblast lineages before differentiation.
Collapse
Affiliation(s)
- Kristina Weimer
- Rosalind Franklin University of Medicine and Science, School of Graduate and Postdoctoral Studies, Department of Cell Biology and Anatomy, 3333 Green Bay Road, North Chicago, IL 60064
| | - Jillian Theobald
- Rosalind Franklin University of Medicine and Science, School of Graduate and Postdoctoral Studies, Department of Cell Biology and Anatomy, 3333 Green Bay Road, North Chicago, IL 60064
| | - Kenneth S. Campbell
- Center for Muscle Biology, Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Karyn A. Esser
- Center for Muscle Biology, Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Joseph X. DiMario
- Rosalind Franklin University of Medicine and Science, School of Graduate and Postdoctoral Studies, Department of Cell Biology and Anatomy, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
13
|
Garland CB, Pomerantz JH. Regenerative strategies for craniofacial disorders. Front Physiol 2012; 3:453. [PMID: 23248598 PMCID: PMC3521957 DOI: 10.3389/fphys.2012.00453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/12/2012] [Indexed: 01/26/2023] Open
Abstract
Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders.
Collapse
Affiliation(s)
- Catharine B Garland
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California San Francisco San Francisco, CA, USA ; Craniofacial and Mesenchymal Biology Program, University of California San Francisco San Francisco, CA, USA
| | | |
Collapse
|
14
|
Donnelly K, Khodabukus A, Philp A, Deldicque L, Dennis RG, Baar K. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C Methods 2010; 16:711-8. [PMID: 19807268 DOI: 10.1089/ten.tec.2009.0125] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC-DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 + or - 0.16; 10 Hz = 5.0 + or - 0.07; and 100 Hz = 5.5 + or - 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 + or - 0.009; 1.25 V/mm = 0.10 + or - 0.011; 2.5 V/mm = 0.14146 + or - 0.012; and 5 V/mm = 0.03756 + or - 0.008 kN/mm(2)) and excitability (CTL = 0.53 + or - 0.022; 1.25 V/mm = 0.44 + or - 0.025; 2.5 V/mm = 0.41 + or - 0.012; and 5 V/mm = 0.60 + or - 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved in vitro using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio.
Collapse
Affiliation(s)
- Kenneth Donnelly
- Division of Mechanical Engineering and Mechatronics, University of Dundee, Dundee, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
During posthatching development the fins of fishes undergo striking changes in both structure and function. In this article we examine the development of the pectoral fins from larval through adult life history stages in the zebrafish (Danio rerio), describing in detail their pectoral muscle morphology. We explore the development of muscle structure as a way to interpret the fins' role in locomotion. Genetic approaches in the zebrafish model are providing new tools for examining fin development and we take advantage of transgenic lines in which fluorescent protein is expressed in specific tissues to perform detailed three-dimensional, in vivo fin imaging. The fin musculature of larval zebrafish is organized into two thin sheets of fibers, an abductor and adductor, one on each side of an endoskeletal disk. Through the juvenile stage the number of muscle fibers increases and muscle sheets cleave into distinct muscle subdivisions as fibers orient to the developing fin skeleton. By the end of the juvenile period the pectoral girdle and fin muscles have reoriented to take on the adult organization. We find that this change in morphology is associated with a switch of fin function from activity during axial locomotion in larvae to use in swim initiation and maneuvering in adults. The examination of pectoral fins of the zebrafish highlights the yet to be explored diversity of fin structure and function in subadult developmental stages. J. Morphol. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- D H Thorsen
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
16
|
Issa LL, Palmer SJ, Guven KL, Santucci N, Hodgson VRM, Popovic K, Joya JE, Hardeman EC. MusTRD can regulate postnatal fiber-specific expression. Dev Biol 2006; 293:104-15. [PMID: 16494860 DOI: 10.1016/j.ydbio.2006.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 12/21/2005] [Accepted: 01/20/2006] [Indexed: 02/09/2023]
Abstract
Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.
Collapse
Affiliation(s)
- Laura L Issa
- Muscle Development Unit, Children's Medical Research Institute, Wentworthville, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Odemis V, Lamp E, Pezeshki G, Moepps B, Schilling K, Gierschik P, Littman DR, Engele J. Mice deficient in the chemokine receptor CXCR4 exhibit impaired limb innervation and myogenesis. Mol Cell Neurosci 2005; 30:494-505. [PMID: 16198599 DOI: 10.1016/j.mcn.2005.07.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/13/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022] Open
Abstract
The chemokine CXCL12/SDF-1 and its receptor CXCR4 regulate the development and the function of the hematopoietic system and control morphogenesis of distinct brain areas. Here, we demonstrate that inactivation of CXCR4 results in a massive loss of spinal cord motoneurons and dorsal root ganglion neurons and, subsequently, in a reduced innervation of the developing mouse fore- and hindlimbs. However, only the death of sensory neurons seems to be a direct consequence of receptor inactivation as suggested by the observations that DRG neurons, but not motoneurons, of wild-type animals express CXCR4 and respond to CXCL12 with an increase in cell survival. In contrast, the increased death of motoneurons in CXCR4-deficient animals seems to result from impaired limb myogenesis and a subsequent loss of muscle-derived neurotrophic support. In summary, our findings unravel a previously unrecognized complex role of CXCL12/CXCR4 in the control of limb neuromuscular development.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cell Death/genetics
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Extremities
- Female
- Ganglia, Spinal/abnormalities
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/immunology
- Limb Deformities, Congenital/metabolism
- Male
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Motor Neurons/ultrastructure
- Muscle, Skeletal/abnormalities
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiopathology
- Nerve Growth Factors/deficiency
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Peripheral Nerves/abnormalities
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
- Receptors, CXCR4/genetics
- Spinal Cord/abnormalities
- Spinal Cord/pathology
- Spinal Cord/physiopathology
Collapse
Affiliation(s)
- Veysel Odemis
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Araya R, Riquelme MA, Brandan E, Sáez JC. The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. ACTA ACUST UNITED AC 2005; 47:174-88. [PMID: 15572171 DOI: 10.1016/j.brainresrev.2004.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
Skeletal muscle differentiation follows an organized sequence of events including commitment, cell cycle withdrawal, and cell fusion to form multinucleated myotubes. The role of adenosine 5'-triphosphate (ATP)-mediated signaling in differentiation of skeletal muscle myoblasts was evaluated in C(2)C(12) cells, a myoblast cell line. Cell differentiation was inhibited by P2X receptor blockers or by degradation of endogenous ATP with apyrase. However, pertussis toxin, known to block only a group of P2Y receptors, did not alter the differentiation process. Cells were heterogeneous in their expression of functional P2X receptors, evaluated by the uptake of fluorescent permeability tracers (Lucifer yellow and ethidium bromide), and by immunofluorescence of P2X(7) receptors. Moreover, xestospongin C, a selective and membrane-permeable inhibitor of IP(3) receptors, inhibited both myotube formation and myogenin expression. Based on these results, we suggest that the known increase in intracellular Ca(2+) concentration required for differentiation is due at least in part to Ca(2+) influx through P2X receptors and Ca(2+) release from intracellular stores. The possible involvement of P2X receptors and other pathways that might set the intracellular Ca(2+) at the level required for myoblast differentiation as well as the possible involvement of gap junction channels in the intercellular transfer of second messengers involved in coordinating myogenesis is proposed.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Extracellular Fluid/metabolism
- Fluorescent Dyes/metabolism
- Gap Junctions/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mice
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myogenin/biosynthesis
- Myogenin/drug effects
- Purinergic P2 Receptor Antagonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X7
- Sarcolemma/metabolism
Collapse
Affiliation(s)
- Roberto Araya
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Region Metropolitana, Santiago 114D, Chile.
| | | | | | | |
Collapse
|
19
|
Lefebvre JL, Ono F, Puglielli C, Seidner G, Franzini-Armstrong C, Brehm P, Granato M. Increased neuromuscular activity causes axonal defects and muscular degeneration. Development 2004; 131:2605-18. [PMID: 15128655 DOI: 10.1242/dev.01123] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Before establishing terminal synapses with their final muscle targets,migrating motor axons form en passant synaptic contacts with myotomal muscle. Whereas signaling through terminal synapses has been shown to play important roles in pre- and postsynaptic development, little is known about the function of these early en passant synaptic contacts. Here, we show that increased neuromuscular activity through en passant synaptic contacts affects pre- and postsynaptic development. We demonstrate that in zebrafish twistermutants, prolonged neuromuscular transmission causes motor axonal extension and muscular degeneration in a dose-dependent manner. Cloning of twister reveals a novel, dominant gain-of-function mutation in the muscle-specific nicotinic acetylcholine receptor α-subunit, CHRNA1. Moreover, electrophysiological analysis demonstrates that the mutant subunit increases synaptic decay times, thereby prolonging postsynaptic activity. We show that as the first en passant synaptic contacts form, excessive postsynaptic activity in homozygous embryos severely impedes pre- and postsynaptic development, leading to degenerative defects characteristic of the human slow-channel congenital myasthenic syndrome. By contrast, in heterozygous embryos, transient and mild increase in postsynaptic activity does not overtly affect postsynaptic morphology but causes transient axonal defects, suggesting bi-directional communication between motor axons and myotomal muscle. Together, our results provide compelling evidence that during pathfinding, myotomal muscle cells communicate extensively with extending motor axons through en passant synaptic contacts.
Collapse
Affiliation(s)
- Julie L Lefebvre
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ren J, Greer JJ. Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord. J Neurophysiol 2003; 89:1187-95. [PMID: 12626606 DOI: 10.1152/jn.00539.2002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patterned spontaneous activity is generated in developing neuronal circuits throughout the CNS including the spinal cord. This activity is thought to be important for activity-dependent neuronal growth, synapse formation, and the establishment of neuronal networks. In this study, we examine the spatiotemporal distribution of motor patterns generated by rat spinal cord and medullary circuits from the time of initial axon outgrowth through to the inception of organized respiratory and locomotor rhythmogenesis during late gestation. This includes an analysis of the neuropharmacological control of spontaneous rhythms generated within the spinal cord at different developmental stages. In vitro spinal cord and medullary-spinal cord preparations isolated from rats at embryonic ages (E)13.5-E21.5 were studied. We found age-dependent changes in the spatiotemporal pattern, neurotransmitter control, and propensity for the generation of spontaneous rhythmic motor discharge during the prenatal period. The developmental profile of the neuropharmacological control of rhythmic bursting can be divided into three periods. At E13.5-E15.5, the spinal networks comprising cholinergic and glycinergic synaptic interconnections are capable of generating rhythmic activity, while GABAergic synapses play a role in supporting the spontaneous activity. At late stages (E18.5-E21.5), glutamate drive acting via non- N-methyl-d-aspartate (non-NMDA) receptors is primarily responsible for the rhythmic activity. During the middle stage (E16.5-E17.5), the spontaneous activity results from the combination of synaptic drive acting via non-NMDA glutamatergic, nicotinic acetylcholine, glycine, and GABA(A) receptors. The modulatory actions of chloride-mediated conductances shifts from predominantly excitatory to inhibitory late in gestation.
Collapse
Affiliation(s)
- Jun Ren
- Department of Physiology, Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
21
|
Patel K, Christ B, Stockdale FE. Control of muscle size during embryonic, fetal, and adult life. Results Probl Cell Differ 2003; 38:163-86. [PMID: 12132394 DOI: 10.1007/978-3-540-45686-5_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ketan Patel
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 OTU, UK
| | | | | |
Collapse
|
22
|
Wigmore PM, Evans DJR. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:175-232. [PMID: 12049208 DOI: 10.1016/s0074-7696(02)16006-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Skeletal muscles have a characteristic proportion and distribution of fiber types, a pattern which is set up early in development. It is becoming clear that different mechanisms produce this pattern during early and late stages of myogenesis. In addition, there are significant differences between the formation of muscles in head and those found in rest of the body. Early fiber type differentiation is dependent upon an interplay between patterning systems which include the Wnt and Hox gene families and different myoblast populations. During later stages, innervation, hormones, and functional demand increasingly act to determine fiber type, but individual muscles still retain an intrinsic commitment to form particular fiber types. Head muscle is the only muscle not derived from the somites and follows a different development pathway which leads to the formation of particular fiber types not found elsewhere. This review discusses the formation of fiber types in both head and other muscles using results from both chick and mammalian systems.
Collapse
Affiliation(s)
- Peter M Wigmore
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | |
Collapse
|
23
|
Unguez GA, Zakon HH. Skeletal muscle transformation into electric organ in S. macrurus depends on innervation. JOURNAL OF NEUROBIOLOGY 2002; 53:391-402. [PMID: 12382266 DOI: 10.1002/neu.10121] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cells of the electric organ, called electrocytes, of the weakly electric fish Sternopygus macrurus derive from the fusion of mature fast muscle fibers that subsequently disassemble and downregulate their sarcomeric components. Previously, we showed a reversal of the differentiated state of electrocytes to that of their muscle fiber precursors when neural input is eliminated. The dependence of the mature electrocyte phenotype on neural input led us to test the hypothesis that innervation is also critical during formation of electrocytes. We used immunohistochemical analyses to examine the regeneration of skeletal muscle and electric organ in the presence or absence of innervation. We found that blastema formation is a nerve-dependent process because regeneration was minimal when tail amputation and denervation were performed at the same time. Denervation at the onset of myogenesis resulted in the differentiation of both fast and slow muscle fibers. These were fewer in number, but in a spatial distribution similar to controls. However, in the absence of innervation, fast muscle fibers did not progress beyond the formation of closely apposed clusters, suggesting that innervation is required for their fusion and subsequent transdifferentiation into electrocytes. This study contributes further to our knowledge of the influence of innervation on cell differentiation in the myogenic lineage.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Foster Hall, Las Cruces, NM 88003, USA.
| | | |
Collapse
|
24
|
Berggren K, Ezerman EB, McCaffery P, Forehand CJ. Expression and regulation of the retinoic acid synthetic enzyme RALDH-2 in the embryonic chicken wing. Dev Dyn 2001; 222:1-16. [PMID: 11507765 DOI: 10.1002/dvdy.1166] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retinaldehyde dehydrogenase type 2 (RALDH-2) is a major retinoic acid (RA) generating enzyme in the embryo. Here, we report immunolocalization of this enzyme (RALDH-2-IR) in the developing wings of stage 17-30 chicken embryos. RALDH-2-IR is located in the area of the presumptive muscle masses, although it is not colocalized with developing muscle cells. RALDH-2-IR is located in tendon precursor cells and may be present in muscular connective tissue. We show that motor neurons and blood vessels, tissues showing RALDH-2-IR as they enter the limb, are capable of synthesizing and releasing RA in culture. RALDH-2-IR in the limb mesenchyme is under the control of both the vasculature and the motor innervation; it is decreased with denervation and increased with hypervascularization. RALDH-2-IR is present in the motor neuron pool of the brachial spinal cord, but this expression pattern is apparently not under the control of limb target tissues, RA in the periphery, or somitic factors. RA is known to be a potent inducer of cellular differentiation; we propose that locally synthesized RA may be involved in aspects of wing tissue specification, including cartilage condensation and outgrowth, skeletal muscle differentiation, and recruitment of smooth muscle cells to the vasculature.
Collapse
Affiliation(s)
- K Berggren
- University of Vermont, Department of Anatomy and Neurobiology, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Experiments in chick embryos using classical transplantation techniques introduced by Viktor Hamburger are reviewed; these demonstrated that chick-limb innervating motoneurons become specified by extrinsic signals prior to axon outgrowth and that they selectively grow to appropriate muscles by actively responding to guidance cues within the limb. More recent experiments reveal that fast/slow and flexor/extensor subclasses of motoneurons are distinct by E4-5 and that they exhibit patterned spontaneous activity while still growing to their targets. These observations are then related to the combinatorial code of LIM transcription factor expression, which has been hypothesized to specify motoneuron subtypes.
Collapse
Affiliation(s)
- L T Landmesser
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
26
|
Bayline RJ, Duch C, Levine RB. Nerve-muscle interactions regulate motor terminal growth and myoblast distribution during muscle development. Dev Biol 2001; 231:348-63. [PMID: 11237464 DOI: 10.1006/dbio.2001.0158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between motoneurons and muscles influence many aspects of neuromuscular development in all animals. These interactions can be readily investigated during adult muscle development in holometabolous insects. In this study, the development of the dorsolongitudinal flight muscle (DLM) and its innervation is investigated in the moth, Manduca sexta, to address the specificity of neuromuscular interactions. The DLM develops from an anlage containing both regressed larval template fibers and imaginal myoblasts. In the adult, each fiber bundle (DLM1-5) is innervated by a single motoneuron (MN1-MN5), with the dorsal-most fiber bundle (DLM5) innervated by a mesothoracic motoneuron (MN5). The DLM failed to develop following complete denervation because myoblasts failed to accumulate in the DLM anlage. After lesioning MN1-4, MN5 retained its specificity for the DLM5 region of the anlage and failed to rescue DLM1-4. Thus specific innervation of the DLM fiber bundles does not depend on interactions among motoneurons. Myoblast accumulation, but not myonuclear proliferation, increased around the MN5 terminals, producing a hypertrophied adult DLM5. Therefore, motoneurons compete for uncommitted myoblasts. MN5 terminals subsequently grew more rapidly over the hypertrophied DLM5 anlage, indicating that motoneuron terminal expansion is regulated by the size of the target muscle anlage.
Collapse
Affiliation(s)
- R J Bayline
- Division of Neurobiology, University of Arizona, Room 611, Gould Simpson Building, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
27
|
Consoulas C, Duch C, Bayline RJ, Levine RB. Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Res Bull 2000; 53:571-83. [PMID: 11165793 DOI: 10.1016/s0361-9230(00)00391-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During insect metamorphosis, neural and motor systems are remodeled to accommodate behavioral transformations. Nerve and muscle cells that are required for larval behavior, such as crawling, feeding and ecdysis, must either be replaced or respecified to allow adult emergence, walking, flight, mating and egg-laying. This review describes the types of cellular changes that occur during metamorphosis, as well as recent attempts to understand how they are related to behavioral changes and how they are regulated. Within the periphery, many larval muscles degenerate at the onset of metamorphosis and are replaced by adult muscles, which are derived from myoblasts and, in some cases, remnants of the larval muscle fibers. The terminal processes of many larval motoneurons persist within the periphery and are essential for the formation of adult muscle fibers. Although most adult sensory neurons are born postembryonically, a subset of larval proprioceptive neurons persist to participate in adult behavior. Within the central nervous system, larval neurons that will no longer be necessary die and some adult interneurons are born postembryonically. By contrast, all of the adult motoneurons, as well as some interneurons and modulatory neurons, are persistent larval cells. In accordance with their new behavioral roles, these neurons undergo striking changes in dendritic morphology, intrinsic biophysical properties, and synaptic interactions.
Collapse
Affiliation(s)
- C Consoulas
- Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
28
|
The pattern of avian intramuscular nerve branching is determined by the innervating motoneuron and its level of polysialic acid. J Neurosci 2000. [PMID: 10648711 DOI: 10.1523/jneurosci.20-03-01056.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most skeletal muscles are composed of a heterogeneous population of fast and slow muscle fibers that are selectively innervated during development by fast and slow motoneurons, respectively. It is well recognized that, in both birds and mammals, fast and slow motoneurons have substantially different intramuscular branching patterns, a difference critical for proper motor function. However, the cellular mechanisms regulating these differences in motoneuron branching are unknown. In a previous study, we showed that the fast and slow pattern of intramuscular branching, in a chick muscle containing distinct fast and slow muscle regions, was remarkably similar to normal when formed by foreign motoneurons. Whether this was attributable to some property of the innervating "fast" or "slow" motoneurons or to some property of the developing fast-slow muscle fibers was not determined. To distinguish between these two possibilities, we performed chick-quail hindlimb chimeras to force slow chick plantaris motoneurons to innervate a fast quail plantaris muscle. The pattern of intramuscular nerve branching in the fast plantaris of these chimeras closely resembled the slow branching pattern normally observed in chick slow plantaris muscles. Enzymatic removal of polysialic acid (PSA) from nerve and muscle during normal quail plantaris development dramatically changed the normal fast pattern to more closely resemble a slow pattern. In contrast, removal of PSA from chick plantaris motoneurons and muscle fibers had little effect on the pattern of nerve branching. Together, these results indicate that the pattern of intramuscular nerve branching is determined by the level of PSA on the innervating motoneurons.
Collapse
|
29
|
Rosser BW, Farrar CM, Crellin NK, Andersen LB, Bandman E. Repression of myosin isoforms in developing and denervated skeletal muscle fibers originates near motor endplates. Dev Dyn 2000; 217:50-61. [PMID: 10679929 DOI: 10.1002/(sici)1097-0177(200001)217:1<50::aid-dvdy5>3.0.co;2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During development of chicken pectoralis muscle, a neonatal myosin heavy-chain isoform is supplanted progressively by an adult isoform. This expression is under neuronal control. In this study we test the hypothesis that developmental myosin transformations are initiated near the motor endplate of each muscle fiber, thereafter progressing toward the fiber ends. By using immunocytochemical methods, pectoralis muscle from chickens aged 1-115 days after hatching were labeled by antibody against neonatal isoform. Ellipse minor axis and mean optical density of labeled and/or unlabeled fiber profiles from each bird were measured by computer image analysis. Acetylcholinesterase (AChE) activity was demonstrated histochemically. Using serial cross sections, we show that smaller fiber profiles are the tapered ends of larger fiber profiles. The largest fiber profiles (central regions of the fibers) were the first to lose their neonatal myosin during development. Motor endplates were localized by AChE activity to the central regions of the fibers. The pectoralis of mature chickens was denervated for 3, 7, 15, or 21 days. After 2 weeks' denervation, neonatal myosin is first reexpressed in the fiber ends. Dev Dyn 2000;217:50-61.
Collapse
Affiliation(s)
- B W Rosser
- Department of Anatomy and Cell Biology, University of Saskatchewan, College of Medicine, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | |
Collapse
|
30
|
Dunglison GF, Scotting PJ, Wigmore PM. Rat embryonic myoblasts are restricted to forming primary fibres while later myogenic populations are pluripotent. Mech Dev 1999; 87:11-9. [PMID: 10495267 DOI: 10.1016/s0925-4773(99)00134-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three populations of myoblasts, embryonic, foetal and adult, appear sequentially during myogenesis. The present study uses retroviruses to mark myoblasts clones in vivo from these populations. Myoblasts labelled at E15 (embryonic) contributed to primary fibres only. The majority of marked primary fibres were slow but a small number of clones contained marked primaries which were no longer slow at E19. Myoblasts labelled at E17 (foetal) fused with both primary and secondary fibres and most clones contained both fast and slow fibres. Similarly, adult myoblasts marked at P0 fused with all fibre types. These results indicate that embryonic myoblasts are restricted to producing only primary fibres which are initially slow but which can convert to being fast. Clones of foetal and adult myoblasts fuse with both primary and secondary fibres which may be either fast or slow.
Collapse
Affiliation(s)
- G F Dunglison
- School of Biomedical Sciences, University of Nottingham, The Medical School, Queens Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
31
|
Abstract
To determine the role of the nerve in regulating the accumulation of cytoplasmic creatine kinase (CK) mRNAs in hindleg muscles of the developing mouse, the lumbosacral spinal cords of 14-day gestation mice (E14) were laser ablated, and the accumulation of muscle CK (MCK) and brain CK (BCK) mRNAs was evaluated just prior to birth with in situ hybridization. Numbers of molecules of each of these transcripts/ng total RNA in the soleus and extensor digitorum longus (EDL) muscles were determined with competitive PCR and compared to transcripts found in innervated crural muscles. Data suggest that: 1) the level of BCK mRNA accumulation in innervated hindlimb muscles peaks at E16.5 and remains at fetal levels until the second month postnatal, when it falls to the level found in the adult. Given that MCK transcripts meet or exceed adult levels by day 28 postnatal, the "down-regulation" of the BCK gene and the "up-regulation" of the MCK gene are not tightly coupled; 2) the developmental switch from BCK to MCK, as the dominant cytoplasmic CK mRNA, occurs in innervated and aneural leg muscles between E14 and E16.5, indicating this switch is not nerve dependent; 3) the absence of innervation has no effect on BCK mRNA accumulation. MCK transcripts/ng total RNA continue to increase in aneural muscle throughout the late fetal period, but from E16.5-E19.5 the MCK transcript levels in aneural muscles become progressively lower than in age-matched innervated muscles. Thus, the accumulation of the muscle specific cytoplasmic CK, but not BCK, transcripts is affected by the absence of innervation during the fetal period. Dev Dyn 1999;215:285-296.
Collapse
MESH Headings
- Age Factors
- Animals
- Brain/anatomy & histology
- Brain/embryology
- Brain/enzymology
- Creatine Kinase/genetics
- Down-Regulation
- Gene Expression Regulation, Developmental
- Hindlimb/embryology
- Hindlimb/innervation
- In Situ Hybridization
- Mice
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/innervation
- Muscle, Smooth/anatomy & histology
- Muscle, Smooth/embryology
- Muscle, Smooth/enzymology
- Muscle, Smooth/innervation
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Spinal Cord/embryology
- Spinal Cord/physiology
- Time Factors
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- C H Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
32
|
Bartnik BL, Waldbillig DM, Bandman E, Rosser BW. Persistent expression of developmental myosin heavy chain isoforms in the tapered ends of adult pigeon pectoralis muscle fibres. THE HISTOCHEMICAL JOURNAL 1999; 31:321-9. [PMID: 10461867 DOI: 10.1023/a:1003770018926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have shown previously that in addition to the adult myosin heavy chain (MyHC) isoform present throughout the length of each fast-twitch glycolytic muscle fibre within the pectoralis of the mature chicken, the neonatal isoform is retained in the tapered ends of these fibres. This work, however, has been the only published report of this phenomenon. Here, we tested the hypothesis that similar to the chicken, the ends of mature pigeon pectoralis muscle fibres contain developmental MyHC isoform(s). A histological stain was used to visualize endomysium to assist in the analysis of transverse sections of pectoralis muscle from four mature pigeons. Immunocytochemical techniques were used to localize MyHC isoform(s) characteristic of pigeon pectoralis development. We show that within mature pigeon pectoralis, the ends of both fast-twitch glycolytic and fast-twitch oxidative-glycolytic fibre types express MyHC isoform(s) characteristic of their earlier development. Thus, we extend our findings on chicken to another species and an additional muscle fibre type. Retention of developmental MyHC isoform(s) within the tapered ends of mature muscle fibres may be more widespread than is currently appreciated.
Collapse
Affiliation(s)
- B L Bartnik
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
33
|
Abstract
Patterned spontaneous electrical activity has been demonstrated in a number of developing neural circuits and has been proposed to play a role in refining connectivity once axons reach their targets. Using an isolated spinal cord preparation, we have found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24-25), shortly after they exit the spinal cord and while still en route toward their target muscles. Similar bursts could be evoked by stimulating descending pathways at cervical or thoracic levels. Unlike older embryonic cord circuits, the major excitatory transmitter driving activity was not glutamate but acetylcholine, acting primarily though nicotinic non-alpha7 receptors. The circuit driving bursting was surprisingly robust and plastic, because bursting was only transiently blocked by cholinergic antagonists, and following recovery, was now driven by GABAergic inputs. Permanent blockade of spontaneous activity was only achieved by a combination of cholinergic antagonists and bicuculline, a GABAA antagonist. The early occurrence of patterned motor activity suggests that it could be playing a role in either peripheral pathfinding or spinal cord circuit formation and maturation. Finally, the characteristic differences in burst parameters already evident between different motoneuron pools at E4 would require that the combination of transcription factors responsible for specifying pool identity to have acted even earlier.
Collapse
|
34
|
Abstract
Avian skeletal muscles consist of myotubes that can be categorized according to contraction and fatigue properties, which are based largely on the types of myosins and metabolic enzymes present in the cells. Most mature muscles in the head are mixed, but they display a variety of ratios and distributions of fast and slow muscle cells. We examine the development of all head muscles in chick and quail embryos, using immunohistochemical assays that distinguish between fast and slow myosin heavy chain (MyHC) isoforms. Some muscles exhibit the mature spatial organization from the onset of primary myotube differentiation (e.g., jaw adductor complex). Many other muscles undergo substantial transformation during the transition from primary to secondary myogenesis, becoming mixed after having started as exclusively slow (e.g., oculorotatory, neck muscles) or fast (e.g., mandibular depressor) myotube populations. A few muscles are comprised exclusively of fast myotubes throughout their development and in the adult (e.g., the quail quadratus and pyramidalis muscles, chick stylohyoideus muscles). Most developing quail and chick head muscles exhibit identical fiber type composition; exceptions include the genioglossal (chick: initially slow, quail: mixed), quadratus and pyramidalis (chick: mixed, quail: fast), and stylohyoid (chick: fast, quail: mixed). The great diversity of spatial and temporal scenarios during myogenesis of head muscles exceeds that observed in the limbs and trunk, and these observations, coupled with the results of precursor mapping studies, make it unlikely that a lineage based model, in which individual myoblasts are restricted to fast or slow fates, is in operation. More likely, spatiotemporal patterning of muscle fiber types is coupled with the interactions that direct the movements of muscle precursors and subsequent segregation of individual muscles from common myogenic condensations. In the head, most of these events are facilitated by connective tissue precursors derived from the neural crest. Whether these influences act upon uncommitted, or biased but not restricted, myogenic mesenchymal cells remains to be tested.
Collapse
Affiliation(s)
- R S Marcucio
- Department of Anatomy, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
35
|
Abstract
Recent studies have elucidated both the mechanism of early formation of diverse muscle fibre types and the matching of diverse populations of motoneurons to their appropriate muscle targets. Highlights include the demonstration that distinct signals are necessary for the formation of several distinct myoblast populations in the vertebrate somite, the identification of motoneuron subtypes, studies of how motoneurons target appropriate muscles, and rapid progress on the Drosophila neuromuscular system. We propose a model in which four classes of decision control the patterning of both motoneurons and muscles.
Collapse
Affiliation(s)
- S M Hughes
- MRC Muscle and Cell Motility Unit Developmental Biology Research Centre The Randall Institute King's College London 26-29 Drury Lane London WC2B 5RL UK.
| | | |
Collapse
|
36
|
Edom-Vovard F, Mouly V, Barbet JP, Butler-Browne GS. The four populations of myoblasts involved in human limb muscle formation are present from the onset of primary myotube formation. J Cell Sci 1999; 112 ( Pt 2):191-9. [PMID: 9858472 DOI: 10.1242/jcs.112.2.191] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand how and when myogenic precursor cells become committed to their particular developmental programs, we have analysed the different populations of myoblasts which grow out from explants of muscle tissue isolated from human limb buds from the beginning of primary fibre formation throughout subsequent development and post-natal growth. Four phenotypically distinct types of myoblasts were identified on the basis of their expression of desmin, myogenin and myosin heavy chain isoforms (MyHC), and after 5 and 20 divisions, cells were cloned. All four types of myoblasts were present at the beginning of primary myogenesis. Each respective phenotype was stably heritable through cloning and subsequent proliferation. The type 1 clones correspond to a novel class of myoblasts never described during human development, that biochemically differentiates, but does not fuse. Type 2 clones are composed of small myotubes expressing only embryonic MyHC. Type 3 clones are composed of thin and long myotubes expressing both embryonic and fetal MyHCs. The type 4 clones are composed of myotubes that have a phenotype very similar to human satellite cells. Contrasting with others species, no other population of myoblasts appear during fetal development and only the relative number of these four types changes.
Collapse
Affiliation(s)
- F Edom-Vovard
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS UPR 9064, Collége de France, 94736 Nogent-Sur-Marne, Cedex, France.
| | | | | | | |
Collapse
|
37
|
Selective fasciculation and divergent pathfinding decisions of embryonic chick motor axons projecting to fast and slow muscle regions. J Neurosci 1998. [PMID: 9547238 DOI: 10.1523/jneurosci.18-09-03297.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proper motor function requires the precise matching of motoneuron and muscle fiber properties. The lack of distinguishing markers for early motoneurons has made it difficult to determine whether this matching is established by selective innervation during development or later via motoneuron-muscle fiber interactions. To examine whether chick motoneurons selectively innervate regions of their target containing either fast or slow muscle fibers, we backlabeled neurons from each of these regions with lipophilic dyes. We found that motor axons projecting to fast and slow muscle regions sorted into separate but adjacent fascicles proximally in the limb, long before they reached the muscle. More distally, these fascicles made divergent pathfinding decisions to course directly to the appropriate muscle fiber region. In contrast, axons projecting to different areas of an all-fast muscle did not fasciculate separately and became more intermingled as they coursed through the limb. Selective fasciculation of fast- and slow-projecting motoneurons was similar both before and after motoneuron cell death, suggesting that motoneurons specifically recognized and fasciculated with axons growing to muscle regions containing the appropriate muscle fiber type. Taken together, these results strongly support the hypothesis that "fast" and "slow" motoneurons are molecularly distinct before target innervation and that they use these differences to selectively fasciculate, pathfind to, and branch within the correct muscle fiber region from the outset of neuromuscular development.
Collapse
|
38
|
Abstract
To determine the role of the nerve on the establishment of myofiber diversity in skeletal muscles, the lumbosacral spinal cord of 14-day gestation mice (E14) was laser ablated, and the accumulation of the myosin alkali light chains (MLC) mRNAs in crural (hindleg) muscles was evaluated just prior to birth with in situ hybridization. Numbers of molecules of each alkali MLC/ng total RNA in the extensor digitorum longus (EDL) and soleus muscles were determined with competitive polymerase chain reaction. Transcripts for all four alkali MLCs accumulate in aneural muscles. Data suggest that: (1) the absence of the nerve to either future fast or slow muscles results in less accumulation of MLC1V transcript. Moreover, the presence of the nerve is required for the enhanced accumulation of this transcript in future slow muscles; (2) the absence of innervation of future slow, but not fast, muscles decreases the accumulation of MLC1A transcript. Since increased accumulation of MLC1A and MLC1V transcripts are found in future slow muscles at birth, the nerve is necessary for the development of the slow phenotype during myogenesis; (3) MLC1F and MLC3F transcripts do not display any preferential accumulation in future fast muscles during the fetal period. Therefore, the establishment of the differential distribution of these mRNAs, based on fiber type, is a postnatal phenomenon. The nerve is required during the fetal period to allow accumulation of MLC3F messages above a basal level in future fast as well as slow muscles; whereas, the absence of the innervation to future fast, but not slow, muscles reduces the accumulation of MLC1F. Thus, the accumulation of the various alkali MLC mRNAs shows a differential, rather than coordinate, response to the absence of the nerve, and this response may vary depending on the future fiber type of the muscles.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Primers/genetics
- Denervation
- Female
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Mice
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Myosin Light Chains/genetics
- Phenotype
- Polymerase Chain Reaction
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/physiology
Collapse
Affiliation(s)
- C H Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
39
|
Du SJ, Devoto SH, Westerfield M, Moon RT. Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-beta gene families. J Cell Biol 1997; 139:145-56. [PMID: 9314535 PMCID: PMC2139815 DOI: 10.1083/jcb.139.1.145] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1997] [Revised: 06/25/1997] [Indexed: 02/05/2023] Open
Abstract
We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-beta signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-beta superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-beta signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-beta signals exert competing positive and negative influences on the development of muscle pioneer cells.
Collapse
Affiliation(s)
- S J Du
- Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
40
|
DiMario JX, Stockdale FE. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol 1997; 188:167-80. [PMID: 9245520 DOI: 10.1006/dbio.1997.8619] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Skeletal muscle fibers express members of the myosin heavy chain (MyHC) gene family in a fiber-type-specific manner. In avian skeletal muscle it is the expression of the slow MyHC isoforms that most clearly distinguishes slow- from fast-contracting fiber types. Two hypotheses have been proposed to explain fiber-type-specific expression of distinct MyHC genes during development-an intrinsic mechanism based on the formation of different myogenic lineage(s) and an extrinsic, innervation-dependent mechanism. We developed a cell culture model system in which both mechanisms were evaluated during fetal muscle development. Myoblasts isolated from prospective fast (pectoralis major) or slow (medial adductor) fetal chick muscles formed muscle fibers in cell culture, none of which expressed slow MyHC genes. By contrast, when muscle fibers formed from myoblasts derived from the slow muscle were cocultured with neural tube, the muscle fibers expressed a slow MyHC gene, while muscle fibers formed from myoblasts of fast muscle origin continued to express only fast MyHC. Motor endplates formed on the fibers derived from myoblasts of both fast and slow muscle origin in cocultures, and slow MyHC gene expression did not occur when neuromuscular transmission or depolarization was blocked. We have cloned the slow MyHC gene that is expressed in response to innervation and identified it as the slow MyHC 2 gene, the predominant adult slow isoform. cDNAs encoding portions of the three slow myosin heavy chain genes (MyHC1, slow MyHC 2, and slow MyHC 3) were isolated. Only slow MyHC 2 mRNA was demonstrated to be abundant in the cocultures of neural tube and muscle fibers derived from myoblasts of slow muscle origin. Thus, expression of the slow MyHC 2 gene in this in vitro system indicates that formation of slow muscle fiber types is dependent on both myoblast lineage (intrinsic mechanisms) and innervation (extrinsic mechanisms), and suggests neither mechanism alone is sufficient to explain formation of muscle fibers of different types during fetal development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Lineage
- Cells, Cultured
- Chick Embryo
- Cloning, Molecular
- Coculture Techniques
- DNA, Complementary
- Gene Expression Regulation, Developmental
- Molecular Sequence Data
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/immunology
- Neuromuscular Blocking Agents/pharmacology
- Neurons/physiology
- Receptors, Cholinergic/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spinal Cord/cytology
- Synaptic Transmission
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- J X DiMario
- Department of Cell Biology and Anatomy, Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
41
|
Porter JD, Baker RS. Absence of oculomotor and trochlear motoneurons leads to altered extraocular muscle development in the Wnt-1 null mutant mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 100:121-6. [PMID: 9174254 DOI: 10.1016/s0165-3806(97)00020-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wnt-1 null mutant mice lack midbrain somatic motor nuclei. Primordial migration and spatial patterning of the extraocular muscles, however, was preserved, but myogenesis was disrupted in aneural muscles. Some muscles normally innervated by oculomotor and trochlear nuclei received aberrant innervation, which proved sufficient to maintain prenatal stages of myogenesis. The absence of motoneurons followed by innervation from inappropriate motoneuron pools is a viable candidate mechanism in ocular motility disorders, including Duane retraction syndrome and congenital fibrosis of extraocular muscle.
Collapse
Affiliation(s)
- J D Porter
- Department of Anatomy, University of Kentucky Medical Center, Lexington 40536-0084, USA.
| | | |
Collapse
|
42
|
Edgerton VR, Bodine‐Fowler S, Roy RR, Ishihara A, Hodgson JA. Neuromuscular Adaptation. Compr Physiol 1996. [DOI: 10.1002/cphy.cp120102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Abstract
The electrical properties of adult motoneurons are well matched to the contractile properties of the fast or slow muscle fibers that they innervate. How this precise matching occurs developmentally is not known. To investigate whether motoneurons exhibit selectivity in innervating discrete muscle regions, containing either fast or slow muscle fibers during early neuromuscular development, we caused embryonic chick hindlimb muscles to become innervated by segmentally inappropriate motoneurons. We used the in vitro spinal cord-hindlimb preparation to identify electrophysiologically the pools of foreign motoneurons innervating the posterior iliotibialis (pITIB), an all-fast muscle, and the iliofibularis (IFIB), a partitioned muscle containing discrete fast and slow regions. The results showed that the pITIB and the fast region of the IFIB were exclusively innervated by motoneurons that normally supply fast muscles. In contrast, the slow region of the IFIB was always innervated by motoneuron pools that normally supply slow muscles. Some experimental IFIB muscles lacked a fast region and were innervated solely by "slow" motoneurons. In addition, the intramuscular nerve branching patterns were always appropriate to the fast-slow nature of the muscle (region) innervated. The selective innervation was found early in the motoneuron death period, and we found no evidence that motoneurons grew into appropriate muscle regions, but failed to form functional contacts. Together, these results support the hypothesis that different classes of motoneurons exhibit molecular differences that allow them to project selectively to, and innervate, muscle fibers of the appropriate type during early neuromuscular development.
Collapse
|
44
|
Benoît R, Baudoin C. A morphometric investigation of myotube formation in rabbit embryo medial pterygoid muscle. J Dent Res 1996; 75:1835-41. [PMID: 9003229 DOI: 10.1177/00220345960750110401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To determine the times of the appearance of myoblasts, early myotubes, late myotubes, and myofibers, we studied a region between two aponeuroses of the medial pterygoid masticatory muscle in embryos of two strains of rabbits, without disturbing the normal innervation. The objectives of this study were to define the quantitative relations among these cells and to determine their kinetics statistically. We used Fauve de Bourgogne and New Zealand rabbit embryos on day 17, day 17 plus 12 hours, day 18, day 18 plus 12 hours, and days 20, 22, and 28 of gestation. Cell proliferation was studied with a light microscope, by means of counting methods. Similar development was observed in the two strains of rabbits. The numbers of myoblasts decreased as follows: (i) a marked decrease; (ii) a sudden cessation of the decrease, marked by a rebound at 18 days, and lasting less than 24 hours; and (iii) a plateau between embryonic days 22 and 28. The onset of reduction in the number of early myotubes coincided with the rebound of myoblasts. The number of late myotubes increased at the time of maximal early myotube density and during rebound of the myoblasts. Myofiber densities were similar to late myotube densities on day 22. We suggest that early myotubes are formed very gradually by fusion of myoblasts, and that the significant increase in the numbers of myoblasts corresponds to the second generation of myoblasts necessary for differentiation of late myotubes.
Collapse
Affiliation(s)
- R Benoît
- Laboratoire d'Histologie, Faculté de Chirurgie Dentaire, Université René-Descartes, Paris V, Montrouge, France
| | | |
Collapse
|
45
|
Devoto SH, Melançon E, Eisen JS, Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 1996; 122:3371-80. [PMID: 8951054 DOI: 10.1242/dev.122.11.3371] [Citation(s) in RCA: 438] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the development of specific muscle fiber types in zebrafish axial muscle by labeling myogenic precursor cells with vital fluorescent dyes and following their subsequent differentiation and fate. Two populations of muscle precursors, medial and lateral, can be distinguished in the segmental plate by position, morphology and gene expression. The medial cells, known as adaxial cells, are large, cuboidal cells adjacent to the notochord that express myoD. Surprisingly, after somite formation, they migrate radially away from the notochord, becoming a superficial layer of muscle cells. A subset of adaxial cells develop into engrailed-expressing muscle pioneers. Adaxial cells differentiate into slow muscle fibers of the adult fish. We have named the lateral population of cells in the segmental plate, lateral presomitic cells. They are smaller, more irregularly shaped and separated from the notochord by adaxial cells; they do not express myoD until after somite formation. Lateral presomitic cells remain deep in the myotome and they differentiate into fast muscle fibers. Thus, slow and fast muscle fiber types in zebrafish axial muscle arise from distinct populations of cells in the segmental plate that develop in different cellular environments and display distinct behaviors.
Collapse
Affiliation(s)
- S H Devoto
- Institute of Neuroscience, University of Oregon, Eugene 97403, USA
| | | | | | | |
Collapse
|
46
|
Camoretti-Mercado B, Qin Y, Jakovcic S, Salazar-Grueso E, Zak R. Developmental shift of myosin heavy chain mRNA expression due to neural factor(s) and muscle activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1350-7. [PMID: 8897842 DOI: 10.1152/ajpcell.1996.271.4.c1350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The adult ventricular isoform of chicken myosin heavy chain (MHC-V) is transiently expressed in all skeletal muscle primordia analyzed and is completely repressed around embryonic days 10-12, when functional innervation is established. By ribonuclease protection assay, we demonstrated that denervation of the adult anterior latissimus dorsi muscle resulted in reexpression of MHC-V mRNA. In contrast, treatment of primary cultures of fetal breast or leg muscles with embryonic brain extract or conditioned media from glial or neuroblastoma cell lines, but not from a myogenic cell line or primary muscle cell cultures, led to inhibition of MHC-V expression. This inhibitory activity was abolished by heating and increased with protein concentration. The acquisition of both brain inhibitory activity and the competence of myogenic cells to downregulate MHC-V mRNA expression were age dependent. Furthermore, either paralysis of muscle in ovo by curare or contraction arrest of cultured myotubes resulted in persistent expression of MHC-V mRNA. Thus a putative soluble factor(s) of nerve origin as well as muscle activity are involved in the developmental downregulation of MHC-V expression in muscle primordia.
Collapse
|
47
|
Lefeuvre B, Crossin F, Fontaine-Pérus J, Bandman E, Gardahaut MF. Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech Dev 1996; 58:115-27. [PMID: 8887321 DOI: 10.1016/s0925-4773(96)00564-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo in an aneurogenic environment induced after neural tube ablation, the cardiac ventricular myosin heavy chain (MHC) isoform was not expressed. The adult slow MHC isoform, SM2, appeared by embryonic day 7 (ED 7) in normal innervated slow ALD but was not expressed in denervated muscle. Analysis of in vitro differentiation of myoblasts from fast PLD and slow ALD muscles isolated from ED 7 control and neuralectomized quail embryos showed no fundamental differences in the pattern of MHC isoform expression. Newly differentiated fibers accumulated cardiac ventricular, embryonic fast, slow SM1 and SM3 MHC isoforms. Nevertheless, the expression of slow SM2 isoform in myotubes formed from slow ALD myoblasts only occurred when myoblasts were cultured in the presence of embryonic spinal cord. Our studies demonstrate that the neural tube influences primary as well as secondary myotube differentiation in avian forelimb and facilitates the expression of different MHC, particularly slow SM2 MHC gene expression in slow myoblasts.
Collapse
Affiliation(s)
- B Lefeuvre
- Faculté des Sciences et des Techniques, CNRS URA 1340, Nantes, France
| | | | | | | | | |
Collapse
|
48
|
Rafuse VF, Landmesser L. Contractile activity regulates isoform expression and polysialylation of NCAM in cultured myotubes: involvement of Ca2+ and protein kinase C. J Biophys Biochem Cytol 1996; 132:969-83. [PMID: 8603927 PMCID: PMC2120742 DOI: 10.1083/jcb.132.5.969] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Muscle development involves a series of complex cell-cell interactions that are mediated, at least in part, by several different cell adhesion molecules. Previous work from this lab showed that the different isoforms of NCAM and its level of polysialylation are developmentally regulated during chick myogenesis in vivo and that this regulation is important for normal muscle development. Using developing chick secondary myotubes grown in culture, we show here that both the polysialylation of NCAM and the developmental switch in isoform expression are regulated by activity and that Ca2+ entry through voltage-gated channels and the subsequent activation of protein kinase C are required for the developmental changes in NCAM isoform synthesis. Specifically, PSA expression was shown to be developmentally regulated with high expression being temporally correlated with the onset of spontaneous contractile activity. Furthermore, blocking contractile activity caused a decrease in PSA expression, while increasing activity with electrical stimulation resulted in its up-regulation. Immunoblot and metabolic labeling studies indicated that dividing myoblasts synthesize primarily 145-kD NCAM, newly formed, spontaneously contracting myotubes synthesize 130-, 145-, and 155-kD NCAM isoforms, while older, more mature myotubes primarily synthesize the glycosylphosphatidylinositol-anchored 130-kD isoform which, in contrast to the other three isoforms, had a high rate of turnover. This developmental switch in NCAM isoform expression could be inhibited with Ca2+ channel blockers and inhibitors of protein kinase C. Taken together, these results suggest that Ca2+ ions and protein kinase C are involved in a second messenger cascade coupling membrane depolarization with transcriptional factors that regulate NCAM isoform synthesis and polysialylation.
Collapse
Affiliation(s)
- V F Rafuse
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975, USA
| | | |
Collapse
|
49
|
Eppley ZA, Russell B. Perinatal changes in avian muscle: implications from ultrastructure for the development of endothermy. J Morphol 1995; 225:357-67. [PMID: 7674307 DOI: 10.1002/jmor.1052250307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothermic heat production and the capacity to shiver develop soon after hatching in birds, permitting chicks to regulate their body temperature. Physiological studies have not clearly identified the developmental events causing this change in function. Here, we use electron microscopy to examine the development of structures involved in muscle activation, contraction, and metabolism coincident with the development of shivering thermogenesis. A stereological study was used to compare the ultrastructure of chicken iliofibularis before endothermic heat production was present (24 h before hatching) and 120 h later, when the iliofibularis had substantial capacity for shivering. Profound increases were found in the t-tubule system and terminal cisternae, mitochondrial cristae, and lipids. The number of triadic profiles increased 3.8-fold (7.6 +/- 1.31/100 microns 2 to 28.5 +/- 2.90/100 microns 2 fiber area). The surface area of cristae per mitochondrial volume doubled (12.0 +/- 1.50 microns 2/microns 3 to 25.7 +/- 1.84 microns 2/microns 3). Lipid droplets were rare in the iliofibularis of embryos about to hatch, but accounted for 4.4% of the muscle fiber volume in day 4 birds. We suggest that these ultrastructural changes more fully activate the iliofibularis, allow it to produce more heat both from calcium pumping and from contraction, and increase its endurance, thus permitting the muscle to be effective in thermogenesis.
Collapse
Affiliation(s)
- Z A Eppley
- Department of Physiology and Biophysics, University of Illinois, Chicago 60612-7342, USA
| | | |
Collapse
|
50
|
Rosser BW, Waldbillig DM, Lovo SD, Armstrong JD, Bandman E. Myosin heavy chain expression within the tapered ends of skeletal muscle fibers. Anat Rec (Hoboken) 1995; 242:462-70. [PMID: 7486018 DOI: 10.1002/ar.1092420404] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pectoralis muscle of the chicken contains fast-twitch glycolytic fibers, which during development undergo a transformation in their myosin heavy chain (MyHC) content from embryonic to a neonatal to an adult isoform (Bandman et al., 1990). Little, however, is known of MyHC expression within the ends of these or other muscle fibers. Here we test the hypothesis that the tapered ends of mature skeletal muscle fibers contain a less mature MyHC isoform than that typically found throughout their lengths. METHODS We apply an ammoniacal silver histological stain for endomysium and monoclonal antibodies against neonatal and adult MyHCs of chicken pectoralis to transverse serial sections of pectoralis from five mature chickens. The "lesser fiber diameters" of populations of fibers from each bird are also measured. RESULTS Most (approximately 81.8%) of the small (< 12 microns) and none of the larger (> 20 microns) diameter fibers contain the neonatal MyHC. Following these smaller fibers through serial sections, we show that they are the tapered ends of the larger fibers. Whereas neonatal MyHC is restricted to the tapered fiber ends, adult MyHC is present throughout the entire lengths of all fibers. We also demonstrate acetylcholinesterase (AChE) activity at some of these fiber ends. CONCLUSIONS We postulate that longitudinal growth of myofibrils in adult muscle is characterized by the sequential expression of MyHC isoforms similar to that observed in rapidly growing muscle and that the presence of the neurotransmitter hydrolase AChE at the tapered fiber ends may be related to the retention of neonatal MyHC.
Collapse
Affiliation(s)
- B W Rosser
- Department of Anatomy and Cell Biology, University of Saskatchewan College of Medicine, Saskatoon, Canada
| | | | | | | | | |
Collapse
|