1
|
Buzzi B, Koseli E, Moncayo L, Shoaib M, Damaj M. Role of Neuronal Nicotinic Acetylcholine Receptors in Cannabinoid Dependence. Pharmacol Res 2023; 191:106746. [PMID: 37001709 DOI: 10.1016/j.phrs.2023.106746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Cannabis is among the most widely consumed psychoactive drugs around the world and cannabis use disorder (CUD) has no current approved pharmacological treatment. Nicotine and cannabis are commonly co-used which suggests there to be overlapping neurobiological actions supported primarily by the co-distribution of both receptor systems in the brain. There appears to be strong rationale to explore the role that nicotinic receptors play in cannabinoid dependence. Preclinical studies suggest that the ɑ7 nAChR subtype may play a role in modulating the reinforcing and discriminative stimulus effects of cannabinoids, while the ɑ4β2 * nAChR subtype may be involved in modulating the motor and sedative effects of cannabinoids. Preclinical and human genetic studies point towards a potential role of the ɑ5, ɑ3, and β4 nAChR subunits in CUD, while human GWAS studies strongly implicate the ɑ2 subunit as playing a role in CUD susceptibility. Clinical studies suggest that current smoking cessation agents, such as varenicline and bupropion, may also be beneficial in treating CUD, although more controlled studies are necessary. Additional behavioral, molecular, and mechanistic studies investigating the role of nAChR in the modulation of the pharmacological effects of cannabinoids are needed.
Collapse
|
2
|
Ohta Y, Murakami TE, Kawahara M, Haruta M, Takehara H, Tashiro H, Sasagawa K, Ohta J, Akay M, Akay YM. Investigating the Influence of GABA Neurons on Dopamine Neurons in the Ventral Tegmental Area Using Optogenetic Techniques. Int J Mol Sci 2022; 23:ijms23031114. [PMID: 35163036 PMCID: PMC8834722 DOI: 10.3390/ijms23031114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Dopamine (DA) is the key regulator of reward behavior. The DA neurons in the ventral tegmental area (VTA) and their projection areas, which include the prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala, play a primary role in the process of reward-driven behavior induced by the drugs of addiction, including nicotine and alcohol. In our previous study, we developed a novel platform consisting of micro-LED array devices to stimulate a large area of the brain of rats and monkeys with photo-stimulation and a microdialysis probe to estimate the DA release in the PFC. Our results suggested that the platform was able to detect the increased level of dopamine in the PFC in response to the photo-stimulation of both the PFC and VTA. In this study, we used this platform to photo-stimulate the VTA neurons in both ChrimsonR-expressing (non-specific) wild and dopamine transporter (DAT)-Cre (dopamine specific) mice, and measured the dopamine release in the nucleus accumbens shell (NAcShell). We measured the DA release in the NAcShell in response to optogenetic stimulation of the VTA neurons and investigated the effect of GABAergic neurons on dopaminergic neurons by histochemical studies. Comparing the photo-stimulation frequency of 2 Hz with that of 20 Hz, the change in DA concentration at the NAcShell was greater at 20 Hz in both cases. When ChrimsonR was expressed specifically for DA, the release of DA at the NAcShell increased in response to photo-stimulation of the VTA. In contrast, when ChrimsonR was expressed non-specifically, the amount of DA released was almost unchanged upon photo-stimulation. However, for nonspecifically expressed ChrimsonR, intraperitoneal injection of bicuculline, a competitive antagonist at the GABA-binding site of the GABAA receptor, also significantly increased the release of DA at the NAcShell in response to photo-stimulation of the VTA. The results of immunochemical staining confirm that GABAergic neurons in the VTA suppress DA activation, and also indicate that alterations in GABAergic neurons may have serious downstream effects on DA activity, NAcShell release, and neural adaptation of the VTA. This study also confirms that optogenetics technology is crucial to study the relationship between the mesolimbic dopaminergic and GABAergic neurons in a neural-specific manner.
Collapse
Affiliation(s)
- Yasumi Ohta
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Takaaki E. Murakami
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Mamiko Kawahara
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Makito Haruta
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Hironari Takehara
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Hiroyuki Tashiro
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Kiyotaka Sasagawa
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Jun Ohta
- Nara Institute of Science and Technology, 8916-5, Ikoma 630-0101, Japan; (Y.O.); (T.E.M.); (M.K.); (M.H.); (H.T.); (H.T.); (K.S.); (J.O.)
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA;
| | - Yasemin M. Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA;
- Correspondence:
| |
Collapse
|
3
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
5
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Weeks JJ, Grace AA, Sved AF. Nicotine Administration Normalizes Behavioral and Neurophysiological Perturbations in the MAM Rodent Model of Schizophrenia. Int J Neuropsychopharmacol 2021; 24:979-987. [PMID: 34622270 PMCID: PMC8653870 DOI: 10.1093/ijnp/pyab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The present study utilized the methylazoxymethanol (MAM) neurodevelopmental rodent model of schizophrenia (SCZ) to evaluate the hypothesis that individuals with SCZ smoke in an attempt to "self-medicate" their symptoms through nicotine (NIC) intake. METHODS To explore this question, we examined the effects of acute and chronic administration of NIC in 2 established behavioral tests known to be disrupted in the MAM model: prepulse inhibition of startle and novel object recognition. Additionally, we assessed the effects of acute and chronic NIC on 2 indices of the pathophysiology of SCZ modeled by MAM, elevated dopamine neuron population activity in the ventral tegmental area and neuronal activity in the ventral hippocampus, using in vivo electrophysiological recordings. RESULTS Our findings demonstrated that both acute and chronic administration of NIC significantly improved deficits in prepulse inhibition of startle and novel object recognition among MAM rats and normalized elevated ventral tegmental area and ventral hippocampal neuronal activity in these animals. CONCLUSION Together, these findings of NIC-induced improvement of deficits lend support for a "self-medication" hypothesis behind increased cigarette smoking in SCZ and illustrate the potential utility of nicotinic modulation in future pharmacotherapies for certain SCZ symptoms.
Collapse
Affiliation(s)
| | - Anthony A Grace
- Center for Neuroscience,Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Center for Neuroscience,Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Correspondence: Alan F. Sved, PhD, 210 Langley Hall, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA ()
| |
Collapse
|
7
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2021; 42:2109-2120. [PMID: 34057683 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
8
|
Kazemi T, Huang S, Avci NG, Waits CMK, Akay YM, Akay M. Investigating the influence of perinatal nicotine and alcohol exposure on the genetic profiles of dopaminergic neurons in the VTA using miRNA-mRNA analysis. Sci Rep 2020; 10:15016. [PMID: 32929144 PMCID: PMC7490691 DOI: 10.1038/s41598-020-71875-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nicotine and alcohol are two of the most commonly used and abused recreational drugs, are often used simultaneously, and have been linked to significant health hazards. Furthermore, patients diagnosed with dependence on one drug are highly likely to be dependent on the other. Several studies have shown the effects of each drug independently on gene expression within many brain regions, including the ventral tegmental area (VTA). Dopaminergic (DA) neurons of the dopamine reward pathway originate from the VTA, which is believed to be central to the mechanism of addiction and drug reinforcement. Using a well-established rat model for both nicotine and alcohol perinatal exposure, we investigated miRNA and mRNA expression of dopaminergic (DA) neurons of the VTA in rat pups following perinatal alcohol and joint nicotine-alcohol exposure. Microarray analysis was then used to profile the differential expression of both miRNAs and mRNAs from DA neurons of each treatment group to further explore the altered genes and related biological pathways modulated. Predicted and validated miRNA-gene target pairs were analyzed to further understand the roles of miRNAs within these networks following each treatment, along with their post transcription regulation points affecting gene expression throughout development. This study suggested that glutamatergic synapse and axon guidance pathways were specifically enriched and many miRNAs and genes were significantly altered following alcohol or nicotine-alcohol perinatal exposure when compared to saline control. These results provide more detailed insight into the cell proliferation, neuronal migration, neuronal axon guidance during the infancy in rats in response to perinatal alcohol/ or nicotine-alcohol exposure.
Collapse
Affiliation(s)
- Tina Kazemi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuyan Huang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Naze G Avci
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Charlotte Mae K Waits
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
9
|
Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol Sin 2020; 41:1-9. [PMID: 31554960 PMCID: PMC7468330 DOI: 10.1038/s41401-019-0299-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
Midbrain dopaminergic (DA) neurons are governed by an endogenous cholinergic system, originated in the mesopontine nuclei. Nicotine hijacks nicotinic acetylcholine receptors (nAChRs) and interferes with physiological function of the cholinergic system. In this review, we describe the anatomical organization of the cholinergic system and the key nAChR subtypes mediating cholinergic regulation of DA transmission and nicotine reward and dependence, in an effort to identify potential targets for smoking intervention. Cholinergic modulation of midbrain DA systems relies on topographic organization of mesopontine cholinergic projections, and activation of nAChRs in midbrain DA neurons. Previous studies have revealed that α4, α6, and β2 subunit-containing nAChRs expressed in midbrain DA neurons and their terminals in the striatum regulate firings of midbrain DA neurons and activity-dependent dopamine release in the striatum. These nAChRs undergo modification upon chronic nicotine exposure. Clinical investigation has demonstrated that partial agonists of these receptors elevate the success rate of smoking cessation relative to placebo. However, further investigations are required to refine the drug targets to mitigate unpleasant side-effects.
Collapse
|
10
|
Vogt BA. Cingulate impairments in ADHD: Comorbidities, connections, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:297-314. [PMID: 31731917 DOI: 10.1016/b978-0-444-64196-0.00016-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The entire cingulate cortex is engaged in the structure/function abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In ADHD, which is the most common developmental disease, impaired impulse control and cognition often trace to anterior midcingulate cortex (aMCC) in Go/No-go tests, decoding and reading, the Stroop Color and Word Test, and the Wisconsin Card Sorting Test (WCST), with volume deficits in anterior cingulate cortex (ACC) and posterior midcingulate cortex (pMCC). Volumes in pMCC correlate positively with the WCST and negatively with total and nonperseverative errors on the WCST. Activation and connectivity on N-back tests show connections for high and low spatial working memory, but patients have increased activation in PCC and decreased connectivity between MCC and PCC for high load. Students struggle in class due to malfunctioning aMCC, pregenual anterior cingulate cortex (pACC), and dorsal posterior cingulate cortex (dPCC), and to core deficits in response/task switching in aMCC. Gene mutations are found in the DA transporter and DA4 and DA5 receptors. Methylphenidate decreases hyperactivity in aMCC. The DA system is controlled by cholinergic receptors in the daMCC and genetics show nAChR mutations in alpha 3, 4, and 7 receptors. At 25 years, a modified Eriksen flanker/No-go task and voxel-based morphometry (VBM) show prenatal smoking, lifetime smoking at 13 years, and novelty seeking. Prenatal exposure to nicotine exhibits weaker responses in aMCC during cognitive tasks for hyperactivity/impulsiveness but not inattention. AZD1446 (ɑ4β2 nAChR agonist) improves the Groton Maze task due to high nAChR in dPCC/RSC engaged in spatial orientation. Environmental factors associated with childhood ADHD relate to pesticides, organochlorine, and air pollutants. Network connection segregation shows increased amygdala local nodal, but decreased ACC and PCC connections, reflecting emphasis on local periamygdala connections at the expense of cortical connections. Thus, ADHD children/adolescents respond impulsively to the significance of stimuli without having cortical inhibition. Finally, controls show negative relationships between aMCC and the default mode network, and ADHD compromises this relationship, showing decreased connectivity between ACC and precuneus/PCC.
Collapse
Affiliation(s)
- Brent A Vogt
- Cingulum Neurosciences Institute, Manlius, NY, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
11
|
Yohn NL, Caruso MJ, Blendy JA. Effects of nicotine and stress exposure across generations in C57BL/6 mice. Stress 2019; 22:142-150. [PMID: 30457440 PMCID: PMC6453752 DOI: 10.1080/10253890.2018.1532991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic administration of nicotine or exposure to stress can produce long-lasting behavioral and physiological changes in humans and animals alike. Further, the impact of nicotine and stress exposure can be inherited by offspring to produce persistent changes in physiology and behavior. To determine if nicotine and stress interact across generations to influence offspring behavior we exposed F0 male mice to nicotine and F1 male and female mice to chronic unpredictable stress during adolescence. We then measured locomotor sensitization to repeated nicotine injections in the subsequent F2 and F3 generations. Stress exposure alone (F1) did not influence locomotor sensitization in any lineage. However, in the F1 male lineage, F0 nicotine exposure abrogated locomotor sensitization in F2 male and transiently enhanced locomotor sensitization in F2 female offspring. These effects were not passed down to the F3 generations or observed in the F1 female lineage. F1 stress exposure modulated the effects of prior F0 nicotine exposure in a sex-dependent manner. Specifically, stress blunted the nicotine-induced enhancement in locomotor sensitization observed in F2 female offspring of F1 males. The effect of F0 nicotine and F1 stress exposure in females appears to have skipped a generation and enhanced nicotine sensitization only in the F3 generation, and only in females. This novel multigenerational exposure paradigm examining the inheritance of two different environmental exposures demonstrates that nicotine responses can be modified by nicotine and stress exposure from previous generations, and these effects are strongly influenced by sex.
Collapse
Affiliation(s)
- Nicole L. Yohn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Michael J. Caruso
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
12
|
Baur K, Hach A, Bernardi RE, Spanagel R, Bading H, Bengtson CP. c-Fos marking of identified midbrain neurons coactive after nicotine administration in-vivo. J Comp Neurol 2018; 526:2019-2031. [PMID: 29888787 DOI: 10.1002/cne.24471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 11/08/2022]
Abstract
Despite the reduced life expectancy and staggering financial burden of medical treatment associated with tobacco smoking, the molecular, cellular, and ensemble adaptations associated with chronic nicotine consumption remain poorly understood. Complex circuitry interconnecting dopaminergic and cholinergic regions of the midbrain and mesopontine tegmentum are critical for nicotine associated reward. Yet our knowledge of the nicotine activation of these regions is incomplete, in part due to their cell type diversity. We performed double immunohistochemistry for the immediate early gene and surrogate activity sensor, c-Fos, and markers for either cholinergic, dopaminergic or GABAergic cell types in mice treated with nicotine. Both acute (0.5 mg/kg) and chronic (0.5 mg/kg/day for 7 days) nicotine strongly activated GABAergic neurons of the interpeduncular nucleus and medial terminal nucleus of the accessory optic tract (MT). Acute but not chronic nicotine also activated small percentages of dopaminergic and other neurons in the ventral tegmental area (VTA) as well as noncholinergic neurons in the pedunculotegmental and laterodorsal tegmental nuclei (PTg/LDTg). Twenty four hours of nicotine withdrawal after chronic nicotine treatment suppressed c-Fos activation in the MT. In comparison to nicotine, a single dose of cocaine caused a similar activation in the PTg/LDTg but not the VTA where GABAergic cells were strongly activated but dopaminergic neurons were not affected. These results indicate the existence of drug of abuse specific ensembles. The loss of ensemble activation in the VTA and PTg/LDTg after chronic nicotine represents a molecular and cellular tolerance which may have implications for the mechanisms underlying nicotine dependence.
Collapse
Affiliation(s)
- Katja Baur
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Arian Hach
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Rick E Bernardi
- Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Rainer Spanagel
- Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Hilmar Bading
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - C Peter Bengtson
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Nelson AC, Williams SB, Pistorius SS, Park HJ, Woodward TJ, Payne AJ, Obray JD, Shin SI, Mabey JK, Steffensen SC. Ventral Tegmental Area GABA Neurons Are Resistant to GABA(A) Receptor-Mediated Inhibition During Ethanol Withdrawal. Front Neurosci 2018; 12:131. [PMID: 29556175 PMCID: PMC5844957 DOI: 10.3389/fnins.2018.00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/19/2018] [Indexed: 01/27/2023] Open
Abstract
The neural mechanisms underlying alcohol dependence are not well-understood. GABAergic neurons in the ventral tegmental area (VTA) are a relevant target for ethanol. They are inhibited by ethanol at physiologically-relevant levels in vivo and display marked hyperexcitability during withdrawal. In the present study, we examined the effects of the GABA(A) receptor agonist muscimol on VTA neurons ex vivo following withdrawal from acute and chronic ethanol exposure. We used standard cell-attached mode electrophysiology in the slice preparation to evaluate the effects of muscimol on VTA GABA neuron firing rate following exposure to acute and chronic ethanol in male CD-1 GAD-67 GFP mice. In the acute condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after a single in vivo dose of saline or ethanol. In the chronic condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after either 2 weeks of twice-daily IP ethanol or saline or following exposure to chronic intermittent ethanol (CIE) vapor or air for 3 weeks. VTA GABA neuron firing rate was more sensitive to muscimol than DA neuron firing rate. VTA GABA neurons, but not DA neurons, were resistant to the inhibitory effects of muscimol recorded 24 h after a single ethanol injection or chronic ethanol exposure. Administration of the NMDA receptor antagonist MK-801 before ethanol injection restored the sensitivity of VTA GABA neurons to muscimol inhibition. Seven days after ethanol exposure, VTA GABA neuron firing rate was again susceptible to muscimol's inhibitory effects in the acute condition, but the resistance persisted in the chronic condition. These findings suggest that VTA GABA neurons exclusively undergo a shift in GABA(A) receptor function following acute and chronic exposure. There appears to be transient GABA(A) receptor-mediated plasticity after a single exposure to ethanol that is mediated by NMDA glutamate receptors. In addition, the resistance to muscimol inhibition in VTA GABA neurons persists in the dependent condition, which may contribute to the the hyperexcitability of VTA GABA neurons and inhibition of VTA DA neurons during withdrawal as well as the motivation to seek alcohol.
Collapse
Affiliation(s)
- Ashley C Nelson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Stephanie B Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Stephanie S Pistorius
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Hyun J Park
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Taylor J Woodward
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Andrew J Payne
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - J Daniel Obray
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Samuel I Shin
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Jennifer K Mabey
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| |
Collapse
|
14
|
Mena-Segovia J, Bolam JP. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron 2017; 94:7-18. [PMID: 28384477 DOI: 10.1016/j.neuron.2017.02.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The pedunculopontine nucleus (PPN) has long been considered an interface between the basal ganglia and motor systems, and its ability to regulate arousal states puts the PPN in a key position to modulate behavior. Despite the large amount of data obtained over recent decades, a unified theory of its function is still incomplete. By putting together classical concepts and new evidence that dissects the influence of its different neuronal subtypes on their various targets, we propose that the PPN and, in particular, cholinergic neurons have a central role in updating the behavioral state as a result of changes in environmental contingencies. Such a function is accomplished by a combined mechanism that simultaneously restrains ongoing obsolete actions while it facilitates new contextual associations.
Collapse
Affiliation(s)
- Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | - J Paul Bolam
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
15
|
Abstract
Purpose of the Review Comorbidity of alcohol and tobacco use is highly prevalent and may exacerbate the health effects of either substance alone. However, the mechanisms underlying this comorbidity are not well understood. This review will examine the evidence for shared neurobiological mechanisms of alcohol and nicotine comorbidity and experimental studies of the behavioural consequences of these interactions. Recent Findings Studies examining the shared neurobiology of alcohol and nicotine have identified two main mechanisms of comorbidity: (1) cross-reinforcement via the mesolimbic dopamine pathway and (2) cross-tolerance via shared genetic and nAChR interaction. Animal and human psychopharmacological studies demonstrate support for these two mechanisms of comorbidity. Summary Human behavioural studies indicate that (1) alcohol and tobacco potentiate each other’s rewarding effects and (2) nicotine reduces the sedative and intoxication effects of alcohol. Together, these findings provide a strong evidence base to support the role of the cross-reinforcement and cross-tolerance as mechanisms underlying the comorbidity of alcohol and tobacco use. Methodological concerns in the literature and recommendations for future studies are discussed alongside implications for treatment of comorbid alcohol and tobacco use.
Collapse
Affiliation(s)
- Sally Adams
- Department of Psychology, University of Bath, 10 West, Bath, BA2 7AY UK.,UK Centre for Tobacco and Alcohol Studies, Bath, UK
| |
Collapse
|
16
|
Wu BJ, Lan TH. Predictors of smoking reduction outcomes in a sample of 287 patients with schizophrenia spectrum disorders. Eur Arch Psychiatry Clin Neurosci 2017; 267:63-72. [PMID: 26310877 DOI: 10.1007/s00406-015-0636-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022]
Abstract
Many studies have investigated whether a type of antipsychotics or type of adjuvant is associated with smoking reduction in patients with schizophrenia. However, there has been no study exploring a comprehensive range of factors related to smoking reduction in schizophrenia patients. We analyzed a dataset of 287 smoking patients with schizophrenia who participated in an 8-week open-label study with high- (n = 90) or low-dose nicotine dermal patches (n = 132) or bupropion (n = 65). A logistic regression model and a linear mixed model were used to explore factors associated with the outcomes of smoking cessation and reduction, i.e., the number of cigarettes smoked and the level of nicotine dependence. The total cessation rate was 6.3 % (18/287). There were no significant predictors of cessation. The time effect of reduction was significant during the program (p = 0.001). Type of antipsychotics (p = 0.018), readiness to quit (p = 0.014), baseline number of cigarettes smoked per day (p = 0.001), and nicotine dependence level (p = 0.001) were significantly associated with smoking reduction. Patients on first-generation antipsychotics (n = 129) or clozapine (n = 70) reduced their smoking more than those on non-clozapine second-generation antipsychotics (n = 74). Patients in the preparation stage (n = 97) or in the contemplation (n = 70) reduced their smoking more than those in the precontemplation stage (n = 120). The mechanisms of tobacco addiction need to be better understood for further development of effective cessation programs in patients with schizophrenia.
Collapse
Affiliation(s)
- Bo-Jian Wu
- Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Center for Neuropsychiatric Research, NHRI, Miaoli, Taiwan. .,Department of Psychiatry, Taichung Veterans General Hospital, 160, Sec.3, Chung-Kang Rd, Taichung, 40705, Taiwan.
| |
Collapse
|
17
|
Scherma M, Muntoni AL, Melis M, Fattore L, Fadda P, Fratta W, Pistis M. Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives. Psychopharmacology (Berl) 2016; 233:1765-77. [PMID: 26728894 DOI: 10.1007/s00213-015-4196-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022]
Abstract
RATIONALE Several lines of evidence suggest that endocannabinoid and nicotinic cholinergic systems are implicated in the regulation of different physiological processes, including reward, and in the neuropathological mechanisms of psychiatric diseases, such as addiction. A crosstalk between these two systems is substantiated by the overlapping distribution of cannabinoid and nicotinic acetylcholine receptors in many brain structures. OBJECTIVE We will review recent preclinical data showing how the endocannabinoid and nicotinic cholinergic systems interact bidirectionally at the level of the brain reward pathways, and how this interaction plays a key role in modulating nicotine and cannabinoid intake and dependence. RESULTS Many behavioral and neurochemical effects of nicotine that are related to its addictive potential are reduced by pharmacological blockade or genetic deletion of type-1 cannabinoid receptors, inhibition of endocannabinoid uptake or metabolic degradation, and activation of peroxisome proliferator-activated-receptor-α. On the other hand, cholinergic antagonists at α7 nicotinic acetylcholine receptors as well as endogenous negative allosteric modulators of these receptors are effective in blocking dependence-related effects of cannabinoids. CONCLUSIONS Pharmacological manipulation of the endocannabinoid system and endocannabinoid-like neuromodulators shows promise in the treatment of nicotine dependence and in relapse prevention. Likewise, drugs acting at nicotinic acetylcholine receptors might prove useful in the therapy of cannabinoid dependence. Research by Steven R. Goldberg has significantly contributed to the progress in this research field.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
| | - Liana Fattore
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), 09042, Italy.
- Neuroscience Institute, section of Cagliari, National Research Council, Cagliari, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy.
| |
Collapse
|
18
|
Morales-Rosado JA, Cousin MA, Ebbert JO, Klee EW. A Critical Review of Repurposing Apomorphine for Smoking Cessation. Assay Drug Dev Technol 2015; 13:612-22. [DOI: 10.1089/adt.2015.680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Margot A. Cousin
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota
| | - Jon O. Ebbert
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota
| | - Eric W. Klee
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
Abstract
There is abundant evidence that the dopamine (DA) neurons that project to the nucleus accumbens play a central role in neurobiological mechanisms underpinning drug dependence. This chapter considers the ways in which these projections facilitate the addiction to nicotine and tobacco. It focuses on the complimentary roles of the two principal subdivisions of the nucleus accumbens, the accumbal core and shell, in the acquisition and maintenance of nicotine-seeking behavior. The ways in which tonic and phasic firing of the neurons contributes to the ways in which the accumbens mediate the behavioral responses to nicotine are also considered. Experimental studies suggest that nicotine has relatively weak addictive properties which are insufficient to explain the powerful addictive properties of tobacco smoke. This chapter discusses hypotheses that seek to explain this conundrum. They implicate both discrete sensory stimuli closely paired with the delivery of tobacco smoke and contextual stimuli habitually associated with the delivery of the drug. The mechanisms by which each type of stimulus influence tobacco dependence are hypothesized to depend upon the increased DA release and overflow, respectively, in the two subdivisions of the accumbens. It is suggested that a majority of pharmacotherapies for tobacco dependence are not more successful because they fail to address this important aspect of the dependence.
Collapse
Affiliation(s)
- David J K Balfour
- Medical Research Institute, Division of Neuroscience, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland,
| |
Collapse
|
21
|
Sun N, Laviolette SR. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens. Neuropsychopharmacology 2014; 39:2799-815. [PMID: 24896614 PMCID: PMC4200490 DOI: 10.1038/npp.2014.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
Abstract
The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Using an unbiased conditioned place preference procedure combined with in vivo neuronal recordings, we examined the effects of nicotine reward and aversion conditioning on intra-NAc neuronal sub-population activity patterns. We report that intra-VTA doses of nicotine that differentially produce rewarding or aversive behavioral effects produce opposite effects on sub-populations of fast-spiking interneurons (FSIs) or medium spiny neurons (MSNs) within the shell region of the NAc (NAshell). Thus, while the rewarding effects of intra-VTA nicotine were associated with inhibition of FSI and activation of MSNs, the aversive effects of nicotine produced the opposite pattern of NAshell neuronal population activity. Blockade of DA transmission with a broad-spectrum DA receptor antagonist, α-flupenthixol, strongly inhibited the spontaneous activity of NAshell FSIs, and reversed the conditioning properties of intra-VTA nicotine, switching nicotine-conditioned responses from aversive to rewarding. Remarkably, DA receptor blockade switched intra-NAshell neuronal population activity from an aversion to a reward pattern, concomitant with the observed switch in behavioral conditioning effects.
Collapse
Affiliation(s)
- Ninglei Sun
- Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, 468 Medical Science Building, London, ON, Canada N6A 5C1, Tel: +1 519 661 2111 ext. 80302, Fax: +1 519 661 3936, E-mail:
| | | |
Collapse
|
22
|
McCutcheon JE, Cone JJ, Sinon CG, Fortin SM, Kantak PA, Witten IB, Deisseroth K, Stuber GD, Roitman MF. Optical suppression of drug-evoked phasic dopamine release. Front Neural Circuits 2014; 8:114. [PMID: 25278845 PMCID: PMC4166314 DOI: 10.3389/fncir.2014.00114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022] Open
Abstract
Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.
Collapse
Affiliation(s)
- James E McCutcheon
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Jackson J Cone
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Christopher G Sinon
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Samantha M Fortin
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Pranish A Kantak
- Department of Psychiatry and Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, NC, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute and Department of Psychology, Princeton University Princeton, NJ, USA
| | - Karl Deisseroth
- Departments of Bioengineering, Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, and CNC Program, Stanford University Stanford, CA, USA
| | - Garret D Stuber
- Department of Psychiatry and Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, NC, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
23
|
Melis M, Pistis M. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: Therapeutic perspectives. Pharmacol Res 2014; 86:42-9. [DOI: 10.1016/j.phrs.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
|
24
|
Marinelli M, McCutcheon JE. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014; 282:176-97. [PMID: 25084048 DOI: 10.1016/j.neuroscience.2014.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
Collapse
Affiliation(s)
- M Marinelli
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, C0875, BME 6.114A, Austin, TX 78756, USA.
| | - J E McCutcheon
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
25
|
Panin F, Lintas A, Diana M. Nicotine-induced increase of dopaminergic mesoaccumbal neuron activity is prevented by acute restraint stress. In vivo electrophysiology in rats. Eur Neuropsychopharmacol 2014; 24:1175-80. [PMID: 24530274 DOI: 10.1016/j.euroneuro.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/10/2013] [Accepted: 01/11/2014] [Indexed: 11/28/2022]
Abstract
Stress is well known to affect responsiveness to drugs of abuse and influencing approaching and drug-taking behaviour in both animals and humans. Consistently, in nicotine addicted subjects both negative events and perceived stress levels are reported to increase drug use and facilitate relapse to smoke even after long periods of abstinence. It has been suggested that stressful stimuli may influence the rewarding properties of abused drugs by acting on the dopaminergic mesolimbic system. In line with this hypothesis, a recent microdialysis study in rats has shown that acute restraint stress exposure prevents the nicotine-induced mesolimbic dopaminergic activation in the nucleus accumbens (NAC) shell via a corticosterone-mediated mechanism. In the present study we sought to evaluate the impact of acute restraint stress on nicotine-induced activation of the mesoaccumbal dopaminergic system by extracellular single unit recordings of antidromically-identified NAC shell projecting dopaminergic neurons within the ventral tegmental area (VTA). Nicotine intravenous administration dose-dependently (0.05-0.4mg/kg) stimulated the spontaneous firing and bursting of mesoaccumbal dopaminergic neurons in unstressed rats, as previously reported. By contrast, nicotine failed to increase mesoaccumbal dopaminergic neuron activity in rats previously exposed to 1-h immobilisation stress. Our observations show that acute restraint stress inhibits the response of the mesoaccumbal dopaminergic system to the stimulating properties of nicotine. These findings corroborate the notion that stress reduces the sensitivity to nicotine and suggest that the decreased dopaminergic release in the NAC shell is due to a reduced firing and bursting activity in the VTA.
Collapse
Affiliation(s)
- Francesca Panin
- "G. Minardi" Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy; Brain Repair Centre, University of Cambridge, CB2 0PY Cambridge, United Kingdom.
| | - Alessandra Lintas
- "G. Minardi" Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy; Neuroheuristic Research Group, University of Lausanne, Lausanne, Switzerland
| | - Marco Diana
- "G. Minardi" Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
26
|
Wang L, Shang S, Kang X, Teng S, Zhu F, Liu B, Wu Q, Li M, Liu W, Xu H, Zhou L, Jiao R, Dou H, Zuo P, Zhang X, Zheng L, Wang S, Wang C, Zhou Z. Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat Commun 2014; 5:3925. [PMID: 24968237 DOI: 10.1038/ncomms4925] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/17/2014] [Indexed: 12/16/2022] Open
Abstract
Striatal dopamine (DA) release can be independently triggered not only by action potentials (APs) in dopaminergic axons but also APs in cholinergic interneurons (ChIs). Nicotine causes addiction by modulating DA release, but with paradoxical findings. Here, we investigate how physiologically relevant levels of nicotine modulate striatal DA release. The optogenetic stimulation of ChIs elicits DA release, which is potently inhibited by nicotine with an IC50 of 28 nM in the dorsal striatum slice. This ChI-driven DA release is predominantly mediated by α6β2* nAChRs. Local electrical stimulus (Estim) activates both dopaminergic axons and ChIs. Nicotine does not affect the AP(DA)-dependent DA release (AP(DA), AP of dopaminergic axon). During burst Estim, nicotine permits the facilitation of DA release by prevention of DA depletion. Our work indicates that cholinergic stimulation-induced DA release is profoundly modulated by physiologically relevant levels of nicotine and resolves the paradoxical observation of nicotine's effects on striatal DA release.
Collapse
Affiliation(s)
- Li Wang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China [2]
| | - Shujiang Shang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China [2]
| | - Xinjiang Kang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China [2]
| | - Sasa Teng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bin Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Mingli Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Wei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Huadong Xu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Li Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ruiying Jiao
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Haiqiang Dou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Panli Zuo
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Shirong Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Cousin MA, Ebbert JO, Wiinamaki AR, Urban MD, Argue DP, Ekker SC, Klee EW. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment. PLoS One 2014; 9:e90467. [PMID: 24658307 PMCID: PMC3962344 DOI: 10.1371/journal.pone.0090467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation.
Collapse
Affiliation(s)
- Margot A. Cousin
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jon O. Ebbert
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Nicotine Dependence Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amanda R. Wiinamaki
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark D. Urban
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David P. Argue
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Ekker
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ascorbic Acid ameliorates nicotine exposure induced impaired spatial memory performances in rats. W INDIAN MED J 2014; 63:318-24. [PMID: 25429474 DOI: 10.7727/wimj.2013.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The long lasting behavioural and cognitive impairments in offspring prenatally exposed to nicotine have been confirmed in animal models. In the present study, we investigated the effect of ascorbic acid on prenatal nicotine exposure induced behavioral deficits in male offspring of rats. METHODS The pregnant Wistar dams were divided into four groups of six rats: control, vehicle control, nicotine and nicotine+ascorbic acid groups. The nicotine group received daily dose of subcutaneous injections of 0.96 mg/kg body weight (bw) nicotine free base throughout gestation. Pregnant dams in nicotine+ascorbic acid group were first given nicotine free base (0.96 mg/kg bw/day; subcutaneous route) followed by ascorbic acid (50 mg/kg bw/day, orally) daily throughout gestation. The cognitive function of male offspring of all the experimental groups was studied using Morris water maze test at postnatal day 40. RESULTS Prenatal nicotine exposure altered spatial learning and memory in male offspring. However, treatment with ascorbic acid ameliorated these changes in rats. CONCLUSION Ascorbic acid supplementation was found to be effective in preventing the prenatal nicotine exposure induced cognitive deficits in rat offspring to some extent.
Collapse
|
29
|
Garzón M, Duffy AM, Chan J, Lynch MK, Mackie K, Pickel VM. Dopamine D₂ and acetylcholine α7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 2013; 252:126-43. [PMID: 23954803 DOI: 10.1016/j.neuroscience.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. Dual D2R and α7nAChR labeling was seen in many of the same somata (co-localization over 97%) and dendrites (co-localization over 49%), where immunoreactivity for each of the receptors was localized to endomembranes as well as to non-synaptic or synaptic plasma membranes often near excitatory-type synapses. In comparison with somata and dendrites, many more small axons and axon terminals were separately labeled for each of the receptors. Thus, single-labeled axon terminals were predominant for both α7nAChR (57.9%) and D2R (89.0%). The majority of the immunolabeled axonal profiles contained D2R-immunoreactivity (81.6%) and formed either symmetric or asymmetric synapses consistent with involvement in the release of both inhibitory and excitatory transmitters. Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n=152) and α7nAChR (n=561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms.
Collapse
Affiliation(s)
- M Garzón
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid 28029, Spain; Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Brewer AJ, Mahoney JJ, Nerumalla CS, Newton TF, De La Garza R. The influence of smoking cigarettes on the high and desire for cocaine among active cocaine users. Pharmacol Biochem Behav 2013; 106:132-6. [PMID: 23541494 PMCID: PMC3707485 DOI: 10.1016/j.pbb.2013.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/04/2013] [Accepted: 03/08/2013] [Indexed: 11/21/2022]
Abstract
The primary aim was to evaluate whether nicotine use alters the high or desire for cocaine among active cocaine users who concurrently smoke cigarettes. Participants answered the Fagerstrom Test for Nicotine Dependence (FTND), Nicotine-Stimulant Interaction Questionnaire (NSIQ), and Multiple Drug Use Questionnaire (MDUQ). These questionnaires employ subject recall of participants' drug use habits. The participants that smoked (N=163/188) were primarily African American males who were 45.0±0.5 (mean±S.E.M.) years of age, and used cocaine for 17.9±0.6 years and 19.8±0.6 days out of the last 30. These individuals smoked 14.0±0.8 cigarettes/day (CPD), scored 4.6±0.2 (on a scale of 0-10) on the FTND, and smoked cigarettes for 23.5±0.7 years. Two questions from the MDUQ, which evaluates the interaction between cocaine and nicotine, (-5: reduces effect, 0: no change, +5: increases effect) included "Does nicotine affect the high that you experience from cocaine?" and "Does nicotine affect your desire for cocaine?", and the scores were 1.3±0.2 and 0.8±0.2, respectively. The NSIQ also evaluated interactive effects of nicotine and cocaine, on a scale of 0 to 100 (0: not at all, 100: most ever). Smokers responded most strongly that using cocaine increased both the urge to smoke and cigarette craving. Additional analyses were performed by separating participants into HighCPD vs. LowCPD groups via median split. The HighCPD group smoked 22.7±1.1 CPD while the LowCPD group smoked 6.4±0.3 CPD [F(1,161)=228.4, p<0.0001], and the HighCPD group had a mean FTND score twice that of the LowCPD group. Significant differences emerged between the two groups on multiple items of the NSIQ, but not the MDUQ. The subjective ratings of high and desire for cocaine, and several subjective effects produced by cocaine, were modestly altered by cigarette smoking. Taken together, these data suggest that cigarette smoking may augment the craving and high produced by cocaine.
Collapse
Affiliation(s)
- Alex J Brewer
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
31
|
Chen HK, Lan TH, Wu BJ. A double-blind randomized clinical trial of different doses of transdermal nicotine patch for smoking reduction and cessation in long-term hospitalized schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 2013; 263:75-82. [PMID: 22729212 DOI: 10.1007/s00406-012-0338-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/05/2012] [Indexed: 01/08/2023]
Abstract
There have been many studies of smoking cessation using nicotine replacement therapy (NRT) with schizophrenic patients, but none exploring the smoking-reduction effects of varying doses of NRT in long-stay patients with schizophrenia. This study aimed to examine the effect of different doses of the nicotine transdermal patch on smoking-reduction and cessation outcomes in long-term hospitalized schizophrenic patients. A total of 184 subjects participated in a randomized, controlled, double-blind 8-week clinical trial. Participants were randomized into two groups using two different doses of NRT: a high-dose NRT group (31.2 mg for the first 4 weeks, then 20.8 mg for 4 weeks, n = 92) or a low-dose NRT group (20.8 mg for 8 weeks, n = 92). The 7-day point prevalence of abstinence was 2.7 % (5/184). Participants in the low-dose NRT group reduced smoking by 3.1 more cigarettes on average than those in the high-dose group (p = 0.005). However, a repeated measures analysis of variance revealed that the main effect of changes in the number of cigarettes smoked, comparing the two types of treatment across periods, was not significant (p = 0.35, partial eta square = 0.018). In summary, among a cohort of chronic institutionalized schizophrenic patients, smoking cessation and reduction outcomes were not correlated with NRT dose, and the cessation rate was much lower than rates in similar studies. It indicates that long-term hospitalized schizophrenic patients have more difficulties with quitting smoking. More effective integrative smoking cessation programs should be addressed for these patients.
Collapse
|
32
|
Enrico P, Sirca D, Mereu M, Peana AT, Mercante B, Diana M. Acute restraint stress prevents nicotine-induced mesolimbic dopaminergic activation via a corticosterone-mediated mechanism: a microdialysis study in the rat. Drug Alcohol Depend 2013; 127:8-14. [PMID: 22809896 DOI: 10.1016/j.drugalcdep.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 05/04/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Stress affects the responsiveness to nicotine (NIC), by increasing drug use, facilitating relapse and reinstating NIC self administration even after prolonged abstinence. In turn, high corticosterone (CORT) blood levels induced by stress may alter the neurobiological properties of NIC by acting on the dopamine (DA) mesolimbic system. METHODS In this study, we evaluated the effect of exposure to acute restraint stress on NIC-induced stimulation of the mesolimbic DA system of the rat, by studying extracellular DA levels in the nucleus accumbens shell (NAccs) with microdialysis. RESULTS NIC intravenous administration (130 μg/kg) increased DA levels in the NAccs in control rats but not in subjects exposed to stress; this latter phenomenon was prevented by blockade of CORT effects with the inhibitor of corticosterone synthesis metirapone (100 mg/kg) or the glucorticoid receptor antagonist mifepristone (150 μmol/kg). CONCLUSIONS These observations show that exposure to acute stress inhibits the stimulatory response of the mesolimbic DA system to NIC and suggest that this effect is mediated by circulating CORT acting on its receptors. These results may bear relevance in explaining the role played by stressful stimuli in NIC-seeking and taking behavior.
Collapse
Affiliation(s)
- Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 2012; 5:83. [PMID: 22876217 PMCID: PMC3411089 DOI: 10.3389/fnmol.2012.00083] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/23/2022] Open
Abstract
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.
Collapse
Affiliation(s)
- Allison A Feduccia
- Ernest Gallo Clinic and Research Center, Preclinical Development Emeryville, CA, USA
| | | | | |
Collapse
|
34
|
Abstract
Cocaine (benzoylmethylecgonine), a natural alkaloid, is a powerful psychostimulant and a highly addictive drug. Unfortunately, the relationships between its behavioral and electrophysiological effects are not clear. We investigated the effects of cocaine on the firing of midbrain dopaminergic (DA) neurons, both in anesthetized and awake rats, using pre-implanted multielectrode arrays and a recently developed telemetric recording system. In anesthetized animals, cocaine (10 mg/kg, intraperitoneally) produced a general decrease of the firing rate and bursting of DA neurons, sometimes preceded by a transient increase in both parameters, as previously reported by others. In awake rats, however, injection of cocaine led to a very different pattern of changes in firing. A decrease in firing rate and bursting was observed in only 14% of DA neurons. Most of the other DA neurons underwent increases in firing rate and bursting: these changes were correlated with locomotor activity in 52% of the neurons, but were uncorrelated in 29% of them. Drug concentration measurements indicated that the observed differences between the two conditions did not have a pharmacokinetic origin. Taken together, our results demonstrate that cocaine injection differentially affects the electrical activity of DA neurons in awake and anesthetized states. The observed increases in neuronal activity may in part reflect the cocaine-induced synaptic potentiation found ex vivo in these neurons. Our observations also show that electrophysiological recordings in awake animals can uncover drug effects, which are masked by general anesthesia.
Collapse
|
35
|
Van den Oever MC, Spijker S, Smit AB. The synaptic pathology of drug addiction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:469-91. [PMID: 22351069 DOI: 10.1007/978-3-7091-0932-8_21] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A hallmark of drug addiction is the uncontrollable desire to consume drugs at the expense of severe negative consequences. Moreover, addicts that successfully refrain from drug use have a high vulnerability to relapse even after months or years of abstinence. In this chapter, we will discuss the current understanding of drug-induced neuroplasticity within the mesocorticolimbic brain system that contributes to the development of addiction and the persistence of relapse to drug seeking. I particular, we will focus at animal models that can be translated to human addiction. Although dopaminergic transmission is important for the acute effects of drug intake, the long-lived behavioral abnormalities associated with addiction are thought to arise from pathological plasticity in glutamatergic neurotransmission. The nature of changes in excitatory synaptic plasticity depends on several factors, including the type of drug, the brain area, and the time-point studied in the transition of drug exposure to withdrawal and relapse to drug seeking. Identification of drug-induced neuroplasticity is crucial to understand how molecular and cellular adaptations contribute to the end stage of addiction, which from a clinical perspective, is a time-point where pharmacotherapy may be most effectively employed.
Collapse
Affiliation(s)
- Michel C Van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Yousefi MK, Folsom TD, Fatemi SH. A Review of Varenicline's Efficacy and Tolerability in Smoking Cessation Studies in Subjects with Schizophrenia. ACTA ACUST UNITED AC 2012; S4. [PMID: 22514788 DOI: 10.4172/2155-6105.s4-001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a severe psychiatric disorder affecting 1% of the world's population. Nicotine addiction is one of the most important health concerns for patients with schizophrenia. An extensive body of evidence points to a high prevalence rate of comorbid nicotine addiction in people with schizophrenia (70-90%), which contributes to significant cardiovascular and cancer risks in this vulnerable population. Therefore, effective smoking cessation strategies could play a major role in preventing significant morbidity and mortality in this population. Two of the most common pharmacological approaches to smoking cessation, bupropion and nicotine replacement therapy (NRT), have been used in psychiatric patients to reduce their smoking. In 2006, varenicline, a partial agonist of α4β2 acetylcholine receptor, was approved for smoking cessation by the FDA. This drug not only has the beneficial effects on withdrawal symptoms, but also reduces craving and rewarding effects of smoking. While varenicline has been shown to be an effective, safe medication for the general population, its efficacy and safety for subjects with schizophrenia is less well characterized. A number of case studies have prompted FDA warnings about the potential exacerbation of psychiatric symptoms. However, other case studies and pilot studies have shown varenicline to be a safe and effective treatment for smoking cessation in subjects with schizophrenia. Varenicline has the potential to reduce smoking in subjects with schizophrenia, however, clinicians should carefully monitor patients receiving varenicline for potential exacerbation of psychiatric symptoms.
Collapse
Affiliation(s)
- Mahtab Karkhane Yousefi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St. SE, MMC 392, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
37
|
Positive and negative effects of alcohol and nicotine and their interactions: a mechanistic review. Neurotox Res 2011; 21:57-69. [PMID: 21932109 DOI: 10.1007/s12640-011-9275-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/14/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Abstract
Nicotine and alcohol are two of the most commonly abused legal substances. Heavy use of one drug can often lead to, or is predictive of, heavy use of the other drug in adolescents and adults. Heavy drinking and smoking alone are of significant health hazard. The combination of the two, however, can result in synergistic adverse effects particularly in incidences of various cancers (e.g., esophagus). Although detrimental consequences of smoking are well established, nicotine by itself might possess positive and even therapeutic potential. Similarly, alcohol at low or moderated doses may confer beneficial health effects. These opposing findings have generated considerable interest in how these drugs act. Here we will briefly review the negative impact of drinking-smoking co-morbidity followed by factors that appear to contribute to the high rate of co-use of alcohol and nicotine. Our main focus will be on what research is telling us about the central actions and interactions of these drugs, and what has been elucidated about the mechanisms of their positive and negative effects. We will conclude by making suggestions for future research in this area.
Collapse
|
38
|
Dobbs LK, Mark GP. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway. Behav Brain Res 2011; 226:224-34. [PMID: 21945297 DOI: 10.1016/j.bbr.2011.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022]
Abstract
Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6J mice were given a bilateral 0.1μl OXO (0, 1, or 10nM/side) microinjection immediately prior to IP saline or MA (2mg/kg). The highest OXO concentration significantly inhibited both saline- and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA.
Collapse
Affiliation(s)
- Lauren K Dobbs
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, School of Medicine, 3181 Sam Jackson Park Rd., Portland, OR 97239, United States.
| | | |
Collapse
|
39
|
Chen TY, Zhang D, Dragomir A, Akay YM, Akay M. Complexity of VTA DA neural activities in response to PFC transection in nicotine treated rats. J Neuroeng Rehabil 2011; 8:13. [PMID: 21352584 PMCID: PMC3059294 DOI: 10.1186/1743-0003-8-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 02/27/2011] [Indexed: 12/02/2022] Open
Abstract
Background The dopaminergic (DA) neurons in the ventral tegmental area (VTA) are widely implicated in the addiction and natural reward circuitry of the brain. These neurons project to several areas of the brain, including prefrontal cortex (PFC), nucleus accubens (NAc) and amygdala. The functional coupling between PFC and VTA has been demonstrated, but little is known about how PFC mediates nicotinic modulation in VTA DA neurons. The objectives of this study were to investigate the effect of acute nicotine exposure on the VTA DA neuronal firing and to understand how the disruption of communication from PFC affects the firing patterns of VTA DA neurons. Methods Extracellular single-unit recordings were performed on Sprague-Dawley rats and nicotine was administered after stable recording was established as baseline. In order to test how input from PFC affects the VTA DA neuronal firing, bilateral transections were made immediate caudal to PFC to mechanically delete the interaction between VTA and PFC. Results The complexity of the recorded neural firing was subsequently assessed using a method based on the Lempel-Ziv estimator. The results were compared with those obtained when computing the entropy of neural firing. Exposure to nicotine triggered a significant increase in VTA DA neurons firing complexity when communication between PFC and VTA was present, while transection obliterated the effect of nicotine. Similar results were obtained when entropy values were estimated. Conclusions Our findings suggest that PFC plays a vital role in mediating VTA activity. We speculate that increased firing complexity with acute nicotine administration in PFC intact subjects is due to the close functional coupling between PFC and VTA. This hypothesis is supported by the fact that deletion of PFC results in minor alterations of VTA DA neural firing when nicotine is acutely administered.
Collapse
Affiliation(s)
- Ting Y Chen
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | | | | | | | | |
Collapse
|
40
|
Lecca S, Melis M, Luchicchi A, Ennas MG, Castelli MP, Muntoni AL, Pistis M. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology 2011; 36:589-602. [PMID: 21048703 PMCID: PMC3055682 DOI: 10.1038/npp.2010.190] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.
Collapse
Affiliation(s)
- Salvatore Lecca
- B.B. Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Miriam Melis
- B.B. Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Antonio Luchicchi
- B.B. Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | | | - Maria Paola Castelli
- B.B. Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy,Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, Italy
| | - Anna Lisa Muntoni
- Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, Italy,C.N.R. Neuroscience Institute-Cagliari, University of Cagliari, Monserrato, Italy
| | - Marco Pistis
- B.B. Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy,Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, Italy,B.B. Brodie Department of Neuroscience, Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Cittadella Universitaria, Monserrato (CA) 09042, Italy. Tel: +39 070 675 4324; Fax: +39 070 675 4320; E-mail:
| |
Collapse
|
41
|
Müller DJ, Likhodi O, Heinz A. Neural markers of genetic vulnerability to drug addiction. Curr Top Behav Neurosci 2011; 3:277-99. [PMID: 21161757 DOI: 10.1007/7854_2009_25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This chapter will summarize genetics findings derived from various strategies and highlight important neural markers (or correlates) in some specific and extensively studied genes. Most studies highlighted here focus on alcohol and nicotine dependence (AD and ND, respectively). AD and ND are among the most prevalent addictive disorders worldwide, are among the best studied, and are also associated globally with the largest socioeconomic impact.We describe different mechanisms through which genes can have an impact on the addictive behaviors, distinguishing between the genes that inscribe the proteins affecting the metabolism of the addictive substance (e.g., ADH/ALDH for alcohol or CYP2A6 for nicotine) and genes that code for the brain transmitter systems, such as genes involved in cerebral neurotransmission thought to be involved in addiction (e.g., brain reward system, mood regulation, opioid system). Strategies include linkage analyses, association studies, whole genome association studies as well as intermediate/endophenotype studies. Moreover, some important findings derived from animal studies and from neuroimaging studies are highlighted. In conclusion, we provide the reader with an overview of most important studies related to AD and ND and give an outlook how these findings may become useful and beneficial in the future.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Psychiatry, Charité University Medicine, Campus Charité Mitte, Schumannstrasse, Berlin, Germany
| | | | | |
Collapse
|
42
|
Kim MN, Jutkiewicz EM, Zhang M, Gnegy ME. The sensitizing effect of acute nicotine on amphetamine-stimulated behavior and dopamine efflux requires activation of β2 subunit-containing nicotinic acetylcholine receptors and glutamate N-methyl-D-aspartate receptors. Neuropharmacology 2010; 60:1126-34. [PMID: 20971124 DOI: 10.1016/j.neuropharm.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/22/2010] [Accepted: 10/06/2010] [Indexed: 12/28/2022]
Abstract
Nicotine has been demonstrated to enhance the subsequent use of illicit drugs in animals and humans. We previously demonstrated in female, Holtzman rats that one low dose of nicotine will potentiate locomotor activity and dopamine (DA) efflux in response to a subsequent low dose of d-amphetamine (AMPH) given 1-4 h later. In the present study, we show this also occurs in male rats and characterize the receptors required for the rapid sensitizing effect of nicotine on AMPH-stimulated locomotor behavior and AMPH-induced DA efflux. Pretreatment of male, Holtzman rats with a low dose (0.1 mg/kg, i.p.) of nicotine 2-4 h before a challenge with AMPH (0.32 mg/kg, i.p.) enhanced locomotor behavior as compared to saline pretreatment. Dihydro-β-erythroidine (DHβE), a relatively selective antagonist at β2 subunit-containing (β2∗) nicotinic acetylcholine receptors (nAChR), but not methyllycaconitine (MLA), a relatively selective antagonist at α7 nAChRs, blocked the sensitizing effect of nicotine on AMPH-stimulated locomotor activity. Pretreatment with varenicline, a partial agonist selective for β2∗ nAChRs, blocked the sensitizing effect of nicotine on AMPH-stimulated locomotor behavior. Nicotine pretreatment sensitized AMPH-induced DA overflow in slices from ventral (nucleus accumbens, NAc), but not dorsal striatum as compared to saline-pretreated rats. Nicotine sensitization of the DA overflow was blocked by DHβE. Pretreatment with the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist (+)-MK-801 (0.1 mg/kg, s.c.) 30 min before nicotine blocked sensitization of both locomotion and DA overflow in response to AMPH challenge. These results demonstrate that activation of the β2∗ nAChRs and NMDA receptors are required for the rapid sensitizing effect of nicotine on AMPH actions. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Myung N Kim
- Department of Pharmacology, University of Michigan Medical School, 1301 Medical Science Research Building III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
43
|
Killen JD, Fortmann SP, Murphy GM, Hayward C, Fong D, Lowenthal K, Bryson SW, Killen DT, Schatzberg AF. Failure to improve cigarette smoking abstinence with transdermal selegiline + cognitive behavior therapy. Addiction 2010; 105:1660-8. [PMID: 20707784 PMCID: PMC3749242 DOI: 10.1111/j.1360-0443.2010.03020.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS To examine the effectiveness of transdermal selegiline for producing cigarette smoking abstinence. DESIGN Adult smokers were randomly assigned to receive selegiline transdermal system (STS) or placebo given for 8 weeks. All participants received cognitive behavior therapy (CBT). Follow-ups were conducted at 25 and 52 weeks. SETTING Community smoking cessation clinic. PARTICIPANTS 243 adult smokers (> or =18 years of age; > or =10 cigarettes/day). MEASURES Expired-air carbon monoxide confirmed 7-day point prevalence abstinence. FINDINGS STS was not superior to placebo. More women than men were abstinent at 52 week follow-up (28% vs 16%, P < 0.05). Behavioral activation (BAS) moderated treatment response (P = 0.01). The survival rate through week 52 for those with high 'drive' scores on the BAS was 47% if assigned to selegiline and 34% if assigned to placebo. The survival rate for those with low 'drive scores' on the BAS was 35% if assigned to selegiline compared to 53% if assigned to placebo. CONCLUSION Transdermal selegiline does not appear generally effective in aiding smoking cessation though there may be a selective effect in those smokers with low 'behavioral activation'.
Collapse
Affiliation(s)
- Joel D Killen
- Departments of Medicine and Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94303-1334, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Melis M, Carta S, Fattore L, Tolu S, Yasar S, Goldberg SR, Fratta W, Maskos U, Pistis M. Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors. Biol Psychiatry 2010; 68:256-64. [PMID: 20570248 PMCID: PMC2907468 DOI: 10.1016/j.biopsych.2010.04.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Modulation of midbrain dopamine neurons by nicotinic acetylcholine receptors (nAChRs) plays an important role in behavior, cognition, motivation, and reward. Specifically, nAChRs containing beta2 subunits (beta2-nAChRs) switch dopamine cells from a resting to an excited state. However, how beta2-nAChRs can be modulated and thereby how dopamine firing activity is affected remains elusive. Because changes in dopamine cell activity are reflected in the dynamics of microcircuits generating altered responses to stimuli and inputs, factors regulating their state are fundamental. Among these, endogenous ligands to the nuclear receptor-transcription factor peroxisome proliferator-activated receptors type-alpha (PPARalpha) have been recently found to suppress nicotine-induced responses of dopamine neurons. METHODS We used both in vitro and in vivo electrophysiological techniques together with behavioral analysis to investigate on the effects of modulation of PPARalpha in Sprague-Dawley rat and C57BLJ/6 mouse dopamine neurons and their interactions with beta2-nAChRs. To this aim, we took advantage of a selective reexpression of beta2-nAChR exclusively in dopamine cells by stereotaxically injecting a lentiviral vector in the mouse ventral tegmental area. RESULTS We found that activation of PPARalpha decreases in vitro both dopamine cell activity and ventral tegmental area net output through negative modulation of beta2-nAChRs. Additionally, PPARalpha activation in vivo reduces both the number of spontaneously active dopamine neurons and nicotine-induced increased locomotion. CONCLUSIONS Our combined findings suggest PPARalpha ligands as important negative modulators of beta2-nAChRs on dopamine neurons. Thus, PPARalpha ligands might prove beneficial in treating disorders in which dopamine dysfunction plays a prominent role, such as schizophrenia and nicotine addiction.
Collapse
Affiliation(s)
- Miriam Melis
- B.B. Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy.
| | - Stefano Carta
- B.B. Brodie Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy
| | | | - Stefania Tolu
- Unité Neurobiologie intégrative des systèmes cholinergiques, CNRS URA 2182, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Sevil Yasar
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Walter Fratta
- B.B. Brodie Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy,CNR, Neuroscience Institute, Cagliari, Italy
| | - Uwe Maskos
- Unité Neurobiologie intégrative des systèmes cholinergiques, CNRS URA 2182, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marco Pistis
- B.B. Brodie Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
45
|
Peterson DA, Sejnowski TJ, Poizner H. Convergent evidence for abnormal striatal synaptic plasticity in dystonia. Neurobiol Dis 2010; 37:558-73. [PMID: 20005952 PMCID: PMC2846420 DOI: 10.1016/j.nbd.2009.12.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 11/24/2022] Open
Abstract
Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor "use" may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes linking etiology to pathophysiology of the disease.
Collapse
Affiliation(s)
- David A Peterson
- Institute for Neural Computation, University of California at San Diego, San Diego Supercomputer Center-Annex, 0523, Level B-1, South Wing, B108E, La Jolla, CA 92093-0523, USA.
| | | | | |
Collapse
|
46
|
Nicotine- and methamphetamine-induced dopamine release evaluated with in-vivo binding of radiolabelled raclopride to dopamine D2 receptors: comparison with in-vivo microdialysis data. Int J Neuropsychopharmacol 2009; 12:833-41. [PMID: 19154629 DOI: 10.1017/s1461145708009826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The effect of substances which alter extracellular dopamine (DA) concentration has been studied by measuring changes in the binding of radiolabelled raclopride, a DA D2 receptor ligand that is sensitive to endogenous DA. To better characterize the relationship between extracellular DA concentration and DA D2 receptor binding of raclopride, we compared the changes of extracellular DA concentration (measured using in-vivo microdialysis) and in-vivo [3H]raclopride binding induced by different doses of methamphetamine (Meth) and nicotine, drugs that enhance DA release with and without blocking DA transporters (DATs), respectively, in rat striatum. Nicotine elicited a modest increase of striatal extrasynaptic extracellular DA, while Meth produced a marked increase of striatal extrasynaptic DA in a dose-dependent manner. There was a close correlation between the decrease in [3H]raclopride in-vivo binding and the increase in extrasynaptic DA concentration induced by both nicotine (r2=0.95, p<0.001) and Meth (r2=0.98, p=0.001), supporting the usefulness of the radiolabelled raclopride-binding measurement for the non-invasive assessment of DA release following interventions in the living brain. However, the linear regression analysis revealed that the ratio of percent DA increase to percent [3H]raclopride binding reduction was 25-fold higher for Meth (34.8:1) than for nicotine (1.4:1). The apparent discrepancy in the extrasynaptic DA-[3H]raclopride binding relationship between the DA-enhancing drugs with and without DAT-blocking property indicates that the competition between endogenous DA and radiolabelled raclopride takes place at the intrasynaptic rather than extrasynaptic DA D2 receptors and reflects synaptic concentration of DA.
Collapse
|
47
|
Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 2009; 78:756-65. [PMID: 19540212 DOI: 10.1016/j.bcp.2009.06.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 02/05/2023]
Abstract
A major hurdle in defining the molecular biology of nicotine addiction has been characterizing the different nicotinic acetylcholine receptor (nAChR) subtypes in the brain and how nicotine alters their function. Mounting evidence suggests that the addictive effects of nicotine, like other drugs of abuse, occur through interactions with its receptors in the mesolimbic dopamine system, particularly ventral tegmental area (VTA) neurons, where nicotinic receptors act to modulate the release of dopamine. The molecular identity of the nicotinic receptors responsible for drug seeking behavior, their cellular and subcellular location and the mechanisms by which these receptors initiate and maintain addiction are poorly defined. In this commentary, we review how nicotinic acetylcholine receptors (nAChRs) are upregulated by nicotine exposure, the potential posttranslational events that appear to cause it and how upregulation is linked to nicotine addiction.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Abbot Hall 402-MC0926, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
48
|
Domino EF, Tsukada H, Harada N. Positron emission tomographic measure of brain dopamine dependence to nicotine as a model of drugs of abuse. Psychopharmacology (Berl) 2009; 204:149-53. [PMID: 19137279 DOI: 10.1007/s00213-008-1445-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/17/2008] [Indexed: 11/27/2022]
Abstract
RATIONALE Nicotine/tobacco are prototypic substances used throughout the world. Nicotine abstinence produces some depressive-like effects which are treated by the dopamine (DA) and norepinephrine reuptake inhibitor bupropion. A quantitative measure of the regional brain utilization of these catecholamines (CA) during nicotine dependence and withdrawal is important. OBJECTIVE The aim of this study was to prove that regional brain DA utilization by nicotine can be quantified by positron emission tomography (PET) using L-[beta-(11)C]DOPA. MATERIALS AND METHODS Eight young Macaca mulatta monkeys were given 0.9% NaCl or nicotine in doses of 32 or 100 microg/kg i.m. bid for 9 days to produce minimal dependence. On the tenth day, PET measurements were repeated before and after i.v. nicotine administration. PET studies were done in habituated, trained, and fully conscious animals. RESULTS Compared to a 0.9% NaCl control, acute i.v. nicotine as a bolus plus infusion for 30 min in similar doses to maintain a steady-state level for 30 min did not affect the utilization rate constant (k (3)) in dorsal or ventral striatum as measured by L-[beta-(11)C]DOPA. When monkeys were given nicotine bid repeatedly after overnight nicotine abstinence, CA utilization was reduced. A subsequent nicotine dose normalized utilization to slightly above control levels. Changes in ventral striatum were similar to those in dorsal striatum. The reduced rate of utilization demonstrated with L-[beta-(11)C]DOPA after overnight nicotine abstinence and its reversal by nicotine the next day provides an important PET measure of brain nicotine dependence and withdrawal. This method can be applied to other substances of abuse that release DA.
Collapse
Affiliation(s)
- Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA.
| | | | | |
Collapse
|
49
|
Domino EF, Tsukada H. Nicotine sensitization of monkey striatal dopamine release. Eur J Pharmacol 2009; 607:91-5. [PMID: 19232339 DOI: 10.1016/j.ejphar.2009.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/20/2009] [Accepted: 02/09/2009] [Indexed: 11/26/2022]
Abstract
This study with monkeys was designed to answer two questions. 1) Does acute nicotine preferentially release more dopamine in the striatum than in the prefrontal cortex? 2) Do repeated doses of nicotine produce sensitization of striatal dopamine release? Microdialysis techniques were used to measure extracellular dopamine in both brain regions in two separate groups of conscious animals. The acute nicotine i.v. dose schedule was a bolus of 32 microg/kg plus an infusion of +/-0.8 microg/kg/min and a 100 microg/kg bolus plus an infusion of +/-2.53 microg/kg/min for 30 min to mimic human tobacco smoking arterial plasma nicotine concentrations. Acute nicotine given i.v. released more dopamine in the striatum than in the prefrontal cortex. In the second experiment, for convenience, daily nicotine was given i.m. and not i.v. bid in doses of 32 or 100 microg/kg for nine days. Dopamine release was measured after overnight nicotine abstinence using the i.v. dose schedule from the first experiment. Baseline dopamine release was significantly reduced (77.6% of control, P<0.05). With a lowered baseline, a greater facilitation of dopamine release was produced by nicotine compared to that obtained under control conditions when the baseline was higher. The impaired dopamine release with overnight nicotine abstinence was transiently enhanced in a dose dependent manner. These data regarding the striatum are consistent with previous findings in rodents of nicotine sensitization of dopamine release especially in nucleus accumbens following repeated administration.
Collapse
Affiliation(s)
- Edward F Domino
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka 484-6601, Japan.
| | | |
Collapse
|
50
|
Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci 2008; 28:13985-94. [PMID: 19091987 PMCID: PMC3169176 DOI: 10.1523/jneurosci.3221-08.2008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 01/18/2023] Open
Abstract
Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.
Collapse
Affiliation(s)
| | | | | | - Anna Lisa Muntoni
- Consiglio Nazionale delle Richerche Institute of Neuroscience, University of Cagliari, 09042 Monserrato, Italy
| | - Sevil Yasar
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, and
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse–National Institutes of Health, Baltimore, Maryland 21224
| | | |
Collapse
|