1
|
Tricarico D, Mele A, Camerino GM, Laghezza A, Carbonara G, Fracchiolla G, Tortorella P, Loiodice F, Camerino DC. Molecular determinants for the activating/blocking actions of the 2H-1,4-benzoxazine derivatives, a class of potassium channel modulators targeting the skeletal muscle KATP channels. Mol Pharmacol 2008; 74:50-8. [PMID: 18403717 DOI: 10.1124/mol.108.046615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 2H-1,4-benzoxazine derivatives are modulators of the skeletal muscle ATP-sensitive-K(+) channels (K(ATP)), activating it in the presence of ATP but inhibiting it in the absence of nucleotide. To investigate the molecular determinants for the activating/blocking actions of these compounds, novel molecules with different alkyl or aryl-alkyl substitutes at position 2 of the 1,4-benzoxazine ring were prepared. The effects of the lengthening of the alkyl chain and of branched substitutes, as well as of the introduction of aliphatic/aromatic rings on the activity of the molecules, were investigated on the skeletal muscle K(ATP) channels of the rat, in excised-patch experiments, in the presence or absence of internal ATP (10(-4) M). In the presence of ATP, the 2-n-hexyl analog was the most potent activator (DE(50) = 1.08 x 10(-10) M), whereas the 2-phenylethyl was not effective. The rank order of efficacy of the openers was 2-n-hexyl > or =2-cyclohexylmethyl >2-isopropyl = 2-n-butyl > or = 2-phenyl > or = 2-benzyl = 2-isobutyl analogs. In the absence of ATP, the 2-phenyl analog was the most potent inhibitor (IC(50) = 2.5 x 10(-11) M); the rank order of efficacy of the blockers was 2-phenyl > or = 2-n-hexyl > 2-n-butyl > 2-cyclohexylmethyl, whereas the 2-phenylethyl, 2-benzyl, and 2-isobutyl 1,4-benzoxazine analogs were not effective; the 2-isopropyl analog activated the K(ATP) channel even in the absence of nucleotide. Therefore, distinct molecular determinants for the activating or blocking actions for these compounds can be found. For example, the replacement of the linear with the branched alkyl substitutes at the position 2 of the 1,4-benzoxazine nucleus determines the molecular switch from blockers to openers. These compounds were 100-fold more potent and effective as openers than other KCO against the muscle K(ATP) channels.
Collapse
Affiliation(s)
- Domenico Tricarico
- Department of Pharmacobiology, Faculty of Pharmacy, via Orabona no. 4, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A. Therapeutic Approaches to Ion Channel Diseases. ADVANCES IN GENETICS 2008; 64:81-145. [DOI: 10.1016/s0065-2660(08)00804-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
Jahangir A, Terzic A. K(ATP) channel therapeutics at the bedside. J Mol Cell Cardiol 2005; 39:99-112. [PMID: 15953614 PMCID: PMC2743392 DOI: 10.1016/j.yjmcc.2005.04.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/17/2005] [Accepted: 04/26/2005] [Indexed: 11/22/2022]
Abstract
The family of potassium channel openers regroups drugs that share the property of activating adenosine triphosphate-sensitive potassium (K(ATP)) channels, metabolic sensors responsible for adjusting membrane potential-dependent functions to match cellular energetic demands. K(ATP) channels, widely represented in metabolically-active tissue, are heteromultimers composed of an inwardly rectifying potassium channel pore and a regulatory sulfonylurea receptor subunit, the site of action of potassium channel opening drugs that promote channel activity by antagonizing ATP-induced pore inhibition. The activity of K(ATP) channels is critical in the cardiovascular adaptive response to stress, maintenance of neuronal electrical stability, and hormonal homeostasis. Thereby, K(ATP) channel openers have a unique therapeutic spectrum, ranging from applications in myopreservation and vasodilatation in patients with heart or vascular disease to potential clinical use as bronchodilators, bladder relaxants, islet cell protector, antiepileptics and promoters of hair growth. While the current experience in practice with potassium channel openers remains limited, multitude of ongoing investigations aims at defining the benefit of this emerging family of therapeutics in diverse disease conditions associated with metabolic distress.
Collapse
Affiliation(s)
- A Jahangir
- Division of Cardiovascular Diseases, Departmentof Medicine, Mayo Clinic College of Medicine, Guggenheim 7, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
4
|
Tricarico D, Barbieri M, Antonio L, Tortorella P, Loiodice F, Camerino DC. Dualistic actions of cromakalim and new potent 2H-1,4-benzoxazine derivatives on the native skeletal muscle K ATP channel. Br J Pharmacol 2003; 139:255-62. [PMID: 12770930 PMCID: PMC1573836 DOI: 10.1038/sj.bjp.0705233] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 New 2H-1,4-benzoxazine derivatives were synthesized and tested for their agonist properties on the ATP-sensitive K(+) channels (K(ATP)) of native rat skeletal muscle fibres by using the patch-clamp technique. The novel modifications involved the introduction at position 2 of the benzoxazine ring of alkyl substituents such as methyl (-CH(3)), ethyl (-C(2)H(5)) or propyl (-C(3)H(7)) groups, while maintaining pharmacophore groups critical for conferring agonist properties. 2 The effects of these molecules were compared with those of cromakalim in the presence or absence of internal ATP (10(-4) M). In the presence of internal ATP, all the compounds increased the macropatch K(ATP) currents. The order of potency of the molecules as agonists was -C(3)H(7) (DE(50)=1.63 x 10(-8) M) >-C(2)H(5) (DE(50)=1.11 x 10(-7) M)>-CH(3) (DE(50)=2.81 x 10(-7) M)>cromak-slim (DE(50)= 1.42 x 10(-5) M). Bell-shaped dose-response curves were observed for these compounds and cromakalim indicating a downturn in response when a certain dose was exceeded. 3 In contrast, in the absence of internal ATP, all molecules including cromakalim inhibited the K(ATP) currents. The order of increasing potency as antagonists was cromakalim (IC(50)=1.15 x 10(-8) M)> or =-CH(3) (IC(50)=2.6 x 10(-8) M)>-C(2)H(5) (IC(50)=4.4 x 10(-8) M)>-C(3)H(7) (IC(50)=1.68 x 10(-7) M) derivatives. 4 These results suggest that the newly synthesized molecules and cromakalim act on muscle K(ATP) channel by binding on two receptor sites that have opposite actions. Alternatively, a more simple explanation is to consider the existence of a single site for potassium channel openers regulated by ATP which favours the transduction of the channel opening. The alkyl chains at position 2 of the 2H-1,4-benzoxazine nucleus is pivotal in determining the potency of benzoxazine derivatives as agonists or antagonists.
Collapse
Affiliation(s)
- Domenico Tricarico
- Department of Pharmacobiology, Faculty of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
| | - Mariagrazia Barbieri
- Department of Pharmacobiology, Faculty of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
| | - Laghezza Antonio
- Department of Medicinal Chemistry, Faculty of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
| | - Paolo Tortorella
- Department of Medicinal Chemistry, Faculty of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Medicinal Chemistry, Faculty of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
| | - Diana Conte Camerino
- Department of Pharmacobiology, Faculty of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
- Author for correspondence:
| |
Collapse
|
5
|
Lerche H, Jurkat-Rott K, Lehmann-Horn F. Ion channels and epilepsy. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 106:146-59. [PMID: 11579435 DOI: 10.1002/ajmg.1582] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ion channels provide the basis for the regulation of excitability in the central nervous system and in other excitable tissues such as skeletal and heart muscle. Consequently, mutations in ion channel encoding genes are found in a variety of inherited diseases associated with hyper- or hypoexcitability of the affected tissue, the so-called 'channelopathies.' An increasing number of epileptic syndromes belongs to this group of rare disorders: Autosomal dominant nocturnal frontal lobe epilepsy is caused by mutations in a neuronal nicotinic acetylcholine receptor (affected genes: CHRNA4, CHRNB2), benign familial neonatal convulsions by mutations in potassium channels constituting the M-current (KCNQ2, KCNQ3), generalized epilepsy with febrile seizures plus by mutations in subunits of the voltage-gated sodium channel or the GABA(A) receptor (SCN1B, SCN1A, GABRG2), and episodic ataxia type 1-which is associated with epilepsy in a few patients--by mutations within another voltage-gated potassium channel (KCNA1). These rare disorders provide interesting models to study the etiology and pathophysiology of disturbed excitability in molecular detail. On the basis of genetic and electrophysiologic studies of the channelopathies, novel therapeutic strategies can be developed, as has been shown recently for the antiepileptic drug retigabine activating neuronal KCNQ potassium channels.
Collapse
MESH Headings
- Ataxia/genetics
- Ataxia/metabolism
- Epilepsies, Myoclonic/genetics
- Epilepsies, Myoclonic/metabolism
- Epilepsies, Partial/genetics
- Epilepsies, Partial/metabolism
- Epilepsy/genetics
- Epilepsy/metabolism
- Epilepsy/therapy
- Epilepsy, Benign Neonatal/genetics
- Epilepsy, Benign Neonatal/metabolism
- Epilepsy, Frontal Lobe/genetics
- Epilepsy, Frontal Lobe/metabolism
- Epilepsy, Generalized/genetics
- Epilepsy, Generalized/metabolism
- Genes, Dominant
- Humans
- Ion Channel Gating
- Ion Channels/chemistry
- Ion Channels/genetics
- Ion Channels/metabolism
- Mutation
- Myokymia/genetics
- Myokymia/metabolism
- Seizures, Febrile/genetics
- Seizures, Febrile/metabolism
Collapse
Affiliation(s)
- H Lerche
- Department of Applied Physiology, Univeristy of Ulm, Germany
| | | | | |
Collapse
|
6
|
Jahangir A, Terzic A, Shen WK. Potassium channel openers: therapeutic potential in cardiology and medicine. Expert Opin Pharmacother 2001; 2:1995-2010. [PMID: 11825331 DOI: 10.1517/14656566.2.12.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Potassium (K(+)) channel openers (KCOs) define a class of chemically diverse agents that share a common molecular target, the metabolism-regulated ATP-sensitive K(+) (K(ATP)) channel. In view of the unique function that K(ATP) channels play in the maintenance of cellular homeostasis, this novel class of ion channel modulators adds to existent pharmacotherapy with potential in promoting cellular protection under conditions of metabolic stress. Indeed, experimental studies have demonstrated broad therapeutic potential for KCOs, including roles as cardioprotective agents, vasodilators, bronchodilators, bladder relaxants, anti-epileptics, insulin secretagogues and promoters of hair growth. However, clinical experience with these drugs is limited and their place in patient management needs to be fully established.
Collapse
Affiliation(s)
- A Jahangir
- Division of Cardiovascular Disease, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
7
|
Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C25-37. [PMID: 9458709 DOI: 10.1152/ajpcell.1998.274.1.c25] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ATP-sensitive K+ (KATP) channels are therapeutic targets for several diseases, including angina, hypertension, and diabetes. This is because stimulation of KATP channels is thought to produce vasorelaxation and myocardial protection against ischemia, whereas inhibition facilitates insulin secretion. It is well known that native KATP channels are inhibited by ATP and sulfonylurea (SU) compounds and stimulated by nucleotide diphosphates and K+ channel-opening drugs (KCOs). Although these characteristics can be shared with KATP channels in different tissues, differences in properties among pancreatic, cardiac, and vascular smooth muscle (VSM) cells do exist in terms of the actions produced by such regulators. Recent molecular biology and electrophysiological studies have provided useful information toward the better understanding of KATP channels. For example, native KATP channels appear to be a complex of a regulatory protein containing the SU-binding site [sulfonylurea receptor (SUR)] and an inward-rectifying K+ channel (Kir) serving as a pore-forming subunit. Three isoforms of SUR (SUR1, SUR2A, and SUR2B) have been cloned and found to have two nucleotide-binding folds (NBFs). It seems that these NBFs play an essential role in conferring the MgADP and KCO sensitivity to the channel, whereas the Kir channel subunit itself possesses the ATP-sensing mechanism as an intrinsic property. The molecular structure of KATP channels is thought to be a heteromultimeric (tetrameric) assembly of these complexes: Kir6.2 with SUR1 (SUR1/Kir6.2, pancreatic type), Kir6.2 with SUR2A (SUR2A/ Kir6.2, cardiac type), and Kir6.1 with SUR2B (SUR2B/Kir6.1, VSM type) [i.e., (SUR/Kir6.x)4]. It remains to be determined what are the molecular connections between the SUR and Kir subunits that enable this unique complex to work as a functional KATP channel.
Collapse
Affiliation(s)
- H Yokoshiki
- Department of Molecular Physiology, College of Medicine, University of Cincinnati, Ohio 45267-0576, USA
| | | | | | | |
Collapse
|
8
|
Hong SJ, Chang CC. Trauma-induced changes of skeletal muscle membrane: decreased K+ and increased Na+ permeability. J Appl Physiol (1985) 1997; 83:1096-103. [PMID: 9338416 DOI: 10.1152/jappl.1997.83.4.1096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trauma of skeletal muscle causes membrane depolarization and reduces membrane resistance. The underlying mechanisms were studied in isolated mouse phrenic nerve diaphragms subject to sharp transections of muscle. Depolarization was most marked at the vicinity ( approximately 1 mm) of trauma, where the membrane potential dropped rapidly from about -80 mV to zero and repolarized to about -25 mV. At the end-plate region (located approximately 3 mm away from the cut end), the membrane gradually attained a plateau potential around -45 mV. The magnitude of depolarization was not reduced by inhibition of Na+, Ca2+, or Cl- channel, whereas the progress of depolarization was delayed in low-Na+ medium. Activation of the K+ channel with lemakalim induced some hyperpolarization at damaged site but produced a glybenclamide-sensitive outward current and hyperpolarization of end-plate region to the levels before trauma, as if there was no diminution of transmembrane K+ gradient in this area. Appropriate elevation of extracellular K+ to stimulate K+ conductance also hyperpolarized the end-plate region. The results suggest that depolarization at regions remote from trauma is related to decreased K+ and increased Na+ permeability. The cytoplasma compartmentalization and permeability changes may protect muscle fiber from trauma.
Collapse
Affiliation(s)
- S J Hong
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
9
|
Lerche H, Mitrovic N, Dubowitz V, Lehmann-Horn F. Paramyotonia congenita: the R1448P Na+ channel mutation in adult human skeletal muscle. Ann Neurol 1996; 39:599-608. [PMID: 8619545 DOI: 10.1002/ana.410390509] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Twitch force and Na+ currents were investigated in a muscle biopsy specimen from a patient with paramyotonia congenita carrying the dominant Arg-1448-Pro mutation in the skeletal muscle sodium channel. Cooling of the muscle fibers caused sustained membrane depolarization that resulted in reduced twitch force. Membrane repolarization, produced by a K+ channel opener, partly prevented and antagonized the drop in twitch force. Patch-clamp recordings on sarcolemmal blebs revealed a distinctly slower Na+ current decay on paramyotonia congenita muscle compared to control muscle. In addition, patches with mutant Na+ channels showed a significantly higher frequency of steady-state openings, which increased with cooling. Activation of mutant channels was not affected, whereas the steady-state inactivation curve was shifted by -5 mV and showed less voltage dependence. We suggest that the weakness of cooled muscle can be explained by a combination of the increased steady-state Na+ current and the left-shifted inactivation curve.
Collapse
Affiliation(s)
- H Lerche
- Department of Applied Physiology, University of Ulm, Germany
| | | | | | | |
Collapse
|
10
|
Abstract
The physiological role of K+ channel opening by endogenous substances (e.g., neurotransmitters and hormones) is a recognised inhibitory mechanism. Thus, the identification of novel synthetic molecules that 'directly' open K+ channels has led to a new direction in the pharmacology of ion channels. The existence of many different subtypes of K+ channels has been an impetus in the search for new molecules demonstrating channel and, thus, tissue selectivity. This review focuses on the different classes of openers of K+ channels, the intracellular mechanisms involved in the execution of their effects, and potential therapeutic targets.
Collapse
Affiliation(s)
- K Lawson
- Division of Biomedical Sciences, School of Science, Sheffield Hallam University, UK
| |
Collapse
|
11
|
POSTER COMMUNICATIONS. Br J Pharmacol 1995. [DOI: 10.1111/j.1476-5381.1995.tb16307.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Atwal KS. Advances in the structure-activity relationships, mechanisms of action, and therapeutic utilities of ATP-sensitive potassium channel openers. Drug Dev Res 1994. [DOI: 10.1002/ddr.430330308] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Hussain M, Wareham AC, Head SI. Mechanism of action of a K+ channel activator BRL 38227 on ATP-sensitive K+ channels in mouse skeletal muscle fibres. J Physiol 1994; 478 Pt 3:523-32. [PMID: 7965862 PMCID: PMC1155672 DOI: 10.1113/jphysiol.1994.sp020271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Investigations were made into the effects of BRL 38227, a potassium channel activator, on ATP-sensitive potassium channels (K+ATP channels) in single fibres dissociated from the flexor digitorum brevis muscle of C57BL/6J mice. 2. In cell-attached patches BRL 38227 (100 microM) caused activation of a glibenclamide-sensitive potassium current. Linear slope conductance of the inward current, partial rectification of the outward current and glibenclamide sensitivity indicate that K+ATP channels are the site of action of BRL 38227. 3. In the absence of ATP at the cytoplasmic side of excised inside-out patches, BRL 38227 caused direct and magnesium-dependent activation of K+ATP channels. The degree of activation diminished with successive applications of BRL 38227. 4. BRL 38227 also caused activation of K+ATP channels in the presence of low (< 100 microM) but not high (1.0 mM) ATP, particularly in patches containing large numbers of channels. 5. BRL 38227 and 5 microM MgATP failed to activate channels following complete run-down. 6. Results show that BRL 38227 caused direct activation of K+ATP in skeletal muscle and that this was mediated through a magnesium-dependent binding site rather than alleviation of inhibition by competitive displacement of ATP from the inhibitory site.
Collapse
Affiliation(s)
- M Hussain
- Division of Neuroscience, School of Biological Sciences, University of Manchester
| | | | | |
Collapse
|
14
|
Allard B, Lazdunski M. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells. Eur J Pharmacol 1993; 236:419-26. [PMID: 8359200 DOI: 10.1016/0014-2999(93)90480-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The patch-clamp technique (single-channel recordings) was used to study the effects of glibenclamide and some channel openers on the KATP channel in mouse skeletal muscle. In outside/out membrane patches, glibenclamide reversibly inhibited KATP channel activity in a dose-dependent manner with an apparent Ki of 190 nM. In inside/out membrane patches, RP 61419 increased KATP channel activity both in the absence and in the presence of internal ATP while other K+ channel openers such as nicorandil and cromakalim required the presence of internal ATP to evoke channel activation. The half-maximal activity effect for cromakalim, with 0.5 mM ATP at the cytoplasmic face, was observed at about 220 microM. Pinacidil was unable to activate the KATP channel in the absence of internal ATP and could even reduce channel opening in situations where activity was high in the control. In the presence of internal Mg2+, activation by pinacidil occurred when ATP or low and weakly activating concentrations of ADP were present at the cytoplasmic side. Pinacidil activation could also be observed in the presence of ATP or ADP when Mg2+ was absent from the internal solution. The mechanism of action of pinacidil is discussed in terms of interactions between the different nucleotide regulatory sites and the K+ channel opener binding site of the KATP channel. Half-maximum activation of the KATP channel in the presence of 0.5 mM ATP at the cytoplasmic face was observed at 125 microM pinacidil.
Collapse
Affiliation(s)
- B Allard
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | |
Collapse
|
15
|
Salgado D, Shek EW, Alkadhi KA. Effects of ATP-sensitive K(+)-channel activators on transmitter release parameters at the frog neuromuscular junction. Brain Res 1993; 609:307-12. [PMID: 8099524 DOI: 10.1016/0006-8993(93)90887-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The frog neuromuscular junction was used to study KATP channel action and its relation to transmitter release. Diazoxide (10 microM) and cromakalim (300 microM) decreased the amplitude of the end-plate potential (EPP) without significantly affecting the miniature end plate potential (MEPP) amplitude. Thus, there was a significant decrease in the quantal content of EPP after administration of the KATP channel activators. These agents did not alter MEPP frequency or resting membrane potential (RMP). The diazoxide-induced decrease in EPP amplitude was antagonized by the KATP blocker glibenclamide (10 microM) suggesting KATP channel involvement. Glibenclamide (10 microM) by itself caused a significant decrease in the RMP without significantly affecting the parameters of transmitter release. The diazoxide-induced decrease in EPP amplitude was not readily reversible with washing, however, when glibenclamide was added after diazoxide, the effect was easier to reverse. The results indicate that the activators exert their effect predominantly at the presynaptic region.
Collapse
Affiliation(s)
- D Salgado
- Department of Pharmacology, University of Houston, TX 77204-5515
| | | | | |
Collapse
|
16
|
Affiliation(s)
- K S Atwal
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000
| |
Collapse
|
17
|
Allard B, Lazdunski M. Nucleotide diphosphates activate the ATP-sensitive potassium channel in mouse skeletal muscle. Pflugers Arch 1992; 422:185-92. [PMID: 1488275 DOI: 10.1007/bf00370419] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Patch-clamp techniques were used to study the effects of internal nucleotide diphosphates on the KATP channel in mouse skeletal muscle. In inside-out patches, application of GDP (100 microM) and ADP (100 microM) reversibly increased the channel activity. In the presence of internal Mg2+ (1 mM), low concentrations of ADP (< 300 microM) enhanced channel activity and high concentrations of ADP (> 300 microM) limited channel opening while GDP activated the channel at all concentrations tested. In the absence of internal Mg2+, ADP decreased channel activity at all concentrations tested while GDP had no noticeable effect at submillimolar concentrations and inhibited channel activity at millimolar concentrations. GDP [beta S] (100 microM), which behaved as a weak GDP agonist in the presence of Mg2+, stimulated ADP-evoked activation whereas it inhibited GDP-evoked activation. The K+ channel opener pinacidil was found to activate the KATP channel but only in the presence of internal GDP, ADP and GDP [beta S]. The results are discussed in terms of the existence of multiple nucleotide binding sites, in charge of the regulation of the KATP channel.
Collapse
Affiliation(s)
- B Allard
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | |
Collapse
|
18
|
Longman SD, Hamilton TC. Potassium channel activator drugs: mechanism of action, pharmacological properties, and therapeutic potential. Med Res Rev 1992; 12:73-148. [PMID: 1535674 DOI: 10.1002/med.2610120202] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S D Longman
- SmithKline Beecham Pharmaceuticals, Medicinal Research Centre, Harlow, Essex, United Kingdom
| | | |
Collapse
|
19
|
Sauviat MP, Ecault E, Faivre JF, Findlay I. Activation of ATP-sensitive K channels by a K channel opener (SR 44866) and the effect upon electrical and mechanical activity of frog skeletal muscle. Pflugers Arch 1991; 418:261-5. [PMID: 1649991 DOI: 10.1007/bf00370524] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To examine the effects of the activation of adenosine 5'-triphosphate (ATP)-sensitive K channels in a skeletal muscle we have applied the ATP-sensitive K channel opener SR44866 whilst recording single ion channels, voltage-clamped membrane currents, evoked action potentials and tension in sartorius muscles of the frog. In excised inside-out membrane patches SR44866 opened channels which could be inhibited by internal ATP and glibenclamide. In voltage-clamped individual muscle fibres SR44866 evoked a glibenclamide-sensitive membrane current which reversed at -70 mV. The effect of SR44866 was dose dependent with an effective concentration for 50% maximal effect (EC50) of 67 microM and a slope factor of 2. SR44866 dose dependently reduced the duration of the spike after-potential, spike overshoot, Vmax, tetrodotoxin-sensitive voltage-gated inward membrane currents and muscle twitch tension. From this evidence it can be concluded that the opening of ATP-sensitive K channels may be associated with the inhibition of contraction of skeletal muscle.
Collapse
Affiliation(s)
- M P Sauviat
- Laboratoire de Physiologie Comparée (URA CNRS 1121), Orsay, France
| | | | | | | |
Collapse
|