1
|
de Almeida DL, Mendes Ferreira RC, Fonseca FC, Dias Machado DP, Aguiar DD, Guimaraes FS, Duarte IDG, Romero TRL. Cannabidiol induces systemic analgesia through activation of the PI3Kγ/nNOS/NO/KATP signaling pathway in neuropathic mice. A KATP channel S-nitrosylation-dependent mechanism. Nitric Oxide 2024; 146:1-9. [PMID: 38428514 DOI: 10.1016/j.niox.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Silveira Guimaraes
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
2
|
Soares-Santos RR, Machado DP, Romero TL, Duarte IDG. Nitric oxide and potassium channels but not opioid and cannabinoid receptors mediate tramadol-induced peripheral antinociception in rat model of paw pressure withdrawal. Can J Physiol Pharmacol 2024; 102:218-227. [PMID: 37976474 DOI: 10.1139/cjpp-2023-0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Tramadol, an analgesic classified as an "atypical opioid", exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 µg/paw); AM251 (80 µg/paw) and AM630 (100 µg/paw) as the selective antagonists for types 1 and 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 µg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ, and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol's effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol's antinociception effect. Notably, glibenclamide blocked tramadol's antinociception in a dose-dependent manner. These findings suggest that tramadol's peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.
Collapse
Affiliation(s)
- Raquel R Soares-Santos
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel P Machado
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago L Romero
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Igor D G Duarte
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Aguiar DD, Petrocchi JA, da Silva GC, Lemos VS, Castor MGME, Perez ADC, Duarte IDG, Romero TRL. Participation of the cannabinoid system and the NO/cGMP/K ATP pathway in serotonin-induced peripheral antinociception. Neurosci Lett 2024; 818:137536. [PMID: 37898181 DOI: 10.1016/j.neulet.2023.137536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 μg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 μg) and AM630 (25, 50 and 100 μg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 μg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 μg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 μg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 μg) and by the selective inhibitor for the neuronal isoform LNPA (24 μg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 μg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 μg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
- Danielle Diniz Aguiar
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Júlia Alvarenga Petrocchi
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Grazielle Caroline da Silva
- Department of Physiology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Marina Gomes Miranda E Castor
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil.
| | - Andrea de Castro Perez
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| |
Collapse
|
4
|
Oliveira AS, Biano LS, Palmeira DN, de Almeida DR, Lopes-Ferreira M, Kohlhoff M, Sousa JAC, Brandão GC, Silva AMDOE, Grespan R, Camargo EA. Antinociceptive effect of Nephelium lappaceum L. fruit peel and the participation of nitric oxide, opioid receptors, and ATP-sensitive potassium channels. Front Pharmacol 2023; 14:1287580. [PMID: 38026962 PMCID: PMC10644719 DOI: 10.3389/fphar.2023.1287580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.
Collapse
Affiliation(s)
- Alan Santos Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Laiza Santos Biano
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Mônica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), São Paulo, Brazil
| | - Markus Kohlhoff
- Oswaldo Cruz Foundation, René Rachou Institute, Belo Horizonte, Brazil
| | | | | | - Ana Mara de Oliveira e Silva
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Renata Grespan
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Enilton Aparecido Camargo
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
5
|
Villarreal CF, Nascimento PGBD, Ferreira BR, Funez MI. Sérgio Ferreira beyond Pharmacology: His Role as a Science Communicator. Toxins (Basel) 2023; 15:516. [PMID: 37755942 PMCID: PMC10535959 DOI: 10.3390/toxins15090516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Historically, toxins from animal venoms have contributed significantly to the discovery of new drugs, as illustrated by captopril, the first drug developed from an animal toxin approved for human use [...].
Collapse
Affiliation(s)
| | | | | | - Mani Indiana Funez
- School of Ceilândia, University of Brasília, Brasília 72220-275, FD, Brazil;
| |
Collapse
|
6
|
de Oliveira LP, Florentino IF, Silva DPB, Pazini F, de Carvalho FS, Sanz G, Vaz BG, da Rocha FF, Fajemiroye JO, Ghedini PC, Lião LM, Menegatti R, Costa EA, de Oliveira TS. Anti-inflammatory, antinociceptive, and vasorelaxant effects of a new pyrazole compound 5-(1-(2-fluorophenyl)-1 H-pyrazol-4-yl)-1 H-tetrazole: role of NO/cGMP pathway and calcium channels. Can J Physiol Pharmacol 2023; 101:216-225. [PMID: 36866837 DOI: 10.1139/cjpp-2022-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Molecular modification of compounds remains important strategy towards the discovery of new drugs. In this sense, this study presents a new pyrazole derivative 5-(1-(2-fluorophenyl)-1H-pyrazol-4-yl)-1H-tetrazole (LQFM039) and evaluated the anti-inflammatory, analgesic, and vasorelaxant effects of this compound as well the mechanisms of action involved in the pharmacological effects. For this, mice were orally treated with LQFM039 (17.5, 35, or 70 mg/kg) prior acetic acid-induced abdominal writhing, formalin, tail flick, and carrageenan-induced paw edema protocols. In addition, vascular reactivity protocols were made with aortic rings contraction with phenylephrine and stimulated with graded concentrations of LQFM039. Abdominal writhing and licking time in both neurogenic and inflammatory phases of formalin were reduced with LQFM039 without altering latency to nociceptive response in the tail flick test. Carrageenan-induced paw edema showed that LQFM039 reduces edema and cell migration. In addition, the mechanism of action of LQFM039 involves NO/cGMP pathway and calcium channels, since this new pyrazole derivate elicited concentration-dependent relaxation attenuated by Nω-nitro-l-arginine methyl ester and 1H-[1,2,4] oxadiazolo [4,3-alpha]quinoxalin-1-one, and blockade of CaCl2-induced contraction. Altogether, our finding suggests anti-inflammatory, antinociceptive, and vasorelaxant effect of this new pyrazole derivative with involvement of NO/cGMP pathway and calcium channels.
Collapse
Affiliation(s)
- Lanussy P de Oliveira
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil
| | - Iziara F Florentino
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil
| | - Daiany P B Silva
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil
| | - Francine Pazini
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávio S de Carvalho
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Germán Sanz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry-LaCEM, Federal University of Goiás, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry-LaCEM, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fábio F da Rocha
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - James O Fajemiroye
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil
| | - Paulo C Ghedini
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil
| | - Thiago S de Oliveira
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 74001-970, 314, Goiânia, GO, Brazil.,Department of Pharmacy, FCBS, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
7
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022; 94:102248. [PMID: 35526468 DOI: 10.1016/j.npep.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
8
|
Getsy PM, Baby SM, Gruber RB, Gaston B, Lewis THJ, Grossfield A, Seckler JM, Hsieh YH, Bates JN, Lewis SJ. S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats. Front Pharmacol 2022; 13:892307. [PMID: 35721204 PMCID: PMC9199495 DOI: 10.3389/fphar.2022.892307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Endogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ryan B. Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
9
|
Patel V, Joharapurkar A, Jain M. Therapeutic Potential of Diacerein in Management of Pain. Curr Drug Res Rev 2022; 14:215-224. [PMID: 36281831 DOI: 10.2174/2589977514666220428124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Diacerein (DCN), an analogue of rhein (a glycosidal compound of natural origin), is currently used in the treatment of osteoarthritis and is given a fast-track designation for development to treat epidermolysis bullosa (EB). It is a nonsteroidal anti-inflammatory drug having disease-modifying properties in osteoarthritis and anti-inflammatory effects for the treatment of EB. Diacerein has a beneficial effect on pain relief and demonstrated antioxidant and anti-apoptotic effects, which are useful in renal disease, diabetes, and other disorders. This review discusses the possible mechanism of diacerein in the management of pain. The potential role of rhein and diacerein in the treatment of neuropathic, inflammatory and nociceptive pain is also reviewed. The effect of diacerein and rhein on mediators of pain, such as transient receptor potential cation channel subfamily V (TRPV1), Substance P, glutamate, inflammatory cytokines, nitric oxide, matrix metalloproteinases, histamine, palmitoylethanolamide, nuclear factor-kappa B (NFkB), and prostaglandin, has also been discussed. The data highlights the role of diacerein in neuropathic, nociceptive and inflammatory pain. Clinical trials and mechanism of action studies are needed to ascertain the role of diacerein, rhein or their analogues in the management of pain, alone or in combination with other approved therapies.
Collapse
Affiliation(s)
- Vishal Patel
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H.No.8A, Moraiya, Ahmedabad, 382210, India
| | - Amit Joharapurkar
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H.No.8A, Moraiya, Ahmedabad, 382210, India
| | - Mukul Jain
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H.No.8A, Moraiya, Ahmedabad, 382210, India
| |
Collapse
|
10
|
The anti-nociceptive activity of naringenin passes through L-arginine/NO/cGMP/KATP channel pathway and opioid receptors. Behav Pharmacol 2021; 32:590-598. [PMID: 34483246 DOI: 10.1097/fbp.0000000000000653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As a promising flavonoid, naringenin has shown potential anti-inflammatory and antioxidant properties mainly in inflammatory pain models by oral administration. Therefore, we investigated the antinociceptive activity of this compound by intraperitoneally (i.p.) administration, as well as, associated mechanism of action considering the involvement of L-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/potassium channel (KATP) pathway and opioid receptors. The antinociceptive effect of naringenin was evaluated in male NMRI mice using formalin test at early and late phases. To assess the involvement of L-arginine/NO/cGMP/KATP pathway and opioid receptors, mice were pretreated i.p. with L-arginine (NO precursor), S-nitroso-N-acetylpenicillamine (SNAP, NO donor), N(gamma)-nitro-L-arginine methyl ester (L-NAME, inhibitor of nitric oxide synthase), sildenafil (inhibitor of phosphodiesterase enzyme), glibenclamide (KATP channel blocker) and naloxone (an opioid receptor antagonist), respectively 20 min before administration of the most effective dose of naringenin. Naringenin showed a dose-dependent antinociceptive effect at both early and late phases of the formalin test. The dose of 100 mg/kg of naringenin was identified as the most effective dose and selected for further experiments. Our mechanistic evaluations showed that L-arginine, SNAP and sildenafil could enhance the antinociceptive effects of naringenin, revealing the critical role of NO and cGMP during its antinociceptive effect. On the other hand, glibenclamide and naloxone could mitigate the antinociceptive potential of naringenin at both phases of formalin test, which confirmed the associated role of KATP channels and opioid receptors. In conclusion, naringenin could be a promising antinociceptive agent acting through opioid receptors and L-arginine/NO/cGMP/KATP channel pathway.
Collapse
|
11
|
The antinociceptive mechanisms of melatonin: role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway. Behav Pharmacol 2021; 31:728-737. [PMID: 32925224 DOI: 10.1097/fbp.0000000000000579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pain is one of the most common medical challenges, reducing life quality. Despite the progression in pain management, it has remained a clinical challenge, which raises the need for investigating novel antinociceptive drugs with correspondence signaling pathways. Besides, the precise antinociceptive mechanisms of melatonin are not revealed. Accordingly, owing to the critical role of L-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/KATP in the antinociceptive responses of various analgesics, the role of this signaling pathway is evaluated in the antinociceptive effects of melatonin. Male NMRI mice were intraperitoneally pretreated with the injection of L-arginine (NO precursor, 100 mg/kg), N(gamma)-nitro-L-arginine methyl ester [L-NAME, NO synthase (NOS) inhibitor, 30 mg/kg], S-nitroso-N-acetylpenicillamine (SNAP, NO donor, 1 mg/kg), sildenafil (phosphodiesterase inhibitor, 0.5 mg/kg), and glibenclamide (KATP channel blocker, 10 mg/kg) alone and before the administration of the most effective dose of melatonin amongst the intraperitoneal doses of 50, 100, and 150 mg/kg. The formalin test (2%, 25 µL, intra-plantarly) was done following the melatonin administration, then the nociceptive responses of mice were evaluated during the early phase for 5 min and the late phase for 15 min. The results showed that 100 mg/kg dose of melatonin carried out the most antinociceptive effects. While the antinociceptive effect of melatonin was increased by L-arginine, SNAP, and sildenafil, it was significantly reduced by L-NAME and glibenclamide in both phases of the formalin test, with no relation to the sedative effects of melatonin evaluated by the inclined plane test. In conclusion, the antinociceptive effect of melatonin is mediated through the L-arginine/NO/cGMP/KATP pathway.
Collapse
|
12
|
Lactoferrin and Its Potential Impact for the Relief of Pain: A Preclinical Approach. Pharmaceuticals (Basel) 2021; 14:ph14090868. [PMID: 34577568 PMCID: PMC8468947 DOI: 10.3390/ph14090868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Pain is one of the most disabling symptoms of several clinical conditions. Neurobiologically, it is classified as nociceptive, inflammatory, neuropathic and dysfunctional. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are conventionally prescribed for the treatment of pain. Long-term administration of opioids results in the loss of analgesic efficacy, leading to increased dosage, tolerance, and addiction as the main drawbacks of their use, while the adverse effects of NSAIDs include gastric ulcer formation, intestinal bleeding, acute kidney injury, and hepatotoxicity. Lactoferrin is an iron-binding, anti-inflammatory glycoprotein that displays analgesic activities associated, in part, by interacting with the low-density lipoprotein receptor-related protein (LRP), which may result in the regulation of the DAMP-TRAF6-NFκB, NO-cGMP-ATP K+-sensitive channel and opioid receptor signaling pathways. This review summarizes and discusses for the first time the analgesic effects of lactoferrin and its presumable mechanisms based on pre-clinical trials. Given its anti-nociceptive and anti-inflammatory properties, lactoferrin may be used as an adjunct to enhance the efficacy and to decrease the tolerogenic effects of canonical therapeutic drugs prescribed for pain treatment.
Collapse
|
13
|
Rodríguez-Silverio J, Sánchez-Mendoza ME, Rocha-González HI, Reyes-García JG, Flores-Murrieta FJ, López-Lorenzo Y, Quiñonez-Bastidas GN, Arrieta J. Evaluation of the Antinociceptive, Antiallodynic, Antihyperalgesic and Anti-Inflammatory Effect of Polyalthic Acid. Molecules 2021; 26:2921. [PMID: 34069033 PMCID: PMC8155873 DOI: 10.3390/molecules26102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are very commonly used, but their adverse effects warrant investigating new therapeutic alternatives. Polyalthic acid, a labdane-type diterpenoid, is known to produce gastroprotection, tracheal smooth muscle relaxation, and antitumoral, antiparasitic and antibacterial activity. This study aimed to evaluate the antinociceptive, antiallodynic, antihyperalgesic and anti-inflammatory effect of polyalthic acid on rats. Moreover, the effectiveness of treating hyperalgesia with a combination of polyalthic acid and naproxen was analyzed, as well as the type of drug-drug interaction involved. Nociception was examined by injecting 1% formalin into the right hind paw and thermal hyperalgesia and inflammation by injecting a 1% carrageenan solution into the left hind paw of rats. Allodynia was assessed on an L5/L6 spinal nerve ligation model. Polyalthic acid generated significant antinociceptive (56-320 mg/kg), antiallodynic (100-562 mg/kg), and antihyperalgesic and anti-inflammatory (10-178 mg/kg) effects. Antinociception mechanisms were explored by pretreating the rats with naltrexone, ODQ and methiothepin, finding the effect blocked by the former two compounds, which indicates the participation of opioid receptors and guanylate cyclase. An isobolographic analysis suggests synergism between polyalthic acid and naproxen in the combined treatment of hyperalgesia.
Collapse
Affiliation(s)
- Juan Rodríguez-Silverio
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| | - María Elena Sánchez-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| | - Héctor Isaac Rocha-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| | - Juan Gerardo Reyes-García
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| | - Francisco Javier Flores-Murrieta
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosió Villegas, Secretaría de Salud, Ciudad de México 14080, Mexico
| | - Yaraset López-Lorenzo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| | - Geovanna Nallely Quiñonez-Bastidas
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| | - Jesús Arrieta
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.R.-S.); (M.E.S.-M.); (H.I.R.-G.); (J.G.R.-G.); (F.J.F.-M.); (Y.L.-L.); (G.N.Q.-B.)
| |
Collapse
|
14
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Phlorizin attenuates visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Biomed Pharmacother 2021; 139:111649. [PMID: 33957565 DOI: 10.1016/j.biopha.2021.111649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Visceral hypersensitivity and impaired gut barrier are crucial contributors to the pathophysiology of irritable bowel syndrome (IBS), and those are mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4-pro-inflammatory cytokine signaling. Phlorizin is an inhibitor of sodium-linked glucose transporters (SGLTs), and known to have anti-cytokine properties. Thus, we hypothesized that phlorizin may improve these gastrointestinal changes in IBS, and tested this hypothesis in rat IBS models, i.e., lipopolysaccharide (LPS) or CRF-induced visceral hypersensitivity and colonic hyperpermeability. The visceral pain threshold in response to colonic balloon distention was estimated by abdominal muscle contractions by electromyogram, and colonic permeability was measured by quantifying the absorbed Evans blue in colonic tissue. Subcutaneous (s.c.) injection of phlorizin inhibited visceral hypersensitivity and colonic hyperpermeability induced by LPS in a dose-dependent manner. Phlorizin also blocked CRF-induced these gastrointestinal changes. Phlorizin is known to inhibit both SGLT1 and SGLT2, but intragastric administration of phlorizin may only inhibit SGLT1 because gut mainly expresses SGLT1. We found that intragastric phlorizin did not display any effects, but ipragliflozin, an orally active and selective SGLT2 inhibitor improved the gastrointestinal changes in the LPS model. Compound C, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor and naloxone, an opioid receptor antagonist reversed the effects of phlorizin. In conclusions, phlorizin improved visceral hypersensitivity and colonic hyperpermeability in IBS models. These effects may result from inhibition of SGLT2, and were mediated via AMPK, NO and opioid pathways. Phlorizin may be effective for the treatment of IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
15
|
Sheikholeslami MA, Ghafghazi S, Parvardeh S, Koohsari S, Aghajani SH, Pouriran R, Vaezi LA. Analgesic effects of cuminic alcohol (4-isopropylbenzyl alcohol), a monocyclic terpenoid, in animal models of nociceptive and neuropathic pain: Role of opioid receptors, L-arginine/NO/cGMP pathway, and inflammatory cytokines. Eur J Pharmacol 2021; 900:174075. [PMID: 33811835 DOI: 10.1016/j.ejphar.2021.174075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Cuminic alcohol (4-isopropylbenzyl alcohol; 4-IPBA) is a monocyclic terpenoid found in the analgesic medicinal plants Cuminum cyminum and Bunium persicum. The current study assessed the analgesic effects of 4-IPBA in different animal models of pain. Hot plate, formalin, and acetic acid tests were used to evaluate nociceptive pain in mice. The involvement of opioid receptors and the L-arginine/NO/cGMP/K+ channel pathway in 4-IPBA effects were investigated. Allodynia and hyperalgesia were assessed following peripheral neuropathy induced by chronic constriction of the sciatic nerve in rats. The spinal levels of inflammatory cytokines were measured using the ELISA method. The drugs and compounds were administered intraperitoneally. The results showed that 4-IPBA (200 and 400 mg/kg) significantly prolonged the hot plate latency. This effect was antagonized by naloxone (2 mg/kg). 4-IPBA (25-100 mg/kg) also significantly attenuated formalin- and acetic acid-induced nociceptive pain. L-arginine (200 mg/kg), sodium nitroprusside (0.25 mg/kg), and sildenafil (0.5 mg/kg) reversed while L-NAME (30 mg/kg) and methylene blue (20 mg/kg) potentiated the antinociceptive effects of 4-IPBA in the writhing test. Glibenclamide (10 mg/kg) and tetraethylammonium chloride (4 mg/kg) did not have any influence on the 4-IPBA effect. Furthermore, 4-IPBA (6.25-25 mg/kg) significantly relieved mechanical allodynia, cold allodynia, and hyperalgesia in rats. The concentrations of TNF-α and IL-1β in the spinal cord of rats were decreased by 4-IPBA. No evidence of 4-IPBA-induced toxicity was found in behavioral or histopathological examinations. These results demonstrate that 4-IPBA attenuates nociceptive and neuropathic pain through the involvement of opioid receptors, the L-arginine/NO/cGMP pathway, and anti-inflammatory functions.
Collapse
Affiliation(s)
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Saeed Haji Aghajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Alipour Vaezi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Antinociceptive effect of Lonchocarpus araripensis lectin: activation of L-arginine/NO/cGMP/K +ATP signaling pathway. Inflammopharmacology 2020; 28:1623-1631. [PMID: 32572724 DOI: 10.1007/s10787-020-00729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE AND DESIGN The involvement of nitric oxide pathway in the antinociceptive activity of Lonchocarpus araripensis lectin (LAL) was investigated in the model of carragenan-induced hypernociception. METHODS Swiss mice received LAL (0.01-10 mg/kg; i.v.) 30 min before s.c. injection of carragenan in the paws. For the involvement of nociceptive pathways, animals were previously treated with the blockers: NOS (L-NAME, aminoguanidine, 7-nitroindazole); soluble guanylyl cyclase (ODQ); channels of ATP-dependent K+ (glibenclamide); L-type Ca2+ (nifedipine), or Ca2+-dependent Cl- (niflumic acid). Participation of lectin domain was evaluated by injection of LAL associated with N-acetyl-glucosamine (GlcNAc). nNOS gene relative expression was evaluated in the paw tissues and nNOS immunostaining in dorsal root ganglia. RESULTS LAL at all doses inhibited carrageenan-induced hypernociception (4.12 ± 0.58 g), being maximal at 10 mg/kg (3 h: 59%), and reversed by GlcNAc. At this time, LAL effect was reversed by nifedipine (39%), niflumic acid (59%), L-NAME (59%), 7-nitroindazole (44%), ODQ (45%), and glibenclamide (34%), but was unaltered by aminoguanidine. LAL increased (95%) nNOS gene expression in mice paw tissues, but not its immunoexpression in the dorsal root ganglia. CONCLUSION The antinociceptive effect of Lonchocarpus araripensis lectin involves activation of the L-arginine/NO/GMPc/K+ATP pathway.
Collapse
|
17
|
Gomes FIF, Cunha FQ, Cunha TM. Peripheral nitric oxide signaling directly blocks inflammatory pain. Biochem Pharmacol 2020; 176:113862. [PMID: 32081790 DOI: 10.1016/j.bcp.2020.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
Pain is a classical sign of inflammation, and sensitization of primary sensory neurons (PSN) is the most important mediating mechanism. This mechanism involves direct action of inflammatory mediators such as prostaglandins and sympathetic amines. Pharmacologic control of inflammatory pain is based on two principal strategies: (i) non-steroidal anti-inflammatory drugs targeting inhibition of prostaglandin production by cyclooxygenases and preventing nociceptor sensitization in humans and animals; (ii) opioids and dipyrone that directly block nociceptor sensitization via activation of the NO signaling pathway. This review summarizes basic concepts of inflammatory pain that are necessary to understand the mechanisms of peripheral NO signaling that promote peripheral analgesia; we also discuss therapeutic perspectives based on the modulation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Isaac F Gomes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
18
|
Antinociceptive, antiedematous, and antiallodynic activity of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives in experimental models of pain. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:813-827. [PMID: 31858155 DOI: 10.1007/s00210-019-01783-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
The aim of the presented study was to examine the potential antinociceptive, antiedematous (anti-inflammatory), and antiallodynic activities of two 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives (DSZ 1 and DSZ 3) in various experimental models of pain. For this purpose, the hot plate test, the capsaicin test, the formalin test, the carrageenan model, and oxaliplatin-induced allodynia tests were performed. In the hot plate test, only DSZ 1 in the highest dose (20 mg/kg) was active but its effects appear to be due to sedatation rather than antinociceptiveness. In capsaicin-induced neurogenic pain model, both compounds displayed a significant antinociceptive activity. In the formalin test, DSZ 1 and DSZ 3 (5-20 mg/kg) revealed antinociceptive activity in both phases but it was more pronounced in the second phase of the test. In this test, pretreatment with caffeine, DPCPX reversed the antinociceptive effect of DSZ 3. On the other hand, pretreatment with L-NAME diminished the antinociceptive effect of DSZ 1. Pretreatment with naloxone did not affect antinociceptive activity of both compounds. Similar to ketoprofen, DSZ 1 and DSZ 3 showed antiedematous (antiinflammatory) and antihyperalgesic activity, and similar to lidocaine local anesthetic activity. Furthermore, both compounds (5 and 10 mg/kg) reduced tactile allodynia in acute and chronic phases of neuropathic pain. In the in vitro studies, DSZ 1 and DSZ 3 reduced the COX-2 level in LPS-activated RAW 264.7 cells, which suggests their anti-inflammatory activity. In conclusion, both DSZ 1 and DSZ 3 displayed broad spectrum of activity in several pain models, including neurogenic, tonic, inflammatory, and chemotherapy-induced peripheral neuropathic pain.
Collapse
|
19
|
Kusuda R, Carreira EU, Ulloa L, Cunha FQ, Kanashiro A, Cunha TM. Choline attenuates inflammatory hyperalgesia activating nitric oxide/cGMP/ATP-sensitive potassium channels pathway. Brain Res 2019; 1727:146567. [PMID: 31783002 DOI: 10.1016/j.brainres.2019.146567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
New findings on neural regulation of immunity are allowing the design of novel pharmacological strategies to control inflammation and nociception. Herein, we report that choline, a 7-nicotinic acetylcholine receptor (α7nAChRs) agonist, prevents carrageenan-induced hyperalgesia without affecting inflammatory parameters (neutrophil migration or cytokine/chemokines production) or inducing sedation or even motor impairment. Choline also attenuates prostaglandin-E2 (PGE2)-induced hyperalgesia via α7nAChR activation and this antinociceptive effect was abrogated by administration of LNMMA (a nitric oxide synthase inhibitor), ODQ (an inhibitor of soluble guanylate cyclase; cGMP), andglibenclamide(an inhibitor of ATP-sensitive potassium channels). Furthermore, choline attenuates long-lasting Complete Freund's Adjuvant and incision-induced hyperalgesia suggesting its therapeutic potential to treat pain in rheumatoid arthritis or post-operative recovery, respectively. Our results suggest that choline modulates inflammatory hyperalgesia by activating the nitric oxide/cGMP/ATP-sensitive potassium channels without interfering in inflammatory events, and could be used in persistent pain conditions.
Collapse
Affiliation(s)
- Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eleonora Uchôa Carreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
20
|
Garrido-Suárez BB, Garrido G, Piñeros O, Delgado-Hernández R. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain. Phytother Res 2019; 34:505-525. [PMID: 31755173 DOI: 10.1002/ptr.6546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Octavio Piñeros
- Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
21
|
Quiñonez-Bastidas GN, Pineda-Farias JB, Flores-Murrieta FJ, Rodríguez-Silverio J, Reyes-García JG, Godínez-Chaparro B, Granados-Soto V, Rocha-González HI. Antinociceptive effect of (-)-epicatechin in inflammatory and neuropathic pain in rats. Behav Pharmacol 2019; 29:270-279. [PMID: 28590304 DOI: 10.1097/fbp.0000000000000320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the antinociceptive potential of (-)-epicatechin and the possible mechanisms of action involved in its antinociceptive effect. The carrageenan and formalin tests were used as inflammatory pain models. A plethysmometer was used to measure inflammation and L5/L6 spinal nerve ligation as a neuropathic pain model. Oral (-)-epicatechin reduced carrageenan-induced inflammation and nociception by about 59 and 73%, respectively, and reduced formalin- induced and nerve injury-induced nociception by about 86 and 43%, respectively. (-)-Epicatechin-induced antinociception in the formalin test was prevented by the intraperitoneal administration of antagonists: methiothepin (5-HT1/5 receptor), WAY-100635 (5-HT1A receptor), SB-224289 (5-HT1B receptor), BRL-15572 (5-HT1D receptor), SB-699551 (5-HT5A receptor), naloxone (opioid receptor), CTAP (μ opioid receptor), nor-binaltorphimine (κ opioid receptor), and 7-benzylidenenaltrexone (δ1 opioid receptor). The effect of (-)-epicatechin was also prevented by the intraperitoneal administration of L-NAME [nitric oxide (NO) synthase inhibitor], 7-nitroindazole (neuronal NO synthase inhibitor), ODQ (guanylyl cyclase inhibitor), glibenclamide (ATP-sensitive K channel blocker), 4-aminopyridine (voltage-dependent K channel blocker), and iberiotoxin (large-conductance Ca-activated K channel blocker), but not by amiloride (acid sensing ion channel blocker). The data suggest that (-)-epicatechin exerts its antinociceptive effects by activation of the NO-cyclic GMP-K channels pathway, 5-HT1A/1B/1D/5A serotonergic receptors, and μ/κ/δ opioid receptors.
Collapse
Affiliation(s)
- Geovanna N Quiñonez-Bastidas
- Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politecnico Nacional.,Department of Biological Systems, Division of Biological Sciences and Health, UAM-Xochimilco
| | | | - Francisco J Flores-Murrieta
- Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politecnico Nacional.,Pharmacology Research Unit, INER, Ismael Cosio Villegas, Secretaria de Salud, Mexico City, Mexico
| | - Juan Rodríguez-Silverio
- Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politecnico Nacional
| | - Juan G Reyes-García
- Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politecnico Nacional
| | | | | | - Héctor I Rocha-González
- Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politecnico Nacional
| |
Collapse
|
22
|
Carvalho TT, Mizokami SS, Ferraz CR, Manchope MF, Borghi SM, Fattori V, Calixto-Campos C, Camilios-Neto D, Casagrande R, Verri WA. The granulopoietic cytokine granulocyte colony-stimulating factor (G-CSF) induces pain: analgesia by rutin. Inflammopharmacology 2019; 27:1285-1296. [PMID: 30945072 DOI: 10.1007/s10787-019-00591-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Rutin is a glycone form of the flavonol quercetin and it reduces inflammatory pain in animal models. Therapy with granulocyte colony-stimulating factor (G-CSF) is known by the pain caused as its main side effect. The effect of rutin and its mechanisms of action were evaluated in a model of hyperalgesia induced by G-CSF in mice. The mechanical hyperalgesia induced by G-CSF was reduced by treatment with rutin in a dose-dependent manner. Treatment with both rutin + morphine or rutin + indomethacin, at doses that are ineffectual per se, significantly reduced the pain caused by G-CSF. The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)-ATP-sensitive potassium channel (KATP) signaling pathway activation is one of the analgesic mechanisms of rutin. Rutin also reduced the pro-hyperalgesic and increased anti-hyperalgesic cytokine production induced by G-CSF. Furthermore, rutin inhibited the activation of the nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), which might explain the inhibition of the cytokine production. Treatment with rutin upregulated the decreased mRNA expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) combined with enhancement of the mRNA expression of the Nrf2 downstream target heme oxygenase (HO-1). Intraperitoneal (i.p.) treatment with rutin did not alter the mobilization of neutrophils induced by G-CSF. The analgesia by rutin can be explained by: NO-cGMP-PKG-KATP channel signaling activation, inhibition of NFκB and triggering the Nrf2/HO-1 pathway. The present study demonstrates rutin as a promising pharmacological approach to treat the pain induced by G-CSF without impairing its primary therapeutic benefit of mobilizing hematopoietic progenitor cells into the blood.
Collapse
Affiliation(s)
- Thacyana T Carvalho
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Camila R Ferraz
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Marília F Manchope
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sergio M Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.,Center for Research in Health Science, University of Northern Paraná-UNOPAR, Rua Marselha, 591, Jardim Piza, Londrina, Paraná, CEP 86041-140, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Cassia Calixto-Campos
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, State University of Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil. .,Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
23
|
Adeyemi OO, Ishola IO, Adesanya ET, Alohan DO. Antinociceptive and anti-inflammatory properties of Tetracera alnifolia Willd. (Dilleniaceae) hydroethanolic leaf extract. J Basic Clin Physiol Pharmacol 2018; 30:173-184. [PMID: 30332392 DOI: 10.1515/jbcpp-2016-0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Background Tetracera alnifolia Willd. (Dilleniaceae) is used in traditional African Medicine for the treatment of headache, abdominal pain, and rheumatism. Hence, this study sought to investigate the antinociceptive and anti-inflammatory effects of the hydroethanolic leaf extract of T. alnifolia (HeTA) in rodents. Methods Antinociceptive activity was evaluated using the acetic acid-induced writhing, formalin-/capsaicin-induced paw licking and hot plate tests in mice. The contribution of opioidergic, l-arginine-nitric oxide, and ATP-sensitive potassium channel pathways in HeTA-induced antinociception was also evaluated. The anti-inflammatory effect was assessed using the carrageenan-induced paw edema, xylene ear edema, cotton pellet granuloma, and complete Freund's adjuvant (CFA)-induced arthritis in rats. Results HeTA (100, 200, and 400 mg/kg, p.o.) produced significant (p<0.05) decrease in mean number of acetic acid-induced writhing, time spent licking paw in formalin, and capsaicin tests as well as time course increase in nociceptive reaction latency in hot plate test. HeTA-induced antinociception was prevented by pretreatment of mice with naloxone (non-selective opioid receptor antagonist), l-arginine (nitric oxide precursor), or glibenclamide (ATP-sensitive potassium channel blocker). HeTA (100 mg/kg, p.o.) produced a significant anti-inflammatory effect against carrageenan-induced rat paw edema (1-5 h), xylene-induced ear edema, cotton pellet-induced granuloma formation, and CFA-induced arthritis in rats. The effects of HeTA in various models were similar to the effect of the standard reference drugs. Conclusions Findings from this study showed that HeTA possesses antinociceptive effect possibly mediated through peripheral opioid receptors with activation of l-arginine-nitric oxide and ATP-sensitive potassium channel pathway as well as anti-inflammatory activity.
Collapse
Affiliation(s)
- Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria, Phone: +2348034459618
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Elizabeth T Adesanya
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Destiny O Alohan
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
24
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
25
|
Rivanor RLDC, Do Val DR, Ribeiro NA, Silveira FD, de Assis EL, Franco ÁX, Vieira LV, de Queiroz INL, Chaves HV, Bezerra MM, Benevides NMB. A lectin fraction from green seaweed Caulerpa cupressoides inhibits inflammatory nociception in the temporomandibular joint of rats dependent from peripheral mechanisms. Int J Biol Macromol 2018; 115:331-340. [DOI: 10.1016/j.ijbiomac.2018.04.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
26
|
Parvardeh S, Sabetkasaei M, Moghimi M, Masoudi A, Ghafghazi S, Mahboobifard F. Role of L-arginine/NO/cGMP/K ATP channel signaling pathway in the central and peripheral antinociceptive effect of thymoquinone in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:625-633. [PMID: 29942454 PMCID: PMC6015243 DOI: 10.22038/ijbms.2018.26255.6438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Growing evidence demonstrates that L-arginine/NO/cGMP/KATP channel pathway has a modulatory role in pain perception. Previous studies have shown that thymoquinone exerts antinociceptive effects; however, the mechanisms underlying antinociception induced by thymoquinone have not been fully clarified. The aim of the present study was to evaluate the role of L-arginine/NO/cGMP/KATP channel pathway in the central and peripheral antinociceptive effect of thymoquinone in rats. Materials and Methods: Rats were pretreated intraplantarly (IPL) or intracerebroventricularly (ICV) with L-arginine (the NO precursor), l-NAME (an NO synthase inhibitor), SNAP (an NO donor), methylene blue (a guanylyl cyclase inhibitor), glibenclamide (the blocker of KATP channel), and tetraethylammonium (TEA, a Kv channel blocker) before the injection of thymoquinone. Results: Local ipsilateral (20 and 40 μg, IPL) but not contralateral and ICV (4 and 8 μg) administration of thymoquinone caused a dose-dependent and significant antinociception in both early and late phases of the formalin test. Pretreatment of rats with L-arginine (100 μg, IPL or ICV) and SNAP (200 μg, IPL or ICV) increased while l-NAME (100 μg, IPL or 1 μg, ICV) and methylene blue (400 μg, IPL or ICV) decreased the antinociceptive effects of thymoquinone in the formalin test. The administration of TEA (IPL or ICV) did not modify but glibenclamide (50 μg, IPL or ICV) significantly abolished the peripheral and central antinociceptive effects of thymoquinone in both phases of the formalin test. Conclusion: The results of the present study indicate that L-arginine/NO/cGMP/KATP channel pathway participates in the central and peripheral antinociceptive effect of thymoquinone.
Collapse
Affiliation(s)
- Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sabetkasaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Moghimi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahboobifard
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Veloso CC, Ferreira RCM, Rodrigues VG, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to cannabinoid receptors activation in mice. Inflammopharmacology 2017; 26:227-233. [DOI: 10.1007/s10787-017-0391-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/23/2017] [Indexed: 01/24/2023]
|
28
|
Ovalle-Magallanes B, Déciga-Campos M, Mata R. Antihyperalgesic activity of a mexicanolide isolated from Swietenia humilis extract in nicotinamide-streptozotocin hyperglycemic mice. Biomed Pharmacother 2017; 92:324-330. [DOI: 10.1016/j.biopha.2017.05.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022] Open
|
29
|
Lamana SMS, Napimoga MH, Nascimento APC, Freitas FF, de Araujo DR, Quinteiro MS, Macedo CG, Fogaça CL, Clemente-Napimoga JT. The anti-inflammatory effect of tramadol in the temporomandibular joint of rats. Eur J Pharmacol 2017; 807:82-90. [PMID: 28412371 DOI: 10.1016/j.ejphar.2017.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Abstract
Tramadol is a centrally acting analgesic drug able to prevent nociceptor sensitization when administered into the temporomandibular joint (TMJ) of rats. The mechanism underlying the peripheral anti-inflammatory effect of tramadol remains unknown. This study demonstrated that intra-TMJ injection of tramadol (500µg/TMJ) was able to inhibit the nociceptive response induced by 1.5% formalin or 1.5% capsaicin, suggesting that tramadol has an antinociceptive effect, acting directly on the primary nociceptive neurons activating the nitric oxide/cyclic guanosine monophosphate signaling pathway. Tramadol also inhibited the nociceptive response induced by carrageenan (100µg/TMJ) or 5-hydroxytryptamine (225µg/TMJ) along with inhibition of inflammatory cytokines levels, leukocytes migration and plasma extravasation. In conclusion, the results demonstrate that peripheral administration of tramadol has a potential antinociceptive and anti-inflammatory effect. The antinociceptive effect is mediated by activation of the intracellular nitric oxide/cyclic guanosine monophosphate pathway, at least in part, independently from the opioid system.
Collapse
Affiliation(s)
- Simone Monaliza S Lamana
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Ana Paula Camatta Nascimento
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Fabiana F Freitas
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Daniele R de Araujo
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Mariana S Quinteiro
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Cristina G Macedo
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil; Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Carlos L Fogaça
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Juliana T Clemente-Napimoga
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil; Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil.
| |
Collapse
|
30
|
Morrone LA, Scuteri D, Rombolà L, Mizoguchi H, Bagetta G. Opioids Resistance in Chronic Pain Management. Curr Neuropharmacol 2017; 15:444-456. [PMID: 28503117 PMCID: PMC5405610 DOI: 10.2174/1570159x14666161101092822] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Chronic pain management represents a serious healthcare problem worldwide. Chronic pain affects approximately 20% of the adult European population and is more frequent in women and older people. Unfortunately, its management in the community remains generally unsatisfactory and rarely under the control of currently available analgesics. Opioids have been used as analgesics for a long history and are among the most used drugs; however, while there is no debate over their short term use for pain management, limited evidence supports their efficacy of long-term treatment for chronic non-cancer pain. Therapy with opioids is hampered by inter-individual variability and serious side effects and some opioids often result ineffective in the treatment of chronic pain and their use is controversial. Accordingly, for a better control of chronic pain a deeper knowledge of the molecular mechanisms underlying resistance to opiates is mandatory.
Collapse
Affiliation(s)
- Luigi A. Morrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| | - Damiana Scuteri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Laura Rombolà
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| |
Collapse
|
31
|
Freitas ACN, Silva GC, Pacheco DF, Pimenta AMC, Lemos VS, Duarte IDG, de Lima ME. The synthetic peptide PnPP-19 induces peripheral antinociception via activation of NO/cGMP/K ATP pathway: Role of eNOS and nNOS. Nitric Oxide 2017; 64:31-38. [PMID: 28087360 DOI: 10.1016/j.niox.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND and purpose: The peptide PnPP-19, derived from the spider toxin PnTx2-6 (renamed as δ-CNTX-Pn1c), potentiates erectile function by activating the nitrergic system. Since NO has been studied as an antinociceptive molecule and PnPP-19 is known to induce peripheral antinociception, we intended to evaluate whether PnPP-19 could induce peripheral antinociception through activation of this pathway. EXPERIMENTAL APPROACH Nociceptive thresholds were measured by paw pressure test. PGE2 (2 μg/paw) was administered intraplantarly together with PnPP-19 and inhibitors/blockers of NOS, guanylyl cyclase and KATP channels. The nitrite concentration was accessed by Griess test. The expression and phosphorylation of eNOS and nNOS were determined by western blot. KEY RESULTS PnPP-19 (5, 10 and 20 μg/paw) induced peripheral antinociception in rats. Administration of NOS inhibitor (L-NOarg), selective nNOS inhibitor (L-NPA), guanylyl cyclase inhibitor (ODQ) and the blocker of KATP (glibenclamide) partially inhibited the antinociceptive effect of PnPP-19 (10 μg/paw). Tissue nitrite concentration increased after PnPP-19 (10 μg/paw) administration. Expression of eNOS and nNOS remained the same in all tested groups, however the phosphorylation of nNOS Ser852 (inactivation site) increased and phosphorylation of eNOS Ser1177 (activation site) decreased after PGE2 injection. Administration of PnPP-19 reverted this PGE2-induced effect. CONCLUSIONS AND IMPLICATIONS The peripheral antinociceptive effect induced by PnPP-19 is resulting from activation of NO-cGMP-KATP pathway. Activation of eNOS and nNOS might be required for such effect. Our results suggest PnPP-19 as a new drug candidate to treat pain and reinforce the importance of nNOS and eNOS activation, as well as endogenous NO release, for induction of peripheral antinociception.
Collapse
Affiliation(s)
- A C N Freitas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - G C Silva
- Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - D F Pacheco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil; Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - A M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - V S Lemos
- Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - I D G Duarte
- Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - M E de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil.
| |
Collapse
|
32
|
Mechanisms involved in antinociception induced by a polysulfated fraction from seaweed Gracilaria cornea in the temporomandibular joint of rats. Int J Biol Macromol 2017; 97:76-84. [PMID: 28065754 DOI: 10.1016/j.ijbiomac.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023]
Abstract
Temporomandibular disorder is a common clinical condition involving pain in the temporomandibular joint (TMJ) region. This study assessed the antinociceptive effects of a polysulfated fraction from the red seaweed Gracilaria cornea (Gc-FI) on the formalin-induced TMJ hypernociception in rats and investigated the involvement of different mechanisms. Male Wistar rats were pretreated with injection (sc) of saline or Gc-FI 1h before intra- TMJ injection of formalin to evaluate the nociception. The results showed that pretreatment with Gc-FI significantly reduced formalin-induced nociceptive behavior. Moreover, the antinociceptive effect of the Gc-FI was blocked by naloxone (a non-selective opioid antagonist), suggesting the involvement of opioids selective receptors. Thus, the pretreatment with selective opioids receptors antagonists, reversed the antinociceptive effect of the Gc-FI in the TMJ. The Gc-FI antinociceptive effect depends on the nitric oxide/cyclic GMP/protein kinase G/ATP-sensitive potassium channel (NO/cGMP/PKG/K+ATP) pathway because it was prevented by pretreatment with inhibitors of nitric oxide synthase, guanylate cyclase enzyme, PKG and a K+ATP blocker. In addition, after inhibition with a specific heme oxygenase-1 (HO-1) inhibitor, the antinociceptive effect of the Gc-FI was not observed. Collectively, these data suggest that the antinociceptive effect induced by Gc-FI is mediated by μ/δ/κ-opioid receptors and by activation NO/cGMP/PKG/K+ATP channel pathway, besides of HO-1.
Collapse
|
33
|
de Oliveira LP, da Silva DPB, Florentino IF, Fajemiroye JO, de Oliveira TS, Marcelino RIDÁ, Pazini F, Lião LM, Ghedini PC, de Moura SS, Valadares MC, de Carvalho VV, Vaz BG, Menegatti R, Costa EA. New pyrazole derivative 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole: synthesis and assessment of some biological activities. Chem Biol Drug Des 2016; 89:124-135. [DOI: 10.1111/cbdd.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 08/06/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Lanussy Porfiro de Oliveira
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Daiany Priscilla Bueno da Silva
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Iziara Ferreira Florentino
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Thiago Sardinha de Oliveira
- Laboratory of Biochemistry and Molecular Pharmacology; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Renato Ivan de Ávila Marcelino
- Laboratory of Cellular Pharmacology and Toxicology; FarmaTec; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | - Francine Pazini
- Laboratory of Medicinal Pharmaceutical Chemistry; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | | | - Paulo César Ghedini
- Laboratory of Biochemistry and Molecular Pharmacology; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Soraia Santana de Moura
- Laboratory of Cellular Pharmacology and Toxicology; FarmaTec; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | - Marize Campos Valadares
- Laboratory of Cellular Pharmacology and Toxicology; FarmaTec; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | | | | | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| |
Collapse
|
34
|
Jaios ES, Abdul Rahman S, Ching SM, Abdul Kadir A, Mohd. Desa MN, Zakaria ZA. Possible mechanisms of antinociception of methanol extract of Melastoma malabathricum leaves. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Vahdatpour B, Kiyani A, Dehghan F. Effect of extracorporeal shock wave therapy on the treatment of patients with carpal tunnel syndrome. Adv Biomed Res 2016; 5:120. [PMID: 27563630 PMCID: PMC4976534 DOI: 10.4103/2277-9175.186983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/06/2015] [Indexed: 11/16/2022] Open
Abstract
Background: The carpal tunnel syndrome (CTS) is the most common neuropathy. The aim of this study was to evaluate the effect of a new and noninvasive treatment including extracorporeal shock wave therapy (ESWT) in the treatment of CTS. Materials and Methods: This study is a clinical trial conducted on 60 patients with moderate CTS in selected health centers of Isfahan Medical University from November 2014 to April 2015. Patients with CTS were randomly divided into two groups. Conservative treatment including wrist splint at night for 3 months, consumption of nonsteroidal anti-inflammatory drugs for 2 weeks, and oral consumption of Vitamin B1 for a month was recommended for both groups. The first group was treated with ESWT, one session per week for 4 weeks. Focus probe with 0.05, 0.07, 0.1, and 0.15 energy and shock numbers 800, 900, 1000, and 1100 were used from the first session to the fourth, respectively. The evaluated parameters were assessed before treatment and after 3 and 6 months. Data were analyzed using SPSS version 19, Student’s t-test, and Chi-square test. Results: All parameters were significantly decreased in the ESWT group after 3 months. These results remained almost constant after 6 months compared with 3 months after treatment. However, only two parameters considerably improved after 3 months of treatment in the control group. The entire indexes in the control group implicated the regression of results in long-term period. Conclusion: It is recommended to use ESWT as a conservative treatment in patients with CTS.
Collapse
Affiliation(s)
- Babak Vahdatpour
- Department of Physical Medicine and Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Kiyani
- Department of Physical Medicine and Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Dehghan
- Department of Physical Medicine and Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Macedo CG, Napimoga MH, Rocha-Neto LM, Abdalla HB, Clemente-Napimoga JT. The role of endogenous opioid peptides in the antinociceptive effect of 15-deoxy(Δ12,14)-prostaglandin J2 in the temporomandibular joint. Prostaglandins Leukot Essent Fatty Acids 2016; 110:27-34. [PMID: 27255640 DOI: 10.1016/j.plefa.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
We have previously demonstrated that peripheral administration of 15d-PGJ2 in the Temporomandibular joint (TMJ) of rats can prevent nociceptor sensitization, mediated by peroxisome proliferator activated receptor-γ (PPAR-γ), and κ- and δ- opioid receptors. However, the mechanism that underlies the signaling of PPAR-γ (upon activation by 15d-PGJ2) to induce antinociception, and how the opioid receptors are activated via 15d-PGJ2 are not fully understood. This study demonstrates that peripheral antinociceptive effect of 15d-PGJ2 is mediated by PPAR-γ expressed in the inflammatory cells of TMJ tissues. Once activated by 15d-PGJ2, PPAR-γ induces the release of β-endorphin and dynorphin, which activates κ- and δ-opioid receptors in primary sensory neurons to induce the antinociceptive effect.
Collapse
Affiliation(s)
- C G Macedo
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - M H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Rua José Rocha Junqueira, 13 - Campinas, SP 13045-755, Brazil
| | - L M Rocha-Neto
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - H B Abdalla
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil
| | - J T Clemente-Napimoga
- Department of Physiological Sciences, Laboratory of Orofacial Pain, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil.
| |
Collapse
|
37
|
Freitas RS, do Val DR, Fernandes MEF, Gomes FIF, de Lacerda JTJG, SantiGadelha T, de Almeida Gadelha CA, de Paulo Teixeira Pinto V, Cristino-Filho G, Pereira KMA, de Castro Brito GA, Bezerra MM, Chaves HV. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression. Int Immunopharmacol 2016; 38:313-23. [PMID: 27344040 DOI: 10.1016/j.intimp.2016.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/18/2016] [Accepted: 06/15/2016] [Indexed: 01/28/2023]
Abstract
Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity.
Collapse
Affiliation(s)
- Raul Sousa Freitas
- Master in Biotechnology, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| | - Danielle Rocha do Val
- Northeast Biotechnology Network (Renorbio), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, CEP: 50670-901 Recife, Pernambuco, Brazil.
| | - Maria Ester Frota Fernandes
- Faculty of Dentistry, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| | - Francisco Isaac Fernandes Gomes
- Faculty of Dentistry, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| | | | - Tatiane SantiGadelha
- Department of Molecular Biology, Federal University of Paraíba, Cidade Universitária, CEP: 58059-900 João Pessoa, Paraíba, Brazil.
| | | | - Vicente de Paulo Teixeira Pinto
- Faculty of Medicine, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| | - Gerardo Cristino-Filho
- Faculty of Medicine, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| | - Karuza Maria Alves Pereira
- Faculty of Dentistry, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| | - Gerly Anne de Castro Brito
- Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, Porangabussu, CEP:60440-261 Fortaleza, Ceará, Brazil.
| | - Mirna Marques Bezerra
- Northeast Biotechnology Network (Renorbio), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, CEP: 50670-901 Recife, Pernambuco, Brazil.
| | - Hellíada Vasconcelos Chaves
- Faculty of Dentistry, Federal University of Ceará, Avenida Comandante Maurocélio Rocha Pontes, 100 Derby, CEP: 62.042-280 Sobral, Ceará, Brazil.
| |
Collapse
|
38
|
Silva LCR, Castor MGME, Navarro LC, Romero TRL, Duarte IDG. κ-Opioid receptor participates of NSAIDs peripheral antinociception. Neurosci Lett 2016; 622:6-9. [DOI: 10.1016/j.neulet.2016.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/27/2022]
|
39
|
Hassanipour M, Shirzadian A, Boojar MMA, Abkhoo A, Abkhoo A, Delazar S, Amiri S, Rahimi N, Ostadhadi S, Dehpour AR. Possible involvement of nitrergic and opioidergic systems in the modulatory effect of acute chloroquine treatment on pentylenetetrazol induced convulsions in mice. Brain Res Bull 2016; 121:124-30. [DOI: 10.1016/j.brainresbull.2015.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
|
40
|
Opioid pathways activation mediates the activity of nicorandil in experimental models of nociceptive and inflammatory pain. Eur J Pharmacol 2015; 768:160-4. [DOI: 10.1016/j.ejphar.2015.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022]
|
41
|
Freitas CS, Roveda AC, Truzzi DR, Garcia AC, Cunha TM, Cunha FQ, Franco DW. Anti-inflammatory and Anti-nociceptive Activity of Ruthenium Complexes with Isonicotinic and Nicotinic Acids (Niacin) as Ligands. J Med Chem 2015; 58:4439-48. [DOI: 10.1021/acs.jmedchem.5b00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina S. Freitas
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, CEP 14049-900, Ribeirão Preto, SP, Brazil
| | - Antonio C. Roveda
- Instituto de Química de São Carlos, Universidade de São Paulo−USP, P.O. Box 780, CEP 13566-590, São Carlos, SP, Brazil
| | - Daniela R. Truzzi
- Instituto de Química de São Carlos, Universidade de São Paulo−USP, P.O. Box 780, CEP 13566-590, São Carlos, SP, Brazil
| | - André C. Garcia
- Instituto de Química de São Carlos, Universidade de São Paulo−USP, P.O. Box 780, CEP 13566-590, São Carlos, SP, Brazil
| | - Thiago M. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, CEP 14049-900, Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, CEP 14049-900, Ribeirão Preto, SP, Brazil
| | - Douglas W. Franco
- Instituto de Química de São Carlos, Universidade de São Paulo−USP, P.O. Box 780, CEP 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
42
|
Fonseca MD, Cunha FQ, Kashfi K, Cunha TM. NOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain. Pharmacol Res Perspect 2015; 3:e00133. [PMID: 26236481 PMCID: PMC4492749 DOI: 10.1002/prp2.133] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
The development of nitric oxide (NO)- and hydrogen sulfide (H2S)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) has generated more potent anti-inflammatory drugs with increased safety profiles. A new hybrid molecule incorporating both NO and H2S donors into aspirin (NOSH-aspirin) was recently developed. In the present study, the antinociceptive activity of this novel molecule was compared with aspirin in different models of inflammatory pain. It was found that NOSH-aspirin inhibits acetic acid-induced writhing response and carrageenan (Cg)-induced inflammatory hyperalgesia in a dose-dependent (5–150 μmol/kg, v.o.) manner, which was superior to the effect of the same doses of aspirin. NOSH-aspirin’s antinociceptive effect was also greater and longer compared to aspirin upon complete Freund’s adjuvant (CFA)-induced inflammatory hyperalgesia. Mechanistically, NOSH-aspirin, but not aspirin, was able to reduce the production/release of interleukin-1 beta (IL-1β) during Cg-induced paw inflammation. Furthermore, NOSH-aspirin, but not aspirin, reduced prostaglandin E2-induced hyperalgesia, which was prevented by treatment with a ATP-sensitive potassium channel (KATP) blocker (glibenclamide; glib.). Noteworthy, the antinociceptive effect of NOSH-aspirin was not associated with motor impairment. The present results indicate that NOSH-aspirin seems to present greater potency than aspirin to reduce inflammatory pain in several models. The enhanced effects of NOSH-aspirin seems to be due to its ability to reduce the production of pronociceptive cytokines such as IL-1 β and directly block hyperalgesia caused by a directly acting hyperalgesic mediator in a mechanism dependent on modulation of KATP channels. In conclusion, we would like to suggest that NOSH-aspirin represents a prototype of a new class of analgesic drugs with more potent effects than the traditional NSAID, aspirin.
Collapse
Affiliation(s)
- Miriam D Fonseca
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo Av. Bandeirantes 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo Av. Bandeirantes 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Khosrow Kashfi
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School New York, NY, 10031 ; Avicenna Pharmaceuticals Inc. New York, NY, 10019
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo Av. Bandeirantes 3900, 14049-900, Ribeirao Preto, SP, Brazil
| |
Collapse
|
43
|
Foroutan A, Haddadi NS, Ostadhadi S, Sistany N, Dehpour AR. Chloroquine-induced scratching is mediated by NO/cGMP pathway in mice. Pharmacol Biochem Behav 2015; 134:79-84. [PMID: 25957523 DOI: 10.1016/j.pbb.2015.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/20/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
Chloroquine (CQ), a 4-aminoquinoline drug, has long been used in the treatment and prevention of malaria. However its side effect generalized pruritus contributes to treatment failures, and consequently results in the development of chloroquine resistant strains of Plasmodium falciparum. It was proposed that the administration of CQ correlated with increase in nitric oxide (NO) production. Nitric oxide is involved in some pruritic disorders such as atopic dermatitis, psoriasis and scratching behavior evoked by pruritogens like substance P. Therefore, the aim of this study was to investigate the involvement of NO/cGMP pathway in CQ-induced scratching in mice. Scratching behaviors were recorded by a camera after intradermal (ID) injection of CQ in the shaved rostral back of the mice. The results obtained show that CQ elicited scratching in a dose-dependent manner with a peak effective dose of 400μg/site. Injection of non-specific NOS inhibitor, N-nitro-l-arginine methyl ester or neuronal NOS selective inhibitor and 7-nitroindazole, reduced CQ-induced scratching significantly. On the other hand, administration of aminoguanidine as inducible NOS inhibitor has no inhibitory effect on this behavior. Also, injection of l-arginine as a precursor of NO significantly increased this response. Conversely, accumulation of cGMP by sildenafil as a selective phosphodiesterase type 5 inhibitor, potentiated the scratching behavior by CQ. This study therefore shows that CQ-induced scratching behavior is mediated by the NO/cGMP pathway.
Collapse
Affiliation(s)
- Arash Foroutan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazgol Sadat Haddadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Ostadhadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Sistany
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Silva LCR, Miranda e Castor MG, Souza TC, Duarte IDG, Romero TRL. NSAIDs induce peripheral antinociception by interaction with the adrenergic system. Life Sci 2015; 130:7-11. [PMID: 25818186 DOI: 10.1016/j.lfs.2015.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/24/2022]
Abstract
AIMS We evaluated the role of adrenergic systems on the peripheral antinociception induced by dipyrone and diclofenac. Mainmethods: The rat pawpressure test, inwhich sensitivity is increased by intraplantar injection of prostaglandin E2, was used to examine the peripheral effects of locally administered drugs. KEY FINDINGS Dipyrone (10, 20 and 40 μg) and diclofenac (5, 10 and 20 μg) administered locally into the right paw elicited a dose-dependent antinociceptive effect, which was demonstrated to be local; the injection of drugs into the ipsilateral and contralateral hindpaws demonstrated an effect only in the ipsilateral paw because only the treated paw produced an antinociceptive effect. To test the adrenergic system, we used guanethidine (30 mg/kg) to deplete noradrenalin from noradrenergic vesicles. Guanethidine antagonized the peripheral antinociception induced by diclofenac and dipyrone. Yohimbine (2.5, 5, 10, or 20 μg/paw) a nonselective α2-adrenergic receptor antagonist antagonized the peripheral antinociception induced by diclofenac (20 μg/paw) and dipyrone (40 μg/paw). Rauwolscine (Rau; 10, 15, 20 μg), a selective α2C-adrenoreceptor, was able to block the peripheral antinociception induced by NSAIDs. The other specific α2A,B and D-adrenoreceptor antagonists (BRL 44480, imiloxan and RX 821002, respectively) did not modify the peripheral antinociception. However, prazosin (0.5, 1, and 2 μg/paw), an α1 receptor antagonist, and propranolol (0.3, 0.6 or 1.2 μg/paw), a β-adrenoreceptor antagonist, antagonized the antinociception induced by diclofenac (20 μg/paw) and dipyrone (40 μg/paw). SIGNIFICANCE Dipyrone and diclofenac produce peripheral antinociception, which involves the release of NA and interaction with α1, α2C and β-adrenoreceptors.
Collapse
Affiliation(s)
- Lívia Caroline Resende Silva
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Marina Gomes Miranda e Castor
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Tâmara Cristina Souza
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil.
| |
Collapse
|
45
|
Florentino IF, Galdino PM, De Oliveira LP, Silva DPB, Pazini F, Vanderlinde FA, Lião LM, Menegatti R, Costa EA. Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide 2015; 47:17-24. [PMID: 25754796 DOI: 10.1016/j.niox.2015.02.146] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/26/2015] [Indexed: 11/15/2022]
Abstract
The pyrazol compounds are known to possess antipyretic, analgesic and anti-inflammatory activities. This study was conducted to investigate the peripheral antinociceptive effect of the pyrazole compound 5-(1-(3-Fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021) and involvement of opioid receptors and of the NO/cGMP/K(ATP) pathway. The oral treatments in mice with LQFM-021 (17, 75 or 300 mg/kg) decreased the number of writhing. In the formalin test, the treatments with LQFM-021 at doses of 15, 30 and 60 mg/kg reduced the licking time at both neurogenic and inflammatory phases of this test. The treatment of the animals with LQFM-021 (30 mg/kg) did not have antinociceptive effects in the tail-flick and hot plate tests. Furthermore, pre-treatment with naloxone (3 mg/kg i.p.), L-name (10 mg/kg i.p.), ODQ (10 mg/kg i.p.) or glibenclamide (3 mg/kg i.p.) antagonized the antinociceptive effect of LQFM-021 in both phases of the formalin test. In addition, it was also demonstrated that the treatments of mice with LQFM-021(15, 30 and 60 mg/kg) did not compromise the motor activity of the animals in the chimney test. Only the highest dose used in the antinociceptive study promoted changes in the open field test and pentobarbital-induced sleep test, thus ruling out possible false positive effects on nociception tests. Our data suggest that the peripheral antinociception effects of the LQFM-021 were mediated through the peripheral opioid receptors with activation of the NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
- Iziara F Florentino
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| | - Pablinny M Galdino
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Lanussy P De Oliveira
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Daiany P B Silva
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Francine Pazini
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Frederico A Vanderlinde
- Institute of Biological Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| |
Collapse
|
46
|
Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to NO/cGMP and ATP-sensitive K(+) channels pathway activation in mice. Eur J Pharmacol 2015; 755:1-5. [PMID: 25748602 DOI: 10.1016/j.ejphar.2015.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 11/24/2022]
Abstract
Substances derived from plants play an important role in the development of new analgesic drugs, among them, triterpenoids. The connection between the participation of L-arginine/NO/cGMP pathway and the activation of ATP-sensitive K(+) channels (KATP) has been established on the peripheral antinociception induced by various drugs. The study assessed the involvement of L-arginine/NO/cGMP/KATP pathway in the antinociceptive effect induced by tingenone, from Maytenus imbricata, against the hyperalgesia evoked by prostaglandin E2 (PGE2) in peripheral pathway. The paw pressure test was used, with hyperalgesia induced by intraplantar injection of PGE2 (2 μg). Tingenone (200 µg/paw) administered into the right hind paw induced a local antinociceptive effect, that was antagonized by l-NOArg, nonselective nitric oxide synthase (NOS) inhibitor and by L-NPA, selective neuronal NOS (nNOS) inhibitor. The L-NIO, selective inhibitor of endothelial (eNOS), and the L-NIL, selective inhibitor of inducible (iNOS), did not alter the peripheral antinociceptive effect of the tingenone. The ODQ, selective soluble guanylyl cyclase inhibitor, prevented the antinociceptive effect of tingenone, and zaprinast, inhibitor of the phosphodiesterase that is cyclic guanosine monophosphate (cGMP) specific, intensified the peripheral antinociceptive effect of the smaller dose of tingenone. Glibenclamide, ATP-sensitive K(+) channels (KATP) blocker, but not tetraethylammonium chloride, voltage-dependent K(+) channel blocker; dequalinium dichloride, blocker of the small conductance Ca(2+)-activated K(+) channel, and paxilline, a potent blocker of high-conductance Ca(2+)-activated K(+) channels, respectively, prevented the peripheral antinociceptive effect of tingenone. The results demonstrate that tingenone induced a peripheral antinociceptive effect by L-arginine/NO/cGMP/KATP pathway activation, with potential for a new analgesic drug.
Collapse
|
47
|
Abstract
BACKGROUND Rho-kinases (ROCKs), a family of small GTP-dependent enzymes, are involved in a range of pain models, and their inhibition typically leads to antinociceptive effects. OBJECTIVES To study the effects of inhibiting ROCKs using two known inhibitors, Y27632 and HA1077 (fasudil), administered locally, on nociception and paw edema in rats. METHODS A range of doses of Y27632 or HA1077 (2.5 μg to 1000 μg) were injected locally into rat paws alone or in combination with carrageenan, a known proinflammatory stimulus. Nociceptive responses to mechanical stimuli and increased paw volume, reflecting edema formation, were measured at 2 h and 3 h, using a Randall-Selitto apparatus and a hydroplethysmometer, respectively. RESULTS Animals treated with either ROCK inhibitor showed biphasic nociceptive effects, with lower doses being associated with pronociceptive, and higher doses with antinociceptive responses. In contrast, a monophasic dose-dependent increase in edema was observed in the same animals. Local injection of 8-bromo-cyclic (c)GMP, an activator of the nitric oxide⁄cGMP⁄protein kinase G pathway, also produced biphasic effects on nociceptive responses in rat paws; however, low doses were antinociceptive and high doses were pronociceptive. Local administration of cytochalasin B, an inhibitor of actin polymerization and a downstream mediator of ROCK activity, reversed the antinociceptive effect of Y27632. CONCLUSIONS The results of the present study suggest that ROCKs participate in the local mechanisms associated with nociception⁄antinociception and inflammation, with a possible involvement of the nitric oxide⁄cGMP⁄protein kinase G pathway. Also, drug effects following local administration may differ markedly from the effects following systemic administration. Finally, separate treatment of pain and edema may be needed to maximize clinical benefit in inflammatory pain.
Collapse
|
48
|
do Val D, Bezerra M, Silva A, Pereira K, Rios L, Lemos J, Arriaga N, Vasconcelos J, Benevides N, Pinto V, Cristino-Filho G, Brito G, Silva F, Santiago G, Arriaga A, Chaves H. Tephrosia toxicaria Pers. reduces temporomandibular joint inflammatory hypernociception: The involvement of the HO-1 pathway. Eur J Pain 2014; 18:1280-9. [DOI: 10.1002/j.1532-2149.2014.488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 12/31/2022]
Affiliation(s)
- D.R. do Val
- Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - M.M. Bezerra
- Faculty of Medicine; Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - A.A.R. Silva
- Faculty of Dentistry; Master of Healthy Sciences Degree Program; Federal University of Ceará; Sobral Brazil
| | - K.M.A. Pereira
- Faculty of Dentistry; Master of Healthy Sciences Degree Program; Federal University of Ceará; Sobral Brazil
| | - L.C. Rios
- Faculty of Medicine; Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - J.C. Lemos
- Faculty of Medicine; Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - N.C. Arriaga
- Faculty of Medicine; Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - J.N. Vasconcelos
- Department of Chemistry; Federal University of Ceará; Fortaleza Brazil
| | - N.M.B. Benevides
- Department of Biochemistry and Molecular Biology; Federal University of Ceará; Fortaleza Brazil
| | - V.P.T. Pinto
- Faculty of Medicine; Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - G. Cristino-Filho
- Faculty of Medicine; Master of Biotechnology Degree Program; Federal University of Ceará; Sobral Brazil
| | - G.A.C. Brito
- Department of Morphology; Federal University of Ceará; Fortaleza Brazil
| | - F.R.L. Silva
- Department of Chemistry; Federal University of Ceará; Fortaleza Brazil
| | - G.M.P. Santiago
- Department of Chemistry; Federal University of Ceará; Fortaleza Brazil
| | - A.M.C. Arriaga
- Department of Chemistry; Federal University of Ceará; Fortaleza Brazil
| | - H.V. Chaves
- Faculty of Dentistry; Master of Healthy Sciences Degree Program; Federal University of Ceará; Sobral Brazil
| |
Collapse
|
49
|
Hu J, Shi X, Mao X, Chen J, Zhu L, Zhao Q. Antinociceptive activity of Rhoifoline A from the ethanol extract of Zanthoxylum nitidum in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:828-34. [PMID: 23669135 DOI: 10.1016/j.jep.2013.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 05/15/2023]
Abstract
AIM OF THE STUDY Antinociceptive activity of Rhoifoline A (RA), a benzophenanthridine alkaloid obtained from the ethanol extract of Zanthoxylum nitidum, was evaluated in mice using chemical and thermal models of nociception. MATERIALS AND METHODS RA was evaluated on anti-nociceptive activity in mice using chemical and thermal models of nociception. RESULTS RA administered intraperitoneally at doses of 10, 20, 40 and 80 mg/kg exhibited significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin, and on thermal nociception in the tail-flick test and the hot plate test. RA neither significantly impaired motor coordination in the rotarod test nor did spontaneous locomotion in the open-field test. RA did not enhance the pentobarbital sodium induced sleep time. These results indicated that the observed antinociceptive activity of RA was unrelated to sedation or motor abnormality. Core body temperature measurement showed that RA did not affect temperature during a 2-hour period. Furthermore, RA-induced antinociception in the hot plate test was insensitive to naloxone or glibenclamide but significantly antagonized by L-NAME, methylene blue and nimodipine. CONCLUSIONS Therefore, it is reasonable that the analgesic mechanism of RA possibly involved the NO-cGMP signaling pathway and L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Jiang Hu
- College of Biological Resources and Environment Science, Qujing Normal University, Qujing 655011, China; Institue of Characteristic Medicinal Resource of Ethnic Minorities, Qujing Normal University, Qujing 655011, China.
| | | | | | | | | | | |
Collapse
|
50
|
Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology 2013; 75:445-57. [DOI: 10.1016/j.neuropharm.2013.08.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/05/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022]
|