1
|
Liu JYH, Deng Y, Hui JCM, Du P, Ng HSH, Lu Z, Yang L, Liu L, Khalid A, Ngan MP, Cui D, Jiang B, Chan SW, Rudd JA. Regional differences of tachykinin effects on smooth muscle and pacemaker potentials of the stomach, duodenum, ileum and colon of an emetic model, the house musk shrews. Neuropeptides 2023; 97:102300. [PMID: 36370658 DOI: 10.1016/j.npep.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIMS The contractile effects of tachykinins on the gastrointestinal tract are well-known, but how they modulate slow-waves, particularly in species capable of emesis, remains largely unknown. We aimed to elucidate the effects of tachykinins on myoelectric and contractile activity of isolated gastrointestinal tissues of the Suncus murinus. METHODS The effects of substance P (SP), neurokinin (NK)A, NKB and selective NK1 (CP122,721, CP99,994), NK2 (SR48,968, GR159,897) and NK3 (SB218,795, SB222,200) receptor antagonists on isolated stomach, duodenum, ileum and colon segments were studied. Mechanical contractile activity was recorded using isometric force displacement transducers. Electrical pacemaker activity was recorded using a microelectrode array. RESULTS Compared with NKA, SP induced larger contractions in stomach tissue and smaller contractions in intestinal segments, where oscillation magnitudes increased in intestinal segments, but not the stomach. CP122,721 and GR159,897 inhibited electrical field stimulation-induced contractions of the stomach, ileum and colon. NKB and NK3 had minor effects on contractile activity. The inhibitory potencies of SP and NKA on the peristaltic frequency of the colon and ileum, respectively, were correlated with those on electrical pacemaker frequency. SP, NKA and NKB inhibited pacemaker activity of the duodenum and ileum, but increased that of the stomach and colon. SP elicited a dose-dependent contradictive pacemaker frequency response in the colon. CONCLUSION This study revealed distinct effects of tachykinins on the mechanical and electrical properties of the stomach and colon vs. the proximal intestine, providing a unique aspect on neuromuscular correlation in terms of the effects of tachykinin on peristaltic and pacemaker activity in gastrointestinal-related symptoms.
Collapse
Affiliation(s)
- Julia Y H Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China.
| | - Yingyi Deng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Jessica C M Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Heidi S H Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Lingqing Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Aleena Khalid
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - M P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Dexuan Cui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| | - Bin Jiang
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, Hong Kong, SAR, PR China
| | - S W Chan
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, Hong Kong, SAR, PR China
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, PR China
| |
Collapse
|
2
|
Nizam E, Köksoy S, Erin N. NK1R antagonist decreases inflammation and metastasis of breast carcinoma cells metastasized to liver but not to brain; phenotype-dependent therapeutic and toxic consequences. Cancer Immunol Immunother 2020; 69:1639-1650. [PMID: 32322911 DOI: 10.1007/s00262-020-02574-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Substance P a neuro-immune mediator acts on Neurokinin-1 and -2 receptors (NK1R and NK2R). Inhibitors of NK1R are considered to be safe and effective approaches for cancer treatment since Aprepitant, a non-peptide antagonist of NK1R is widely used for chemotherapy-induced emesis and has cytotoxic and antitumor effects in various models for cancer. On the other hand, our previous findings demonstrated that systemic inhibition of NK1R may decrease cytotoxic anti-tumoral immune response. Hence, actual consequences of inhibition of neurokinin receptors under in vivo conditions in a syngeneic model of carcinoma should be determined. The effects of highly potent and selective non-peptide mouse NK1R and NK2R antagonists RP 67580 and GR 159897, respectively, on metastatic breast carcinoma were evaluated. Specifically, 4T1 breast cancer cells metastasized to brain (denoted as 4TBM) and liver (denoted as 4TLM) were used to induce tumors in Balb-c mice. Changes in tumor growth, metastasis and immune response to cancer cells were determined. We here observed differential effects of NK1R antagonist depended on the subset of metastatic cells. Specifically, inhibition of NK1R markedly increased liver metastasis of tumors formed by 4TBM but not 4TLM cells. On the contrary, NK1R antagonist decreased inflammatory response and liver metastasis in 4TLM-injected mice. 4TLM tumors act more aggressively inducing more inflammatory response compared to 4TBM tumors. Hence, differential effects of NK1R antagonist are at least partly due to extend and type of the inflammatory response evoked by specific subset metastatic cells. These findings demonstrate the necessity for understanding the immunological consequences of tumor-microenvironment interactions.
Collapse
Affiliation(s)
- Esra Nizam
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1 Immunoloji, 07070, Antalya, Turkey
| | - Sadi Köksoy
- Medical Microbiology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1 Immunoloji, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Delvalle NM, Dharshika C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD. Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation. Cell Mol Gastroenterol Hepatol 2018; 6:321-344. [PMID: 30116771 PMCID: PMC6091443 DOI: 10.1016/j.jcmgh.2018.05.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Background & Aims Tachykinins are involved in physiological and pathophysiological mechanisms in the gastrointestinal tract. The major sources of tachykinins in the gut are intrinsic enteric neurons in the enteric nervous system and extrinsic nerve fibers from the dorsal root and vagal ganglia. Although tachykinins are important mediators in the enteric nervous system, how they contribute to neuroinflammation through effects on neurons and glia is not fully understood. Here, we tested the hypothesis that tachykinins contribute to enteric neuroinflammation through mechanisms that involve intercellular neuron-glia signaling. Methods We used immunohistochemistry and quantitative real-time polymerase chain reaction, and studied cellular activity using transient-receptor potential vanilloid-1 (TRPV1)tm1(cre)Bbm/J::Polr2atm1(CAG-GCaMP5g,-tdTomato)Tvrd and Sox10CreERT2::Polr2atm1(CAG-GCaMP5g,-tdTomato)Tvrd mice or Fluo-4. We used the 2,4-di-nitrobenzene sulfonic acid (DNBS) model of colitis to study neuroinflammation, glial reactivity, and neurogenic contractility. We used Sox10::CreERT2+/-/Rpl22tm1.1Psam/J mice to selectively study glial transcriptional changes. Results Tachykinins are expressed predominantly by intrinsic neuronal varicosities whereas neurokinin-2 receptors (NK2Rs) are expressed predominantly by enteric neurons and TRPV1-positive neuronal varicosities. Stimulation of NK2Rs drives responses in neuronal varicosities that are propagated to enteric glia and neurons. Antagonizing NK2R signaling enhanced recovery from colitis and prevented the development of reactive gliosis, neuroinflammation, and enhanced neuronal contractions. Inflammation drove changes in enteric glial gene expression and function, and antagonizing NK2R signaling mitigated these changes. Neurokinin A-induced neurodegeneration requires glial connexin-43 hemichannel activity. Conclusions Our results show that tachykinins drive enteric neuroinflammation through a multicellular cascade involving enteric neurons, TRPV1-positive neuronal varicosities, and enteric glia. Therapies targeting components of this pathway could broadly benefit the treatment of dysmotility and pain after acute inflammation in the intestine.
Collapse
Key Words
- BzATP, 2’(3’)-O-(4-benzoylbenzoyl)adenosine 5’-triphosphate triethylammonium salt
- Ca2+, calcium
- Colitis
- Cx43, connexin-43
- DMEM, Dulbecco's modified Eagle medium
- DNBS, dinitrobenzene sulfonic acid
- EFS, electrical field stimulation
- ENS, enteric nervous system
- Enteric Nervous System
- FGID, functional gastrointestinal disorder
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Glia
- HA, hemagglutinin
- IPAN, intrinsic primarily afferent neuron
- LMMP, longitudinal muscle–myenteric plexus
- MSU, Michigan State University
- NK1R, neurokinin-1 receptor
- NK2R, neurokinin-2 receptor
- NKA, neurokinin A
- Neurokinins
- SP, substance P
- TRPV1, transient receptor potential vanilloid-1
- mRNA, messenger RNA
Collapse
Affiliation(s)
| | - Christine Dharshika
- Genetics Program, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | | | - David E. Fried
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Lukas Gaudette
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
Palamiuc L, Noble T, Witham E, Ratanpal H, Vaughan M, Srinivasan S. A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism. Nat Commun 2017; 8:14237. [PMID: 28128367 PMCID: PMC5290170 DOI: 10.1038/ncomms14237] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/09/2016] [Indexed: 01/13/2023] Open
Abstract
Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity.
Collapse
Affiliation(s)
- Lavinia Palamiuc
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, California 92056, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Tallie Noble
- Mira Costa College, 1 Barnard Drive, Oceanside, California 92056, USA
| | - Emily Witham
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Harkaranveer Ratanpal
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Megan Vaughan
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
- Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, California 92056, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| |
Collapse
|
5
|
Palea S, Guilloteau V, Rekik M, Lovati E, Guerard M, Guardia MA, Lluel P, Pietra C, Yoshiyama M. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs. Front Pharmacol 2016; 7:234. [PMID: 27540361 PMCID: PMC4972833 DOI: 10.3389/fphar.2016.00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v.) or L-733,060 (3-10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex circuit and therefore may be useful clinically in treating bladder overactivity symptoms.
Collapse
Affiliation(s)
- Stefano Palea
- UROsphereToulouse, France; Palea Pharma and Biotech ConsultingToulouse, France
| | | | | | - Emanuela Lovati
- Research and Preclinical Development, Helsinn Healthcare S.A. Lugano, Switzerland
| | | | | | | | - Claudio Pietra
- Research and Preclinical Development, Helsinn Healthcare S.A. Lugano, Switzerland
| | - Mitsuharu Yoshiyama
- Department of Urology, University of Yamanashi Graduate School of Medical Science Chuo, Japan
| |
Collapse
|
6
|
Ruzza C, Rizzi A, Malfacini D, Cerlesi MC, Ferrari F, Marzola E, Ambrosio C, Gro C, Severo S, Costa T, Calo G, Guerrini R. Pharmacological characterization of tachykinin tetrabranched derivatives. Br J Pharmacol 2015; 171:4125-37. [PMID: 24758475 DOI: 10.1111/bph.12727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Peptide welding technology (PWT) is a novel chemical strategy that allows the synthesis of multibranched peptides with high yield, purity and reproducibility. Using this technique, we have synthesized and pharmacologically characterized the tetrabranched derivatives of the tachykinins, substance P (SP), neurokinin A (NKA) and B (NKB). EXPERIMENTAL APPROACH The following in vitro assays were used: calcium mobilization in cells expressing human recombinant NK receptors, BRET studies of G-protein - NK1 receptor interaction, guinea pig ileum and rat urinary bladder bioassays. Nociceptive behavioural response experiments were performed in mice following intrathecal injection of PWT2-SP. KEY RESULTS In calcium mobilization studies, PWT tachykinin derivatives behaved as full agonists at NK receptors with a selectivity profile similar to that of the natural peptides. NK receptor antagonists display similar potency values when tested against PWT2 derivatives and natural peptides. In BRET and bioassay experiments PWT2-SP mimicked the effects of SP with similar potency, maximal effects and sensitivity to aprepitant. After intrathecal administration in mice, PWT2-SP mimicked the nociceptive effects of SP, but with higher potency and a longer-lasting action. Aprepitant counteracted the effects of PWT2-SP in vivo. CONCLUSIONS AND IMPLICATIONS The present study has shown that the PWT technology can be successfully applied to the peptide sequence of tachykinins to generate tetrabranched derivatives characterized with a pharmacological profile similar to the native peptides. In vivo, PWT2-SP displayed higher potency and a marked prolongation of action, compared with SP.
Collapse
Affiliation(s)
- Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
8
|
Brancati SB, Zádori ZS, Németh J, Gyires K. Substance P induces gastric mucosal protection at supraspinal level via increasing the level of endomorphin-2 in rats. Brain Res Bull 2013; 91:38-45. [PMID: 23328537 DOI: 10.1016/j.brainresbull.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to analyze the potential role of substance P (SP) in gastric mucosal defense and to clarify the receptors and mechanisms that may be involved in it. Gastric ulceration was induced by oral administration of acidified ethanol in male Wistar rats. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. We found that central (intracerebroventricular) injection of SP (9.3-74 pmol) dose-dependently inhibited the formation of ethanol-induced ulcers, while intravenously injected SP (0.37-7.4 nmol/kg) had no effect. The mucosal protective effect of SP was inhibited by pretreatment with neurokinin 1-, neurokinin 2-, neurokinin 3- and μ-opioid receptor antagonists, while δ- and κ-opioid receptor antagonists had no effect. Endomorphin-2 antiserum also antagonized the SP-induced mucosal protection. In the gastroprotective dose range SP failed to influence the gastric motor activity. Inhibition of muscarinic cholinergic receptors, or the synthesis of nitric oxide or prostaglandins significantly reduced the effect of SP. In addition, centrally injected SP reversed the ethanol-induced reduction of gastric mucosal CGRP content. It can be concluded, that SP may induce gastric mucosal protection initiated centrally. Its protective effect is likely to be mediated by endomorphin-2, and vagal nerve may convey the centrally initiated protection to the periphery, where both prostaglandins, nitric oxide and CGRP are involved in mediating this effect.
Collapse
Affiliation(s)
- Serena B Brancati
- Department of Pharmaceutical Sciences - Pharmacology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | |
Collapse
|
9
|
Rizzi A, Campi B, Camarda V, Molinari S, Cantoreggi S, Regoli D, Pietra C, Calo' G. In vitro and in vivo pharmacological characterization of the novel NK₁ receptor selective antagonist Netupitant. Peptides 2012; 37:86-97. [PMID: 22732666 DOI: 10.1016/j.peptides.2012.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/24/2022]
Abstract
The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kitamura H, Kobayashi M, Wakita D, Nishimura T. Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:4200-8. [PMID: 22474018 DOI: 10.4049/jimmunol.1102521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
11
|
Onaga T, Oh-ishi T, Shimoda T, Nishimoto S, Hayashi H. Role of tachykinin and neurokinin receptors in the regulation of ovine omasal contractions. ACTA ACUST UNITED AC 2012; 173:64-73. [DOI: 10.1016/j.regpep.2011.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 02/02/2023]
|
12
|
Kobayashi M, Ashino S, Shiohama Y, Wakita D, Kitamura H, Nishimura T. IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model. Eur J Immunol 2011; 42:393-402. [PMID: 22105467 DOI: 10.1002/eji.201141845] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/08/2011] [Accepted: 11/16/2011] [Indexed: 12/21/2022]
Abstract
The adoptive transfer of OVA-specific Th1 cells into WT mice followed by OVA inhalation induces a significant elevation of airway hyper-responsiveness (AHR) with neutrophilia but not mucus hypersecretion. Here, we demonstrate that the airway inflammation model, pathogenically characterized as severe asthma, was partly mimicked by i.n. administration of IFN-γ. The administration of IFN-γ instead of Th1 cells caused AHR elevation but not neutrophilia, and remarkably induced neurokinin-2 receptor (NK2R) expression along with neurokinin A (NKA) production in the lung. To evaluate whether NKA/NK2R was involved in airway inflammation, we first investigated the role of NKA/NK2R-signaling in airway smooth muscle cells (ASMCs) in vitro. NK2R mRNA expression was significantly augmented in tracheal tube-derived ASMCs of WT mice but not STAT-1(-/-) mice after stimulation with IFN-γ. In addition, methacholine-mediated Ca(2+) influx into the ASMCs was significantly reduced in the presence of NK2R antagonist. Moreover, the NK2R antagonist strongly inhibited IFN-γ-dependent AHR elevation in vivo. Thus, these results demonstrated that IFN-γ directly acts on ASMCs to elevate AHR via the NKA/NK2R-signaling cascade. Our present findings suggested that NK2R-mediated neuro-immuno crosstalk would be a promising target for developing novel drugs in Th1-cell-mediated airway inflammation, including severe asthma.
Collapse
Affiliation(s)
- Minoru Kobayashi
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Ang SF, Moochhala SM, MacAry PA, Bhatia M. Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-κB signaling. PLoS One 2011; 6:e24535. [PMID: 21931742 PMCID: PMC3171449 DOI: 10.1371/journal.pone.0024535] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H2S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H2S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H2S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H2S donor, was given at the same time as CLP. Capsazepine significantly attenuated H2S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H2S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK1/2 and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H2S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway.
Collapse
Affiliation(s)
- Seah-Fang Ang
- Immunology Program and Department of Microbiology, Center for Life Sciences, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Shabbir M. Moochhala
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Defense Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| | - Paul A. MacAry
- Immunology Program and Department of Microbiology, Center for Life Sciences, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch, New Zealand
- * E-mail:
| |
Collapse
|
14
|
Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Yverneau P, Charrier-Savournin F, Fink M, Trinquet E. A fluorescent ligand-binding alternative using Tag-lite® technology. ACTA ACUST UNITED AC 2010; 15:1248-59. [PMID: 20974902 DOI: 10.1177/1087057110384611] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein-coupled receptors (GPCRs) are crucial cell surface receptors that transmit signals from a wide range of extracellular ligands. Indeed, 40% to 50% of all marketed drugs are thought to modulate GPCR activity, making them the major class of targets in the drug discovery process. Binding assays are widely used to identify high-affinity, selective, and potent GPCR drugs. In this field, the use of radiolabeled ligands has remained so far the gold-standard method. Here the authors report a less hazardous alternative for high-throughput screening (HTS) applications by the setup of a nonradioactive fluorescence-based technology named Tag-lite(®). Selective binding of various fluorescent ligands, either peptidic or not, covering a large panel of GPCRs from different classes is illustrated, particularly for chemokine (CXCR4), opioid (δ, µ, and κ), and cholecystokinin (CCK1 and CCK2) receptors. Affinity constants of well-known pharmacological agents of numerous GPCRs are in line with values published in the literature. The authors clearly demonstrate that the Tag-lite binding assay format can be successfully and reproducibly applied by using different cellular materials such as transient or stable recombinant cells lines expressing SNAP-tagged GPCR. Such fluorescent-based binding assays can be performed with adherent cells or cells in suspension, in 96- or 384-well plates. Altogether, this new technology offers great advantages in terms of flexibility, rapidity, and user-friendliness; allows easy miniaturization; and makes it completely suitable for HTS applications.
Collapse
|
15
|
Hegde A, Koh YH, Moochhala SM, Bhatia M. Neurokinin-1 receptor antagonist treatment in polymicrobial sepsis: molecular insights. Int J Inflam 2010; 2010:601098. [PMID: 21188216 PMCID: PMC3003979 DOI: 10.4061/2010/601098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/25/2010] [Accepted: 08/04/2010] [Indexed: 01/04/2023] Open
Abstract
Neurokinin-1 receptor blocking has been shown to be beneficial against lung injury in polymicrobial sepsis. In this paper, we evaluated the possible mediators and the mechanism involved. Mice were subjected to cecal ligation and puncture (CLP-) induced sepsis or sham surgery. Vehicle or SR140333 [1 mg/kg; subcutaneous (s.c.)] was administered to septic mice either 30 min before or 1 h after the surgery. Lung tissue was collected 8 h after surgery and further analyzed. CLP alone caused a significant increase in the activation of the transcription factors, protein kinase C-α, extracellular signal regulated kinases, neurokinin receptors, and substance P levels in lung when compared to sham-operated mice. SR140333 injected pre- and post surgery significantly attenuated the activation of transcription factors and protein kinase C-α and the plasma levels of substance P compared to CLP-operated mice injected with the vehicle. In addition, GR159897 (0.12 mg/kg; s.c.), a neurokinin-2 receptor antagonist, failed to show beneficial effects. We conclude that substance P acting via neurokinin-1 receptor in sepsis initiated signaling cascade mediated mainly by protein kinase C-α, led to NF-κB and activator protein-1 activation, and further modulated proinflammatory mediators.
Collapse
Affiliation(s)
- Akhil Hegde
- Cardiovascular Biology Program, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, MD 11, No. 05-09, 10 Medical Drive, Singapore 117597
| | | | | | | |
Collapse
|
16
|
Ang SF, Moochhala SM, Bhatia M. Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit Care Med 2010; 38:619-628. [PMID: 19851090 DOI: 10.1097/ccm.0b013e3181c0df00] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the interaction and involvement of hydrogen sulfide and transient receptor potential vanilloid type 1 in the pathogenesis of sepsis. Hydrogen sulfide has been demonstrated to be involved in many inflammatory states including sepsis. Its contribution in neurogenic inflammation has been suggested in normal airways and urinary bladder. However, whether endogenous hydrogen sulfide would induce transient receptor potential vanilloid type 1-mediated neurogenic inflammation in sepsis remains unknown. DESIGN Prospective, experimental study. SETTING Research laboratory. SUBJECT Male Swiss mice. INTERVENTIONS Mice were subjected to cecal ligation and puncture-induced sepsis and treated with transient receptor potential vanilloid type 1 antagonist capsazepine (15 mg/kg subcutaneous) 30 mins before cecal ligation and puncture. To investigate hydrogen sulfide-mediated neurogenic inflammation in sepsis, DL-propargylglycine (50 mg/kg intraperitoneal), an inhibitor of hydrogen sulfide formation was administrated 1 hr before or 1 hr after the induction of sepsis, whereas sodium hydrosulfide (10 mg/kg intraperitoneal), a hydrogen sulfide donor, was given at the same time as cecal ligation and puncture. Lung and liver myeloperoxidase activities, liver cystathionine-gamma-lyase activity, plasma hydrogen sulfide level, histopathological examination, and survival studies were determined after induction of sepsis. MEASUREMENTS AND MAIN RESULTS Capsazepine treatment attenuates significantly systemic inflammation and multiple organ damage caused by sepsis, and protects against sepsis-induced mortality. Similarly, administration of sodium hydrosulfide exacerbates but capsazepine reverses these deleterious effects. In the presence of DL-propargylglycine, capsazepine causes no significant changes to the attenuation of sepsis-associated systemic inflammation, multiple organ damage, and mortality. In addition, capsazepine has no effect on endogenous generation of hydrogen sulfide, suggesting that hydrogen sulfide is located upstream of transient receptor potential vanilloid type 1 activation, and may play a critical role in regulating the production and release of sensory neuropeptides in sepsis. CONCLUSIONS The present study shows that hydrogen sulfide induces systemic inflammation and multiple organ damage characteristic of sepsis via transient receptor potential vanilloid type 1-mediated neurogenic inflammation.
Collapse
Affiliation(s)
- Seah-Fang Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
17
|
Hampton SL, Kinnaird AI. Genetic interventions in mammalian cells; applications and uses in high-throughput screening and drug discovery. Cell Biol Toxicol 2009; 26:43-55. [PMID: 19904619 DOI: 10.1007/s10565-009-9140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/21/2009] [Indexed: 11/29/2022]
Abstract
Functional cellular assays are the bedrock of modern drug discovery. These utilise cellular systems that yield a measurable biochemical product or physiological response to drug stimulation. Often, these functional responses are studied by the introduction of the molecular target of choice into an inert cellular background to create a more discriminating system. There are as many techniques for delivery of the required target gene as there are techniques for studying their function. This article will consider the genetic modification of cell lines in vitro to develop cell-based assays for drug discovery and high-throughput screening.
Collapse
|
18
|
Unno T, Matsuyama H, Izumi Y, Yamada M, Wess J, Komori S. Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. Br J Pharmacol 2006; 149:1022-30. [PMID: 17099717 PMCID: PMC2014632 DOI: 10.1038/sj.bjp.0706955] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The functional roles of M(2) and M(3) muscarinic receptors in neurogenic cholinergic contractions in gastrointestinal tracts remain to be elucidated. To address this issue, we studied cholinergic nerve-induced contractions in the ileum using mutant mice lacking M(2) or M(3) receptor subtypes. EXPERIMENTAL APPROACH Contractile responses to transmural electrical (TE) stimulation were isometrically recorded in ileal segments from M(2)-knockout (KO), M(3)-KO, M(2)/M(3)-double KO, and wild-type mice. KEY RESULTS TE stimulation at 2-50 Hz frequency-dependently evoked a fast, brief contraction followed by a slower, longer one in wild-type, M(2)-KO or M(3)-KO mouse preparations. Tetrodotoxin blocked both the initial and later contractions, while atropine only inhibited the initial contractions. The initial cholinergic contractions were significantly greater in wild-type than M(2)-KO or M(3)-KO mice; the respective mean amplitudes at 50 Hz were 91, 74 and 68 % of 70mM K(+)-induced contraction. Pretreatment with pertussis toxin blocked the cholinergic contractions in M(3)-KO but not in M(2)-KO mice. Cholinergic contractions also remained in wild-type preparations, but their sizes were reduced by 20-30 % at 10-50 Hz. In M(2)/M(3)-double KO mice, TE stimulation evoked only slow, noncholinergic contractions, which were significantly greater in sizes than in any of the other three mouse strains. CONCLUSION AND IMPLICATIONS These results demonstrate that M(2) and M(3) receptors participate in mediating cholinergic contractions in mouse ileum with the latter receptors assuming a greater role. Our data also suggest that the lack of both M(2) and M(3) receptors causes upregulation of noncholinergic excitatory innervation of the gut smooth muscle.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Atropine/pharmacology
- Capsaicin/pharmacology
- Electric Stimulation
- Female
- Ileum/drug effects
- Isometric Contraction/drug effects
- Male
- Mice
- Mice, Knockout
- Muscarinic Antagonists/pharmacology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Parasympathetic Nervous System/drug effects
- Parasympathetic Nervous System/physiology
- Pertussis Toxin/pharmacology
- Receptor, Muscarinic M2/drug effects
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- T Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University Gifu, Japan
| | - H Matsuyama
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University Gifu, Japan
| | - Y Izumi
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University Gifu, Japan
| | - M Yamada
- Laboratory for Neurogenetics, Brain Science Institute RIKEN, Saitama, Japan
| | - J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - S Komori
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University Gifu, Japan
- Author for correspondence:
| |
Collapse
|
19
|
Bhatia M, Zhi L, Zhang H, Ng SW, Moore PK. Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2006; 291:L896-904. [PMID: 16798781 DOI: 10.1152/ajplung.00053.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown earlier that H(2)S acts as a mediator of inflammation. In this study, we have investigated the involvement of substance P and neurogenic inflammation in H(2)S-induced lung inflammation. Intraperitoneal administration of NaHS (1-10 mg/kg), an H(2)S donor, to mice caused a significant increase in circulating levels of substance P in a dose-dependent manner. H(2)S alone could also cause lung inflammation, as evidenced by a significant increase in lung myeloperoxidase activity and histological evidence of lung injury. The maximum effect of H(2)S on substance P levels and on lung inflammation was observed 1 h after NaHS administration. At this time, a significant increase in lung levels of TNF-alpha and IL-1beta was also observed. In substance P-deficient mice, the preprotachykinin-A knockout mice, H(2)S did not cause any lung inflammation. Furthermore, pretreatment of mice with CP-96345 (2.5 mg/kg ip), an antagonist of the neurokinin-1 (NK(1)) receptor, protected mice against lung inflammation caused by H(2)S. However, treatment with antagonists of NK(2), NK(3), and CGRP receptors did not have any effect on H(2)S-induced lung inflammation. Depleting neuropeptide from sensory neurons by capsaicin (50 mg/kg sc) significantly reduced the lung inflammation caused by H(2)S. In addition, pretreatment of mice with capsazepine (15 mg/kg sc), an antagonist of the transient receptor potential vanilloid-1, protected mice against H(2)S-induced lung inflammation. These results demonstrate a key role of substance P and neurogenic inflammation in H(2)S-induced lung injury in mice.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Bldg. MD2, 18 Medical Dr., Singapore 117597.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
On reviewing the literature on GAD and trying to summarize the various developments in the field of neurobiology of GAD, we see that a range of hypotheses try to explore and integrate the observations found into potentially meaningful theories. Abnormal serotonergic and GABAergic function occur in many patients with GAD. Functional imaging data have shown increased cortical activity and decreased basal ganglia activity in patients with GAD, which reverses with treatment, but it is apparent that no one theory is sufficiently comprehensive to propose a unitary hypothesis for the development of GAD and other anxiety disorders. GAD is a relatively new diagnosable condition, first introduced into the classification system of psychiatric disorders in 1980, and since then has undergone a series of changes in its conceptualization, with some investigators questioning the existence of the condition as a distinct entity. Any inferences that may be drawn from various studies must be guarded, and it is appropriate to compare studies using the same diagnostic criteria. Significant research has been done and may lead to exciting new discoveries in the treatment of anxiety disorders in general and GAD in particular. Gray's model of behavioral inhibition, in which the septohippocampal system acts by assessing stimuli for the presence of danger and, when that is detected, activates the behavioral-inhibition circuit, provides a neuroanatomic conceptualization that has been expanded by preclinical research. Some exciting work has been done on CRF and the concept of development, vulnerability, and kindling and some investigators have contributed to this area of interest. This concept supports the hypothesis that a genetic predisposition, coupled with early stress, in the crucial phases of development may result in a phenotype that is neurobiologically vulnerable to stress and may lower an individual's threshold for developing anxiety or depression on additional stress exposure. The pharmaceutical industry is exploring treatment options using CRF antagonists, and research on other neuropeptides, especially NPY, will be of interest. Research on neurosteroids also may bring the opportunity for pharmacologic treatment approaches. Future research on the startle reflex and on the NMDA and the metabotropic glutamate receptors is important. Future studies of a more homogenous patient population and using more sophisticated techniques, such as molecular genetic strategies and better imaging techniques, may answer some of the outstanding questions.
Collapse
Affiliation(s)
- P V Jetty
- Substance Abuse Program, Health South Metro West Hospital, Fairfield, Alabama, USA.
| | | | | |
Collapse
|
22
|
Kerr KP, Thai B, Coupar IM. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK(2) receptors. Br J Pharmacol 2000; 131:1461-7. [PMID: 11090121 PMCID: PMC1572466 DOI: 10.1038/sj.bjp.0703708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. 2. The NK(1) receptor-selective agonist, [Sar(9)(O(2))Met(11)]SP and the NK(3) receptor-selective agonists, [MePhe(7)]-NKB and senktide, produced no response at submicromolar concentrations. The NK(2) receptor-selective agonists, [Nle(10)]-NKA(4 - 10), and GR 64,349 produced concentration-dependent contractile effects with pD(2) values of 8.20+/-0.16 and 8.30+/-0.15, respectively. 3. The concentration-response curve to the non-selective agonist, NKA (pD(2)=8.13+/-0.04) was shifted significantly rightwards only by the NK(2) receptor-selective antagonist, GR 159,897 and was unaffected by the NK(1) receptor-selective antagonist, SR 140,333 and the NK(3) receptor-selective antagonist, SB 222,200. 4. The NK(2) receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK(2) receptor-selective agonist, GR 64,349 (apparent pK(B) value=9.29+/-0.16) and against the non-selective agonist, NKA (apparent pK(B) value=8.71+/-0.19). 5. The NK(2) receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK(2) receptor-selective agonist, [Nle(10)]-NKA(4 - 10). The pK(B) value was 10.84+/-0.19.6. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK(2) receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK(2) receptors.
Collapse
Affiliation(s)
- K P Kerr
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
23
|
Kraneveld AD, James DE, de Vries A, Nijkamp FP. Excitatory non-adrenergic-non-cholinergic neuropeptides: key players in asthma. Eur J Pharmacol 2000; 405:113-29. [PMID: 11033319 DOI: 10.1016/s0014-2999(00)00546-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Professor David de Wied first introduced the term 'neuropeptides' at the end of 1971. Later peptide hormones and their fragments, endogenous opioid (morphine-like) peptides and a large number of other biogenic peptides became classified as neuropeptides. All of these peptides are united by a number of common features including their origin (nervous system and peptide-secreting cells found in various organs such as skin, gut, lungs), biosynthesis, secretion, metabolism, and enormous effectiveness. Neuropeptides are biologically active at extremely low concentrations. The past decade, neuropeptide research has revealed that neuropeptides also participate strongly in immune reactions. The neuro-immune concept has opened up a whole new research area. In the last 20 years, significant advances have been made in investigations of the interaction between immune and nervous systems in chronic inflammatory diseases such as asthma. The goal of this review is to bring together the functional relevance of excitatory non-adrenergic-non-cholinergic (NANC) nerves and the interaction with the immune system in asthma.
Collapse
Affiliation(s)
- A D Kraneveld
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Abstract
Despite the high prevalence of and mortality from chronic obstructive pulmonary disease, extensive research on the underlying pathophysiology and specific therapeutics for this disease is, relatively, in its infancy. Several novel molecular targets are being investigated as potential treatments for the disease. The most exciting new class of compounds is the phosphodiesterase 4 inhibitors; Ariflo (SB 207499)-a member of this class, and the most advanced in development (Phase III)-was reported recently to have significant clinical efficacy in patients with chronic obstructive pulmonary disease. Phosphodiesterase 4 inhibitors, such as Ariflo, possibly represent the most important advance in pulmonary medicine in recent years.
Collapse
Affiliation(s)
- D W Hay
- Department of Pulmonary Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA.
| |
Collapse
|
25
|
Abstract
This review provides an overview of preclinical and clinical evidence of a role for the neuroactive peptides cholecystokinin (CCK), corticotropin-releasing factor (CRF), neuropeptide Y (NPY), tachykinins (i.e., substance P, neurokinin [NK] A and B), and natriuretic peptides in anxiety and/or stress-related disorders. Results obtained with CCK receptor antagonists in animal studies have been highly variable, and clinical trials with several of these compounds in anxiety disorders have been unsuccessful so far. However, future investigations using CCK receptor antagonists with better pharmacokinetic characteristics and animal models other than those validated with the classical anxiolytics benzodiazepines may permit a more precise evaluation of the potential of these compounds as anti-anxiety agents. Results obtained with peptide CRF receptor antagonists in animal models of anxiety convincingly demonstrated that the blockade of central CRF receptors may yield anxiolytic-like activity. However, the discovery of nonpeptide and more lipophilic CRF receptor antagonists is essential for the development of these agents as anxiolytics. Similarly, there is clear preclinical evidence that the central infusion of NPY and NPY fragments selective for the Y1 receptor display anxiolytic-like effects in a variety of tests. However, synthetic nonpeptide NPY receptor agonists are still lacking, thereby hampering the development of NPY anxiolytics. Unlike selective NK1 receptor antagonists, which have variable effects in anxiety models, peripheral administration of selective NK2 receptor antagonists and central infusion of natriuretic peptides produce clear anxiolytic-like activity. Taken as a whole, these findings suggest that compounds targeting specific neuropeptide receptors may become an alternative to benzodiazepines for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- G Griebel
- CNS Research Department, Synthélabo Recherche, Bagneux, France
| |
Collapse
|
26
|
Renzetti AR, Catalioto RM, Criscuoli M, Cucchi P, Lippi A, Guelfi M, Quartara L, Maggi CA. Characterization of [3H]MEN 11420, a novel glycosylated peptide antagonist radioligand of the tachykinin NK2 receptor. Biochem Biophys Res Commun 1998; 248:78-82. [PMID: 9675089 DOI: 10.1006/bbrc.1998.8883] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
[3H]MEN 11420, a radiolabeled glycosylated peptide antagonist of the tachykinin NK2 receptor, has been investigated in ligand-receptor binding assays using membranes of CHO cells transfected with the human tachykinin NK2 receptor. [3H]MEN 11420 bound to a single class of high affinity binding sites: its binding was inhibited by natural tachykinins (potency ranking: NKA >> SP > or = NKB), as well as by peptide (MEN 11420 > MEN 10376 >> R 396) and nonpeptide (SR 48968 > GR 159897) selective NK2 receptor antagonists. These data indicate that [3H]MEN 11420 is a potent radioligand for the human tachykinin NK2 receptor that may represent a useful tool for studying ligand-receptor interactions at the molecular level.
Collapse
Affiliation(s)
- A R Renzetti
- Department of Pharmacology, Menarini Ricerche S.p.A., Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Emonds-Alt X, Advenier C, Cognon C, Croci T, Daoui S, Ducoux JP, Landi M, Naline E, Neliat G, Poncelet M, Proietto V, Van Broeck D, Vilain P, Soubrié P, Le Fur G, Maffrand JP, Brelière JC. Biochemical and pharmacological activities of SR 144190, a new potent non-peptide tachykinin NK2 receptor antagonist. Neuropeptides 1997; 31:449-58. [PMID: 9413022 DOI: 10.1016/s0143-4179(97)90039-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(R)-3-(1-[2-(4-benzoyl-2-(3,4-difluorophenyl)-morpholin-2-yl)- ethyl]-4-phenylpiperidin-4-yl)-1-dimethylurea (SR 144190) is a new non-peptide antagonist of tachykinin NK2 receptors. SR 144190 potently and selectively inhibited neurokinin A binding to NK2 receptors from various species, including humans. In in vitro functional assays, it was a potent, selective and competitive antagonist of NK2 receptors with apparent affinities (pA2 values) between 9.08 and 10.10. In vivo, SR 144190 blocked [Nle10]neurokinin A-(4-10)-induced bronchoconstriction in guinea pigs (ID50 = 21 micrograms kg-1 i.v. and 250 micrograms kg-1 i.d.) and [beta Ala8]neurokinin A-(4-10)-induced urinary bladder contraction in rats (ID50 = 11 micrograms kg-1 i.v. and 190 micrograms kg-1 i.d.). It prevented citric acid-induced cough and airway hyperresponsiveness to acetylcholine in guinea pigs (1 mg kg-1 i.p.) as well as castor oil-induced diarrhoea in rats (0.01-10 micrograms kg-1 s.c. or p.o). Finally, it blocked the turning behaviour induced by intrastriatal injections of [Nle10]neurokinin A-(4-10) in mice (ID50 = 3 micrograms kg-1 i.v. and 16 micrograms kg-1 p.o.).
Collapse
|
28
|
Chapter 6. Recent Advances in Neurokinin Receptor Antagonists. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0065-7743(08)61464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
29
|
|
30
|
Beattie DT, Beresford IJ, Connor HE, Marshall FH, Hawcock AB, Hagan RM, Bowers J, Birch PJ, Ward P. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist. Br J Pharmacol 1995; 116:3149-57. [PMID: 8719789 PMCID: PMC1909174 DOI: 10.1111/j.1476-5381.1995.tb15117.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. The in vitro and in vivo pharmacology of GR203040 ((2S, 3S)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), a novel, highly potent and selective non-peptide tachykinin NK1 receptor antagonist, was investigated in the present study. 2. GR203040 potently inhibited [3H]-substance P binding to human NK1 receptors expressed in Chinese hamster ovary (CHO) and U373 MG astrocytoma cells, and NK1 receptors in ferret and gerbil cortex (pKi values of 10.3, 10.5, 10.1 and 10.1 respectively). GR203040 had lower affinity at rat NK1 receptors (pKi = 8.6) and little affinity for human NK2 receptors (pKi < 5.0) in CHO cells and NK3 receptors in guinea-pig cortex (pKi < 6.0). With the exception of the histamine H1 receptor (pIC50 = 7.5). GR203040 had little affinity (pIC50 < 6.0) at all non-NK1 receptors and ion channels examined. Furthermore, GR203040 produced only weak inhibition of Na+ currents in SH-SY5Y neuroblastoma and superior cervical ganglion cells (pIC50 values < 4.0). GR203040 produced only weak antagonism of Ca(2+)-evoked contractions of rat isolated portal vein (pKn = 4.1). The enantiomer of GR203040, GR205608 (2R, 3R)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), had 10,000 fold lower affinity at the human NK1 receptor expressed in CHO cells (pKi = 6.3). 3. In gerbil ex vivo binding experiments, GR203040 produced a dose-dependent inhibition of the binding of [3H]-substance P to cerebral cortical membranes (ED50 = 15 micrograms kg-1 s.c. and 0.42 mg kg-1 p.o.). At 10 micrograms kg-1 s.c., the inhibition of [3H]-substance P binding was maintained for > 6 h. In the rat, GR203040 was less potent (ED50 = 15.4 mg kg-1 s.c.) probably reflecting, at least in part, its lower affinity at the rat NK1 receptor. 4. In guinea-pig isolated ileum and dog isolated middle cerebral and basilar arteries, GR203040 produced a rightward displacement of the concentration-effect curves to substance P methyl ester (SPOMe) with suppression of the maximum agonist response (apparent pKB values of 11.9, 11.2 and 11.1 respectively). 5. In anaesthetized rabbits, GR203040 antagonized reductions in carotid arterial vascular resistance evoked by SPOMe, injected via the lingual artery (DR10 (i.e. the dose producing a dose-ratio of 10) = 1.1 micrograms kg-1, i.v.). At a dose 20 fold greater than its DR10 value (i.e. 22 micrograms kg-1, i.v.), significant antagonism was evident more than 2 h after GR203040 administration. 6. In anaesthetized rats, GR203040 (3 and 10 mg kg-1, i.v.) produced a dose-dependent inhibition of plasma protein extravasation in dura mater, conjunctiva, eyelid and lip in response to electrical stimulation of the trigeminal ganglion. 7. It is concluded that GR203040 is one of the most potent and selective NK1 receptor antagonists yet described, and as such, has considerable potential as a pharmacological tool to characterize the physiological and pathological roles of substance P and NK1 receptors. GR203040 may also have potential as a novel therapeutic agent for the treatment of conditions such as migraine, emesis and pain.
Collapse
Affiliation(s)
- D T Beattie
- Pharmacology II Department, Glaxo Wellcome Medicines Research Centre, Stevenage, Herts
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Walsh DM, Stratton SC, Harvey FJ, Beresford IJ, Hagan RM. The anxiolytic-like activity of GR159897, a non-peptide NK2 receptor antagonist, in rodent and primate models of anxiety. Psychopharmacology (Berl) 1995; 121:186-91. [PMID: 8545524 DOI: 10.1007/bf02245629] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The non-peptide NK2 receptor antagonist, GR159897, was evaluated in two putative models of anxiety, the mouse light-dark box and the marmoset human intruder response test. Effects were compared to the structurally dissimilar NK2 antagonist, (+/-) SR48968 and the benzodiazepines, diazepam and chlordiazepoxide. GR159897 (0.0005-50 micrograms/kg SC) caused significant and dose-dependent increases in the amount of time mice spent in the more aversive light compartment of the light-dark box, with no effect on locomotor activity. (+/-)SR48968 (0.0005-0.5 microgram/kg SC) and diazepam (1-1.75 mg/kg SC), also increased time spent in the light compartment, without effect on locomotor activity. In the marmoset human intruder response test, GR159897 (0.2-50 micrograms/kg SC) significantly increased the amount of time marmosets spent at the front of the cage during confrontation with a human observer ("threat"). Similar effects were produced by (+/-)SR48968 (10-50 micrograms/kg SC) and chlordiazepoxide (0.3-3.0 mg/kg SC). These results provide further evidence, in both rodent and primate species, for the ability of NK2 antagonists to restore behaviours which have been suppressed by novel aversive environments. Such effects indicate that NK2 antagonists may have anxiolytic activity.
Collapse
Affiliation(s)
- D M Walsh
- Department of Pharmacology, Glaxo Research & Development Ltd, Stevenage, UK
| | | | | | | | | |
Collapse
|