1
|
Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis 2024; 39:1523-1541. [PMID: 39172328 DOI: 10.1007/s11011-024-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye.
| | - Meliha Koldemir Gündüz
- Faculty of Engineering and Natural Sciences, Department of Basic Sciences of Engineering, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Derya Berikten
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| | - Fikriye Yasemin Özatik
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Hasan Emre Aydın
- Faculty of Medicine, Department of Neurosurgery, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| |
Collapse
|
2
|
Ohazama S, Fujimoto A, Konda D, Yokoyama R, Nakagawa S, Maita H. Dissecting the role of SMN multimerization in its dissociation from the Cajal body using harmine as a tool compound. J Cell Sci 2024; 137:jcs261834. [PMID: 39258320 DOI: 10.1242/jcs.261834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Survival motor neuron protein (SMN), which is linked to spinal muscular atrophy, is a key component of the Gemin complex, which is essential for the assembly of small nuclear RNA-protein complexes (snRNPs). After initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in the Cajal bodies suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN complexes from Cajal bodies remain unclear. Here, we have employed a super-resolution microscope alongside the β-carboline alkaloid harmine, which disrupts the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies in which SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.
Collapse
Affiliation(s)
- Saki Ohazama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Fujimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Daisuke Konda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryota Yokoyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Bhattacharya P, De S. Simple naturally occurring β-carboline alkaloids – role in sustainable theranostics. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This review is a brief treatise on some simple β-carboline alkaloids that are abundantly available in plants, animals and foodstuff. These alkaloids are well known for their pharmacological action as well as their allelopathic behaviour. The focus of this review is on sustainable use of naturally occurring compounds in safeguarding human health and protecting our environment at large i.e. the prospective applications of these molecules for Sustainable Theranostics. The review commences with an initial introduction to the β-carboline alkaloids, followed by an outlay of their geographical distribution and natural abundance, then the basic structure and building units of the simplest β-carboline alkaloids have been mentioned. This is followed by a discussion on the important methods of extraction from natural sources both plants and animals. Then the foundation for the use of these alkaloids in Sustainable Theranostics has been built by discussing their interesting photophysics, interactions with important biological molecules and an extensive survey of their therapeutic potential and allelopathic behaviour. Finally the review ends with a silver lining mentioning the future prospective applications of these alkaloids with special relevance to sustainability issues.
Collapse
Affiliation(s)
| | - Swati De
- Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
4
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Tarpley M, Oladapo HO, Strepay D, Caligan TB, Chdid L, Shehata H, Roques JR, Thomas R, Laudeman CP, Onyenwoke RU, Darr DB, Williams KP. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies. Eur J Pharm Sci 2021; 162:105821. [PMID: 33781856 PMCID: PMC8404221 DOI: 10.1016/j.ejps.2021.105821] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is highly expressed in glioma, an aggressive brain tumor, and has been proposed as a therapeutic target for cancer. In the current study, we have used an optimized and validated time-resolved fluorescence energy transfer (TR-FRET)-based DYRK1A assay for high-throughput screening (HTS) in 384-well format. A small-scale screen of the FDA-approved Prestwick drug collection identified the β-carboline, harmine, and four related analogs as DYRK1A inhibitors. Hits were confirmed by dose response and in an orthogonal DYRK1A assay. Harmine's potential therapeutic use has been hampered by its off-target activity for monoamine oxidase A (MAO-A) which impacts multiple nervous system targets. Selectivity profiling of harmine and a broader collection of analogs allowed us to map some divergent SAR (structure-activity relationships) for the DYRK1A and MAO-A activities. The panel of harmine analogs had varying activities in vitro in glioblastoma (GBM) cell lines when tested for anti-proliferative effects using a high content imaging assay. In particular, of the identified analogs, harmol was found to have the best selectivity for DYRK1A over MAO-A and, when tested in a glioma tumor xenograft model, harmol demonstrated a better therapeutic window compared to harmine.
Collapse
Affiliation(s)
- Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Helen O Oladapo
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Dillon Strepay
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Thomas B Caligan
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Hassan Shehata
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Jose R Roques
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Rhashad Thomas
- Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA
| | - Christopher P Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
6
|
Beato A, Gori A, Boucherle B, Peuchmaur M, Haudecoeur R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer's Disease Therapy. J Med Chem 2021; 64:1392-1422. [PMID: 33528252 DOI: 10.1021/acs.jmedchem.0c01887] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure-activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
Collapse
Affiliation(s)
| | - Anthonin Gori
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.,CHANEL Parfums Beauté, F-93500 Pantin, France
| | | | | | | |
Collapse
|
7
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Harman and norharman, metabolites of the entomopathogenic fungus Conidiobolus coronatus (Entomophthorales), affect the serotonin levels and phagocytic activity of hemocytes, insect immunocompetent cells, in Galleria mellonella (Lepidoptera). Cell Biosci 2019; 9:29. [PMID: 30962871 PMCID: PMC6434831 DOI: 10.1186/s13578-019-0291-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Background Although the β-carboline alkaloids harman and norharman are considered as plant metabolites, they can also be secreted by fungi such as the entomopathogen Conidiobolus coronatus. Norharman and harman are also known to be reversible competitive monamine oxidase inhibitors, which increase serotonin concentrations in tissues. In addition, these alkaloids are able to bind to serotonin receptors, an important immune regulatory molecule in both vertebrates and invertebrates. In insects, serotonin modulates hemocyte phagocytosis, nodule formation and the populations of hemocyte classes. The present study examines whether harman and norharman may influence the phagocytic activity of insect hemocytes by regulating serotonin levels. Results Significantly greater serotonin levels and hemocyte phagocytic activity were observed after 24 h of exposure to food contaminated with harman and norharman. Similar responses were noticed 1 h after topical application or addition to in vitro hemocyte cultures. Observations and measurements performed 24 h later revealed decreased responses, suggesting decomposition and/or exertion of alkaloids and/or serotonin. Harman and norharman influenced the activity of Galleria mellonella plasmatocytes and the granulocyte cytoskeleton. Disturbances in hemocyte network formation, abnormal cell shape, naked nuclei, cell aggregates, fragments of disintegrated cells, interrupted cell membrane continuity and actin condensation in cells were observed. Conclusion Our findings may have a considerable impact on research concerning insect physiology, parasitology, immunology and biocontrol of pests. They confirm for the first time that harman and norharman (metabolites of the entomopathogenic fungus C. coronatus) elevate serotonin levels in G. mellonella hemocytes, thus potentially stimulating their phagocytic activity. Our studies shed light on the mechanisms underlying the interaction between innate insect immune responses and entomopathogen metabolites. Electronic supplementary material The online version of this article (10.1186/s13578-019-0291-1) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Nasehi M, Shirkhodaei A, Ebrahimi-Ghiri M, Zarrindast MR. Abolishment of fear memory-disruptive effects REM sleep deprivation by harmane. Biomed Pharmacother 2019; 109:1563-1568. [DOI: 10.1016/j.biopha.2018.10.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
|
10
|
Harman and norharman, metabolites of entomopathogenic fungus Conidiobolus coronatus (Entomopthorales), disorganize development of Galleria mellonella (Lepidoptera) and affect serotonin-regulating enzymes. PLoS One 2018; 13:e0204828. [PMID: 30281642 PMCID: PMC6169936 DOI: 10.1371/journal.pone.0204828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023] Open
Abstract
Naturally occurring entomopathogenic fungi such as Conidiobolus coronatus are important regulatory factors of insect populations. GC-MS analysis of fungal cell-free filtrates showed that C. coronatus synthesizes two β- carboline alkaloids: harman and norharman. Significantly higher levels of both alkaloids are produced by C. coronatus in minimal postincubation medium than in rich medium. The beta-carboline alkaloids may have an effect on the nervous system of insects and their behavior. Harman and norharman were applied to Galleria mellonella larvae (a parasite of honeybees) either topically or mixed with food. Larvae received alkaloids in three concentrations: 750, 1000 or 1250 ppm. The effect on the survival and further development of larvae was examined. Both harman and norharman delayed pupation and adult eclosion, and inhibit total monoamine oxidase activity. In addition, they increased the serotonin concentration and decreased the monoamine oxidase A level in the heads of the moths. It is likely that the alkaloids were metabolized by the insects, as their effect wore off 24 hours after topical application. This is the first study to show that C. coronatus produces alkaloids. Its aim was to identify the actions of β-carboline alkaloids on insect development and serotonin-regulating enzymes. Knowledge of the potential role of harman and norharman in the process of fungal infection might lead to the development of more effective and environmentally-friendly means of controlling insect pests.
Collapse
|
11
|
Devault DA, Maguet H, Merle S, Péné-Annette A, Lévi Y. Wastewater-based epidemiology in low Human Development Index states: bias in consumption monitoring of illicit drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27819-27838. [PMID: 30109683 DOI: 10.1007/s11356-018-2864-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology is a promising approach worldwide, and its application is currently being developed in non-advanced economies. This technology, based on known toxicokinetic data initially used to detect illicit drugs in well-managed and maintained local sewer networks, has been extended to assess other products such as pesticides, alcohol, flame retardants, nicotine, and other substances. This technology is also used in countries with non-advanced economies. The present review aims to support future wastewater-based epidemiology in such countries by providing toxicokinetic data for locally used narcotic drugs that are expected or known to be emerging in developed countries, outlining the excretion differences due to human polymorphism, and summarising the practical obstacles due to the coverage, maintenance efficiency, or type of local sewage network.Case study feedback from Martinique is presented as an example; the Martinique field study complies with the Organisation for Economic Co-operation and Development standards for health issues, but not with regard to population and urban dynamics.
Collapse
Affiliation(s)
- Damien A Devault
- Faculté de Pharmacie, Univ. Paris Sud, Univ. Paris Saclay, UMR 8079, CNRS, AgroParisTech, France, 5 rue J. B. Clement, 92290, Chatenay-Malabry, France.
| | - Hadrien Maguet
- Centre Hospitalier Universitaire de Martinique, CS 90632 - 97261, Fort-de-France Cedex, France
| | - Sylvie Merle
- Observatoire de la Santé de la Martinique, Immeuble Objectif 3000, Acajou sud, 97232, Le Lamentin, Martinique
| | - Anne Péné-Annette
- Laboratoire EA 929 AIHP-GEODE-BIOSPHERES Campus Universitaire de Schœlcher, 97275, Schœlcher, France
| | - Yves Lévi
- Faculté de Pharmacie, Univ. Paris Sud, Univ. Paris Saclay, UMR 8079, CNRS, AgroParisTech, France, 5 rue J. B. Clement, 92290, Chatenay-Malabry, France
| |
Collapse
|
12
|
Effects of harmane during treadmill exercise on spatial memory of restraint-stressed mice. Physiol Behav 2018; 194:239-245. [PMID: 29885919 DOI: 10.1016/j.physbeh.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 11/23/2022]
|
13
|
Tipton KF. 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 2018; 125:1519-1551. [PMID: 29637260 DOI: 10.1007/s00702-018-1881-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty. Some issues that remain to be understood or are in need of further clarification are highlighted.
Collapse
Affiliation(s)
- Keith F Tipton
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
14
|
Agim ZS, Cannon JR. Alterations in the nigrostriatal dopamine system after acute systemic PhIP exposure. Toxicol Lett 2018; 287:31-41. [PMID: 29378243 DOI: 10.1016/j.toxlet.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
Heterocyclic amines (HCAs) are primarily formed during cooking of meat at high temperature. HCAs have been extensively studied as mutagens and possible carcinogens. Emerging data suggest that HCAs are neurotoxic and may be relevant to Parkinson's disease (PD) etiology. However, the majority of HCAs have not been evaluated for in vivo neurotoxicity. Here, we investigated acute in vivo neurotoxicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is the most prevalent genotoxin in many types of meats. Adult, male Sprague-Dawley rats were subjected to acute, systemic PhIP at doses and time-points that have been extensively utilized in cancer studies (100 and 200 mg/kg for 8, 24 h) and evaluated for changes in dopaminergic, serotoninergic, GABAergic, and glutamatergic neurotransmission. PhIP exposure resulted in decreased striatal dopamine metabolite levels and dopamine turnover in the absence of changes to vesicular monoamine transporter 2 levels; other neurotransmitter systems were unaffected. Quantification of intracellular nitrotyrosine revealed higher levels of oxidative damage in dopaminergic neurons in the substantia nigra after PhIP exposure, while other neuronal populations were less sensitive. These changes occurred in the absence of an overt lesion to the nigrostriatal dopamine system. Collectively, our study suggests that acute PhIP treatment in vivo targets the nigrostriatal dopaminergic system and that PhIP should be further examined in chronic, low-dose studies for PD relevance.
Collapse
Affiliation(s)
- Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, United States.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
15
|
Wagner DJ, Duan H, Chapron A, Lee RW, Wang J. Potent inhibition of human organic cation transporter 2 (hOCT2) by β-carboline alkaloids. Xenobiotica 2017; 47:1112-1120. [PMID: 27977936 PMCID: PMC5648609 DOI: 10.1080/00498254.2016.1271160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
1. Beta-carbolines are indole alkaloids with a wide range of pharmacological and toxicological activities. Beta-carbolines are structurally related to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), a known substrate of organic cation transporters (OCTs). The goal of this study is to determine the interaction of β-carbolines with human OCT1, 2, and 3 (SLC22A1-3). 2. Dose-dependent inhibition studies were performed for five commercially available β-carbolines using a fluorescent substrate assay in HEK293 cells stably expressing hOCT1-3. The substrate potential was evaluated by uptake assays and the impact of active transport on cellular toxicity examined. 3. All tested β-carbolines potently inhibited hOCT2 with IC50 values in the sub- or low micromolar range. Harmaline is the most potent hOCT2 inhibitor (IC50 = 0.50 ± 0.08 μM). hOCT1 and hOCT3 are less sensitive to β-carboline inhibition. Harmaline, norharmanium, and 2,9-dimethyl-4,9-dihydro-3H-β-carbolinium accumulated 2- to 7-fold higher in cells expressing hOCT1-3. HEK293 cells expressing hOCT1-3 were 6.5- to 13-fold more sensitive to harmane and norharmanium toxicity. 4. Our data support a significant role of hOCT1-3 in tissue uptake and disposition of β-carbolines. Importantly, the potent inhibition of hOCT2 by β-carbolines also raises the concern of potential drug interactions between naturally occurring bioactive alkaloids and drugs eliminated by hOCT2.
Collapse
Affiliation(s)
- David J. Wagner
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Alenka Chapron
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Richard W. Lee
- School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Nasehi M, Morteza-zadeh P, Khakpai F, Zarrindast MR. Additive effect of harmane and muscimol for memory consolidation impairment in inhibitory avoidance task. Neuroscience 2016; 339:287-295. [DOI: 10.1016/j.neuroscience.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022]
|
17
|
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem Toxicol 2016; 97:23-39. [DOI: 10.1016/j.fct.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
18
|
Lamounier AP, Mateus NS, da Cunha ALMC, Luna AS, Aucélio RQ. Determination of Six β-carboline Alkaloids in Urine and Phytotherapic Extracts Using Micellar Liquid Chromatography with Fluorimetric Detection. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.1001906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A. P. Lamounier
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology (IFRJ), Rio de Janeiro, Brazil
| | - N. S. Mateus
- Department of Chemistry, Federal Institute of Education, Science and Technology (IFRJ), Rio de Janeiro, Brazil
| | - A. L. M. C. da Cunha
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - A. S. Luna
- Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - R. Q. Aucélio
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Brennan KA, Laugesen M, Truman P. Whole tobacco smoke extracts to model tobacco dependence in animals. Neurosci Biobehav Rev 2014; 47:53-69. [PMID: 25064817 DOI: 10.1016/j.neubiorev.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023]
Abstract
Smoking tobacco is highly addictive and a leading preventable cause of death. The main addictive constituent is nicotine; consequently it has been administered to laboratory animals to model tobacco dependence. Despite extensive use, this model might not best reflect the powerful nature of tobacco dependence because nicotine is a weak reinforcer, the pharmacology of smoke is complex and non-pharmacological factors have a critical role. These limitations have led researchers to expose animals to smoke via the inhalative route, or to administer aqueous smoke extracts to produce more representative models. The aim was to review the findings from molecular/behavioural studies comparing the effects of nicotine to tobacco/smoke extracts to determine whether the extracts produce a distinct model. Indeed, nicotine and tobacco extracts yielded differential effects, supporting the initiative to use extracts as a complement to nicotine. Of the behavioural tests, intravenous self-administration experiments most clearly revealed behavioural differences between nicotine and extracts. Thus, future applications for use of this behavioural model were proposed that could offer new insights into tobacco dependence.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Murray Laugesen
- Health New Zealand Ltd, 36 Winchester St, Lyttelton, Christchurch, New Zealand
| | - Penelope Truman
- Institute of Environmental Science and Research Ltd, PO Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
20
|
Bratchkova A, Ivanova V, Gousterova A, Laatsch H. β-Carboline Alkaloid Constituents from aThermoactinomyces SP.Strain Isolated from Livingston Island, Antarctica. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Brennan KA, Putt F, Truman P. Nicotine-, tobacco particulate matter- and methamphetamine-produced locomotor sensitisation in rats. Psychopharmacology (Berl) 2013; 228:659-72. [PMID: 23519574 DOI: 10.1007/s00213-013-3071-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/08/2013] [Indexed: 12/18/2022]
Abstract
RATIONALE Repeated nicotine exposure produces a weak and transient sensitised locomotor response in rats. Since tobacco smoke contains thousands of non-nicotine chemical constituents, these could alter the sensitised response. OBJECTIVES This study aims to compare the magnitude, persistence and spatial distribution of locomotor sensitisation produced by repeated doses of nicotine, aqueous tobacco particulate matter (TPM) and a positive methamphetamine control. METHODS Male Sprague-Dawley rats received five nicotine (0.0, 0.2 or 0.4 mg/kg), TPM (containing 0.2 or 0.4 mg/kg nicotine) or methamphetamine (0.5 mg/kg) injections every second day, followed by a 4-day withdrawal before the first challenge (Challenge 1, C1). The animals were re-challenged again at 15 days post C1 to test for the persistence of sensitisation (Challenge 2, C2). RESULTS There were no major differences in sensitisation profile between nicotine and TPM. At the lowest 0.2 mg/kg nicotine/TPM dose, however, small differences emerged on select test days. CONCLUSIONS The results indicated that the non-nicotinic agents in TPM did not greatly impact the nicotine-produced locomotor-sensitised response. These findings might suggest that the differential pharmacological properties of TPM do not have major clinical significance. Alternatively, the locomotor model might not expose effects of non-nicotinic constituents, and furthermore, might not closely relate to human tobacco dependence. Different reward-related behavioural models should also be utilised to assess potential effects of non-nicotinic constituents before a role in dependence is discounted.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand.
| | | | | |
Collapse
|
22
|
Kasture S, Mohan M, Kasture V. Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13596-013-0126-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Neurotoxic effects of berberine on long-term L-DOPA administration in 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Arch Pharm Res 2013; 36:759-67. [PMID: 23539311 DOI: 10.1007/s12272-013-0051-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
The effects of berberine on long-term administration of L-DOPA in 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) were investigated. Rat models of PD were prepared by 6-OHDA lesions in the ipsilateral sides, and then were treated with berberine (5 and 15 mg/kg) and/or L-DOPA (10 mg/kg) once daily for 21 days. Treatments with either concentration of berberine (5 and 15 mg/kg) in 6-OHDA-lesioned groups decreased the numbers of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum as compared to 6-OHDA-lesioned groups. In addition, dopaminergic neuronal cell death of the ipsilateral sides in 6-OHDA-lesioned groups was attenuated by L-DOPA administration. However, both concentrations of berberine in 6-OHDA-lesioned groups treated with L-DOPA aggravated the numbers of TH-immunopositive neurons in the substantia nigra and the levels of dopamine, norepinephrine, DOPAC and HVA in the striatum as compared to rats not treated with berberine. These results suggest that berberine leads to the degeneration of dopaminergic neuronal cells in the substantia nigra in the rat model of PD with chronic L-DOPA administration. Long-term L-DOPA therapy that may involve possibly neurotoxic isoquinoline agents including berberine should involve monitoring for adverse symptoms.
Collapse
|
24
|
Effect of harmane, an endogenous β-carboline, on learning and memory in rats. Pharmacol Biochem Behav 2013; 103:666-71. [DOI: 10.1016/j.pbb.2012.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022]
|
25
|
Nasehi M, Sharifi S, Zarrindast MR. Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test. J Psychopharmacol 2012; 26:1151-61. [PMID: 21965190 DOI: 10.1177/0269881111421972] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
β-carboline alkaloids such as harmane (HA) are naturally present in the human food chain. They are derived from the plant Peganum harmala and have many cognitive effects. In the present study, effects of the nicotinic system of the dorsal hippocampus (CA1) on HA-induced amnesia and exploratory behaviors were examined. One-trial step-down and hole-board paradigms were used to assess memory retention and exploratory behaviors in adult male mice. Pre-training (15 mg/kg) but not pre-testing intraperitoneal (i.p.) administration of HA decreased memory formation but did not alter exploratory behaviors. Moreover, pre-testing administration of nicotine (0.5 µg/mouse, intra-CA1) decreased memory retrieval, but induced anxiogenic-like behaviors. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 0.25 µg/mouse) fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which did not alter exploratory behaviors. Furthermore, pre-testing administration of mecamylamine (0.5, 1 and 2 µg/mouse, intra-CA1) did not alter memory retrieval but fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which had no effect on exploratory behaviors. In conclusion, the present findings suggest the involvement of the nicotinic cholinergic system in the HA-induced impairment of memory formation.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Semnan, Iran
| | | | | |
Collapse
|
26
|
Kolasiewicz W, Kuter K, Nowak P, Pastuszka A, Ossowska K. Lesion of the cerebellar noradrenergic innervation enhances the harmaline-induced tremor in rats. THE CEREBELLUM 2011; 10:267-80. [PMID: 21279489 PMCID: PMC3114101 DOI: 10.1007/s12311-011-0250-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal synchronous activation of the glutamatergic olivo-cerebellar pathway has been suggested to be crucial for the harmaline-induced tremor. The cerebellum receives two catecholaminergic pathways: the dopaminergic pathway arising from the ventral tegmental area/substantia nigra pars compacta, and the noradrenergic one from the locus coeruleus. The aim of the present study was to examine a contribution of the cerebellar catecholaminergic innervations to the harmaline-induced tremor in rats. Rats were injected bilaterally into the cerebellar vermis with 6-hydroxydopamine (6-OHDA; 8 μg/0.5 μl) either alone or this treatment was preceded (30 min earlier) by desipramine (15 mg/kg ip). Harmaline was administered to animals in doses of 7.5 or 15 mg/kg ip. Tremor of forelimbs was measured as a number of episodes during a 90-min observation. Rats were killed by decapitation 30 or 120 min after harmaline treatment. The levels of dopamine, noradrenaline, serotonin, and their metabolites were measured by HPLC in the cerebellum, substantia nigra, caudate–putamen, and frontal cortex. 6-OHDA injected alone enhanced the harmaline-induced tremor. Furthermore, it decreased the noradrenaline level by ca. 40–80% in the cerebellum and increased the levels of serotonin and 5-HIAA in the caudate–putamen and frontal cortex in untreated and/or harmaline-treated animals. When 6-OHDA treatment was preceded by desipramine, it decreased dopaminergic transmission in some regions of the cerebellum while inducing its compensatory activation in others. The latter lesion did not markedly influence the tremor induced by harmaline. The present study indicates that noradrenergic innervation of the cerebellum interacts with cerebral serotonergic systems and plays an inhibitory role in the harmaline-induced tremor.
Collapse
Affiliation(s)
- Wacław Kolasiewicz
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | | | | | | | | |
Collapse
|
27
|
Effects of spider venom toxin PWTX-I (6-Hydroxytrypargine) on the central nervous system of rats. Toxins (Basel) 2011; 3:142-62. [PMID: 22069702 PMCID: PMC3202814 DOI: 10.3390/toxins3020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/01/2011] [Accepted: 02/12/2011] [Indexed: 11/17/2022] Open
Abstract
The 6-hydroxytrypargine (6-HT) is an alkaloidal toxin of the group of tetrahydro-β-carbolines (THβC) isolated from the venom of the colonial spider Parawixia bistriata. These alkaloids are reversible inhibitors of the monoamine-oxidase enzyme (MAO), with hallucinogenic, tremorigenic and anxiolytic properties. The toxin 6-HT was the first THβC chemically reported in the venom of spiders; however, it was not functionally well characterized up to now. The action of 6-HT was investigated by intracerebroventricular (i.c.v.) and intravenous (i.v.) applications of the toxin in adult male Wistar rats, followed by the monitoring of the expression of fos-protein, combined with the use of double labeling immunehistochemistry protocols for the detection of some nervous receptors and enzymes related to the metabolism of neurotransmitters in the central nervous system (CNS). We also investigated the epileptiform activity in presence of this toxin. The assays were carried out in normal hippocampal neurons and also in a model of chronic epilepsy obtained by the use of neurons incubated in free-magnesium artificial cerebro-spinal fluid (ACSF). Trypargine, a well known THβC toxin, was used as standard compound for comparative purposes. Fos-immunoreactive cells (fos-ir) were observed in hypothalamic and thalamic areas, while the double-labeling identified nervous receptors of the sub-types rGlu2/3 and NMR1, and orexinergic neurons. The 6-HT was administrated by perfusion and ejection in "brain slices" of hippocampus, inducing epileptic activity after its administration; the toxin was not able to block the epileptogenic crisis observed in the chronic model of the epilepsy, suggesting that 6-HT did not block the overactive GluRs responsible for this epileptic activity.
Collapse
|
28
|
Alaejos MS, Afonso AM. Factors That Affect the Content of Heterocyclic Aromatic Amines in Foods. Compr Rev Food Sci Food Saf 2011. [DOI: 10.1111/j.1541-4337.2010.00141.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Dixon Clarke SE, Ramsay RR. Dietary inhibitors of monoamine oxidase A. J Neural Transm (Vienna) 2010; 118:1031-41. [DOI: 10.1007/s00702-010-0537-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
30
|
Wernicke C, Hellmann J, Zieba B, Kuter K, Ossowska K, Frenzel M, Dencher NA, Rommelspacher H. 9-Methyl-beta-carboline has restorative effects in an animal model of Parkinson's disease. Pharmacol Rep 2010; 62:35-53. [PMID: 20360614 DOI: 10.1016/s1734-1140(10)70241-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/08/2009] [Indexed: 12/19/2022]
Abstract
In a previous study, a primary culture of midbrain cells was exposed to 9-methyl-beta-carboline for 48 h, which caused an increase in the number of tyrosine hydroxylase-positive cells. Quantitative RT-PCR revealed increased transcription of genes participating in the maturation of dopaminergic neurons. These in vitro findings prompted us to investigate the restorative actions of 9-methyl-beta-carboline in vivo. The compound was delivered for 14 days into the left cerebral ventricle of rats pretreated with the neurotoxin 1-methyl-4-phenyl-pyridinium ion (MPP+) for 28 days applying a dose which lowered dopamine by approximately 50%. Interestingly, 9-methyl-beta-carboline reversed the dopamine-lowering effect of the neurotoxin in the left striatum. Stereological counts of tyrosine hydroxylase-immunoreactive cells in the substantia nigra revealed that the neurotoxin caused a decrease in the number of those cells. However, when treated subsequently with 9-methyl-beta-carboline, the number reached normal values. In search of an explanation for the restorative activity, we analyzed the complexes that compose the respiratory chain in striatal mitochondria by 2-dimension gel electrophoresis followed by MALDI-TOF peptide mass fingerprinting.We found no changes in the overall composition of the complexes. However, the activity of complex I was increased by approximately 80% in mitochondria from rats treated with MPP+ and 9-methyl-beta-carboline compared to MPP+ and saline and to sham-operated rats, as determined by measurements of nicotinamide adenine dinucleotide dehydrogenase activity. Microarray technology and single RT-PCR revealed the induction of neurotrophins: brain-derived neurotrophic factor, conserved dopamine neurotrophic factor, cerebellin 1 precursor protein, and ciliary neurotrophic factor. Selected western blots yielded consistent results. The findings demonstrate restorative effects of 9-methyl-beta-carboline in an animal model of Parkinson's disease that improve the effectiveness of the respiratory chain and promote the transcription and expression of neurotrophin-related genes.
Collapse
Affiliation(s)
- Catrin Wernicke
- Department of Psychiatry, CCM, Charité-University Medicine Berlin, Dorotheenstr. 94, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur J Pharmacol 2010; 634:77-83. [PMID: 20188725 DOI: 10.1016/j.ejphar.2010.02.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 01/19/2010] [Accepted: 02/08/2010] [Indexed: 11/22/2022]
Abstract
Ingestion of harmane and other alkaloids derived from plant Peganum harmala has been shown to elicit profound behavioural and toxic effects in humans, including hallucinations, excitation, feelings of elation, and euphoria. These alkaloids in the high doses can cause a toxic syndrome characterized by tremors and convulsions. Harmane has also been shown to act on a variety of receptor systems in the mammalian brain, including those for serotonin, dopamine and benzodiazepines. In animals, it has been reported to affect short and long term memory. In the present study, effects of dopamine D1 and D2 receptor antagonists on the harmane (HA)-induced amnesia and exploratory behaviors were examined in mice. One-trial step-down and hole-board paradigms were used for the assessment of memory retention and exploratory behaviors in adult male NMRI mice respectively. Intraperitoneal (i.p.) administration of HA (5 and 10 mg/kg) immediately after training decreased memory consolidation, while had no effect on anxiety-like behavior. Memory retrieval was not altered by 15- or 30 min pre-testing administration of the D1 (SCH23390, 0.025, 0.05 and 0.1 mg/kg) or D2 (sulpiride 12.5, 25 and 50 mg/kg) receptor antagonists, respectively. In contrast, SCH23390 (0.05 and 0.1 mg/kg) or sulpiride (25 and 50 mg/kg) pre-test administration fully reversed HA-induced impairment of memory consolidation. Finally, neither D1 nor D2 receptor blockade affected exploratory behaviors in the hole-board paradigm. Altogether, these findings strongly suggest an involvement of D1 and D2 receptors modulation in the HA-induced impairment of memory consolidation.
Collapse
|
32
|
A novel 5-HT2A receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: Approaching early-onset antidepressants. Pharmacol Biochem Behav 2010; 94:363-73. [DOI: 10.1016/j.pbb.2009.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 09/10/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022]
|
33
|
Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol 2009; 48:839-45. [PMID: 20036304 DOI: 10.1016/j.fct.2009.12.019] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/21/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Peganum harmala L. is a multipurpose medicinal plant increasingly used for psychoactive recreational purposes (Ayahuasca analog). Harmaline, harmine, harmalol, harmol and tetrahydroharmine were identified and quantified as the main beta-carboline alkaloids in P. harmala extracts. Seeds and roots contained the highest levels of alkaloids with low levels in stems and leaves, and absence in flowers. Harmine and harmaline accumulated in dry seeds at 4.3% and 5.6% (w/w), respectively, harmalol at 0.6%, and tetrahydroharmine at 0.1% (w/w). Roots contained harmine and harmol with 2.0% and 1.4% (w/w), respectively. Seed extracts were potent reversible and competitive inhibitors of human monoamine oxidase (MAO-A) with an IC(50) of 27 microg/l whereas root extracts strongly inhibited MAO-A with an IC(50) of 159 microg/l. In contrast, they were poor inhibitors of MAO-B. Inhibition of MAO-A by seed extracts was quantitatively attributed to harmaline and harmine whereas inhibition by root extracts came from harmine with no additional interferences. Stems and leaves extracts were poor inhibitors of MAO. The potent inhibition of MAO-A by seed and root extracts of P. harmala containing beta-carbolines should contribute to the psychopharmacological and toxicological effects of this plant and could be the basis for its purported antidepressant actions.
Collapse
Affiliation(s)
- T Herraiz
- Spanish Council for Scientific Research, CSIC, Instituto de Fermentaciones Industriales, Madrid, Spain.
| | | | | | | | | |
Collapse
|
34
|
Smith KL, Jessop DS, Finn DP. Modulation of stress by imidazoline binding sites: implications for psychiatric disorders. Stress 2009; 12:97-114. [PMID: 19006007 DOI: 10.1080/10253890802302908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this review, we present evidence for the involvement of imidazoline binding sites (IBS) in modulating responses to stress, through central control of monoaminergic and hypothalamo-pituitary-adrenal (HPA) axis activity. Pharmacological and physiological evidence is presented for differential effects of different IBS subtypes on serotoninergic and catecholaminergic pathways involved in control of basal and stress-stimulated HPA axis activity. IBS ligands can modulate behavioural and neuroendocrine responses in animal models of stress, depression and anxiety, and a body of evidence exists for alterations in central IBS expression in psychiatric patients, which can be normalised partially or fully by treatment with antidepressants. Dysfunction in monoaminergic systems and the HPA axis under basal and stress-induced activation has been extensively reported in psychiatric illnesses. On the basis of the literature, we suggest a potential therapeutic role for selective IBS ligands in the treatment of depression and anxiety disorders.
Collapse
Affiliation(s)
- Karen L Smith
- Department of Pharmacology and Therapeutics, NCBES Neuroscience Cluster, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
35
|
Yang YJ, Lee JJ, Jin CM, Lim SC, Lee MK. Effects of harman and norharman on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. Eur J Pharmacol 2008; 587:57-64. [PMID: 18457825 DOI: 10.1016/j.ejphar.2008.03.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/28/2008] [Accepted: 03/13/2008] [Indexed: 02/03/2023]
Abstract
The effects of harman and norharman on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. Harman and norharman at a concentration of 20 microM and 100 microM showed 49.4% and 49.5% inhibition of dopamine content for 48 h, respectively. The IC50 values of harman and norharman were 21.2 microM and 103.3 microM. Dopamine content, tyrosine hydroxylase (TH) activity and TH mRNA levels were decreased during the first 6 h, maintained for up to 48 h and then gradually recovered at 72 h after exposure to 20 microM harman and 100 microM norharman. Under the same conditions, the intracellular cyclic AMP levels and Ca2+ concentrations were also decreased by harman and norharman. In addition, harman and norharman at concentrations higher than 80 microM and 150 microM caused cytotoxicity at 48 h in PC12 cells. Non-cytotoxic ranges of 10-30 microM harman and 50-150 microM norharman inhibited L-DOPA (20-50 microM)-induced increases in dopamine content at 48 h. Harman at 20-150 microM and norharman at 100-300 microM also enhanced L-DOPA (20-100 microM)-induced cytotoxicity at 48 h with an apoptotic process. These results suggest that harman and norharman inhibit dopamine biosynthesis by reducing TH activity and enhance L-DOPA-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Yoo Jung Yang
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 12, Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Bonnet U, Scherbaum N, Wiemann M. The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal neurons in vitro. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:362-7. [PMID: 17904720 DOI: 10.1016/j.pnpbp.2007.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 08/28/2007] [Accepted: 08/31/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE The endogenous alkaloid harmane is enriched in plasma of patients with neurodegenerative or addictive disorders. As harmane affects neuronal activity and viability and because both parameters are strongly influenced by intracellular pH (pH(i)), we tested whether effects of harmane are correlated with altered pH(i) regulation. METHODS AND RESULTS Pyramidal neurons in the CA3 field of hippocampal slices were investigated under bicarbonate-buffered conditions. Harmane (50 and 100 microM) reversibly decreased spontaneous firing of action potentials and caffeine-induced bursting of CA3 neurons. In parallel experiments, 50 and 100 microM harmane evoked a neuronal acidification of 0.12+/-0.08 and 0.18+/-0.07 pH units, respectively. Recovery from intracellular acidification subsequent to an ammonium prepulse was also impaired, suggesting an inhibition of transmembrane acid extrusion by harmane. CONCLUSION Harmane may modulate neuronal functions via altered pH(i)-regulation. Implications of these findings for neuronal survival are discussed.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Addictive Behaviour and Addiction Medicine, University of Duisburg/Essen, Virchowstr. 174, D-45147 Essen, Germany.
| | | | | |
Collapse
|
37
|
Ulbricht C, Basch E, Boon H, Karpa KD, Gianutsos G, Nummy K, Seamon E, Smith M, Sollars D, Tanguay-Colucci S, Varghese M, Weissner W, Woods J. An evidence-based systematic review of passion flower (Passiflora incarnata L.) by the Natural Standard Research Collaboration. J Diet Suppl 2008; 5:310-40. [PMID: 22432466 DOI: 10.1080/19390210802414360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Talhout R, Opperhuizen A, van Amsterdam JGC. Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol 2007; 17:627-36. [PMID: 17382522 DOI: 10.1016/j.euroneuro.2007.02.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/26/2007] [Accepted: 02/13/2007] [Indexed: 11/21/2022]
Abstract
This review evaluates the presumed contribution of acetaldehyde to tobacco smoke addiction. In rodents, acetaldehyde induces reinforcing effects, and acts in concert with nicotine. Harman and salsolinol, condensation products of acetaldehyde and biogenic amines, may be responsible for the observed reinforcing effect of acetaldehyde. Harman and salsolinol inhibit monoamine oxidase (MAO), and some MAO-inhibitors are known to increase nicotine self-administration and maintain behavioural sensitization to nicotine. Harman is formed in cigarette smoke, and blood harman levels appear to be 2-10 times higher compared to non-smokers. Since harman readily passes the blood-brain barrier and has sufficient MAO-inhibiting potency, it may contribute to the lower MAO-activity observed in the brain of smokers. In contrast, the minor amounts of salsolinol that can be formed in vivo most likely do not contribute to tobacco addiction. Thus, acetaldehyde may increase the addictive potential of tobacco products via the formation of acetaldehyde-biogenic amine adducts in cigarette smoke and/or in vivo, but further research is necessary to substantiate this hypothesis.
Collapse
Affiliation(s)
- Reinskje Talhout
- Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | |
Collapse
|
39
|
|
40
|
Moura DJ, Richter MF, Boeira JM, Pêgas Henriques JA, Saffi J. Antioxidant properties of -carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 2007; 22:293-302. [PMID: 17545209 DOI: 10.1093/mutage/gem016] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The beta-carboline alkaloids found in medical plants and in a variety of foods, beverages and cigarette smoke have a range of action in various biological systems. In vitro studies have demonstrated that these alkaloids can act as scavengers of reactive oxygen species. In this paper, we report the in vivo antioxidative properties of the aromatic (harmane, harmine, harmol) and dihydro-beta-carbolines (harmaline and harmalol) studied by using Saccharomyces cerevisiae strains proficient and deficient in antioxidant defenses. Their antimutagenic activity was also assayed in S. cerevisiae and the antigenotoxicity was tested by the comet assay in V79 cell line, when both eukaryotic systems were exposed to H(2)O(2). We show that the alkaloids have a significant protective effect against H(2)O(2) and paraquat oxidative agents in yeast cells, and that their ability to scavenge hydroxyl radicals contributes to their antimutagenic and antigenotoxic effects.
Collapse
Affiliation(s)
- Dinara Jaqueline Moura
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
41
|
Ostergren A, Lindquist NG, Brittebo EB. Differential effects of dopamine melanin on norharman-induced toxicity in PC12 cells. J Neural Transm (Vienna) 2007; 114:909-18. [PMID: 17256107 DOI: 10.1007/s00702-006-0622-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
The food contaminant norharman structurally resembles MPTP a compound that selectively damages pigmented brain areas. Both compounds are sequestered and retained in melanin-containing neurons. The aim of the study was to examine whether intracellular melanin can modulate the toxicity of norharman in melanin-loaded PC12 cells. Dopamine melanin protected against norharman-induced upregulation of grp78, activation of caspase 3 and necrosis at low concentrations (5 and 50 microM). In contrast, at a high conentration (500 microM) there was a significantly increased expression of grp78, hsp90 and caspase 3 and a disassociation of melanin aggregates leading to dispersal of granules to swollen neurite terminals. In human populations, a long-term low-level exposure to toxicants with a high affinity to melanin will probably result in accumulation in melanin-containing neurons in vivo. Our data suggest that accumulation of a neurotoxicant in melanin-loaded cells may lead to increased cell stress, apoptotic signaling and disassociation of melanin aggregates.
Collapse
Affiliation(s)
- A Ostergren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Agüí L, Peña-Farfal C, Yáñez-Sedeño P, Pingarrón JM. Determination of beta-carboline alkaloids in foods and beverages by high-performance liquid chromatography with electrochemical detection at a glassy carbon electrode modified with carbon nanotubes. Anal Chim Acta 2007; 585:323-30. [PMID: 17386681 DOI: 10.1016/j.aca.2006.12.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 11/18/2022]
Abstract
Simple and sensitive methods for the separation and quantification of beta-carboline alkaloids in foods and beverages by HPLC with electrochemical detection at carbon nanotubes-modified glassy carbon electrodes (CNTs-GCE) are reported. Electrode modification with multi-wall CNTs produced an improved amperometric response to beta-carbolines, in spite of the working medium consisting of methanol:acetonitrile: 0.05 mol L(-1) Na(2)HPO(4) solution of pH 9.0 (20:20:60). On the contrary to that observed at a bare GCE, a good repeatability of the amperometric measurements carried out at +900 mV versus Ag/AgCl (R.S.D. of 3.2% for i(p), n=20) was achieved at the CNTs-GCE. Using an Ultrabase C(18) column and isocratic elution with the above mentioned mobile phase, a complete resolution of the chromatographic peaks for harmalol, harmaline, norharmane, harmane and harmine, was achieved. Calibration graphs over the 0.25-100 microM range with detection limits ranging between 4 and 19 ng mL(-1), were obtained. The HPLC-ED at CNTs-GCE method was applied to the analysis of beer, coffee and cheese samples, spiked with beta-carbolines at concentration levels corresponding to those may be found in the respective samples. The steps involved in sample treatment, such as extraction and clean-up, were optimized for each type of sample. Recoveries ranging between 92 and 102% for beer, 92 and 101% for coffee, and 88 and 100% for cheese, at sub-microg mL(-1) or g(-1) analytes concentration levels were achieved.
Collapse
Affiliation(s)
- Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Moura DJ, Rorig C, Vieira DL, Henriques JAP, Roesler R, Saffi J, Boeira JM. Effects of β-carboline alkaloids on the object recognition task in mice. Life Sci 2006; 79:2099-104. [PMID: 16904699 DOI: 10.1016/j.lfs.2006.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/21/2006] [Accepted: 07/05/2006] [Indexed: 11/24/2022]
Abstract
beta-carboline alkaloids are found in several medicinal plants and display a variety of actions on the central nervous, muscular and cardiovascular systems. The aim of the present study was to evaluate the effects of systemic administration of beta-carboline alkaloids on object recognition in mice. Adult Swiss mice received an intra-peritoneal injection (i.p.) of alkaloids (1.0, 2.5 or 5.0 mg/kg) 30 min before training in an object recognition task. The fully aromatic beta-carbolines, harmine and harmol, induced an enhancement of short-term memory (STM) at all doses tested when compared to controls. Harmaline, a dihydro beta-carboline and inverse agonist of the MK-801 binding site on the N-methyl-d-aspartate (NMDA) receptor, also induced an enhancement of both short-term memory (STM) and long-term memory (LTM). These results demonstrate that systemic administration of beta-carboline alkaloids can improve object recognition memory in mice.
Collapse
Affiliation(s)
- Dinara Jaqueline Moura
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Kotretsou SI, Koutsodimou A. Overview of the Applications of Tandem Mass Spectrometry (MS/MS) in Food Analysis of Nutritionally Harmful Compounds. FOOD REVIEWS INTERNATIONAL 2006. [DOI: 10.1080/87559120600574543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Farzin D, Mansouri N. Antidepressant-like effect of harmane and other beta-carbolines in the mouse forced swim test. Eur Neuropsychopharmacol 2006; 16:324-8. [PMID: 16183262 DOI: 10.1016/j.euroneuro.2005.08.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/14/2005] [Accepted: 08/30/2005] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to determine the effects of harmane, norharmane and harmine on the immobility time in the mouse forced swim test (FST) - an animal model of depression. After 30 min of the beta-carbolines injections, mice were placed individually in a vertical glass cylinder (height, 25 cm; diameter, 12 cm) containing water about 15 cm deep at 22+/-1 degrees C and forced to swim. Treatment of animals with harmane (5-15 mg/kg, i.p.), norharmane (2.5-10 mg/kg, i.p.) and harmine (5-15 mg/kg, i.p.) reduced dose-dependently the time of immobility. Their antidepressant-like effects were not affected by pretreatment with reserpine at the dose of 5 mg/kg, i.p., 18 h before the test, which did not modify the immobility time. Conversely, when flumazenil (5 mg/kg, i.p.) was administered 30 min before the test, it was able to antagonize completely the antidepressant-like effects of harmane, norharmane and harmine. It was concluded that harmane, norharmane and harmine reduce the immobility time in this test, suggesting an antidepressant-like effect, via an inverse-agonistic mechanism located in the benzodiazepine receptors.
Collapse
Affiliation(s)
- Davood Farzin
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48168, Iran.
| | | |
Collapse
|
46
|
Hamann J, Rommelspacher H, Storch A, Reichmann H, Gille G. Neurotoxic mechanisms of 2,9-dimethyl-beta-carbolinium ion in primary dopaminergic culture. J Neurochem 2006; 98:1185-99. [PMID: 16787411 DOI: 10.1111/j.1471-4159.2006.03940.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
beta-Carbolines are potential endogenous and exogenous neurotoxicants that may contribute to the pathogenesis of Parkinson's disease. The 2,9-dimethyl-beta-carbolinium ion (either 2,9-dimethyl-beta-norharmanium or 2,9-Me(2)NH(+)) was found to be neurotoxic in primary mesencephalic cultures and to be a potent inhibitor of mitochondrial complex I. However, the precise mechanisms of cell death remained obscure. Here, we investigated the mechanism of cell death in primary dopaminergic cultures of the mouse mesencephalon mediated by 2,9-Me(2)NH(+). The beta-carboline caused preferential death of dopaminergic neurones, which could not be attributed to cellular uptake via the dopamine transporter. Transient incubation with 2,9-Me(2)NH(+) for 48 h caused a progressive deterioration in the morphology of dopaminergic neurones during a 5-day recovery period and persistent damage to the overall culture. An increase in free radical production and caspase-3 activity, as well as a decrease of respiratory activity, mitochondrial membrane potential and ATP content, contributed to toxicity and pointed to an apoptotic mode of cell death, although a significant quantity of cells dying via necrosis were present simultaneously. These data underline the preferential susceptibility of dopaminergic neurones to 2,9-Me(2)NH(+) as a potent, oxidative stress generating neurotoxin.
Collapse
Affiliation(s)
- Juliane Hamann
- Department of Neurology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
47
|
Anderson NJ, Seif I, Nutt DJ, Hudson AL, Robinson ESJ. Autoradiographical distribution of imidazoline binding sites in monoamine oxidase A deficient mice. J Neurochem 2006; 96:1551-9. [PMID: 16476082 DOI: 10.1111/j.1471-4159.2006.03662.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study has used receptor autoradiography to characterize imidazoline binding sites (I-BS) in monoamine oxidase (MAO) A knockout and wild-type mice. A comparison between MAO-A and MAO-B, binding of the endogenous beta-carboline [(3)H]harmane, and I-BS, has been made using sections from brain and kidney. The loss of binding to MAO-A in the knockout animals was confirmed using the selective radioligand [(3)H]Ro41-1049, with labelling reduced to background levels. The binding of [(3)H]Ro19-6327 to MAO-B was unaffected, indicating no change in this isoform in response to the loss of MAO-A. A reduction in binding to the I(2)-BS, as labelled by both [(3)H]idazoxan and [(3)H]2-BFI (2-(2-benzofuranyl)-2-imidazoline), was seen in the MAO-A knockout animals in both brain and kidney sections, whereas binding to the I(1)-BS in kidney sections remained unchanged. The loss of I(2) binding was found to be regionally dependent and was positively correlated with the relative expression of MAO-A in specific regions in the wild-type animals. Using the MAO-A knockout mice it was also possible to demonstrate a non-MAO-A population of binding sites labelled by the putative I-BS endogenous ligand, harmane.
Collapse
Affiliation(s)
- Neil J Anderson
- Department of Pharmacology, School of Medical Sciences, Bristol, UK.
| | | | | | | | | |
Collapse
|
48
|
Ichikawa M, Yoshida J, Ide N, Sasaoka T, Yamaguchi H, Ono K. Tetrahydro-beta-carboline derivatives in aged garlic extract show antioxidant properties. J Nutr 2006; 136:726S-731S. [PMID: 16484551 DOI: 10.1093/jn/136.3.726s] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study used the hydroden peroxide scavenging assay to investigate antioxidant chemical constituents derived and separated from aged garlic extract, a unique garlic extract produced by soaking sliced garlic in an aqueous ethanol solution for >10 mo. Four types of 1, 2, 3, 4-tetrahydro-beta-carboline derivatives (THbetaCs); 1-methyl-1, 2, 3, 4-tetrahydro-beta-carboline-3-carboxylic acid, and 1-methyl-1, 2, 3, 4-tetrahydro-beta-carboline-1, 3-dicarboxylic acid (MTCdiC), from both diastereoisomers, were isolated and identified by use of liquid chromatography-mass spectrometry. All these compounds indicate strong hydrogen peroxide scavenging activities and inhibit 2, 2'-azobis(2-amidinopropane) hydrochloride-induced lipid peroxidation. Particularly, (1S, 3S)-MTCdiC had the most potent hydrogen peroxide scavenging activity, more than ascorbic acid. The (1R, 3S)- and (1S, 3S)-MTCdiC at 50-100 micromol/L and 10-100 micromol/L inhibited LPS-induced nitrite production. Interestingly, THbetaCs were not detected in raw garlic and other processed garlic preparations, but they were generated and increased during the natural aging garlic extraction process. These data suggest that THbetaCs, which are formed during the natural aging process, are potent antioxidants in aged garlic extract and thus may be useful for the prevention of diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Makoto Ichikawa
- Healthcare Research Institute, Wakunaga Pharmaceutical Co. Ltd., and Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima 739-8530, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Herraiz T, Chaparro C. Analysis of monoamine oxidase enzymatic activity by reversed-phase high performance liquid chromatography and inhibition by beta-carboline alkaloids occurring in foods and plants. J Chromatogr A 2005; 1120:237-43. [PMID: 16386263 DOI: 10.1016/j.chroma.2005.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 11/26/2005] [Accepted: 12/02/2005] [Indexed: 11/23/2022]
Abstract
Monoamine oxidase (MAO) is a flavin adenine dinucleotide (FAD)-containing enzyme located at the outer membranes of mitochondria that catalyzes the oxidative deamination of biogenic and xenobiotic amines. We have used a chromatographic method to measure MAO-enzymatic activity by using kynuramine as a non-selective substrate with its MAO-oxidation product subsequently analyzed by RP-HPLC-DAD and HPLC-mass spectrometry (MS). This method was applied to study the kinetic parameters, inhibition and reaction products of MAO recombinant enzymes in presence of tetrahydro-beta-carboline and beta-carboline alkaloids occurring in foods, plants and mammals. Analysis by HPLC showed that tetrahydro-beta-carbolines or beta-carbolines were not modified by MAO. Several beta-carbolines such as tryptoline (1,2,3,4-tetrahydro-beta-carboline) and 1-methyltryptoline (1-methyl-1,2,3,4-tetrahydro-beta-carboline) were inhibitors of MAO-A; instead their corresponding 6-hydroxy-derivatives (6-hydroxytryptoline and 6-hydroxy-1-methyltryptoline) lacked this activity. Tetrahydro-beta-carboline-3-carboxylic acids were unable to inhibit MAO enzymes. In contrast, their oxidation products, i.e. the fully aromatic beta-carbolines (norharman and harman), acted as good inhibitors of MAO. Two tetrahydro-beta-carbolines (i.e. tryptoline and 1-methyltryptoline) occurring in foods were isolated by solid-phase extraction (SPE) and RP-HPLC from selected samples of sausages and the corresponding extracts exhibited good inhibition properties over MAO-A. These results suggest that beta-carbolines from foods, plants, and mammals may exert inhibitory actions on MAO enzymes.
Collapse
Affiliation(s)
- Tomas Herraiz
- Spanish Council for Scientific Research, CSIC, Instituto de Fermentaciones Industriales, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | |
Collapse
|
50
|
Touiki K, Rat P, Molimard R, Chait A, de Beaurepaire R. Harmane inhibits serotonergic dorsal raphe neurons in the rat. Psychopharmacology (Berl) 2005; 182:562-9. [PMID: 16133137 DOI: 10.1007/s00213-005-0118-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/23/2005] [Indexed: 02/03/2023]
Abstract
RATIONALE Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. OBJECTIVES To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. METHODS In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. RESULTS Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. CONCLUSIONS Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.
Collapse
Affiliation(s)
- Khalid Touiki
- Laboratoire de Psychopharmacologie, Centre Hospitalier Paul Guiraud, 54 avenue de la République, Villejuif, 94806, France
| | | | | | | | | |
Collapse
|