1
|
Melatonin and Multiple Sclerosis: From Plausible Neuropharmacological Mechanisms of Action to Experimental and Clinical Evidence. Clin Drug Investig 2019; 39:607-624. [PMID: 31054087 DOI: 10.1007/s40261-019-00793-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a devastating chronic autoimmune demyelinating disease of the central nervous system (CNS), thought to affect more than 2.5 million people worldwide. Regulation of the sleep-wake cycle might influence disease activity and the frequency of relapses in patients. As melatonin (or sleep hormone) involves the regulation of circadian rhythms, much attention has been paid to the management of MS symptoms with melatonin. This review describes the pharmacological mechanisms underlying the neuroprotective effects of melatonin and recent clinical evidence from MS patients. Apparent risks and benefits of melatonin therapies are also discussed. Various in vivo and clinical data presented in this up-to-date review suggest that melatonin may possibly possess a protective role against the behavioral deficits and neuropathological characteristics of MS. Multiple mechanisms of the neuroprotective effects of melatonin such as mitochondrial protection and antioxidant, anti-inflammatory, and anti-apoptotic properties, as well as its anti-demyelinating function are also discussed. A large body of evidence shows that melatonin potently regulates the immune system, demyelination, free radical generation, and inflammatory responses in neural tissue, which are mediated by multiple signal transduction cascades. In the present article, we focus on different pathways that are targeted by melatonin to prevent the development and progression of MS.
Collapse
|
2
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Markus RP, Silva CLM, Franco DG, Barbosa EM, Ferreira ZS. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol Ther 2010; 126:251-62. [PMID: 20398699 DOI: 10.1016/j.pharmthera.2010.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 12/31/2022]
Abstract
Melatonin, the darkness hormone, synchronizes several physiological functions to light/dark cycle. Besides the awake/sleep cycle that is intuitively linked to day/night, daily variations in memory acquisition and innate or acquired immune responses are some of the major activities linked to melatonin rhythm. The daily variation of these complex processes is due to changes in specific mechanisms. In the last years we focused on the influence of melatonin on the expression and function of nicotinic acetylcholine receptors (nAChRs). Melatonin, either "in vivo" or "in vitro", increases, in a selective manner, the efficiency of alpha-bungarotoxin (alpha-BTX)-sensitive nAChRs. Melatonin's effect on receptors located in rat sympathetic nerve terminals, cerebellum, skeletal muscle and chick retina, was tested. We observed that melatonin is essential for the development of alpha-BTX-sensitive nAChRs, and important for receptor maintenance in aging models. Taking into account that both melatonin and alpha-7 nAChRs (one of the subtypes sensitive to alpha-BTX) are involved in the development of Alzheimer's disease, here we discuss the possibility of a therapeutic strategy focused on both melatonin replacement and its potential association with cholinergic drugs.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Fatima Sobral Sampaio L, Markus RP. Melatonin and the time window for the expression of the α8 nicotinic acetylcholine receptor in the membrane of chick retinal cells in culture. Int J Dev Neurosci 2010; 28:245-9. [DOI: 10.1016/j.ijdevneu.2010.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/11/2010] [Accepted: 01/28/2010] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lucia Fatima Sobral Sampaio
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do ParáBelémPABrazil
- Laboratório de CronofarmacologiaDepartamento de FisiologiaInstituto de Biociências, Universidade de São PauloSão PauloSPBrazil
| | - Regina Pekelmann Markus
- Laboratório de CronofarmacologiaDepartamento de FisiologiaInstituto de Biociências, Universidade de São PauloSão PauloSPBrazil
| |
Collapse
|
5
|
Abstract
There is limited data regarding the effects of melatonin on the activity of neuronal acetylcholine receptors (nAChRs) themselves. This study analyzes the effects of low concentrations of melatonin on nicotine-evoked currents from cerebellar granule neurons (CGNs) in culture. Using electrophysiological and Ca(2+)-imaging techniques, it was found a subset of rat CGNs to which nicotine application elicited both intracellular Ca(2+) transients and inward whole-cell currents. These responses were mediated by heteromeric nAChRs, as assessed by their sensitivity to nicotine and time constant of current decay. Preincubating the cells with low melatonin concentrations (down to 1 pm) significantly reduced the current amplitude in a dose-dependent manner, without affecting the receptor's apparent affinity and voltage-dependency, nor the current's rise and decay time course. The inhibitory effect of melatonin was significantly reduced by luzindole, a competitive antagonist of both MT(1) and MT(2) melatonin receptors. In conclusion, melatonin inhibits nicotinic currents through non-alpha7 heteromeric nAChRs expressed by CGNs in culture, an effect that appears to be at least partially mediated by melatonin membrane receptors. Direct modulation of nicotinic receptors is accomplished at doses that are likely to be physiologically relevant, thus providing a mechanism through which melatonin circadian rhythmic levels could modulate cholinergic activity.
Collapse
Affiliation(s)
- Pedro Lax
- Departamento de Fisiología, Genética y Microbiología, División de Fisiología, Universidad de Alicante, Campus de San Vicente, Alicante, Spain.
| |
Collapse
|
6
|
de Almeida-Paula LD, Costa-Lotufo LV, Silva Ferreira Z, Monteiro AEG, Isoldi MC, Godinho RO, Markus RP. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin. Eur J Pharmacol 2005; 525:24-31. [PMID: 16297382 DOI: 10.1016/j.ejphar.2005.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/12/2005] [Accepted: 09/21/2005] [Indexed: 11/17/2022]
Abstract
Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.
Collapse
MESH Headings
- Animals
- Calmodulin/antagonists & inhibitors
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Gene Expression Regulation/drug effects
- Melatonin/pharmacology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
Collapse
|
7
|
Ferreira ACF, Martins E, Afeche SC, Cipolla-Neto J, Costa Rosa LFBP. The profile of melatonin production in tumour-bearing rats. Life Sci 2004; 75:2291-302. [PMID: 15350827 DOI: 10.1016/j.lfs.2004.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/18/2004] [Indexed: 11/20/2022]
Abstract
The pineal gland is involved in the regulation of tumour growth through the anticancer activity of melatonin, which presents immunomodulatory, anti-proliferative and anti-oxidant effects. In this study we measured melatonin content directly in the pineal gland, in an attempt to clarify the modulation of pineal melatonin secretory activity during tumour growth. Different groups of Walker 256 carcinosarcoma bearing rats were sacrificed at 12 different time points during 24h (12h:12h light/dark cycle) on different days during the tumour development (on the first, seventh and fourteenth day after tumour inoculation). Melatonin content in the pineal gland was determined by high-performance liquid chromatography with electrochemical detection. During tumour development the amount of melatonin secreted increased from 310.9 ng/mg of protein per day from control animals, to 918.1 ng/mg of protein per day 14 days after tumour implantation, and there were changes in the pineal production profile of melatonin. Cultured pineal glands obtained from tumour-bearing rats turned out to be less responsive to noradrenaline, suggesting the existence, in vivo, of putative factor(s) modulating pineal melatonin production. The results demonstrated that during tumour development there is a modification of pineal melatonin production daily profile, possibly contributing to cachexia, associated to changes in pineal gland response to noradrenaline stimulation.
Collapse
|
8
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
9
|
Picinato MC, Haber EP, Carpinelli AR, Cipolla-Neto J. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J Pineal Res 2002; 33:172-7. [PMID: 12220333 DOI: 10.1034/j.1600-079x.2002.02925.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is well known that pinealectomy induces in rats a diminished glucose tolerance, insulin resistance, a reduction in GLUT4 content in adipose and muscular tissues, a decrease in hepatic and muscular glycogenesis, impairment of glucagon action and an increase in blood pyruvate concentration. In addition, it has been shown that melatonin suppresses insulin secretion in several experimental conditions. The objective of the present study was to investigate the daily rhythm of glucose-induced insulin secretion and glucose oxidation by isolated pancreatic islets and to investigate the effect of chronic absence of melatonin (30 days of pinealectomy) on this rhythmic process. The data obtained confirmed the presence of a strong 24-hr rhythm of insulin secretion by isolated pancreatic islets. In addition, it was demonstrated that the glucose-metabolizing ability of the B-cell follows a daily rhythm phase locked to insulin secretion rhythm. Most interesting, however, was the demonstration that the daily rhythmic processes of insulin secretion and B-cell -[U-14C]-glucose oxidation by isolated pancreatic islets is completely modified by the chronic absence of the pineal gland. Thus, pinealectomy induced in all groups an increase in 24-hr mean glucose-stimulated insulin secretion and [U-14C]-glucose oxidation, in addition to some alterations in the rhythmic amplitude and a remarkable phase-advancing of the daily curves for 8.3 mm glucose (a condition similar to that observed in fed animals and where the B-cells are supposedly more active). These observations strongly suggest that the presence of the pineal gland may be necessary for the proper synchronization of these metabolic rhythms with other circadian rhythms like activity-rest and feeding.
Collapse
Affiliation(s)
- Maria C Picinato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
la Fleur SE, Kalsbeek A, Wortel J, van der Vliet J, Buijs RM. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol 2001; 13:1025-32. [PMID: 11722698 DOI: 10.1046/j.1365-2826.2001.00717.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of melatonin on glucose metabolism are far from understood. In rats, the biological clock generates a 24-h rhythm in plasma glucose concentrations, with declining concentrations in the dark period. We hypothesized that, in the rat, melatonin enhances the dark signal of the biological clock, decreasing glucose concentrations in the dark period. We measured 24-h rhythms of plasma concentrations of glucose and insulin in pinealectomized rats fed ad libitum and subjected to a scheduled feeding regimen with six meals equally distributed over the light/dark cycle and compared them with previous data of intact rats. Pinealectomy dampened the amplitude of the 24-h rhythm in plasma glucose concentrations in rats fed ad libitum, and abolished it completely in rats subjected to the scheduled feeding regimen, while plasma insulin concentrations did not change under both conditions. Pinealectomy abolished the nocturnal decline in plasma glucose concentrations irrespective of whether rats were fed ad libitum or subjected to the scheduled feeding regimen. Melatonin replacement restored 24-h mean plasma glucose concentrations in pinealectomized rats that were subjected to the scheduled feeding regimen but, interestingly, it did not restore the 24-h rhythm. Melatonin treatment also resulted in higher meal-induced insulin responses, probably mediated via an increased sensitivity of the beta-cells. Taken together, our data demonstrate that the pineal hormone, melatonin, influences both glucose metabolism and insulin secretion from the pancreatic beta-cell. The present study also demonstrates that removal of the pineal gland cannot be compensated by mimicking plasma melatonin concentrations only.
Collapse
Affiliation(s)
- S E la Fleur
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Seraphim PM, Sumida DH, Nishide FT, Lima FB, Cipolla Neto J, Machado UF. A glândula pineal e o metabolismo de carboidratos. ACTA ACUST UNITED AC 2000. [DOI: 10.1590/s0004-27302000000400009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A influência da glândula pineal sobre o metabolismo de carboidratos vem sendo investigada há décadas. Entretanto, resultados contraditórios não esclarecem, até o momento, o verdadeiro papel da melatonina sobre a homeostasia dos carboidratos. Através de estudos recentes, contribuímos de maneira ineqüívoca para a caracterização do papel da glândula pineal como moduladora do metabolismo de carboidratos. Além disso, à luz dos conhecimentos atuais, demonstramos quais passos do mecanismo de ação da insulina estão envolvidos nessa modulação. Nossos estudos revelaram que a pinealectomia promove um quadro de resistência à insulina, sem obesidade. A captação máxima de 2-deoxi-glicose, estimulada por insulina, em adipócitos isolados está diminuída, sem entretanto modificar a capacidade da insulina ligar-se ao seu receptor e estimular a fosforilação dos substratos intracelulares representados pela pp 185. Por outro lado, em vários tecidos sensíveis à insulina, observou-se uma diminuição no conteúdo da proteína transportadora de glicose GLUT4, mas diminuição no mRNA do GLUT4 apenas em alguns desses tecidos, sugerindo uma regulação tecido-específica. Adicionalmente, foi demonstrado que a regulação da glândula pineal sobre o metabolismo de carboidratos é mediado pela melatonina: o hormônio aumentou a sensibilidade à insulina de adipócitos isolados e o tratamento de reposição com melatonina restaurou o conteúdo de GLUT4 no tecido adiposo branco. Em síntese, os estudos aqui relatados evidenciam um importante papel da glândula pineal na modulação da homeostasia de carboidratos. Essa regulação é dependente da melatonina e pode ser resumida, até o presente momento, como um aumento da sensibilidade tecidual à insulina, que envolve alterações na expressão gênica do GLUT4.
Collapse
|
12
|
Zago WM, Markus RP. Melatonin modulation of presynaptic nicotinic acetylcholine receptors located on short noradrenergic neurons of the rat vas deferens: a pharmacological characterization. Braz J Med Biol Res 1999; 32:999-1006. [PMID: 10454762 DOI: 10.1590/s0100-879x1999000800010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since alpha7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of alpha3ss4 - plus alpha7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an alpha7 nAChR subtype.
Collapse
Affiliation(s)
- W M Zago
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
13
|
Bucher B, Gauer F, Pévet P, Masson-Pévet M. Vasoconstrictor effects of various melatonin analogs on the rat tail artery in the presence of phenylephrine. J Cardiovasc Pharmacol 1999; 33:316-22. [PMID: 10028943 DOI: 10.1097/00005344-199902000-00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We performed a pharmacologic analysis of the increase in perfusion pressure induced by melatonin and related analogues in the perfused rat tail artery precontracted by 1 microM phenylephrine. Melatonin, 2-iodomelatonin, 6-chloromelatonin, and S20098 (N-[2-(7-methoxy-1-naphthyl)ethyl]acetamide) produced a concentration-dependent enhancement of the vasoconstrictor response evoked by 1 microM phenylephrine with a rank order of potency compatible with the pharmacologic profile defined for high-affinity melatonin receptors. Melatonin had no effect on electrically induced [3H]noradrenaline release, but the neurogenic vasoconstriction was increased at melatonin concentrations of 100 and 300 nM. Increasing concentrations of the naphthalenic-based antagonist S20928 (N-[2-(1-naphthyl)ethyl]cyclobutanecarboxamide) caused a parallel rightward shift in the melatonin concentration-response curve without depressing the maximal response. The pA2 value of S20928 was 7.01 +/- 0.08. Luzindole, 1 microM, an antagonist of Mel1b melatonin receptors, was without effect on melatonin-induced responses. By using reverse transcription-polymerase chain reaction (RT-PCR), we found that messenger RNA (mRNA) encoding for Mel1a is transcribed in the rat tail artery. In conclusion, the results show that melatonin produced an enhancement of the contractile response elicited by phenylephrine in the perfused rat tail artery. This vasoconstrictor response appears to be mediated through activation of Mel1a receptors located on smooth-muscle cells. No evidence for an action of melatonin on either the endothelium or sympathetic nerve endings was found.
Collapse
Affiliation(s)
- B Bucher
- Laboratoire de Pharmacologie et Physiologie Cellulaires, C.N.R.S. ERS 653, Université Louis Pasteur Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
14
|
Lima FB, Machado UF, Bartol I, Seraphim PM, Sumida DH, Moraes SM, Hell NS, Okamoto MM, Saad MJ, Carvalho CR, Cipolla-Neto J. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E934-41. [PMID: 9843734 DOI: 10.1152/ajpendo.1998.275.6.e934] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the pineal gland influences several physiological systems, only a few studies have investigated its role in the intermediary metabolism. In the present study, male Wistar rats, pinealectomized or sham-operated 6 wk before the experiment, were submitted to both intravenous glucose tolerance tests (IVGTT) and insulin binding as well as glucose transport assays in isolated adipocytes. The insulin receptor tyrosine kinase activity was assessed in liver and muscle. The insulin secretory response during the IVGTT was impaired, particularly in the afternoon, and the glucose transport responsiveness was 33% lower in pinealectomized rats. However, no difference was observed in the insulin receptor number of adipocytes between groups as well as in insulin-stimulated tyrosine kinase activity, indicating that the initial steps in the insulin signaling were well conserved. Conversely, a 40% reduction in adipose tissue GLUT-4 content was detected. In conclusion, pinealectomy is responsible for both impaired insulin secretion and action, emphasizing the influence of the pineal gland on glucose metabolism.
Collapse
Affiliation(s)
- F B Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 05508-900 Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lucchelli A, Santagostino-Barbone MG, Tonini M. Investigation into the contractile response of melatonin in the guinea-pig isolated proximal colon: the role of 5-HT4 and melatonin receptors. Br J Pharmacol 1997; 121:1775-81. [PMID: 9283717 PMCID: PMC1564847 DOI: 10.1038/sj.bjp.0701287] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The interaction of melatonin (N-acetyl-5-methoxytryptamine) with 5-hydroxytryptamine4 (5-HT4) receptors and/or with melatonin receptors (ML1, ML2 sites) has been assessed in isolated strips of the guinea-pig proximal colon. In the same preparation, the pharmacological profile of a series of melatonin agonists (2-iodomelatonin, 6-chloromelatonin, N-acetyl-5-hydroxytryptamine (N-acetyl-5-HT), 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT)) was investigated. 2. In the presence of 5-HT1/2/3 receptor blockade with methysergide (1 microM) and ondansetron (10 microM), melatonin (0.1 nM-10 microM), 5-HT (1 nM-1 microM) and the 5-HT4 receptor agonist, 5-methoxytryptamine (5-MeOT: 1 nM-1 microM) caused concentration-dependent contractile responses. 5-HT and 5-MeOT acted as full agonists with a potency (-log EC50) of 7.8 and 8.0, respectively. The potency value for melatonin was 8.7, but its maximum effect was only 58% of that elicited by 5-HT. 3. Melatonin responses were resistant to atropine (0.1 microM), tetrodotoxin (0.3 microM), and to blockade of 5-HT4 receptors by SDZ 205,557 (0.3 microM) and GR 125487 (3, 30 and 300 nM). The latter antagonist (3 nM) inhibited 5-HT-induced contractions with an apparent pA2 value of 9.6 GR 125487 antagonism was associated with 30% reduction of the 5-HT response maximum. Contractions elicited by 5-HT were not modified when melatonin (1 and 10 nM) was used as an antagonist. 4. Like melatonin, the four melatonin analogues concentration-dependently contracted colonic strips. The rank order of agonist potency was: 2-iodomelatonin (10.8) > 6-chloromelatonin (9.9) > or = N-acetyl-5-HT (9.8) > or = 5-MCA-NAT (9.6) > melatonin (8.7), an order typical for ML2 sites. In comparison with the other agonists, 5-MCA-NAT had the highest intrinsic activity. 5. The melatonin ML1B receptor antagonist luzindole (0.3, 1 and 3 microM) had no effect on the concentration-response curve to melatonin. Prazosin, an alpha-adrenoceptor antagonist possessing moderate/ high affinity for melatonin ML2 sites did not affect melatonin-induced contractions at 0.1 microM. Higher prazosin concentrations (0.3 and 1 microM) caused a non-concentration-dependent depression of the maximal response to melatonin without changing its potency. Prazosin (0.1 and 1 microM) showed a similar depressant behaviour towards the contractile responses to 5-MCA-NAT. 6. In the guinea-pig proximal colon, melatonin despite some structural similarity with the 5-HT4 receptor agonist 5-MeOT, does not interact with 5-HT4 receptors (or with 5-HT1/2/3 receptors). As indicated by the rank order of agonist potencies and by the inefficacy of luzindole, the most likely sites of action of melatonin are postjunctional ML2 receptors. However, this assumption could not be corroborated with the use of prazosin as this 'ML2 receptor antagonist' showed only a non-concentration-dependent depression of the maximal contractile response to both melatonin and 5-MCA-NAT. Further investigation with the use of truly selective antagonists at melatonin ML2 receptors is required to clarify this issue.
Collapse
Affiliation(s)
- A Lucchelli
- Institute of Pharmacology, School of Pharmacy, University of Pavia, Italy
| | | | | |
Collapse
|
16
|
Abstract
The influence of several classes of drugs on the melatonin-induced vasorelaxation of isolated rat aorta were examined. Melatonin caused a dose-dependent relaxation of precontracted (30 mM KCl) aorta. This relaxant response was blocked by preincubating vessels with antagonists of vasoactive intestinal peptide. Substance P antagonists did not alter the response to melatonin. Pretreatment of vessels with 6-hydroxydopamine, lidocaine, or tetrodotoxin antagonized the relaxant response to melatonin. On the other hand, pretreatment with atropine + propranolol did not alter the response to melatonin. These experiments suggest that melatonin may exert part of its vasoactive actions by an interaction with perivascular nerve terminals.
Collapse
Affiliation(s)
- L B Weekley
- Division of Comparative Medicine, University of Texas Southwestern Medical School, Dallas 75235-9037, USA
| |
Collapse
|