1
|
Zhang HY, Zeng TT, Xie ZB, Dong YY, Ma C, Gong SS, Sun Q. Aerial Oxygen-Driven Selenocyclization of O-Vinylanilides Mediated by Coupled Fe 3+/Fe 2+ and I 2/I - Redox Cycles. Molecules 2022; 27:7386. [PMID: 36364212 PMCID: PMC9656128 DOI: 10.3390/molecules27217386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
In the past decade, selenocyclization has been extensively exploited for the preparation of a wide range of selenylated heterocycles with versatile activities. Previously, selenium electrophile-based and FeCl3-promoted methods were employed for the synthesis of selenylated benzoxazines. However, these methods are limited by starting material availability and low atomic economy, respectively. Inspired by the recent catalytic selenocyclization approaches based on distinctive pathways, we rationally constructed an efficient and greener double-redox catalytic system for the access to diverse selenylated benzoxazines. The coupling of I2/I- and Fe3+/Fe2+ catalytic redox cycles enables aerial O2 to act as the driving force to promote the selenocyclization. Control and test redox experiments confirmed the roles of each component in the catalytic system, and a PhSeI-based pathway is proposed for the selenocyclization process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
2
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
3
|
Protective Effects of Dioscorea batatas Flesh and Peel Extracts against Ethanol-Induced Gastric Ulcer in Mice. Nutrients 2018; 10:nu10111680. [PMID: 30400615 PMCID: PMC6266015 DOI: 10.3390/nu10111680] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer is a major digestive disorder and provoked by multifactorial etiologies, including excessive alcohol consumption. In this study, we examined the gastroprotective effect of aqueous and ethanolic extracts of Dioscorea batatas Decne (DBD; commonly called Chinese yam) flesh or peel against acidified ethanol-induced acute gastric damage in mice. Our findings demonstrated that oral supplementation of aqueous or ethanolic extracts of DBD flesh or peel before ulcer induction was significantly effective in macroscopically and histologically alleviating ethanol-induced pathological lesions in gastric mucosa, decreasing the plasma levels of inflammatory mediators, such as nitric oxide and interleukin-6, attenuating the gastric expression of cyclooxygenase-2, and increasing the gastric content of prostaglandin E2. In particular, pretreatment with the flesh extract prepared in 60% ethanol prominently decreased the expression of biomarkers of oxidative stress, including the plasma levels of 8-hydroxy-2-guanosine and malondialdehyde, and restored heme oxygenase-1 expression and superoxide dismutase activity in the stomach. Overall, these findings suggest that the oral supplementation with DBD extract, especially flesh ethanol extract, prior to excessive alcohol consumption, may exert a protective effect against ethanol-induced gastric mucosal damage in vivo, presumably through the activation of the antioxidant system and suppression of the inflammatory response.
Collapse
|
4
|
Rusetskaya NY, Borodulin VB. Biological activity of organoselenium compounds in heavy metal intoxication. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Rusetskaya N, Borodulin V. Biological activity of selenorganic compounds at heavy metal salts intoxication. ACTA ACUST UNITED AC 2015; 61:449-61. [DOI: 10.18097/pbmc20156104449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication
Collapse
Affiliation(s)
- N.Y. Rusetskaya
- Razumovskiy Saratov State Medical University, Saratov, Russia
| | - V.B. Borodulin
- Razumovskiy Saratov State Medical University, Saratov, Russia
| |
Collapse
|
6
|
Smith SME, Min J, Ganesh T, Diebold B, Kawahara T, Zhu Y, McCoy J, Sun A, Snyder JP, Fu H, Du Y, Lewis I, Lambeth JD. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. ACTA ACUST UNITED AC 2014; 19:752-63. [PMID: 22726689 DOI: 10.1016/j.chembiol.2012.04.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS), which function in normal physiology and, when overproduced, in pathophysiology. Recent studies using mice deficient in Nox2 identify this isoform as a novel target against Nox2-implicated inflammatory diseases. Nox2 activation depends on the binding of the proline-rich domain of its heterodimeric partner p22phox to p47phox. A high-throughput screen that monitored this interaction via fluorescence polarization identified ebselen and several of its analogs as inhibitors. Medicinal chemistry was performed to explore structure-activity relationships and to optimize potency. Ebselen and analogs potently inhibited Nox1 and Nox2 activity but were less effective against other isoforms. Ebselen also blocked translocation of p47phox to neutrophil membranes. Thus, ebselen and its analogs represent a class of compounds that inhibit ROS generation by interrupting the assembly of Nox2-activating regulatory subunits.
Collapse
Affiliation(s)
- Susan M E Smith
- Department of Pathology, Emory School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
8
|
|
9
|
Gelam honey scavenges peroxynitrite during the immune response. Int J Mol Sci 2012; 13:12113-12129. [PMID: 23109904 PMCID: PMC3472796 DOI: 10.3390/ijms130912113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/06/2012] [Accepted: 09/09/2012] [Indexed: 01/12/2023] Open
Abstract
Monocytes and macrophages are part of the first-line defense against bacterial, fungal, and viral infections during host immune responses; they express high levels of proinflammatory cytokines and cytotoxic molecules, including nitric oxide, reactive oxygen species, and their reaction product peroxynitrite. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death. Honey, in addition to its well-known sweetening properties, is a natural antioxidant that has been used since ancient times in traditional medicine. We examined the ability of Gelam honey, derived from the Gelam tree (Melaleuca spp.), to scavenge peroxynitrite during immune responses mounted in the murine macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ) and in LPS-treated rats. Gelam honey significantly improved the viability of LPS/IFN-γ-treated RAW 264.7 cells and inhibited nitric oxide production-similar to the effects observed with an inhibitor of inducible nitric oxide synthase (1400W). Furthermore, honey, but not 1400W, inhibited peroxynitrite production from the synthetic substrate 3-morpholinosydnonimine (SIN-1) and prevented the peroxynitrite-mediated conversion of dihydrorhodamine 123 to its fluorescent oxidation product rhodamine 123. Honey inhibited peroxynitrite synthesis in LPS-treated rats. Thus, honey may attenuate inflammatory responses that lead to cell damage and death, suggesting its therapeutic uses for several inflammatory disorders.
Collapse
|
10
|
Ninomiya M, Garud DR, Koketsu M. Biologically significant selenium-containing heterocycles. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
12
|
Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 2010; 43:1408-19. [PMID: 20690615 DOI: 10.1021/ar100059g] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol cofactors. The selenocysteine residue at the active site forms a "catalytic triad" with tryptophan and glutamine, which activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se···O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se···O interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Krishna P. Bhabak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Holthoff JH, Woodling KA, Doerge DR, Burns ST, Hinson JA, Mayeux PR. Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol 2010; 80:1260-5. [PMID: 20599800 DOI: 10.1016/j.bcp.2010.06.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 02/07/2023]
Abstract
Oxidant damage from reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major contributor to the cellular damage seen in numerous types of renal injury. Resveratrol (trans-3,4',5-trihydroxystilbene) is a phytoalexin found naturally in many common food sources. The anti-oxidant properties of resveratrol are of particular interest because of the fundamental role that oxidant damage plays in numerous forms of kidney injury. To examine whether resveratrol could block damage to the renal epithelial cell line, mIMCD-3, cells were exposed to the peroxynitrite donor 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride (SIN-1). Resveratrol produced a concentration-dependent inhibition of cytotoxicity induced by SIN-1. To examine the mechanism of protection, resveratrol was incubated with authentic peroxynitrite and found to block nitration of bovine serum albumin with an EC(50) value of 22.7 microM, in contrast to the known RNS scavenger, N-acetyl-l-cysteine, which inhibited nitration with an EC(50) value of 439 microM. These data suggested that resveratrol could provide functional protection by directly scavenging peroxynitrite. To examine whether resveratrol was a substrate for peroxynitrite oxidation, resveratrol was reacted with authentic peroxynitrite. Resveratrol nitration products and dimers were detected using liquid chromatograph with tandem electrospray mass spectrometry. Similar products were detected in the media of cells treated with SIN-1 and resveratrol. Taken collectively, the data suggest that resveratrol is able to provide functional protection of renal tubular cells, at least in part, by directly scavenging the RNS peroxynitrite. This property of resveratrol may contribute to the understanding of its anti-oxidant activities.
Collapse
Affiliation(s)
- Joseph H Holthoff
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mishra B, Priyadarsini KI, Mohan H, Mugesh G. Horseradish peroxidase inhibition and antioxidant activity of ebselen and related organoselenium compounds. Bioorg Med Chem Lett 2006; 16:5334-8. [PMID: 16919452 DOI: 10.1016/j.bmcl.2006.07.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 07/10/2006] [Accepted: 07/26/2006] [Indexed: 01/01/2023]
Abstract
Horseradish peroxidase (HRP) inhibition and glutathione peroxidase (GPx) activities of ebselen and some related derivatives are described. These studies show that ebselen and ebselen ditelluride (EbTe(2)) with significant antioxidant activity, inhibit the HRP-catalyzed oxidation reactions. In addition, inhibition of lipid peroxidation and singlet oxygen quenching studies were carried out. Although the inhibition of HRP by ebselen is comparable with that of EbTe(2), the inhibitory effect on gamma-radiation induced lipid peroxidation and the GPx activity of ebselen is found to be much higher than that of EbTe(2).
Collapse
Affiliation(s)
- Beena Mishra
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 85, India
| | | | | | | |
Collapse
|
15
|
Fachinetto R, Pivetta LA, Farina M, Pereira RP, Nogueira CW, Rocha JBT. Effects of ethanol and diphenyl diselenide exposure on the activity of δ-aminolevulinate dehydratase from mouse liver and brain. Food Chem Toxicol 2006; 44:588-94. [PMID: 16364531 DOI: 10.1016/j.fct.2005.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 10/27/2005] [Accepted: 10/29/2005] [Indexed: 11/19/2022]
Abstract
Ethanol toxicity is affected by both environmental and inherited features. Since oxidative stress is an important molecular mechanism for ethanol-induced cellular damage, the concomitant exposure to ethanol and pro-oxidative or antioxidant compounds can alter its toxicity. Here, we investigate the effects of exposure to ethanol and/or diphenyl diselenide, an organochalcogen with antioxidant properties, on parameters related to oxidative stress (thiobarbituric acid reactive species-TBARS-and delta-aminolevulinate dehydratase-delta-ALA-D activity) in mouse liver and brain. In addition, the in vitro effects of ethanol and acetaldehyde on the activity of delta-ALA-D from human erythrocytes were also investigated. Both ethanol and diphenyl diselenide decreased hepatic delta-ALA-D activity and DL-dithiothreitol (DTT) reactivated this enzyme only after ethanol-induced inhibition. Moreover, ethanol increased liver TBARS levels, independently of the presence of diphenyl diselenide treatment. Brain delta-ALA-D activity and TBARS levels were not changed by ethanol or diphenyl diselenide exposure. Under in vitro conditions, acetaldehyde was a more potent inhibitor of delta-ALA-D from human erythrocytes when compared to ethanol, demonstrating a dose-dependent effect. This study indicates that (1) hepatic delta-ALA-D is a molecular target for the damaging effect of ethanol under in vivo conditions; (2) diphenyl diselenide and ethanol seem to inhibit delta-ALA-D by different mechanisms; (3) acetaldehyde, a metabolite of ethanol, is probably the main molecule responsible for the inhibitory effects of the parent compound on delta-ALA-D.
Collapse
Affiliation(s)
- Roselei Fachinetto
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Nogueira CW, Zeni G, Rocha JBT. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem Rev 2004; 104:6255-85. [PMID: 15584701 DOI: 10.1021/cr0406559] [Citation(s) in RCA: 1429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliacão Farmacológica e Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, CEP 97105-900 Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
17
|
Herrera DG, Yague AG, Johnsen-Soriano S, Bosch-Morell F, Collado-Morente L, Muriach M, Romero FJ, Garcia-Verdugo JM. Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc Natl Acad Sci U S A 2003; 100:7919-24. [PMID: 12792022 PMCID: PMC164688 DOI: 10.1073/pnas.1230907100] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major pathogenic mechanism of chronic alcoholism involves oxidative burden to liver and other cell types. We show that adult neurogenesis within the dentate gyrus of the hippocampus is selectively impaired in a rat model of alcoholism, and that it can be completely prevented by the antioxidant ebselen. Rats fed for 6 weeks with a liquid diet containing moderate doses of ethanol had a 66.3% decrease in the number of new neurons and a 227-279% increase in cell death in the dentate gyrus as compared with paired controls. Neurogenesis within the olfactory bulb was not affected by alcohol. Our studies indicate that alcohol abuse, even for a short duration, results in the death of newly formed neurons within the adult brain and that the underlying mechanism is related to oxidative or nitrosative stress. Moreover, these findings suggest that the impaired neurogenesis may be a mechanism mediating cognitive deficits observed in alcoholism.
Collapse
Affiliation(s)
- Daniel G Herrera
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ohta Y, Kobayashi T, Inui K, Yoshino J, Nakazawa S. Protective effect of ebselen, a seleno-organic compound, against the progression of acute gastric mucosal lesions induced by compound 48/80, a mast cell degranulator, in rats. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:295-303. [PMID: 12501005 DOI: 10.1254/jjp.90.295] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protective effect of ebselen, which possesses glutathione peroxidase-like activity and antioxidative and anti-inflammatory properties, against the progression of acute gastric mucosal lesions was examined in rats with a single intraperitoneal injection of compound 48/80 (0.75 mg/kg). Ebselen (50, 100 or 200 mg/kg) was orally administered 0.5 h after compound 48/80 treatment, at which time gastric mucosal lesions appeared. Post-administered ebselen suppressed gastric mucosal lesion progression at 3 h after compound 48/80 treatment dose-dependently, although no dose of ebselen affected the decreased gastric mucosal blood flow and increased serum serotonin and histamine concentrations found at 3 h after the treatment. A decrease in Se-glutathione peroxidase activity and increases in myeloperoxidase and xanthine oxidase activities and the concentration of thiobarbituric acid reactive substances were found in gastric mucosal tissues at 0.5 h after compound 48/80 treatment, and these changes were further enhanced at 3 h. Post-administered ebselen attenuated all these changes found at 3 h after compound 48/80 treatment dose-dependently. The present results indicate that ebselen exerts a protective effect against the progression of compound 48/80-induced acute gastric mucosal lesions in rats, and they suggest that this protective effect of ebselen could be due to its glutathione peroxidase-like activity and its antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yoshiji Ohta
- Department of Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | |
Collapse
|
19
|
Mugesh G, du Mont WW, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 2001; 101:2125-79. [PMID: 11710243 DOI: 10.1021/cr000426w] [Citation(s) in RCA: 1247] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- G Mugesh
- Institut für Anorganische und Analytische Chemie, Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany
| | | | | |
Collapse
|
20
|
Wright SW. One - pot synthesis of novel sulfur and selenium heterocycles by directed ortho-lithiation. J Heterocycl Chem 2001. [DOI: 10.1002/jhet.5570380330] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Kobayashi T, Ohta Y, Yoshino J. Preventive effect of ebselen on acute gastric mucosal lesion development in rats treated with compound 48/80. Eur J Pharmacol 2001; 414:271-9. [PMID: 11239928 DOI: 10.1016/s0014-2999(01)00815-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The preventive effect of ebselen, a seleno-organic compound, which is known to possess glutathione peroxidase-like activity and antioxidative and anti-inflammatory properties, on the development of acute gastric mucosal lesions was examined in rats with a single injection of compound 48/80 (0.75 mg/kg, i.p.), a mast cell degranulator. Pre-administration of ebselen (p.o.) at a dose of 50 or 100 mg/kg, but not 10 mg/kg, prevented gastric mucosal lesion development at 3 h, but not gastric mucosal lesion formation at 0.5 h, after compound 48/80 injection, although any dose of pre-administered ebselen did not affect decreased gastric mucosal blood flow and increased serum serotonin and histamine concentrations found at 0.5 and 3 h after compound 48/80 injection. A decrease in Se-glutathione peroxidase activity and increases in the activities of myeloperoxidase, an index of tissue neutrophil infiltration, and xanthine oxidase and the concentration of thiobarbituric acid reactive substances, an index of lipid peroxidation, were found in gastric mucosal tissues at 0.5 h after compound 48/80 injection and these changes were further enhanced at 3 h. Pre-administration of ebselen (p.o.) at a dose of 50 or 100 mg/kg, but not 10 mg/kg, attenuated all these changes found at 3 h after compound 48/80 injection. These preventive effects of ebselen occurred in a dose-dependent manner. The present results indicate that pre-administered ebselen prevents the development of compound 48/80-induced acute gastric mucosal lesions in rats, and suggest that this preventive effect of ebselen could be due to its glutathione peroxidase-like activity and antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Internal Medicine, Second Teaching Hospital, School of Medicine, Fujita Health University, Otobashi, Nakagawa-ku, Aichi 454-0012, Nagoya, Japan
| | | | | |
Collapse
|
22
|
Tabuchi Y. Characterization and application of a gastric surface mucous cell line GSM06 established from temperature-sensitive simian virus 40 large T-antigen transgenic mice. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:117-23. [PMID: 11286392 DOI: 10.1254/jjp.85.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has been indicated that transgenic mouse harboring a temperature-sensitive simian virus 40 large T-antigen gene is useful for establishing cell lines from tissues that have proved difficult to culture in vitro. The gastric surface mucous cell line GSM06 was established from a primary culture of gastric fundic mucosal cells of the transgenic mice. GSM06 cells showed temperature-sensitive growth in culture and expressed large T-antigen at a permissive temperature (33 degrees C) but not at a nonpermissive temperature (39 degrees C). At 39 degrees C, the cells produced periodic acid-Schiff positive glycoconjugates that formed a mucous sheet like the gastric surface mucosa in the stomach. Insulin markedly increased the production of glycoconjugates. In addition, proprotein-processing endoprotease furin suppression retarded cell growth, but accelerated cell differentiation. An air-liquid interface promoted the differentiation of GSM06 cells in a reconstruction culture with nitrocellulose membrane and collagen gel. The gastric surface mucous cell line GSM06 with unique characteristics, therefore, should be useful as an in vitro model of the gastric mucosa for physiological and pharmacological investigations. Moreover, experiments using immortalized cells established in vitro and having specific functions may offer an alternative to experiments using living animals and thereby offer a solution to this ethical issue.
Collapse
Affiliation(s)
- Y Tabuchi
- Molecular Genetics Research Center, Toyama Medical and Pharmaceutical University, Toyama City, Japan.
| |
Collapse
|
23
|
Unlüçerçi YM, Bulut R, Bekpinar S, Kuntsal L. Ebselen as protection against ethanol-induced toxicity in rat stomach. J Trace Elem Med Biol 1999; 13:170-5. [PMID: 10612080 DOI: 10.1016/s0946-672x(99)80007-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mucosal protective effect of ebselen was examined in an ethanol-induced rat gastric lesion model. Examination of gastric tissue samples by light microscopy showed that i.g. exposure to 50% ethanol induced gastric injury, which was more prominent in female rats. Ethanol did not effect the gastric acid secretion examined by means of H(+)-K+ATPase, the increment of which might be harmful in the stomach. But ebselen with or without ethanol kept H(+)-K+ATPase below control levels. Gastric alcohol dehydrogenase (ADH) was mainly responsible for oxidation of ethanol in the stomach before it enters the bloodstream. I.g. ethanol exposure inhibited the ADH activity but ebselen eliminated the ethanol-induced inhibition of this enzyme. Therefore, ebselen exhibited a beneficial effect by increasing the gastric ethanol metabolism and by ameliorating the possible tissue toxicity of ethanol. Consistently, we also found that ebselen diminished the blood ethanol level. A gender difference in the blood ethanol levels existed following the same dose of ethanol but there was no difference in ADH activity. Histologically, mucosal injury following ebselen exposure together with ethanol was less severe compared with ethanol treatment alone. We concluded that the decrease in ethanol-induced mucosal injury following ebselen may have contributed to the inhibition of H(+)-K+ATPase and the activation of ADH by ebselen.
Collapse
Affiliation(s)
- Y M Unlüçerçi
- Department of Biochemistry, Istanbul Faculty of Medicine, University of Istanbul, Turkey
| | | | | | | |
Collapse
|
24
|
Sakai H, Ikari A, Shimizu T, Sato T, Takeguchi N. Cyclic GMP-dependent cytoprotection against ethanol-induced damage in rabbit isolated gastric parietal cells. Eur J Pharmacol 1998; 361:109-17. [PMID: 9851548 DOI: 10.1016/s0014-2999(98)00689-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostaglandin E2 stimulates a nitric oxide/cyclic GMP (NO/cGMP) pathway which activates basolateral Cl- channels in rabbit gastric parietal cells. We examined whether the NO/cGMP pathway protects parietal cells from ethanol (EtOH)-induced cytotoxicity, using a parietal cell-rich suspension purified from rabbit gastric mucosa. Cytotoxicity was assayed by measuring the release of a fluorescent dye from the cells. N2,O2-dibutyryl guanosine 3',5'-cyclic monophosphate (DBcGMP) showed a concentration-dependent protective effect against EtOH-induced cytotoxicity. The half-maximal effect of DBcGMP was observed at 24 microM. DBcGMP in a concentration-dependent manner opened the basolateral Cl- channels of parietal cells, the EC50 value being 44 microM. The EtOH-induced cytotoxicity decreased as the Cl- concentration of medium decreased. A 30-s treatment with 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), an inhibitor of the Cl- channel, had a cytotoxic effect which was not prevented by pre-incubation with DBcGMP. The cytotoxic effects of EtOH and NPPB were additive and the NPPB effects did not depend on the medium Cl- concentration. The present study showed that cGMP protects the gastric parietal cell from EtOH-induced cytotoxicity, and this cytoprotection is related to basolateral Cl- channel activity in the plasma membrane via an unknown mechanism(s).
Collapse
Affiliation(s)
- H Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
25
|
Sies H, Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 38:229-46. [PMID: 8895811 DOI: 10.1016/s1054-3589(08)60986-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H Sies
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
26
|
Abstract
1. Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is a non-toxic seleno-organic drug with antiinflammatory, antiatherosclerotic and cytoprotective properties. 2. Ebselen and some of its metabolites are effective reductants of hydroperoxides including those arising in biomembranes and lipoproteins. 3. By reactions with hydroperoxides and thiols several interconversion cycles are formed which include ebselen metabolites with varying oxidation number of the selenium. 4. In the presence of thiols ebselen mimics the catalytic activities of phospholipid hydroperoxide glutathione peroxidase. 5. Ebselen inhibits at low concentrations a number of enzymes involved in inflammation such as lipoxygenases, NO synthases, NADPH, oxidase, protein kinase C and H+/K(+)-ATPase. The inhibitions are manifested on the cellular level and may contribute to the antiinflammatory potential of ebselen.
Collapse
Affiliation(s)
- T Schewe
- Institute of Biochemistry, University Clinics Charité, Humboldt University of Berlin, Germany
| |
Collapse
|