1
|
Wuo-Silva R, Fukushiro DF, Borçoi AR, Fernandes HA, Procópio-Souza R, Hollais AW, Santos R, Ribeiro LTC, Corrêa JMRM, Talhati F, Saito LP, Aramini TCF, Kameda SR, Bittencourt LRA, Tufik S, Frussa-Filho R. Addictive potential of modafinil and cross-sensitization with cocaine: a pre-clinical study. Addict Biol 2011; 16:565-79. [PMID: 21790900 DOI: 10.1111/j.1369-1600.2011.00341.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repeated or even a single exposure to drugs of abuse can lead to persistent locomotor sensitization, which is the result of an abundance of neuroplastic changes occurring within the circuitry involved in motivational behavior and is thought to play a key role in certain aspects of drug addiction. There is substantial controversy about the addictive potential of modafinil, a wake-promoting drug used to treat narcolepsy that is increasingly being used as a cognitive enhancer and has been proposed as a pharmacotherapy for cocaine dependence. Male mice were used to investigate the ability of modafinil to induce locomotor sensitization after repeated or single administration in mice. Bidirectional cross-sensitization with cocaine and modafinil-induced conditioned place preference were also evaluated. Both repeated and single exposure to moderate and high doses of modafinil produced a pronounced locomotor sensitization that cross-sensitized in a bidirectional way with cocaine. Remarkably, when cocaine and modafinil were repeatedly administered sequentially, their behavioral sensitization was additive. Supporting these behavioral sensitization data, modafinil produced a pronounced conditioned place preference in the mouse. Taken together, the present findings provide pre-clinical evidence for the addictive potential of modafinil. Our data also strongly suggest that similar neural substrates are involved in the psychomotor/rewarding effects of modafinil and cocaine.
Collapse
|
2
|
de Araujo NP, Fukushiro DF, Grassl C, Hipólide DC, Souza-Formigoni MLO, Tufik S, Frussa-Filho R. Ethanol-induced behavioral sensitization is associated with dopamine receptor changes in the mouse olfactory tubercle. Physiol Behav 2009; 96:12-7. [DOI: 10.1016/j.physbeh.2008.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 01/23/2023]
|
3
|
Hopf FW, Martin M, Chen BT, Bowers MS, Mohamedi MM, Bonci A. Withdrawal From Intermittent Ethanol Exposure Increases Probability of Burst Firing in VTA Neurons In Vitro. J Neurophysiol 2007; 98:2297-310. [PMID: 17699688 DOI: 10.1152/jn.00824.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changing the activity of ventral tegmental area (VTA) dopamine neurons from pacemaker to burst firing is hypothesized to increase the salience of stimuli, such as an unexpected reward, and likely contributes to withdrawal-associated drug-seeking behavior. Accordingly, pharmacological, behavioral, and electrophysiological data suggest an important role of the VTA in mediating alcohol-dependent behaviors. However, the effects of repeated ethanol exposure on VTA dopamine neuron ion channel function are poorly understood. Here, we repeatedly exposed rats to ethanol (2 g/kg ethanol, ip, twice per day for 5 days), then examined the firing patterns of VTA dopamine neurons in vitro after 7 days withdrawal. Compared with saline-treated animals, the function of the small conductance calcium-dependent potassium channel (SK) was reduced in ethanol-treated animals. Consistent with a role for SK in regulation of burst firing, NMDA applied during firing facilitated the transition to bursting in ethanol-treated but not saline-treated animals; NMDA consistently induced bursting only in saline-treated animals when SK was inhibited. Also, enhanced bursting in ethanol-treated animals was not a result of differences in NMDA-induced depolarization. Further, Ih was also reduced in ethanol-treated animals, which delayed recovery from hyperpolarization, but did not account for the increased NMDA-induced bursting in ethanol-treated animals. Finally, repeated ethanol exposure and withdrawal also enhanced the acute locomotor-activating effect of cocaine (15 mg/kg, ip). Thus withdrawal after repeated ethanol exposure produced several alterations in the physiological properties of VTA dopamine neurons, which could ultimately increase the ability of VTA neurons to produce burst firing and thus might contribute to addiction-related behaviors.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Department of Neurology, Emeryville, CA 94608, USA
| | | | | | | | | | | |
Collapse
|
4
|
Araujo NP, Fukushiro DF, Cunha JLS, Levin R, Chinen CC, Carvalho RC, Ribeiro ICP, Gomes DC, Abílio VC, Silva RH, Ribeiro RDA, Frussa-Filho R. Drug-induced home cage conspecifics' behavior can potentiate behavioral sensitization in mice. Pharmacol Biochem Behav 2006; 84:142-7. [PMID: 16753204 DOI: 10.1016/j.pbb.2006.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 04/10/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The effect of home cage conspecifics' behavior on locomotor sensitization to amphetamine (AMP) or ethanol (ETOH) were investigated. Female mice were repeatedly treated with saline or AMP (2.0 mg/kg for 13 days--Experiment 1) or saline or ETOH (1.8 g/kg for 21 days--Experiment 2) in home cages where all the animals had the same treatment (homogeneous home cages--HOM-HC) or in home cages where half of the animals were drug-treated and half of them were saline-treated (heterogeneous home cages--HET-HC). Behavioral sensitization was evaluated by the quantification of open-field locomotor activity after AMP or ETOH challenge injection, respectively. In both experiments, behavioral sensitization was potentiated in HOM-HC maintained animals. These results suggest that the behavioral sensitization phenomenon can be modified by home cage conspecifics' behavior.
Collapse
Affiliation(s)
- N P Araujo
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chinen CC, Faria RR, Frussa-Filho R. Characterization of the rapid-onset type of behavioral sensitization to amphetamine in mice: role of drug-environment conditioning. Neuropsychopharmacology 2006; 31:151-9. [PMID: 15956986 DOI: 10.1038/sj.npp.1300789] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A rapid-onset type of behavioral sensitization (ROBS) has been demonstrated in rats treated with a single 'priming' injection of amphetamine (AMP). In that species, however, this phenomenon was restricted to AMP-induced stereotyped behavior (SB), not occurring for the locomotor-stimulant effect (LSE) of AMP and not reflecting environment-specific sensitization. In the present study, the ROBS was characterized in the mouse. Mice received a single 'priming' intraperitoneal injection of 5.0 mg/kg AMP which was paired or not with environment. At different intervals (3, 4 or 5 h) subgroups were tested for AMP (1.5 or 5.0 mg/kg)-induced SB or AMP (1.5 mg/kg)-induced open-field LSE. Results showed that: (1) in the absence of drug-environment association, a priming injection of AMP increased the SB induced by a 1.5 mg/kg AMP challenge injection given 3 h (but not 4 or 5 h) later; (2) when the dose of AMP challenge injection was increased to 5.0 mg/kg, an enhancement of SB was verified at all the intervals tested (3, 4, and 5 h); (3) when animals were tested in an open field, the priming injection of AMP produced an increase in the LSE of a 1.5 mg/kg AMP challenge injection, given 4 h later; (4) drug-environment association increased both SB and locomotion after a saline challenge injection and potentiated the rapid-onset sensitization of both behaviors in AMP-challenged mice. Collectively, these results demonstrate that the ROBS phenomenon also occurs in mice, is extended to AMP-induced LSE, and is markedly potentiated by (but does not depend on) environmental conditioning.
Collapse
Affiliation(s)
- Cibele Cristina Chinen
- Departamento de Farrmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
6
|
Meyer PJ, Palmer AA, McKinnon CS, Phillips TJ. Behavioral sensitization to ethanol is modulated by environmental conditions, but is not associated with cross-sensitization to allopregnanolone or pentobarbital in DBA/2J mice. Neuroscience 2005; 131:263-73. [PMID: 15708471 DOI: 10.1016/j.neuroscience.2004.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE The ability of ethanol to facilitate GABA(A) receptor-mediated transmission may result in GABA(A) receptor alterations during repeated ethanol administration, and lead to dynamic behavioral changes, including sensitization to the locomotor stimulant effect of ethanol. Since alterations in GABA(A) receptors are likely to alter sensitivity to GABAergic drugs such as 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) and pentobarbital, we determined whether enhanced sensitivity to ethanol was associated with enhanced sensitivity (cross-sensitization) to these drugs. Two procedures that produced differences in the magnitude of expression of ethanol-induced locomotor sensitization were used. METHODS After habituation to testing procedures for 2 days, female DBA/2J mice were injected with ethanol or saline for 12 days. On the following day, locomotion was recorded after a challenge injection of ethanol (2 g/kg), allopregnanolone (10 or 17 mg/kg), or pentobarbital (10 or 20 mg/kg). Due to evidence that exposure to the test chambers influenced sensitization, in some experiments, mice were exposed to the test apparatus on the day prior to challenge. RESULTS Exposure to the test apparatus prior to drug challenge attenuated the expression of ethanol sensitization, compared with mice without this pre-exposure. Cross-sensitization was not observed to either allopregnanolone or pentobarbital under any condition; however, some groups of repeated ethanol-treated mice displayed tolerance to the initial stimulant effects of allopregnanolone and pentobarbital. CONCLUSIONS These studies indicate that behavioral sensitization to ethanol is not associated with cross-sensitization to pentobarbital or allopregnanolone, and that the expression of ethanol sensitization is influenced by the relative novelty of the test chamber. In addition, these results do not support a mechanism in which alterations in the neurosteroid or barbiturate modulatory sites of the GABA(A) receptor are responsible for the expression of sensitization to the locomotor stimulant effects of ethanol.
Collapse
Affiliation(s)
- P J Meyer
- Portland Alcohol Research Center, Portland, OR, USA
| | | | | | | |
Collapse
|
7
|
Schramm-Sapyta NL, Pratt AR, Winder DG. Effects of periadolescent versus adult cocaine exposure on cocaine conditioned place preference and motor sensitization in mice. Psychopharmacology (Berl) 2004; 173:41-8. [PMID: 14712337 DOI: 10.1007/s00213-003-1696-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 10/23/2003] [Indexed: 11/22/2022]
Abstract
RATIONALE Age of initial exposure to addictive substances is inversely proportional to risk of developing drug dependence. There is debate, however, as to whether intake at a young age causes dependency or whether young people who experiment with addictive substances are predisposed to dependency by other factors. OBJECTIVES. We tested the relationship between cocaine exposure at two different ages in mice and the development of subsequent drug-seeking behavior to test for age-specific exposure effects. METHODS We performed dose-response analysis of cocaine conditioned place preference (CPP) and locomotor activity in periadolescent and adult C57Bl/6J mice. In addition, we pretreated periadolescent and adult C57Bl/6J mice with cocaine or saline in the home cage or a drug-associated context, and then examined their behavior in a biased CPP procedure in adulthood. RESULTS Dose-response relationships were similar between the two age groups. In the pretreatment experiments, we observed locomotor sensitization during the pretreatment in periadolescent but not adult mice. We also observed an enhanced aversion to the non-preferred side of the chamber in periadolescent mice compared to adult mice, which was alleviated by cocaine association with that side. Third, we observed that after further conditioning in adulthood, there were no pretreatment-specific effects. CONCLUSIONS Our results are consistent with a "vulnerable brain" hypothesis for responses to cocaine based on our findings that periadolescent mice exhibit greater locomotor sensitization to cocaine, and greater baseline anxiety responses that are alleviated by cocaine exposure compared to adult mice.
Collapse
Affiliation(s)
- Nicole L Schramm-Sapyta
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
8
|
Lessov CN, Phillips TJ. Cross-Sensitization Between the Locomotor Stimulant Effects of Ethanol and Those of Morphine and Cocaine in Mice. Alcohol Clin Exp Res 2003. [DOI: 10.1111/j.1530-0277.2003.tb04398.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Szumlinski KK, Maisonneuve IM, Glick SD. Iboga interactions with psychomotor stimulants: panacea in the paradox? Toxicon 2001; 39:75-86. [PMID: 10936624 DOI: 10.1016/s0041-0101(00)00158-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, no effective therapy has been approved for the treatment of addiction to stimulant drugs (e.g., cocaine, amphetamine and its methylated derivatives). However, preclinical studies indicate that the naturally-occurring indole alkaloid, ibogaine, and a synthetic iboga alkaloid congener, 18-methoxycoronaridine (18-MC), attenuate stimulant self-administration in laboratory animals. The in vivo pharmacological interactions between iboga agents and stimulant drugs are unclear. Ibogaine enhances the increase in accumbal dopamine produced by the acute administration of stimulant drugs. Consistent with these data, both ibogaine and 18-MC potentiate the expression of stimulant-induced motor behaviors in acute and chronic stimulant-treated animals. To account for the paradox between their effects on self-administration and motor behavior, we proposed that iboga agents interfere with stimulant self-administration by increasing sensitivity to their psychomotor-activating effects. However, this interpretation is contradicted by very recent observations that 18-MC is without effect on the dopamine response to acute cocaine and that both ibogaine and 18-MC block the expression of sensitized levels of dopamine in the nucleus accumbens produced by chronic cocaine administration. Thus, a positive relationship exists between the effects of iboga pretreatment on stimulant-induced dopamine sensitization and stimulant self-administration behavior. These data indicate that iboga agents might attenuate stimulant self-administration by reversing the neuroadaptations theoretically implicated in drug craving and compulsive drug-seeking behavior.
Collapse
Affiliation(s)
- K K Szumlinski
- Center for Neuropharmacology and Neuroscience, MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | |
Collapse
|
10
|
Camarini R, Frussa-Filho R, Monteiro MG, Calil HM. MK-801 Blocks the Development of Behavioral Sensitization to Ethanol. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04609.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Itzhak Y, Martin JL. Effects of cocaine, nicotine, dizocipline and alcohol on mice locomotor activity: cocaine-alcohol cross-sensitization involves upregulation of striatal dopamine transporter binding sites. Brain Res 1999; 818:204-11. [PMID: 10082805 DOI: 10.1016/s0006-8993(98)01260-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated if repeated administration of cocaine, nicotine, dizocipline (MK-801) and alcohol yields behavioral cross-sensitization between these agents. Swiss Webster mice received in their home cage one of the following intraperitoneal (i. p.) injections for 5 consecutive days: (a) saline, (b) cocaine (20 mg/kg), (c) nicotine (0.5 mg/kg), (d) MK-801 (0.3 mg/kg) and (e) ethanol (2.0 g/kg). After a 10-day drug free period, each group (n=30) was divided into three subgroups (n=10) and received challenge injections of either cocaine, nicotine or MK-801. The horizontal and vertical movements of the mice were recorded in locomotor activity cages (test cage). Among the various drugs tested, only the cocaine and ethanol experienced mice developed sensitization to a challenge injection of cocaine; MK-801 pretreated mice showed a sensitized response only to a challenge injection of MK-801. In a second experiment, mice in their home cages received (a) saline, (b) cocaine (20 mg/kg) or (c) ethanol (2.0 g/kg) for 5 days, and challenged with an i.p. ethanol injection (2.0 g/kg) after a 10-day drug free period. Both, cocaine and ethanol experienced mice developed marked sensitization to ethanol challenge compared with the saline experienced mice. Assessment of the densities of striatal dopamine transporter (DAT) sites (by [3H]mazindol binding) 11 days after the extinction of repeated treatment with either cocaine or ethanol revealed a significant increase (71-108%) in the number of DAT binding sites. Thus, among the various psychostimulants investigated in the present study cross-sensitization between cocaine and ethanol was only observed. The behavioral sensitization we measured was primarily 'drug-dependent', rather than 'context-dependent', because animals were exposed to the test cage only once. The finding that cocaine- and ethanol-induced behavioral sensitization is associated with upregulation of striatal DAT binding sites supports the hypothesis that similar neural substrates are involved in the psychomotor/rewarding effects of cocaine and alcohol.
Collapse
Affiliation(s)
- Y Itzhak
- Department of Biochemistry and Molecular Biology (R-629), University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101, USA.
| | | |
Collapse
|
12
|
A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala. J Neurosci 1998. [PMID: 9801383 DOI: 10.1523/jneurosci.18-22-09453.1998] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The amygdala is a forebrain region that is receiving increasing attention as a modulator of pain sensation. The amygdala contributes to antinociception elicited by both psychological factors (e.g., fear) and exogenous opioid agonists. Unlike the midbrain periaqueductal gray matter (PAG) or rostral ventromedial medulla, the amygdala is a pain-modulating region that has clear bilateral representation in the brain, making it possible to determine whether pain-modulating effects of this region are lateralized with respect to the peripheral origin of noxious stimulation. Unilateral inactivation of the central nucleus of the amygdala (Ce) plus adjacent portions of the basolateral amygdaloid complex (with either the excitotoxin NMDA or the GABAA agonist muscimol) reduced the ability of morphine to suppress prolonged, formalin-induced pain derived from the hindpaw ipsilateral, but not contralateral, to the inactivated region. This effect was evident regardless of the nociceptive scoring method used (weighted scores or flinch-frequency method) and was not accompanied by a concurrent reduction in morphine-induced hyperlocomotion. Unilateral lesions restricted to the basolateral amygdaloid complex (i.e., not including the Ce) did not reduce the ability of morphine to suppress formalin-induced pain derived from either hindpaw. The results constitute the first report of a lateralized deficit in opioid antinociception after unilateral inactivation of a specific brain area and show the first clear neuroanatomical dissociation between antinociceptive and motor effects of systemically administered morphine in the rat. The amygdala appears to modulate nociceptive signals entering the ipsilateral spinal dorsal horn, probably through monosynaptic connections with ipsilateral portions of the PAG.
Collapse
|