1
|
Kumarapperuma H, Chia ZJ, Malapitan SM, Wight TN, Little PJ, Kamato D. Response to retention hypothesis as a source of targets for arterial wall-directed therapies to prevent atherosclerosis: A critical review. Atherosclerosis 2024; 397:118552. [PMID: 39180958 DOI: 10.1016/j.atherosclerosis.2024.118552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Hirushi Kumarapperuma
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sanchia Marie Malapitan
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Tianhe District, Guangzhou, Guangdong Pr., 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
2
|
Urschel K, Hug KP, Zuo H, Büttner M, Furtmair R, Kuehn C, Stumpfe FM, Botos B, Achenbach S, Yuan Y, Dietel B, Tauchi M. The Shear Stress-Regulated Expression of Glypican-4 in Endothelial Dysfunction In Vitro and Its Clinical Significance in Atherosclerosis. Int J Mol Sci 2023; 24:11595. [PMID: 37511353 PMCID: PMC10380765 DOI: 10.3390/ijms241411595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Katharina Urschel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Karsten P. Hug
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Hanxiao Zuo
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Michael Büttner
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Roman Furtmair
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Constanze Kuehn
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Florian M. Stumpfe
- Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054 Erlangen, Germany;
| | - Balaz Botos
- Department of Vascular and Endovascular Surgery, General Hospital Nuremberg, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Stephan Achenbach
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Yan Yuan
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Miyuki Tauchi
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| |
Collapse
|
3
|
Macrophages bind LDL using heparan sulfate and the perlecan protein core. J Biol Chem 2021; 296:100520. [PMID: 33684447 PMCID: PMC8027565 DOI: 10.1016/j.jbc.2021.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
The retention of low-density lipoprotein (LDL) is a key process in the pathogenesis of atherosclerosis and largely mediated via smooth-muscle cell-derived extracellular proteoglycans including the glycosaminoglycan chains. Macrophages can also internalize lipids via complexes with proteoglycans. However, the role of polarized macrophage-derived proteoglycans in binding LDL is unknown and important to advance our understanding of the pathogenesis of atherosclerosis. We therefore examined the identity of proteoglycans, including the pendent glycosaminoglycans, produced by polarized macrophages to gain insight into the molecular basis for LDL binding. Using the quartz crystal microbalance with dissipation monitoring technique, we established that classically activated macrophage (M1)- and alternatively activated macrophage (M2)-derived proteoglycans bind LDL via both the protein core and heparan sulfate (HS) in vitro. Among the proteoglycans secreted by macrophages, we found perlecan was the major protein core that bound LDL. In addition, we identified perlecan in the necrotic core as well as the fibrous cap of advanced human atherosclerotic lesions in the same regions as HS and colocalized with M2 macrophages, suggesting a functional role in lipid retention in vivo. These findings suggest that macrophages may contribute to LDL retention in the plaque by the production of proteoglycans; however, their contribution likely depends on both their phenotype within the plaque and the presence of enzymes, such as heparanase, that alter the secreted protein structure.
Collapse
|
4
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
|
6
|
Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I. Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 2005; 24:15-25. [PMID: 15748998 DOI: 10.1016/j.matbio.2004.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/14/2004] [Accepted: 12/10/2004] [Indexed: 11/19/2022]
Abstract
A number of reports point to the presence of proteoglycans and/or glycosaminoglycans within elastic fibers in normal and in pathological conditions. We present data that heparan sulphate (HS)-containing proteoglycans are associated with normal elastic fibers in human dermis and that isolated HS chains interact in vitro with recombinant tropoelastin and with peptides encoded by distinct exons of the human tropoelastin gene (EDPs). By immunocytochemistry, HS chains were identified as associated with the amorphous elastin component in the human dermis and remained associated with the residual elastin in the partially degenerated fibers of old subjects. HS appeared particularly concentrated in the mineralization front of elastic fibers in the dermis of patients affected by pseudoxanthoma elasticum (PXE). In in vitro experiments, HS induced substantial changes in the coacervation temperature and in the aggregation properties of recombinant tropoelastin and of synthetic peptides (EDPs) corresponding to sequences encoded by exons 18, 20, 24 and 30 of the human tropoelastin gene. In particular, HS modified the coacervation temperature and favoured the aggregation into ordered structures of tropoelastin molecules and of EDPs 18, 20 and 24, but not of EDP30. These data strongly indicate that HS-elastin interactions may play a role in tissue elastin fibrogenesis as well as modulating elastin stability with time and in diseases.
Collapse
Affiliation(s)
- Dealba Gheduzzi
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100-Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vikramadithyan RK, Kako Y, Chen G, Hu Y, Arikawa-Hirasawa E, Yamada Y, Goldberg IJ. Atherosclerosis in perlecan heterozygous mice. J Lipid Res 2004; 45:1806-12. [PMID: 15258195 DOI: 10.1194/jlr.m400019-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hypothesis that lipoprotein association with perlecan is atherogenic was tested by studying atherosclerosis in mice that had a heterozygous deletion of perlecan, the primary extracellular heparan sulfate proteoglycan in arteries. We first studied the expression of perlecan in mouse lesions and noted that this proteoglycan in aorta was found in the subendothelial matrix. Perlecan was also a major component of the lesional extracellular matrix. Mice with a heterozygous deletion had a reduction in arterial wall perlecan expression. Atherosclerosis in these mice was studied after crossing the defect into the apolipoprotein E (apoE) and LDL receptor knockout backgrounds. At 12 weeks, chow-fed apoE null mice with a heterozygous deletion had less atherosclerosis. However, at 24 weeks and in the LDL receptor heterozygous background, the presence of a perlecan knockout allele did not significantly alter lesion size. Thus, it appears that loss of perlecan leads to less atherosclerosis in early lesions. Although this might be attributable to a decrease in lipoprotein retention, it should be noted that perlecan might mediate multiple other processes that could, in sum, accelerate atherosclerosis.
Collapse
|
8
|
Abstract
The proteoglycan versican is one of several extracellular matrix (ECM) molecules that accumulate in lesions of atherosclerosis and restenosis. Its unique structural features create a highly interactive molecule that binds growth factors, enzymes, lipoproteins, and a variety of other ECM components to influence fundamental events involved in vascular disease. Versican is one of the principal genes that is upregulated after vascular injury and is a prominent component in stented and nonstented restenotic lesions. The synthesis of versican is highly regulated by specific growth factors and cytokines and the principal source of versican is the smooth muscle cell. Versican interacts with hyaluronan, a long chain glycosaminoglycan, to create expanded viscoelastic pericellular matrices that are required for arterial smooth muscle cell (ASMC) proliferation and migration. Versican is also prominent in advanced lesions of atherosclerosis, at the borders of lipid-filled necrotic cores as well as at the plaque-thrombus interface, suggesting roles in lipid accumulation, inflammation, and thrombosis. Versican influences the assembly of ECM and controls elastic fiber fibrillogenesis, which is of fundamental importance in ECM remodeling during vascular disease. Collectively, these studies highlight the critical importance of this specific ECM component in atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Thomas N Wight
- Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia St, No. 783, Seattle, Wash 98104-2046, USA.
| | | |
Collapse
|
9
|
Moiseeva EP, Williams B, Samani NJ. Galectin 1 inhibits incorporation of vitronectin and chondroitin sulfate B into the extracellular matrix of human vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:125-32. [PMID: 12527107 DOI: 10.1016/s0304-4165(02)00447-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galectin-1, a beta-galactoside-binding dimeric lectin, interacts with the extracellular matrix (ECM) of smooth muscle cells (SMCs) and with particular ECM proteins. Enrichment of the ECM with galectin-1 affects adhesion and proliferation of cultured SMCs. Here we investigated whether galectin-1 (1) interacts with glycosaminoglycan (GAG) chains, (2) cross-links between ligands and facilitates the incorporation of GAGs, vitronectin and plasma fibronectin in the ECM of vascular SMCs. A recombinant galectin-1 fusion protein GalH, used in this study, formed dimers and interacted with ECM proteins. GAG chains inhibited these interactions. Among the studied GAG chains, only chondroitin sulfate B interacted with GalH in beta-galactoside-dependent manner. GalH did not bridge between ECM proteins on solid phase and [125I]-labelled ECM proteins or GAGs in solution. The ECM incorporated less vitronectin in the presence of soluble GalH. GalH-enriched ECM incorporated less vitronectin and chondroitin sulfate B. The ECM partially depleted of endogenous galectins incorporated more chondroitin sulfate B compared to untreated ECM. These results suggest that galectin-1 is likely to be involved in the ECM assembly affecting incorporation of some ECM components important for SMC behaviour.
Collapse
Affiliation(s)
- Elena P Moiseeva
- Division of Cardiology, Department of Medicine, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester LE3 9QP, UK.
| | | | | |
Collapse
|
10
|
Cattaruzza S, Schiappacassi M, Ljungberg-Rose A, Spessotto P, Perissinotto D, Mörgelin M, Mucignat MT, Colombatti A, Perris R. Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro. J Biol Chem 2002; 277:47626-35. [PMID: 12221092 DOI: 10.1074/jbc.m206521200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have carried out a comprehensive molecular mapping of PG-M/versican isoforms V0-V3 in adult human tissues and have specifically investigated how the expression of these isoforms is regulated in endothelial cells in vitro. A survey of 21 representative tissues highlighted a prevalence of V1 mRNA; demonstrated that the relative frequency of expression was V1 > V2 > V3 >or= V2; and showed that <15% of the tissues transcribed significant levels of all four isoforms. By employing novel and previously described anti-versican antibodies we verified a ubiquitous versican deposition in normal and tumor-associated vascular structures and disclosed differences in the glycanation profiles of versicans produced in different vascular beds. Resting endothelial cells isolated from different tissue sources transcribed several of the versican isoforms but consistently failed to translate these mRNAs into detectable proteoglycans. However, if stimulated with tumor necrosis factor-alpha or vascular endothelial growth factor, they altered their versican expression by de novo transcribing the V3 isoform and by exhibiting a moderate V1/V2 production. Induced versican synthesis and de novo V3 expression was also observed in endothelial cells elicited to migrate in a wound-healing model in vitro and in angiogenic endothelial cells forming tubule-like structures in Matrigel or fibrin clots. The results suggest that, independent of the degree of vascularization, human adult tissues show a limited expression of versican isoforms V0, V2, and V3 and that endothelial cells may contribute to the deposition of versican in vascular structures, but only following proper stimulation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cattle
- Cell Movement
- Cells, Cultured
- Chondroitin Sulfate Proteoglycans/biosynthesis
- Chondroitin Sulfate Proteoglycans/chemistry
- Cytokines/metabolism
- Electrophoresis, Polyacrylamide Gel
- Endothelial Growth Factors
- Endothelium/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins
- Lectins, C-Type
- Lymphokines
- Microscopy, Electron
- Neoplasms/blood supply
- Neovascularization, Pathologic
- Protein Binding
- Protein Isoforms
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Time Factors
- Tissue Distribution
- Transcription, Genetic
- Tumor Necrosis Factor-alpha/metabolism
- Umbilical Veins/cytology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Versicans
- Wound Healing
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology, University of Parma, Viale delle Scienze 11/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mazzucato M, Cozzi MR, Pradella P, Perissinotto D, Malmstrom A, Morgelin M, Spessotto P, Colombatti A, De Marco L, Perris R. Vascular PG-M/versican variants promote platelet adhesion at low shear rates and cooperate with collagens to induce aggregation. FASEB J 2002; 16:1903-16. [PMID: 12468455 DOI: 10.1096/fj.02-0382com] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have identified a novel von Willebrand factor/fibrinogen/selectin-independent, platelet adhesion-promoting function of vascular PG-M/versicans that may be relevant in normal venous thrombosis and critical in atherosclerotic conditions. A purification scheme was devised to obtain vascular versicans, which by biochemical, immunochemical, and ultrastructural means were asserted to be 1) composed primarily of isoforms V1 and V2; 2) free of contaminants; 3) prevalently substituted with chondroitin-4-sulfate and dermatan sulfate (DS) chains; and 4) capable of binding hyaluronan to form link protein-stabilized ternary complexes. Real-time analysis of human platelet perfused under diverse shear forces showed that they largely failed to bind to several vascular and nonvascular proteoglycans (PGs). In contrast, they bound in a dose- and shear rate-dependent manner to vascular versicans, exhibiting a unique attachment-detachment kinetics and establishing a firm substrate tethering characterized with no significant aggregation. Digestion of these PGs with lyases and competition experiments with purified glycosaminoglycans revealed that platelet adhesion to vascular versicans was primarily mediated by their DS chains. Incorporation of the versicans into fibrillar collagen substrates augmented their adhesive activity and strongly promoted platelet aggregation at low and high shear rates. Affinity chromatography of platelet surfaces on DS columns identified a 120-140 kDa polypeptide complex that behaved as a specific vascular versican binding membrane ligand in solid-phase binding assays. These findings indicate that selective versican variants of the subendothelium may serve as ancillary GPIbalpha/integrin/selectin-independent platelet ligands in healthy and diseased vascular beds and may be directly responsible for the platelet accruing after rupture of atherosclerotic plaques.
Collapse
Affiliation(s)
- Mario Mazzucato
- Blood Transfusion Unit, The National Cancer Institute CRO-IRCCS, Aviano (PN) 33081 Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bingley JA, Hayward IP, Girjes AA, Campbell GR, Humphries DE, Stow JL, Campbell JH. Expression of heparan sulphate N-deacetylase/N-sulphotransferase by vascular smooth muscle cells. THE HISTOCHEMICAL JOURNAL 2002; 34:131-7. [PMID: 12495219 DOI: 10.1023/a:1020938430120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.
Collapse
Affiliation(s)
- John A Bingley
- Centre for Research in Vascular Biology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Fujiwara Y, Tsumura N, Yamamoto C, Kaji T. Differential effects of cadmium on proteoglycan synthesis of arterial smooth muscle cells: increase in small dermatan sulfate proteoglycans, biglycan and decorin, in the extracellular matrix at low cell density. Toxicology 2002; 170:89-101. [PMID: 11750086 DOI: 10.1016/s0300-483x(01)00538-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteoglycans (PGs), especially chondroitin/dermatan sulfate proteoglycans (CS/DSPGs), accumulate and their composition variously changes in atherosclerotic vascular walls. Since cadmium causes atherosclerosis in experimental animals, PGs synthesized by cultured vascular smooth muscle cells after exposure to cadmium were characterized in the present study. Sparse and dense cultures of the cells were metabolically labeled with [35S]sulfate for 24 h in the presence of cadmium chloride at noncytotoxic levels (0.2 microM or less). The incorporation of [35S]sulfate into glycosaminoglycans was determined by the cetylpyridinium chloride precipitation method. The labeled PGs were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-4B molecular sieve chromatography. The M(r) and the glycosaminoglycan composition of small CS/DSPGs were analyzed by SDS-polyacrylamide gel electrophoresis and Sepharose CL-6B chromatography, respectively, before and after digestion with chondroitin ABC lyase or papain. The core proteins were identified by Western blot analysis. These experiments indicate that cadmium differentially acts on the PG synthesis when vascular smooth muscle cell density is low. Specifically, cadmium increased the accumulation of small CS/DSPGs identified as biglycan and decorin in the cell layer of sparse cells. However, the hydrodynamic size and the length of chondroitin/dermatan sulfate chains in the PGs were unaffected by cadmium. On the other hand, cadmium decreased other cell layer-associated PGs that were separated from biglycan and decorin by DEAE-Sephacel chromatography in the sparse cells; as the result, whole glycosaminoglycans were decreased in both the cell layer and the conditioned medium. It is therefore concluded that cadmium may change the composition of PGs in atherosclerotic plaques through induction of biglycan and decorin synthesis and inhibition of other PG synthesis in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Yasuyuki Fujiwara
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, 920-1181, Kanazawa, Japan
| | | | | | | |
Collapse
|
14
|
Chang MY, Potter-Perigo S, Wight TN, Chait A. Oxidized LDL bind to nonproteoglycan components of smooth muscle extracellular matrices. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31645-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
15
|
Chang MY, Potter-Perigo S, Tsoi C, Chait A, Wight TN. Oxidized low density lipoproteins regulate synthesis of monkey aortic smooth muscle cell proteoglycans that have enhanced native low density lipoprotein binding properties. J Biol Chem 2000; 275:4766-73. [PMID: 10671509 DOI: 10.1074/jbc.275.7.4766] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidized low density lipoproteins (Ox-LDL) affect several biological processes involved in atherogenesis. However, it is not known whether Ox-LDL can regulate proteoglycan expression and thus affect arterial wall lipoprotein retention. This study evaluated whether Ox-LDL, as compared with native LDL, regulates proteoglycan expression by monkey arterial smooth muscle cells in vitro and whether proteoglycans synthesized in the presence of Ox-LDL exhibit altered lipoprotein binding properties. Ox-LDL stimulated glycosaminoglycan synthesis, as measured by (35)SO(4) incorporation, by 30-50% over that of native LDL. The effect was maximal after 72 h of exposure to 5 microg/ml of Ox-LDL. The molecular sizes of versican, biglycan, and decorin increased in response to Ox-LDL, as indicated by size exclusion chromatography and SDS-polyacrylamide gel electrophoresis. These effects could be mimicked by the lipid extract of Ox-LDL. These size increases were largely due to chain elongation and not to alterations in the ratio of (35)SO(4) to [(3)H]glucosamine incorporation. Affinity chromatography indicated that Ox-LDL stimulated the synthesis of proteoglycans with high affinity for native LDL. Ox-LDL also specifically stimulated mRNA expression for biglycan (but not versican or decorin), which was correlated with increased expression of secreted biglycan. Thus, Ox-LDL may influence lipoprotein retention by regulating synthesis of biglycan and also by altering glycosaminoglycan synthesis of vascular proteoglycans so as to enhance lipoprotein binding properties.
Collapse
Affiliation(s)
- M Y Chang
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
16
|
Theocharis AD, Tsolakis I, Tsegenidis T, Karamanos NK. Human abdominal aortic aneurysm is closely associated with compositional and specific structural modifications at the glycosaminoglycan level. Atherosclerosis 1999; 145:359-68. [PMID: 10488964 DOI: 10.1016/s0021-9150(99)00117-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human abdominal aortic aneurysm (AAA) is a commonly occuring disease of blood vessels and is related to alterations in extracellular matrix molecules. In this study we report on the type and fine structural characterization of glycosaminoglycans (GAGs) present in AAA as compared with those present in normal abdominal aorta. Hyaluronan (HA), the galactosaminoglycans-chondroitin sulfate (CS) and dermatan sulfate (DS) with average molecular size (Mr) of 35-kDa-as well as heparan sulfate (HS) with Mr of 40-kDa were identified in both tissues. No significant intrabatch differences in total GAG content were identified in normal and aneurysmal aortas. Comparing, however, tissue composition and structure of GAGs between AAAs and normal aortas, significant differences (P < or = 0.001) were found. The overall GAG content in AAAs was approx. 60% lower than the normal ones. A 90% decrease in HS content, and 65 and 73% in CS and HA, respectively, were also recorded. In contrast, only a slight decrease in the amount of DS was noted (8%). Structural alterations in disaccharide composition of GAGs correspond mainly to significant decreases (P < or = 0.001) of HS-derived N-sulfated disaccharides, CS-derived 6-sulfated disaccharide and DS-derived disulfated disaccharides. These results demonstrate that the development of AAA is related to dramatic quantitative and structural modifications at the GAG level and this may well be attributed to the destruction of arterial wall architecture and further significant functional inadequacies of the tissue.
Collapse
|
17
|
Abstract
Microfibrillar glycoproteins are a significant component of vascular elastic tissue, but little is known about their contribution to vascular physiology and pathology. We have investigated some physicochemical properties of the glycoproteins that may be pertinent to these roles. Because of the difficulty in isolating intact glycoproteins in a form and quantity suitable for physicochemical examination, we based our analysis on a comparison of the properties of porcine thoracic aorta and pulmonary artery extracted with GuHCl and collagenase (preparation GC) and after further treatment with dithioerythritol to remove glycoproteins (preparation GC/DTE). Amino acid analysis showed that GC/DTE had the amino acid composition of pure elastin while GC contained a higher proportion of polar amino acids, particularly in the aortic preparation. GC stained with alcian blue, particularly in the intimal region, but GC/DTE did not. GC had a higher water content and a slower viscoelastic response and the circumferential elastic modulus was approximately 50% lower (whether expressed in terms of sample weight or elastin content). Clearly, therefore, the microfibrils do not stiffen the network and may prevent the alignment of elastin fibers in the circumferential direction. Their effect on hydration may arise either because they impose mechanical constraints on the geometry of the network or because they modify the inter- and intramolecular hydrophobic or electrostatic interactions that influence the tissue organization and hydration. Molecular probe measurements of the intrafibrillar pore structure using radiolabeled and fluorescent probes showed that removal of the microfibrils caused a slight decrease in the extrafibrillar water space and a larger decrease in the intrafibrillar water space. Sucrose, a small probe molecule, was able to penetrate most of the intrafibrillar water space when microfibrils were present but was virtually excluded when they were not. Potentiometric titration and radiotracer assays of ion binding both showed that the microfibrils contribute a considerable negative charge (-9 mumoles/g wet tissue in the aortic preparation and -16 mumoles/g wet weight in the pulmonary artery) and increase calcium binding by approximately 30%.
Collapse
Affiliation(s)
- M Spina
- Institute of Histology, University of Padova, Italy
| | | | | | | | | |
Collapse
|
18
|
Graf R, Gossrau R, Neudeck H, Matejevic D, Vetter K. The elastic fiber system in the human placenta with special reference to elastic type blood vessels. Placenta 1998. [DOI: 10.1016/s0143-4004(98)80025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Vijayagopal P, Figueroa JE, Fontenot JD, Glancy DL. Isolation and characterization of a proteoglycan variant from human aorta exhibiting a marked affinity for low density lipoprotein and demonstration of its enhanced expression in atherosclerotic plaques. Atherosclerosis 1996; 127:195-203. [PMID: 9125309 DOI: 10.1016/s0021-9150(96)05954-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteoglycans (PG) are implicated in the pathophysiology of atherosclerosis due to their ability to complex with plasma low density lipoproteins (LDL). Studies were conducted to determine whether human aorta contains PG subclasses that exhibit enhanced LDL binding ability. PG were isolated from normal and atherosclerotic aortas by a combination of dissociative extraction and ion-exchange chromatography. The PG were further subfractionated on an LDL affinity column based on their binding affinity to LDL. Two PG fractions exhibiting high-affinity binding to LDL, as evidenced by their elution at 1.0 and 1.5 M NaCl, respectively, were isolated from both normal and atherosclerotic tissue. Compared with normal tissue, atherosclerotic tissue showed a twofold increase in the high-affinity PG that eluted at 1.5 M NaCl. Gel filtration of the high-affinity PG from normal tissue yielded two peaks (nPG2 and nPG3), while the high-affinity PG from plaque tissue was resolved into three peaks (pPG1, pPG2, and pPG3). pPG1 eluted at the void volume of the column, indicating that it was of very large molecular size. The hydrodynamic size of pPG2 was larger than that of the corresponding nPG2 (Kav = 0.44 versus 0.51), while pPG3 had the same hydrodynamic size as nPG3 (Kav = 0.86). The high-affinity PG subfractions from normal aorta contained varying proportions of chondroitin sulfates, dermatan sulfates, and heparan sulfate. In contrast, the PG subfractions from plaque tissue contained predominantly chondroitin sulfates and heparan sulfate. In vitro complexes of LDL and the high-affinity PG fractions from normal aorta and plaque tissue stimulated cholesteryl ester synthesis in human monocyte-derived macrophages. However, the LDL-plaque PG complex was significantly more potent than the LDL-normal aorta PG complex in this respect. These results indicate that PG subclasses with enhanced binding affinity to LDL occur in the normal human aorta and that their concentration increases significantly in atherosclerotic lesions. In addition, the high-affinity PG in plaque tissue have altered characteristics and increased ability to stimulate LDL-mediated cholesterol ester synthesis in macrophages. This could lead to increased lipid deposition during atherogenesis.
Collapse
Affiliation(s)
- P Vijayagopal
- Department of Medicine, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | | | |
Collapse
|
20
|
Kruse R, Merten M, Yoshida K, Schmidt A, Völker W, Buddecke E. Cholesterol-dependent changes of glycosaminoglycan pattern in human aorta. Basic Res Cardiol 1996; 91:344-52. [PMID: 8922251 DOI: 10.1007/bf00788713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans are regular constituents of the arterial wall and essential for its structure and function. The arteriosclerosis-dependent changes of glycosaminoglycans were investigated, the degree of arteriosclerosis was monitored by the cholesterol content of the tissue. Histological characterization was achieved by electron microscopy. Total glycosaminoglycans were isolated from 33 delipidated segments of human aorta thoracica after exhaustive proteolytic digestion, and fractionated into the individual glycosaminoglycans by a multistep purification procedure. Chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS), and hyaluronate (HA) were identified and quantified by chemical and enzymatic analysis. The concentration of total and individual glycosaminoglycans, expressed as mg/g delipidated dry weight of tissue, decreased significantly with increasing cholesterol content of tissue (p = 0.0005-0.005). The extent of decrease differed between the individual glycosaminoglycans as indicated by a shift in the CS/DS:HA:HS ratio from 47:32:21 in low cholesterol aortic segments to 59:29:12 in cholesterol-rich specimens. Determination of the relative molecular masses (Mr) revealed 58 kDa for CS/DS and 92 kDa for HS with a (statistically not significant) increase of the molecular mass of CS/DS and a decrease of HS with increasing cholesterol content. The copolymeric CS/DS glycosaminoglycans were disintegrated enzymatically into CS and DS containing fragments. A significantly higher relative DS content (p = 0.01) was found in cholesterol-rich arterial tissue (32.5%) as compared with low cholesterol tissue samples (28.8%). Cell culture experiments revealed that human arterial HS is able to inhibit the proliferation of cultured human arterial smooth muscle cells. The HS concentration required for a 30% inhibition of smooth muscle cell proliferation was in the same order as the tissue concentration of HS. This confirms the function of HS as an endogenous inhibitor of cell division and its impact for the development of atherosclerosis.
Collapse
MESH Headings
- Aorta, Thoracic/chemistry
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/ultrastructure
- Arteriosclerosis/drug therapy
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Cell Division/drug effects
- Cells, Cultured
- Cholesterol/analysis
- Chondroitin Sulfates/analysis
- Dermatan Sulfate/analysis
- Glycosaminoglycans/analysis
- Heparitin Sulfate/pharmacology
- Humans
- Microscopy, Electron
- Molecular Weight
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/ultrastructure
Collapse
Affiliation(s)
- R Kruse
- Institut für Humangenetik der Universität, Bonn, FRG
| | | | | | | | | | | |
Collapse
|
21
|
Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, Virmani R. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93:1354-63. [PMID: 8641024 DOI: 10.1161/01.cir.93.7.1354] [Citation(s) in RCA: 741] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Coronary thrombosis has been reported to occur most frequently in lipid-rich plaques with rupture of a thin fibrous cap and contact of the thrombus with a pool of extracellular lipid. However, the frequency of coronary artery thrombosis with or without fibrous cap rupture in sudden coronary death is unknown. In this study, we compared the incidence and morphological characteristics of coronary thrombosis associated with plaque rupture versus thrombosis in eroded plaques without rupture. METHODS AND RESULTS Fifty consecutive cases of sudden death due to coronary artery thrombosis were studied by histology and immunohistochemistry. Plaque rupture of a fibrous cap with communication of the thrombus with a lipid pool was identified in 28 cases. Thrombi without rupture were present in 22 cases, all of which had superficial erosion of a proteoglycan-rich plaque. The mean age at death was 53 +/- 10 years in plaque rupture cases versus 44 +/- 7 years in eroded plaques without rupture (P < .02). In the plaque-rupture group, 5 of 28 (18%) were women versus 11 of 22 (50%) with eroded plaques (P = .03). The mean percent luminal area stenosis was 78 +/- 12% in plaque rupture and 70 +/- 11% in superficial erosion (P < .03). Plaque calcification was present in 69% of ruptures versus 23% of erosions (P < .002). In plaque ruptures, the fibrous cap was infiltrated by macrophages in 100% and T cells in 75% of cases compared with 50% (P < .0001) and 32% (P < .004), respectively, in superficial erosions. Clusters of smooth muscle cells adjacent to the thrombi were present in 95% of erosions versus 33% of ruptures (P < .0001). HLA-DR expression was more often seen in macrophages and T cells in ruptures (25 of 28 cases) compared with expression in macrophages in superficial erosion arteries (8 of 22 cases, P = .0002). CONCLUSIONS Erosion of proteoglycan-rich and smooth muscle cell-rich plaques lacking a superficial lipid core or plaque rupture is a frequent finding in sudden death due to coronary thrombosis, comprising 44% of cases in the present study. These lesions are more often seen in younger individuals and women, have less luminal narrowing and less calcification, and less often have foci of macrophages and T cells compared with plaque ruptures.
Collapse
Affiliation(s)
- A Farb
- Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Papakonstantinou E, Karakiulakis G, Roth M, Block LH. Platelet-derived growth factor stimulates the secretion of hyaluronic acid by proliferating human vascular smooth muscle cells. Proc Natl Acad Sci U S A 1995; 92:9881-5. [PMID: 7568237 PMCID: PMC40906 DOI: 10.1073/pnas.92.21.9881] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Total glycans from the cell layer and the culture medium of human vascular smooth muscle cells (VSMC) that had been cultivated in the presence of platelet-derived growth factor (PDGF) were isolated and purified by gel filtration after Pronase and DNase digestion and alkaliborohydride treatment. Measurements of the content of neutral hexoses and uronic acids revealed that PDGF stimulates total glycan synthesis by proliferating VSMC in a linear fashion from 24 h to 72 h of incubation. In contrast, total glycan synthesis by human fibroblasts, epithelial cells, or endothelial cells was not affected by PDGF, indicating cell-type specificity. Chemical, biochemical, and enzymological characterization of the total glycans synthesized by VSMC showed that PDGF stimulates the secretion of a 340-kDa glycan molecule in a time-dependent manner from 24 h to 72 h. This molecule is highly acidic, shares a common structure with hyaluronic acid, and exhibits a potent antiproliferative activity on VSMC. These results suggest that VSMC in response to PDGF are capable of controlling their own growth and migration by the synthesis of a specific form of hyaluronic acid with antiproliferative potency, which may be involved in the regulation of the local inflammatory responses associated with atherosclerosis.
Collapse
|
23
|
Fager G, Camejo G, Olsson U, Ostergren-Lundén G, Lustig F, Bondjers G. Binding of platelet-derived growth factor and low density lipoproteins to glycosaminoglycan species produced by human arterial smooth muscle cells. J Cell Physiol 1995; 163:380-92. [PMID: 7706380 DOI: 10.1002/jcp.1041630218] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The platelet-derived growth factor (PDGF) binds via a defined amino acid sequence to heparin (Fager et al., 1992, In Vitro Cell. Dev. Biol., 28A:176-180) and the protein moiety of low density lipoproteins (LDL; apo B-100) via a similar sequence to chondroitin sulfate (Camejo et al., 1988, Arteriosclerosis Thromb., 8:368-377). In this study, synthetic oligopeptides were used to explore the capacity of smooth muscle cell-derived glycosaminoglycans to bind to the critical sequences of PDGF and apo B-100. In vitro, proliferating human arterial smooth muscle cells synthesized twice as much proteoglycans as did quiescent cells. The dominating glycosaminoglycan side chains were chondroitin and heparan sulfates in secreted and cell-associated proteoglycans, respectively. The chondroitin sulfate-rich proteoglycans had a higher molecular size and were to a larger extent secreted into the culture medium than the heparan and dermatan sulfate-rich proteoglycans. Heparan, dermatan, and chondroitin sulfates bound to the PDGF-derived oligopeptide with affinities similar to those of heparin. However, while heparan and dermatan sulfates both inhibited DNA synthesis in human arterial smooth muscle cells, chondroitin sulfate had no such inhibitory effect. Like the PDGF-derived oligopeptide, the apo B-100-derived oligopeptide bound to these glycosaminoglycans. At the same time, both oligopeptides displaced bound LDL from chondroitin sulfate in vitro and released the block on DNA synthesis in smooth muscle cells that heparin induced in culture. Thus, chondroitin, dermatan, and heparan sulfates produced by arterial smooth muscle cells may bind LDL and PDGF competitively in atherogenesis but only heparan and dermatan sulfates inhibit cellular DNA synthesis. LDL and PDGF deposition may occur by binding to similar binding sites on glycosaminoglycans derived from smooth muscle cells within atherosclerotic lesions.
Collapse
Affiliation(s)
- G Fager
- Wallenberg Laboratory for Cardiovascular Research, Faculty of Medicine, University of Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Magnus JH, Stenstad T, Husby G. Proteoglycans, glycosaminoglycans and amyloid deposition. BAILLIERE'S CLINICAL RHEUMATOLOGY 1994; 8:575-97. [PMID: 7954863 DOI: 10.1016/s0950-3579(05)80116-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J H Magnus
- Department of Rheumatology, University Hospital, Tromsø, Norway
| | | | | |
Collapse
|
25
|
Formato M, Senes A, Soccolini F, Coinu R, Cherchi GM. A reversed phase HPLC method for the simultaneous determination of all monosaccharides contained in galactosaminoglycan isomers from human aorta proteoglycans. Carbohydr Res 1994; 255:27-39. [PMID: 8181011 DOI: 10.1016/s0008-6215(00)90969-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Monosaccharides obtained by reduction and hydrolysis of galactosaminoglycan isomers, are entirely determined as their perbenzoyl derivatives by reversed phase HPLC, without removal of hexosamines prior to benzoylation. The method is suitable for the analysis of arterial proteoglycan constituent galactosaminoglycans, providing specific, precise and reproducible results. Moreover, synthesis and characterization of tri-O-benzoyl-1,6-L-anhydroidose and N-benzoyl-tetra-O-benzoyl-alpha- and -beta-D-galactosamine have been accomplished.
Collapse
Affiliation(s)
- M Formato
- Institute of General Physiology and Biological Chemistry, University of Sassari, Italy
| | | | | | | | | |
Collapse
|
26
|
Srinivasan SR, Xu JH, Vijayagopal P, Radhakrishnamurthy B, Berenson GS. Injury to the arterial wall of rabbits produces proteoglycan variants with enhanced low-density lipoprotein-binding property. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1168:158-66. [PMID: 8504150 DOI: 10.1016/0005-2760(93)90120-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of arterial injury on proteoglycans (PG) and their ability to bind low-density lipoprotein (LDL) were studied in rabbits 12 weeks after balloon injury. Following biosynthetic labeling in an organ culture system, PG were isolated under dissociative conditions from deendothelialized areas (DEA), reendothelialized areas (REA), and uninjured areas (control) of the aortic tissue. DEA and REA tissues yielded 42-52% more PG and incorporated 39-67% more 35S-label into proteoglycans than control tissues. Ion-exchange chromatography of PG from DEA and REA tissues yielded PG-I, PG-II, and PG-III, while from control tissue only PG-I and PG-II. PG-II formed major portion (74-84%) of the isolated PG in all three tissue types. PGI preparations comprised entirely of heparan sulfate (HS)-PG of similar hydrodynamic size (Kav = 0.45-0.47). PG-II from DEA and REA tissues consisted of PGII-A (Kav = 0.02-0.04) and PGII-B (Kav = 0.32), while PG-II from control tissue contained only PGII-B with relatively smaller hydrodynamic size (Kav = 0.40). PGII-A preparations contained predominantly chondroitin sulfate (CS)-PG with no dermatan sulfate (DS); whereas PGII-B consisted mainly of CS/DS-PG, with relatively high proportion of DS in DEA and REA tissues vs. control tissue (50-54% vs. 43%). Further, the glycosaminoglycan chains of CS/DS-PG from DEA and REA tissues were 1.7-fold longer than those from control tissue. PG-III contained about 80% CS/DS-PG and 20% HS-PG; CS/DS-PG was similar to those found in PGII-B from DEA and REA tissues. HS-PG from PG-II and PG-III, unlike those from PG-I, was enriched with N-sulfated residues. PGI from all the three tissue types bound poorly to LDL. On the other hand, PGII-A, PGII-B, and PG-III from DEA and REA tissues showed enhanced ability to bind LDL, in that order. For example, the LDL-binding ability of PGII-B from DEA and REA was 2.9- to 3.1-fold above that from control tissue. Thus, arterial injury with or without regenerated endothelium produces proteoglycan variants with altered characteristics and enhanced LDL-binding ability.
Collapse
Affiliation(s)
- S R Srinivasan
- Department of Applied Health Sciences, Tulane University Medical Center School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824
| | | | | | | | | |
Collapse
|
27
|
Wasty F, Alavi MZ, Moore S. Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 1993; 36:316-22. [PMID: 8477876 DOI: 10.1007/bf00400234] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arterial glycosaminoglycans are considered to be important in atherogenesis due to their ability to trap lipid inside the vessel wall and to influence cellular migration and proliferation. Atherosclerotic lesions have displayed an altered glycosaminoglycan content and distribution. Diabetes is a recognized risk factor for atherosclerosis, but no information is available on the arterial glycosaminoglycans in human diabetes. We examined glycosaminoglycans in normal and atherosclerotic intima of non-diabetic and Type 2 (non-insulin-dependent) diabetic patients. Intima was stripped from autopsy samples of thoracic aortas; normal and plaque areas were separated. Glycosaminoglycans were isolated by delipidation, proteolytic digestion, and precipitation and characterized by quantitation of total glycosaminoglycan and evaluation of glycosaminoglycan distribution by electrophoresis and densitometry. Results indicate a significant decrease in total glycosaminoglycan and significant changes in their distribution in atherosclerotic plaques: a relative decrease in heparan sulphate, a relative increase in dermatan sulphate and thus a decrease in the ratio of heparan sulphate to dermatan sulphate. A similar but less marked change in the ratio was found in normal intima of diabetic subjects, while in their plaques this change was more pronounced. This suggests that changes in arterial glycosaminoglycans (especially the ratio of heparan sulphate to dermatan sulphate) precede the development of lesions in diabetes and may be important in atherogenesis.
Collapse
Affiliation(s)
- F Wasty
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
28
|
Radhakrishnamurthy B, Jeansonne N, Tracy RE, Berenson GS. A monoclonal antibody that recognizes hyaluronic acid binding region of aorta proteoglycans. Atherosclerosis 1993; 98:179-92. [PMID: 7681290 DOI: 10.1016/0021-9150(93)90127-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue with 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion exchange chromatography. A monoclonal antibody C8F4 was developed to this core protein. The characteristics and specificity of the antibody were studied by an enzyme-linked immunosorbent assay (ELISA) using an alkaline phosphatase conjugated antibody (goat anti-mouse IgG). The antibody binding to the core protein was found specific and optimal at pH 7.0. The antibody recognizes either intact chondroitin sulfate-dermatan sulfate proteoglycan monomer, chondroitinase ABC digested monomer or chemically deglycosylated proteoglycan. Free chondroitin sulfates, keratan sulfate and hyaluronic acid did not compete for the antigenic sites in ELISA. Limited hydrolysis of the core protein by trypsin resulted in three peptides and only the peptide with a molecular weight M(r) = 40,000 was found capable of binding to hyaluronic acid. The antibody C8F4 recognized this hyaluronic acid binding peptide but did not recognize the other two peptides suggesting that the epitope(s) for this antibody is in the hyaluronic acid-binding region of the core protein. The antibody recognized the core proteins from bovine nasal cartilage proteoglycan and human aorta proteoglycan but did not recognize bovine aorta link protein, bovine serum albumin, human serum albumin, human transferrin, collagen Type I and fibronectin. The antibody was found useful to localize proteoglycans in atherosclerotic lesions in human aorta by immunohistochemical techniques.
Collapse
|
29
|
Pasquali-Ronchetti I, Baccarani-Contri M, Fornieri C, Mori G, Quaglino D. Structure and composition of the elastin fibre in normal and pathological conditions. Micron 1993. [DOI: 10.1016/0968-4328(93)90016-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Fager G, Camejo G, Bondjers G. Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. I. Evidence for reversible binding and inactivation of the platelet-derived growth factor by heparin. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:168-75. [PMID: 1582991 DOI: 10.1007/bf02631087] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the effects of interactions between growth factors and heparin-like glycosaminoglycans on untransformed human arterial smooth muscle cells (hASMC) in vitro. The results indicate that heparin in the presence of serum mitogens prevents the cells from entering the S phase of the cell cycle by binding and inactivating reversibly some serum mitogen(s). Our results suggest that platelet-derived growth factor (PDGF) is one of them and that it is the most potent stimulator of hASMC growth in vitro. Thymidine incorporation as well as increase in DNA content was inhibited not only by the presence of heparin in serum-containing medium but also when serum was chromatographed on Heparin-Sepharose at physiologic salt concentrations before exposure to the cells. The mitogenic activity of the unretained serum fraction was restored by the addition of PDGF AA, AB, or BB dimers or of a fraction (RF I) that dissociated from Heparin-Sepharose at 0.2 to 0.6 M NaCl. Radiolabeled recombinant PDGF (c-sis) dissociated from Heparin-Sepharose within a concentration range of NaCl similar to that of RF I. Neither the unretained material nor the RF I or PDGF dimers were effective alone. The effect of RF I was significantly decreased by the addition of an anti-PDGF IgG that is known to neutralize the PDGF mitogenic activity partially. Addition of heparin abolished DNA-synthesis when the PDGF dimers or RF I were combined with the unretained fraction. A second fraction (RF II) bound strongly to Heparin-Sepharose and eluted between 1.1 and 1.6 M NaCl. The RF II also induced DNA synthesis but was neither as efficient as RF I nor depending on other serum fractions for growth promotion and it was not inhibited by anti-PDGF IgG. A similar strong affinity for Heparin-Sepharose was found for labeled basic fibroblast growth factor and we cannot exclude the possibility that RF II represent fibroblast growth factor. Under these culture conditions, inhibition of hASMC proliferation was directly correlated with the expression of smooth muscle specific alpha actin isoforms in stress fibers and the suppression of a proliferating cell-specific nuclear antigen. Conversely, stimulation of hASMC proliferation was associated with the opposite phenomenon. We conclude that heparin-like glycosaminoglycans influence growth and phenotype of hASMCs in vitro by binding and inactivating PDGF. Inasmuch as heparin-like substances constitute a significant proportion of the proteoglycan-associated glycosaminoglycans of the arterial wall, such mechanisms might be important for the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- G Fager
- Wallenberg Laboratory for Cardiovascular Research, Faculty of Medicine, University of Göteborg, Sweden
| | | | | |
Collapse
|
31
|
Fager G, Camejo G, Olsson U, Ostergren-Lundén G, Bondjers G. Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. II. The platelet-derived growth factor A-chain contains a sequence that specifically binds heparin. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:176-80. [PMID: 1582992 DOI: 10.1007/bf02631088] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic oligopeptides were used to study the specificity of the interaction between heparin and platelet-derived growth factor (PDGF) in competition experiments. DNA synthesis in PDGF-dependent human arterial smooth muscle cell (hASMC) cultures was used as a biological tracer of PDGF activity. Oligo-108-124 (corresponding to amino acid residues 108-124 of the long PDGF A-chain isoform) had no effect on DNA synthesis in itself but competed at 10(-10) M concentration effectively with PDGF for binding to heparin and released the block on thymidine incorporation induced by heparin. Poly-lysine-serine (lysine:serine ratio 3:1) was also effective but at a considerably higher concentration (10(-6) M). Poly-arginine-serine did not compete with PDGF for heparin as deduced from the cell assay. This suggested that among basic amino acids, lysine was more important than arginine for heparin binding. Deletion of lysine residues 115 and 116 in Oligo-108-124 abolished its effect on the interaction between PDGF and heparin in the cell assay. Likewise, Oligo-69-84 (corresponding to the PDGF A-chain residues 69-84), with three lysine residues interrupted by a proline, was ineffective. In Oligo-108-124, the lysine residues are interrupted by an arginine. Our results suggested that the binding between PDGF and heparin is specific and that the amino acid sequence [-Lys115-Lys116-Arg117-Lys118-Arg119-] is of major importance. They do not however, exclude other domains of the PDGF A or B chains as additional binding sites for heparin nor do they exclude the possibility that heparin and the PDGF receptor share a common binding site.
Collapse
Affiliation(s)
- G Fager
- Wallenberg Laboratory for Cardiovascular Research, Faculty of Medicine, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
32
|
Cherchi GM, Coinu R, Demuro P, Formato M, Sanna G, Tidore M, Tira ME, De Luca G. Structural and functional modifications of human aorta proteoglycans in atherosclerosis. MATRIX (STUTTGART, GERMANY) 1990; 10:362-72. [PMID: 2084515 DOI: 10.1016/s0934-8832(11)80143-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteoglycans (PGs) were extracted from minced normal human aorta intima and media and adjacent atherosclerotic plaques. Samples obtained from each individual artery which showed different degrees of atherosclerotic involvement were studied separately. Comparing normal and atherosclerotic areas from the same aorta, the hexuronic acid content was always lower in the atherosclerotic minces. Atherosclerotic samples always contained a higher percentage amount of chondroitinase AC resistant material. PGs were sequentially extracted with increasing guanidine hydrochloride (GuHCl) concentrations. 0.4 M GuHCl extracted about 13% of total PGs, containing mostly chondroitin sulphate (CS), whilst 4 M GuHCl extracted about 50% of total PGs, containing CS, dermatan sulphate (DS), heparan sulphate and hyaluronic acid. PGs from atherosclerotic minces showed a higher DS amount, based on electrophoretic glycosaminoglycan (GAG) analysis. PGs extracted with 4 M GuHCl were further characterized by gel-chromatography and by CsCl density gradient centrifugation. The relative content of PGs with highest hydrodynamic size appeared to be markedly reduced in all the atherosclerotic samples. LDL/GAGs and LDL/PGs interactions were studied by affinity chromatography. GAGs obtained by papain digestion of PGs extracted from atherosclerotic areas contained a glycosaminoglycuronan interacting more strongly with human LDL than GAGs from normal areas of the same artery. The complete elution of PGs required higher NaCl concentration than GAGs. Moreover, PGs from atherosclerotic samples showed higher affinity for LDL than PGs from normal areas of the same aorta.
Collapse
Affiliation(s)
- G M Cherchi
- Institute of Applied Biology, University of Sassari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Radhakrisnamurthy B, Srinivasan SR, Ruiz HA, Dalferes ER, Berenson GS. Variations in the composition of arterial wall isomeric chondroitin sulfate proteoglycans among different animal species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 97:355-62. [PMID: 2123768 DOI: 10.1016/0305-0491(90)90293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Isomeric chondroitin sulfate proteoglycans were extracted from human, bovine, swine and rabbit aortas by 4 M guanidine-HCl and were fractionated and purified by CsCl isopycnic centrifugation, Sepharose CL-4B gel filtration, DEAE-Sepharose ion-exchange chromatography and octyl-Sepharose hydrophobic interaction chromatography. 2. The molecular size and the composition of isomeric chondroitin sulfate proteoglycans varied among species. Variations were also noted in the composition and molecular weight of constituent glycosaminoglycan chains. 3. Observations made on chondroitinase ABC and chondroitinase AC digests of proteoglycans indicate that dermatan sulfate is linked to the core proteins through chondroitin sulfates.
Collapse
Affiliation(s)
- B Radhakrisnamurthy
- Department of Medicine, Louisiana State University School of Medicine, New Orleans 70112
| | | | | | | | | |
Collapse
|
34
|
Völker W, Schmidt A, Buddecke E. Cytochemical changes in a human arterial proteoglycan related to atherosclerosis. Atherosclerosis 1989; 77:117-30. [PMID: 2473759 DOI: 10.1016/0021-9150(89)90073-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cuprolinic blue (CB) staining method has been used to visualize and characterize proteoglycans (PG) in the extracellular matrix (ECM) of normal and atherosclerotic human arteries. Arterial tissues of 13 individuals (1-83 years of age) were obtained by autopsy. For electron microscopic visualization of PGs staining with CB was performed in the presence of a critical electrolyte concentration of 0.3 M MgCl2. Under these conditions CB selectively interacts with the polysulfated glycosaminoglycan (GAG) side chains of the molecules. Removal of PG side chains by GAG-degrading enzymes prior to CB staining selectively prevented the formation of chondroitin sulfate (CS)-rich and dermatan sulfate (DS)-rich PG-CB precipitates. The DS-rich type of PG is mainly associated with collagen fibrils, the CS-rich type of PG is preferentially localized in nonfibrous areas of the ECM (soluble matrix). When normal arterial tissues are compared with those affected by atherosclerosis quantitative and qualitative changes of PG-CB precipitates are detected. In fibrous plaques a strong accumulation of a large CS-rich type of precipitate close by smooth muscle cells (SMC) and foam cells is observed. In addition, these precipitates are significantly longer in fibrous plaques than in adjacent normal media (116 nm vs. 100 nm; P less than 0.001). This alteration is independent of the age of the donor. Small DS-rich PG-CB precipitates associated with collagen fibrils show strong variations in their length, but not a significant tendency towards elongated precipitates in atherosclerosis. The present results demonstrate that ultracytochemical and morphometric analysis are useful in providing information on the diverse types, locations, interactions, and possibly of molecular changes of PGs in normal and atherosclerotic human arteries.
Collapse
Affiliation(s)
- W Völker
- Institute for Arteriosclerosis Research, University of Münster, F.R.G
| | | | | |
Collapse
|
35
|
Abstract
Although proteoglycans constitute a minor component of vascular tissue, these molecules have been shown to influence a number of arterial properties such as viscoelasticity, permeability, lipid metabolism, hemostasis, and thrombosis. A hallmark of early and late atherosclerosis is the accumulation of proteoglycans in the intimal lesions. Yet, it is not clear why this accumulation occurs. This article reviews the classes of proteoglycans synthesized by the two major cell types of the arterial wall--the endothelial and smooth muscle cell. Detailed consideration is then given to the modulation of proteoglycan metabolism and the role that proteoglycans play in a number of cellular events such as adhesion, migration, and proliferation--important processes in both the development and the pathogenesis of blood vessels. Last, the involvement of proteoglycans in two critical vascular wall processes--hemostasis and lipid metabolism--is reviewed, because these events pertain to atherogenesis. This review emphasizes the importance of proteoglycans in regulating several key events in normal and pathophysiological processes in the vascular tissue.
Collapse
Affiliation(s)
- T N Wight
- Department of Pathology, University of Washington, School of Medicine, Seattle 98195
| |
Collapse
|