1
|
Setti PG, Ezaz T, Deon GA, Utsunomia R, Tanomtong A, Ditcharoen S, Donbundit N, Sumontha M, Seetapan K, Buasriyot P, Pinthong K, Thongnetr W, dos Santos N, Porto-Foresti F, Liehr T, Cioffi MDB. Evolution of ZW Sex Chromosomes in Ptyas Snakes (Reptilia, Colubridae): New Insights from a Molecular Cytogenetic Perspective. Int J Mol Sci 2025; 26:4540. [PMID: 40429685 PMCID: PMC12111239 DOI: 10.3390/ijms26104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Snakes are cytogenetically dynamic, characterized by largely conserved diploid chromosome numbers although displaying varied variable evolutionary stages of their sex chromosomes. This study examined four snakes, with a special focus on the genus Ptyas, to provide evolutionary insights into the evolution of ZW sex chromosomes. We performed an extensive karyotype characterization using conventional and molecular cytogenetic approaches, described for the first time the karyotype of Ptyas korros, and revisited the karyotype descriptions of P. mucosa, Chrysopelea ornata, and Fowlea flavipunctatus. We found that all species except F. flavipunctatus have highly heterochromatic W chromosomes enriched in satDNAs or microsatellite repeats. Repetitive sequences accumulate with the heterochromatinization of the W chromosome but are not necessarily associated with this process, demonstrating the dynamic makeup of snake sex chromosomes. Autosomal locus-specific and sex chromosome probes from Pogona vitticeps and Varanus acanthurus did not show hybridization signals in Ptyas snakes, suggesting divergent evolutionary pathways. This finding highlighted the dynamic nature of sex chromosome evolution in snakes, which occurred independently in lizards.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (G.A.D.); (M.d.B.C.)
- Institute of Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Tariq Ezaz
- Institute of Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Geize Aparecida Deon
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (G.A.D.); (M.d.B.C.)
| | - Ricardo Utsunomia
- Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (R.U.); (N.d.S.); (F.P.-F.)
| | - Alongklod Tanomtong
- Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand; (A.T.); (S.D.); (N.D.)
| | - Sukhonthip Ditcharoen
- Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand; (A.T.); (S.D.); (N.D.)
| | - Nattasuda Donbundit
- Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand; (A.T.); (S.D.); (N.D.)
| | - Montri Sumontha
- Ranong Marine Fisheries Research and Development Center, Muang, Ranong 85000, Thailand;
| | - Kriengkrai Seetapan
- School of Agriculture and Natural Resources, University of Phayao, Muang, Phayao 56000, Thailand;
| | - Phichaya Buasriyot
- Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Nonthaburi 11000, Thailand;
| | - Krit Pinthong
- Faculty of Agricultural Technology and Agro-Industry, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Weera Thongnetr
- Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
| | - Natália dos Santos
- Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (R.U.); (N.d.S.); (F.P.-F.)
| | - Fábio Porto-Foresti
- Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (R.U.); (N.d.S.); (F.P.-F.)
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Marcelo de Bello Cioffi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (G.A.D.); (M.d.B.C.)
| |
Collapse
|
2
|
Sanches MB, Souza LHB, Silva BC, da Rosa CM, Brescovit AD, Lourenço LB, Araujo D. Cytogenetic insights into Sosippinae (Araneae, Lycosidae) reveal pronounced diploid number reduction in Aglaoctenus and elevated number of rDNA loci in two unrelated species. ZOOLOGY 2025; 170:126269. [PMID: 40273651 DOI: 10.1016/j.zool.2025.126269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Spiders represent a fascinating group for studying chromosomal evolution due to their dynamic karyotypes, which reveal significant differences even between closely related taxa. Lycosidae, one of the most species-rich families of spiders, has its major relationships well stablished, though minor interspecific relationships remain poorly understood. Here, we analyzed chromosomal data from four species belonging to Aglaoctenus and Diapontia, two genera within the subfamily Sosippinae, to discuss the evolution of chromosomal traits within this lineage. For karyological analysis, we employed Giemsa staining, C-banding, Ag-NOR staining, and 28S rDNA FISH to identify key chromosomal characteristics and the distribution of repetitive elements. Both A. oblongus and D. uruguayensis exhibited 2n♂=28, X1X2, with acro/telocentric morphology, hypothesized to represent the ancestral condition for Lycosoidea. However, regarding the 28S rDNA chromosome mapping, these species revealed an unusually high number of loci with eight chromosome clusters in A. oblongus and a polymorphic condition in D. uruguayensis (10-14 signals), underscoring the utility of additional techniques for detecting specific chromosomal regions. Interestingly, A. castaneus and A. lagotis displayed a more derived karyotype, characterized by 2 n♂= 14, X1X2 and acro/telocentric morphology, with the sex chromosomes (X1 and X2) smaller than the autosomes. Taken together, these data suggest that, following the diversification of Aglaoctenus, a significant reduction in diploid number occurred, affecting only the autosomes. These findings encourage further cytogenetic research within Sosippinae and support the use of these data in future phylogenetic studies.
Collapse
Affiliation(s)
- Mariana Bessa Sanches
- Laboratório de Citotaxonomia e Evolução Cromossômica Animal, Federal University of Mato Grosso do Sul, UFMS, Biosciences Institute, Cidade Universitária, Campo Grande 79070-900, Brazil
| | - Lucas Henrique Bonfim Souza
- Laboratório de Citotaxonomia e Evolução Cromossômica Animal, Federal University of Mato Grosso do Sul, UFMS, Biosciences Institute, Cidade Universitária, Campo Grande 79070-900, Brazil.
| | - Bruno Cansanção Silva
- Laboratório de Citotaxonomia e Evolução Cromossômica Animal, Federal University of Mato Grosso do Sul, UFMS, Biosciences Institute, Cidade Universitária, Campo Grande 79070-900, Brazil
| | - Conrado Mario da Rosa
- Laboratório de Herpetologia, Federal University of Santa Maria, Department of Ecology and Evolution, Av. Roraima n/n, Santa Maria, RS 97105-900, Brazil
| | - Antonio Domingos Brescovit
- Laboratório de Coleções Zoológicas, Butantan Institute, Av. Vital Brasil, 1500, São Paulo 05503-900, Brazil
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-863, Brazil
| | - Douglas Araujo
- Laboratório de Citotaxonomia e Evolução Cromossômica Animal, Federal University of Mato Grosso do Sul, UFMS, Biosciences Institute, Cidade Universitária, Campo Grande 79070-900, Brazil
| |
Collapse
|
3
|
Fernandes MB, Bitencourt JDA, da Silva AT, Vicari MR, Azambuja M, Affonso PRADM. Small Fishes, Big Issues: Species Delimitation in Hemigrammus Marginatus, Gill, 1958 (Acestrorhamphidae: Pristellinae) from Brazilian Coastal Basins Based on Integrative Genetics. Zebrafish 2025; 22:46-58. [PMID: 39951365 DOI: 10.1089/zeb.2024.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
The small characins represent a systematic puzzle in the Neotropical ichthyofauna as a result of independent miniaturization processes, adaptive convergence and lack of diagnostic characters for several genera. In order to diminish the taxonomic uncertainties and the evolutionary pathways in Hemigrammus, we carried out an integrative genetic analysis in the putatively widespread Hemigrammus marginatus Ellis, 1958 by combining cytogenetic and molecular data based on the mitochondrial Cytochrome C Oxidase subunit I (COI). Specimens of H. marginatus from the type locality in Itapicuru River basin and other two populations from coastal rivers in northeastern Brazil were analyzed and compared with the available data from other regions in South America. Conspicuous macro and microkaryotypic differences were detected between the samples from northeastern and southern Brazil (Upper Paraná River basin). Likewise, the DNA barcoding and species delimitation analyses recovered distinct Molecular Operational Taxonomical Units within H. marginatus. Therefore, the population from the type locality should be referred to as H. marginatus stricto sensu, representing a restricted characin taxon from coastal drainages (including the São Francisco River basin) along northeastern Brazil, while other populations of this small characin fish need to be taxonomically revised and managed as unique lineages.
Collapse
Affiliation(s)
- Mauricio B Fernandes
- Graduate Program in Genetics, Biodiversity and Conservation, Universidade Estadual do Sudoeste da Bahia, Jequié - BA, Brazil
| | - Jamille de Araújo Bitencourt
- Graduate Program in Genetics, Biodiversity and Conservation, Universidade Estadual do Sudoeste da Bahia, Jequié - BA, Brazil
| | - André Teixeira da Silva
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana - BA, Brazil
| | - Marcelo Ricardo Vicari
- Department of Structural and Molecular Biology and Genetics, Universidade Estadual de Ponta Grossa, Ponta Grossa - PR, Brazil
| | - Matheus Azambuja
- Department of Structural and Molecular Biology and Genetics, Universidade Estadual de Ponta Grossa, Ponta Grossa - PR, Brazil
| | | |
Collapse
|
4
|
Takagui FH, Santana LP, Rubert M, Viana P, Affonso PRAM, Giuliano-Caetano L. The role of dispersal of repetitive DNAs in the diversification of bristlenose plecos (Loricariidae, Hypostominae, Ancistrus) from South Atlantic Coastal drainages. AN ACAD BRAS CIENC 2025; 97:e20240901. [PMID: 40172358 DOI: 10.1590/0001-3765202520240901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/27/2024] [Indexed: 04/04/2025] Open
Abstract
Sea-level changes during the Pleistocene and the geomorphological history have largely molded the intricate shaping of coastal drainages in Eastern South America. Therefore, freshwater fishes from this region are promising models to infer how riverine isolation and reconnections affected their genetic diversification and geographic distribution. In the present study, we provided a detailed cytogenomic analysis of Ancistrus multispinis and Ancistrus brevipinnis, including the physical mapping of repetitive DNA classes, to verify whether chromosome differentiation would be related to the split between two major watersheds in Southern Brazil. Both species of Ancistrus shared the same modal diploid number (2n=52) and karyotype formulae (14 metacentric, 8 submetacentric and 30 subtelo/acrocentric chromosomes), besides single and terminal 18S ribosomal cistrons, (CGG)10 microsatellite sequences interspersed with heterochromatin in nucleolar organizer regions and a dispersed content of (AC)15 and (GT)15 microsatellites. In turn, the patterns of heterochromatin distribution, number of (GAG)10 microsatellites and 5S rDNA clusters diverged between both taxa. Most likely, these microstructural differences were determined by independent evolutionary processes, strongly associated to the geographic isolation between watersheds. Furthermore, the mapping of repetitive DNAs revealed a dynamic reorganization of genomes of Ancistrus, being useful for the taxonomic disambiguation in this complex group of Neotropical fish.
Collapse
Affiliation(s)
- Fabio H Takagui
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Genética Animal, Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil
| | - Luís P Santana
- Universidade Estadual de Londrina (UEL), Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Laboratório de Citogenética e Entomologia Molecular (LACEM), Rodovia Celso Garcia Cid, 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Marceleia Rubert
- Universidade Estadual de Londrina (UEL), Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Laboratório de Citogenética e Entomologia Molecular (LACEM), Rodovia Celso Garcia Cid, 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Patrik Viana
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Genética Animal, Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil
| | - Paulo Roberto A M Affonso
- Universidade Estadual do Sudoeste da Bahia (UESB), Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Departamento de Ciências Biológicas, Av. José Moreira Sobrinho, s/n, 45206-190 Jequié, BA, Brazil
| | - Lucia Giuliano-Caetano
- Universidade Estadual de Londrina (UEL), Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Laboratório de Citogenética e Entomologia Molecular (LACEM), Rodovia Celso Garcia Cid, 445, km 380, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
5
|
Oliveira AMD, Deon GA, Sember A, Goes CAG, Supiwong W, Tanomtong A, Porto-Foresti F, Utsunomia R, Liehr T, Cioffi MDB. Repetitive DNAs and differentiation of the ZZ/ZW sex chromosome system in the combtail fish Belontia hasselti (Perciformes: Osphronemidae). BMC Ecol Evol 2025; 25:25. [PMID: 40098070 PMCID: PMC11917085 DOI: 10.1186/s12862-025-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Java combtail fish Belontia hasselti (Cuvier, 1831), a member of the Osphronemidae family, inhabits lakes and rivers throughout Southeast Asia and Sri Lanka. Previous cytogenetic research revealed it possesses a diploid chromosome number of 48 chromosomes with a female-heterogametic ZZ/ZW sex chromosome system, where the W chromosome is distinguishable as the only metacentric element in the complement. Female-heterogametic sex chromosome systems seem to be otherwise surprisingly rare in the highly diverse order Perciformes and, therefore, B. hasselti provides an important comparative model to evolutionary studies in this teleost lineage. To examine the level of sex chromosome differentiation in B. hasselti and the contribution of repetitive DNAs to this process we combined bioinformatic analyses with chromosomal mapping of selected repetitive DNA classes, and comparative genomic hybridization. RESULTS By providing the first satellitome study in Perciformes, we herein identified 13 satellite DNA monomers in B. hasselti, suggesting a very low diversity of satDNA in this fish species. Using fluorescence in situ hybridization, we revealed detectable clusters on chromosomes only for four satellite DNA monomers. Together with the two mapped microsatellite motifs, the repeats primarily accumulated on autosomes, with no distinct clusters located on the sex chromosomes. Comparative genomic hybridization showed no region with accumulated female-specific or enriched repeats on the W chromosome. Telomeric repeats terminated all chromosomes, and no additional interstitial sites were detected. CONCLUSION These data collectively indicate a low degree of sex chromosome differentiation in B. hasselti despite their considerable heteromorphy. Possible mechanisms that may underlie this pattern are discussed.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, 277 21, Czech Republic
| | - Caio Augusto Gomes Goes
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil
| | - Weerayuth Supiwong
- Faculty of Interdisciplinary Studies, Khon Kaen University Nong Khai Campus, Muang, Nong Khai, 43000, Thailand
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002, Thailand
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747, Jena, Germany.
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
6
|
Guimarães EMC, Viana PF, Pinheiro-Figliuolo VS, Marajó L, de Sousa E Souza JF, Feldberg E. Repetitive DNA Mapping Reveals Multiple Sex Chromosomes X1X1X2X2/X1X2Y in Pseudotylosurus microps (Günther 1866) (Beloniformes, Teleostei) from the Amazon. Sex Dev 2025; 18:70-80. [PMID: 39993387 DOI: 10.1159/000544037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
INTRODUCTION Needlefish (Belonidae family) comprises 44 known species distributed worldwide. These species are predominantly marine but include estuarine representatives and 12 freshwater species. Among the recognized species, 8 are endemic to South American rivers. Cytogenetic studies of Belonidae are scarce and mostly limited to describing the diploid chromosome number (2n) and karyotypic structure. METHODS We used classical and molecular cytogenetic markers to karyotypically characterize Pseudotylosurus microps to understand the evolutionary processes of Belonidae species in the Amazon basin. RESULTS P. microps exhibited different diploid numbers between males (2n = 47, 3m + 3sm + 41st/a FN = 53) and females (2n = 48, 4m + 4sm + 40st/a FN = 56). Our study revealed the first case of multiple sex chromosomes in the Belonidae family. CONCLUSION These findings describe a multiple sex chromosome system of the type X1X1X2X2/X1X2Y. The C-banding pattern and 5S rDNA mapping suggest that this system likely resulted from a tandem fusion between a homolog of pair 1 and a homolog of pair 3, producing a large acrocentric Y chromosome. We propose that karyotypic changes due to internal chromosomal rearrangements, as observed in P. microps, can lead to species diversification and, in some cases, the emergence of a heteromorphic and multiple sex chromosome system.
Collapse
Affiliation(s)
- Erika Milena Corrêa Guimarães
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Patrik Ferreira Viana
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Vanessa Susan Pinheiro-Figliuolo
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Leandro Marajó
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - José Francisco de Sousa E Souza
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Eliana Feldberg
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
- Laboratory of Animal Genetics, Biodiversity Coordination, National Institute of Amazonian Research (INPA), Manaus, Brazil
| |
Collapse
|
7
|
Souza LHB, Ferro JM, Gatto KP, de Sá FP, Haddad CFB, Lourenço LB. Clinal variation in autosomal satellite DNA clusters across a contact zone in Barker Frogs. J Evol Biol 2025; 38:167-179. [PMID: 39560074 DOI: 10.1093/jeb/voae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Contact zones between genetically divergent lineages offer a unique opportunity to explore gene flow and speciation dynamics. Because satellite DNAs (satDNAs) have high evolutionary rates, they may be useful for comparing related taxa and assessing contact zones. Here, we analysed the distribution of chromosomal clusters of PcP190 satDNA across a contact zone between two distinct genetic lineages of a Neotropical species complex of frogs. The parental lineages, Physalaemus ephippifer and lineage 1B (L1B), exhibited pronounced divergence in the number of PcP190 clusters. We further expanded the geographic scope of this species complex by including two additional Brazilian localities in previously available cytogenetic and mitochondrial DNA datasets. The contact zone exhibited remarkable variation in the chromosomal distribution of PcP190 clusters among the autosomes; the only fixed autosomal site was found on chromosome 3. The highest numbers of PcP190 clusters were observed in specimens collected at sites near (approximately 320 km from) the distribution of L1B, whereas specimens from Dom Eliseu, which is near (approximately 330 km from) the distribution of P. ephippifer, had the lowest numbers of such clusters. Mitochondrial haplotypes also exhibited geographical variation across sites. Our findings expand the known contact zone of these Physalaemus lineages from 1,500 km2 to over 6,200 km2, demonstrating its extensive area, and emphasize the usefulness of satDNAs in studying contact zones.
Collapse
Affiliation(s)
- Lucas Henrique Bonfim Souza
- Departamento de Biologia Estrutural e Funcional, Laboratório de Estudos Cromossômicos (LabEsC), Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Juan Martín Ferro
- Facultad de Ciencias Exactas, Químicas y Naturales, Laboratorio de Genética Evolutiva "Dr. Claudio J. Bidau," Instituto de Biología Subtropical (CONICET-UNaM), Universidad Nacional de Misiones, Posadas, Argentina
| | - Kaleb Pretto Gatto
- Departamento de Biologia Estrutural e Funcional, Laboratório de Estudos Cromossômicos (LabEsC), Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Fábio Perin de Sá
- Departamento de Biologia Estrutural e Funcional, Laboratório de Estudos Cromossômicos (LabEsC), Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Célio Fernando Baptista Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP), Instituto de Biociências, Universidade Estadual Paulista, São Paulo, Brazil
| | - Luciana Bolsoni Lourenço
- Departamento de Biologia Estrutural e Funcional, Laboratório de Estudos Cromossômicos (LabEsC), Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Haerter CAG, Viana PF, Takagui FH, Tonello S, Margarido VP, Blanco DR, Traldi JB, Lui RL, Feldberg E. A variant W chromosome in Centromochlus heckelii (Siluriformes, Auchenipteridae) and the role of repeated DNA in its heteromorphism. Genet Mol Biol 2025; 48:e20240071. [PMID: 39873589 PMCID: PMC11789463 DOI: 10.1590/1678-4685-gmb-2024-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025] Open
Abstract
Centromochlus heckelii has the lowest diploid chromosome number (2n = 46) and the only described heteromorphic sex chromosome system in Auchenipteridae. This study presents a population of C. heckelii from the Central Amazon basin with subtle variations in the karyotype composition and a variant W chromosome with distinct morphology and increased C-positive heterochromatin content. In this population, the W chromosome is subtelocentric, whereas the only previous study on C. heckelii reported a metacentric W chromosome. Constitutive heterochromatin (CH) and accumulation of microsatellite motifs have significantly contributed to this W chromosome enlargement. Notably, this population exhibits numerous interstitial telomeric sites (ITSs). Some of these ITSs might represent genuine chromosomal fusion points due to the reduced 2n; however, additional mechanisms, such as chromosomal inversions, translocations, transpositions, or association with satellite DNA, are likely responsible for this unusual pattern. The 18S rDNA sites were found in both the Z and W chromosomes of all individuals. However, two individuals exhibited an additional 18S rDNA site in a single homologous of the chromosome pair 20, characterizing an intrapopulation polymorphism. The 5S rDNA sites were found in two chromosome pairs, distinguishing this population from other Centromochlinae species and further supporting it as one of the most efficient cytotaxonomic markers within the subfamily.
Collapse
Affiliation(s)
- Chrystian Aparecido Grillo Haerter
- Instituto Nacional de Pesquisas da Amazônia, Programa de
Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM,
Brazil
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde (CCBS), Cascavel, PR, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Programa de
Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM,
Brazil
| | - Fábio Hiroshi Takagui
- Instituto Nacional de Pesquisas da Amazônia, Programa de
Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM,
Brazil
| | - Sandro Tonello
- Instituto Nacional de Pesquisas da Amazônia, Programa de
Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM,
Brazil
| | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde (CCBS), Cascavel, PR, Brazil
| | - Daniel Rodrigues Blanco
- Universidade Tecnológica Federal do Paraná, Coordenação de Ciências
Biológicas (COBIO), Campus Santa Helena, Paraná, PR, Brazil
| | - Josiane Baccarin Traldi
- Universidade Tecnológica Federal do Paraná, Coordenação de Ciências
Biológicas (COBIO), Campus Santa Helena, Paraná, PR, Brazil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde (CCBS), Cascavel, PR, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Programa de
Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM,
Brazil
| |
Collapse
|
9
|
Penitente M, Goes CAG, dos Santos RZ, Utsunomia R, Foresti F, Porto-Foresti F. Evolutionary dynamics of the B chromosomes in the fish species Prochiloduslineatus Valenciennes, 1837 of the Paraná River Basin. COMPARATIVE CYTOGENETICS 2025; 19:1-12. [PMID: 39882391 PMCID: PMC11773350 DOI: 10.3897/compcytogen.19.135127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/05/2024] [Indexed: 01/31/2025]
Abstract
The fish species Prochiloduslineatus has an interesting B chromosome system, with three morphological types as acrocentric, metacentric, and submetacentric. However, most cytogenetic studies on this species are restricted to the natural population of the Mogi Guaçu River. Given this, the present work aimed to study the structure karyotypic profile as well as the occurrence of supernumeraries in P.lineatus in several localities in the Paraná River basin, where this species is abundant. The results obtained showed a predominantly conserved karyotypic macrostructure and the presence of B chromosomes in all the seven localities studied, with the exception of the Apa River. Additionally, new variants of morphological characteristics were found in the population of the Batalha River (Reginópolis). These results allow us to infer that there is a large occurrence of B chromosomes in this species, with important differences in B chromosome frequency between the populations, especially in acrocentric and submetacentric B variants. Considering the possible origin and evolution of B chromosomes in P.lineatus, our results allow us to describe the dispersion of metacentric B variants, in contrast with the elimination observed in acrocentric and submetacentric variants.
Collapse
Affiliation(s)
- Manolo Penitente
- Universidade do Estado de Mato Grosso (UNEMAT), Rua Rui Barbosa, Diamantino, Mato Grosso, BrazilUniversidade do Estado de Mato Grosso (UNEMAT)DiamantinoBrazil
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Avenida Edmundo Carrijo Coube, Bauru, SP, BrazilUniversidade Estadual Paulista (UNESP)BauruBrazil
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Avenida Edmundo Carrijo Coube, Bauru, SP, BrazilUniversidade Estadual Paulista (UNESP)BauruBrazil
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Avenida Edmundo Carrijo Coube, Bauru, SP, BrazilUniversidade Estadual Paulista (UNESP)BauruBrazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, 18618-970, Botucatu, SP, BrazilUniversidade Estadual Paulista - UNESPBotucatuBrazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Avenida Edmundo Carrijo Coube, Bauru, SP, BrazilUniversidade Estadual Paulista (UNESP)BauruBrazil
| |
Collapse
|
10
|
Vignati ZBM, Teixeira GA, Cunha MS, Pereira JA, Lopes DM. Cytogenomics of Frieseomelitta varia (Hymenoptera: Apidae) and the Sharing of a Satellite DNA Family in Several Neotropical Meliponini Genera. Genes (Basel) 2025; 16:86. [PMID: 39858633 PMCID: PMC11764717 DOI: 10.3390/genes16010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES A striking feature of the karyotypes of stingless bees is the large amount of heterochromatin present in most species. Cytogenomic studies performed in some Meliponini species have suggested that evolutionary events related to the diversification and amplification of satellite DNA families in the heterochromatin may reflect the structuring of phylogenetic clades in this tribe. In this study, we performed a genomic analysis in Frieseomelitta varia to characterize different satDNA families in its genome. We also investigated the presence of the most abundant satDNA family of F. varia in its own chromosomes, in two other Frieseomelitta species, and in other Meliponini genera encompassing the three main clades of Neotropical Meliponini, according to the available molecular phylogeny. METHODS Genomic analyses were performed using RepeatExplorer2 on the Galaxy platform, and chromosomal investigations were conducted using fluorescent in situ hybridization. RESULTS Seven satDNA families were recovered, which together totaled an abundance of 11.223% of the analyzed F. varia genomic fraction. The most abundant satDNA family, FvarSat01-306, predominates in the analyzed repetitive fraction (representing around 89%) and was recently amplified and homogenized in almost all the heterochromatin of F. varia. In addition, the data revealed an unprecedented sharing of this satDNA family in the centromeric/pericentromeric heterochromatin among different Meliponini genera, with independent amplifications and loss of this sequence in some taxa. CONCLUSIONS One family of satellite DNA makes up most of the heterochromatin in this species and is shared with other Meliponini.
Collapse
Affiliation(s)
- Zulemara B. M. Vignati
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| | - Gisele A. Teixeira
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| | - Marina S. Cunha
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Campus Seropédica, Seropédica 23891-970, Rio de Janeiro, Brazil
| | - Jaqueline A. Pereira
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| | - Denilce M. Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil; (Z.B.M.V.); (G.A.T.); (M.S.C.); (J.A.P.)
| |
Collapse
|
11
|
Souza LHB, Silva BC, Pompeo JN, Gatto KP, Lourenço LB. Chromosome homologies and polymorphisms in a Neotropical species complex of frogs revealed by the U2 snRNA gene. Genome 2025; 68:1-11. [PMID: 39991861 DOI: 10.1139/gen-2024-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The Physalaemus cuvieri-Physalaemus ephippifer species complex is a Neotropical frog group that encompasses seven well-supported major clades. Although very similar morphologically, the five lineages previously karyotyped show notorious cytogenetic signatures. There is also evidence of ancient secondary contact between P. ephippifer, which has heteromorphic sex chromosomes, and the lineage known as L1B, which lacks sex chromosome heteromorphism. Here, to aid comparative analysis within this complex, we mapped the U2 small nuclear RNA (snRNA) gene using fluorescent in situ hybridization (FISH). All samples presented a U2 snRNA gene cluster terminally in the short arm of chromosome 6. Additional small FISH signals were also revealed, particularly in one lineage with previously noted polymorphism of nucleolar organizer regions. Moreover, one additional site contributed for the analysis of sex chromosomes, since the Z chromosome of P. ephippifer harbors a small FISH signal, which is absent in the W chromosome. In lineage L1B, chromosome 9-which is homologous to the sex chromosomes of P. ephippifer-is polymorphic for a small FISH signal, as did the Z chromosome in the group derived from the contact between these lineages. Finally, nucleotide sequence analysis revealed some truncated gene sequences, suggesting the presence of pseudogenes of the U2 snRNA gene in these frogs.
Collapse
Affiliation(s)
- Lucas Henrique Bonfim Souza
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Bruno Cansanção Silva
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Jennifer Nunes Pompeo
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaleb Pretto Gatto
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Laboratório de Citogenética Evolutiva e Conservação Animal, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos (LabEsC), Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Pozzobon LC, Toma GA, Cioffi MDB, de Oliveira EHC, Kretschmer R, de Freitas TRO. Karyotype evolution of suliformes and description of a ♂Z 1Z 1Z 2Z 2/♀Z 1Z 2W multiple sex chromosome system in boobies ( Sula spp.). Genome 2025; 68:1-11. [PMID: 39883916 DOI: 10.1139/gen-2024-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Our comprehension of avian karyotypes still needs to be improved, especially for Suliform birds. To enhance understanding of chromosomal evolution in this order, we conducted conventional and molecular cytogenetic analysis in five species, named Sula dactylatra, Sula leucogaster, Sula sula (Sulidae), Fregata magnificens (Fregatidae), and Nannopterum brasilianum (Phalacrocoracidae). The diploid chromosome number for S. dactylatra and S. leucogaster was established as 2n = 76 in males, and 2n = 75 in females, but S. sula displayed a karyotype of 2n = 76 chromosomes in males. The disparity in diploid chromosome numbers between male and female Sula is due to a multiple sex chromosome system of the Z1Z1Z2Z2/Z1Z2W type. We propose that the emergence of this multiple-sex chromosome system resulted from a Robertsonian translocation involving the W chromosome and the smallest microchromosome. Fregata magnificens exhibited a diploid number 76 (2n = 76), while N. brasilianum displayed a diploid number of 74 (2n = 74) in both sexes. The ribosomal cluster was located in one microchromosome pair in S. dactylatra, S. leucogaster, S. sula, and F. magnificens and in four pairs in N. brasilianum. Our findings provide evidence of a conserved multiple-sex chromosome system within the Sula genus, shedding light on the high karyotype diversity in Suliformes.
Collapse
Affiliation(s)
- Luciano Cesar Pozzobon
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Akira Toma
- Laboratório de Citogenética Evolutiva, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética Evolutiva, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. Chromosomal and molecular perspectives on Potamotrygon motoro (Müller & Henle, 1841) from central Amazon. Genome 2025; 68:1-9. [PMID: 40008615 DOI: 10.1139/gen-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cytogenetic studies on Potamotrygon motoro (Müller & Henle, 1841) are limited to classical cytogenetic techniques, but they do reveal great karyotypic variation. The main differences are related to the karyotypic formula and the absence/presence of sex chromosome systems. Thus, this study aimed to expand knowledge of the karyotypic composition of Potamotrygon motoro from different locations of the Central Amazon using Fluorescence in situ Hybridization to investigate the distribution of ribosomal DNAs (rDNA) and microsatellites sequences (SSRs). In addition, we used the mitochondrial DNA cytochrome oxidase subunit I (mtDNA COI) to perform neighbor-joining analysis to investigate the relationships among the individuals sampled. In our study, Potamotrygon motoro presented 2n = 66 chromosomes, with 18m + 12sm + 10st + 26a and heterochromatic blocks on centromeric region of all chromosomes. The 18S rDNA is present in three chromosomal pairs and 5S rDNA is located in the pair 16, which is a feature shared among freshwater stingray species. Regarding the mapping of SSRs, dinucleotide sequences showed a greater number of sites, usually on terminal regions of chromosomal pairs, with an accumulation throughout the long arms of the pair 17. Our molecular analyses did not reveal differences between the sequences used. In general, the karyotypic differences previously reported for Potamotrygon motoro indicate the presence of different cytotypes within the species.
Collapse
Affiliation(s)
- Alex M V Ferreira
- Programa de Pós-graduação em Genética, Conservação e Biologia evolutiva - PPG-GCBEv, Manaus, Amazonas 69067-375, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade - Instituto Nacional de Pesquisas da Amazônia - LGA/INPA, Manaus, Amazonas, 69067-375, Brazil
| | - Patrik F Viana
- Programa de Pós-graduação em Genética, Conservação e Biologia evolutiva - PPG-GCBEv, Manaus, Amazonas 69067-375, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade - Instituto Nacional de Pesquisas da Amazônia - LGA/INPA, Manaus, Amazonas, 69067-375, Brazil
| | - Leandro Marajó
- Programa de Pós-graduação em Genética, Conservação e Biologia evolutiva - PPG-GCBEv, Manaus, Amazonas 69067-375, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade - Instituto Nacional de Pesquisas da Amazônia - LGA/INPA, Manaus, Amazonas, 69067-375, Brazil
| | - Eliana Feldberg
- Programa de Pós-graduação em Genética, Conservação e Biologia evolutiva - PPG-GCBEv, Manaus, Amazonas 69067-375, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade - Instituto Nacional de Pesquisas da Amazônia - LGA/INPA, Manaus, Amazonas, 69067-375, Brazil
| |
Collapse
|
14
|
Unal Karakus S, Gaffaroğlu M, Karasu Ayata M, Knytl M. A Detailed Karyological Investigation of three Endemic Cobitis Linnaeus, 1758 Species (Teleostei, Cobitidae) in Anatolia, Türkiye. Cytogenet Genome Res 2024; 164:243-256. [PMID: 39622218 PMCID: PMC11825084 DOI: 10.1159/000542804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Comparative cytogenetics is a vital approach for diagnosing chromosome abnormalities and identifying species-specific patterns. In this study, chromosomal analysis of three Anatolian endemic Cobitis species was performed: Cobitis bilseli, C. fahireae, and C. turcica. METHODS Conventional cytogenetic techniques such as Giemsa staining, C-banding, and Ag-NOR staining were applied, followed by measurements of chromosome arm lengths including analysis of the measured data. RESULTS The diploid chromosome number, 2n = 50, was determined for all three species. The karyotype formulas were as follows: four pairs of metacentric, 5 pairs of submetacentric, and 16 pairs of subtelo-telocentric chromosomes in C. bilseli; 11 pairs of metacentric, 7 pairs of submetacentric, and 7 pairs of subtelo-telocentric chromosomes in C. fahireae; and 4 pairs of metacentric, 4 pairs of submetacentric, and 17 pairs of subtelo-telocentric chromosomes in C. turcica. Dark C-bands were observed on the pericentromeres of nearly all chromosomes in C. bilseli and C. turcica, whereas light C-bands appeared on the pericentromeres of some chromosomes in C. fahireae. Silver-stained metaphases revealed signals on the short arm of a submetacentric chromosome pair in C. fahireae (each homologous chromosome carries one signal), while in C. bilseli and C. turcica, Ag-NOR signals were detected on the long arm of a single metacentric chromosome (only one homologous chromosome carries the signal, and the signal-carrying chromosome is the largest chromosome in the karyotype). CONCLUSION This study provides new cytogenetic data consistent with the phylogenetic distances between the studied species, indicating that pericentric inversions and/or translocations govern the formation of Cobitis karyotypes. INTRODUCTION Comparative cytogenetics is a vital approach for diagnosing chromosome abnormalities and identifying species-specific patterns. In this study, chromosomal analysis of three Anatolian endemic Cobitis species was performed: Cobitis bilseli, C. fahireae, and C. turcica. METHODS Conventional cytogenetic techniques such as Giemsa staining, C-banding, and Ag-NOR staining were applied, followed by measurements of chromosome arm lengths including analysis of the measured data. RESULTS The diploid chromosome number, 2n = 50, was determined for all three species. The karyotype formulas were as follows: four pairs of metacentric, 5 pairs of submetacentric, and 16 pairs of subtelo-telocentric chromosomes in C. bilseli; 11 pairs of metacentric, 7 pairs of submetacentric, and 7 pairs of subtelo-telocentric chromosomes in C. fahireae; and 4 pairs of metacentric, 4 pairs of submetacentric, and 17 pairs of subtelo-telocentric chromosomes in C. turcica. Dark C-bands were observed on the pericentromeres of nearly all chromosomes in C. bilseli and C. turcica, whereas light C-bands appeared on the pericentromeres of some chromosomes in C. fahireae. Silver-stained metaphases revealed signals on the short arm of a submetacentric chromosome pair in C. fahireae (each homologous chromosome carries one signal), while in C. bilseli and C. turcica, Ag-NOR signals were detected on the long arm of a single metacentric chromosome (only one homologous chromosome carries the signal, and the signal-carrying chromosome is the largest chromosome in the karyotype). CONCLUSION This study provides new cytogenetic data consistent with the phylogenetic distances between the studied species, indicating that pericentric inversions and/or translocations govern the formation of Cobitis karyotypes.
Collapse
Affiliation(s)
- Sevgi Unal Karakus
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
| | - Muhammet Gaffaroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Muradiye Karasu Ayata
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Pavlova SV, Romanenko SA, Matveevsky SN, Kuksin AN, Dvoyashov IA, Kovalskaya YM, Proskuryakova AA, Serdyukova NA, Petrova TV. Supernumerary Chromosomes Enhance Karyotypic Diversification of Narrow-Headed Voles of the Subgenus Stenocranius (Rodentia, Mammalia). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:538-556. [PMID: 39233501 DOI: 10.1002/jez.b.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The subgenus Stenocranius contains two cryptic species: Lasiopodomys gregalis (subdivided into three allopatrically distributed and genetically well-isolated lineages A, B, and C) and Lasiopodomys raddei. To identify karyotype characteristics of this poorly studied cryptic species complex, we used comparative cytogenetic analysis of 138 individuals from 41 localities in South Siberia and Mongolia. A detailed description of the L. raddei karyotype and of the L. gregalis lineage С karyotype is presented for the first time. The A chromosome complement of all examined narrow-headed voles consisted of 2n = 36 and a fundamental number of autosomal arms (FNa) of 50. Between species, patterns of differential staining were similar, though additional C-heterochromatic blocks were found in L. gregalis lineages; Ag-positive nucleolar organizers and ribosomal DNA (rDNA) clusters are located on eight and nine acrocentric pairs, respectively. No B chromosomes (Bs) were found in the Early Pleistocene relic L. raddei, while one to five small heterochromatic acrocentric Bs were detected in all L. gregalis lineages; the number and frequency of Bs varied considerably within lineages, but no intraindividual variation was observed. In both species, telomeric repeats were visualized at termini of all chromosomes, including Bs. The number and localization of rDNA clusters on Bs varied among B-carriers. Immunodetection of several meiotic proteins indicated that meio-Bs are transcriptionally inactive and have a pattern of meiotic behavior similar to that of sex chromosomes (some homology of Bs to sex chromosomes is supposed). The nature, mechanisms of inheritance and stability of Bs in L. gregalis require further investigation.
Collapse
Affiliation(s)
- Svetlana V Pavlova
- Laboratory of Population Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A Romanenko
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey N Matveevsky
- Cytogenetics Laboratory, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Aleksander N Kuksin
- Laboratory of Biodiversity and Geoecology, Tuvinian Institute for Exploration of Natural Resources, Siberian Branch of the Russian Academy of Sciences, Kyzyl, Russia
| | - Ivan A Dvoyashov
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Yulia M Kovalskaya
- Laboratory of Behaviour and Behavioral Ecology of Mammals, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Proskuryakova
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A Serdyukova
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana V Petrova
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
16
|
Beklemisheva VR, Tishakova KV, Romanenko SA, Andreushkova DA, Yudkin VA, Interesova EА, Yang F, Ferguson-Smith MA, Graphodatsky AS, Proskuryakova AA. Detailed cytogenetic analysis of three duck species (the northern pintail, mallard, and common goldeneye) and karyotype evolution in the family Anatidae (Anseriformes, Aves). Vavilovskii Zhurnal Genet Selektsii 2024; 28:759-769. [PMID: 39722672 PMCID: PMC11667572 DOI: 10.18699/vjgb-24-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets. Detailed cytogenetic analysis (G-banding, C- banding, and fluorescence in situ hybridization) was performed on three duck species: the northern pintail (Anas acuta, 2n = 80), the mallard (A. platyrhynchos, 2n = 80), and the common goldeneye (Bucephala clangula, 2n = 80). Using stone curlew (Burhinus oedicnemus, 2n = 42, Charadriiformes) chromosome painting probes, we created homology maps covering macrochromosomes and some microchromosomes. The results indicated a high level of syntenic group conservation among the duck genomes. The two Anas species share their macrochromosome number, whereas in B. clangula, this number is increased due to fissions of two ancestral elements. Additionally, in this species, the presence of massive heterochromatic blocks in most macroautosomes and sex chromosomes was discovered. Localization of clusters of ribosomal DNA and telomere repeats revealed that the duck karyotypes contain some microchromosomes that bear ribosomal RNA genes and/or are enriched for telomere repeats and constitutive heterochromatin. Dot plot (D-GENIES) analysis confirmed the established view about the high level of syntenic group conservation among Anatidae genomes. The new data about the three Anatidae species add knowledge about the transformation of macro- and sex chromosomes of Anseriformes during evolution.
Collapse
Affiliation(s)
- V R Beklemisheva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K V Tishakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Romanenko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Andreushkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Yudkin
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E А Interesova
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Tomsk State University, Tomsk, Russia
| | - F Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - M A Ferguson-Smith
- Cambridge Resource Center for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - A S Graphodatsky
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Proskuryakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Andrade BLF, Lopes ALG, Teixeira GA, Tavares MG. Karyotypes and Chromosomal Mapping of Some Repetitive DNAs in Two Stingless Bee Species (Apidae: Meliponini), with the Description of a B Chromosome in Plebeia Genus. Cytogenet Genome Res 2024; 164:267-275. [PMID: 39467527 DOI: 10.1159/000542295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Cytogenetic studies on stingless bees have significantly contributed to our understanding of karyotypic evolution and the composition of euchromatin and heterochromatin regions, including repetitive sequences. METHODS In this study, we performed classical cytogenetics, chromosomal banding, and mapping of some repetitive sequences in two stingless bee species, Frieseomelitta trichocerata and Plebeia poecilochroa. RESULTS The species exhibit the typical diploid chromosome number of each genera, 2n = 30 for Frieseomelitta and 2n = 34 for Plebeia. Additionally, some individuals of P. poecilochroa presented a small heterochromatic B chromosome, showing a numeric variation of n = 17-18 in males and 2n = 34-35 in females. In both species, heterochromatin is primarily distributed in the short arm and centromeric regions. Centromeric regions were found to be AT-rich in both species, while subterminal/terminal regions of the short arms of one and six chromosomes presented GC-rich sites in P. poecilochroa and F. trichocerata, respectively. The rDNA clusters were mapped on two chromosomes in F. trichocerata, and in only one chromosome pair in P. poecilochroa. Microsatellites (GA)n, (GAG)n, and (CAA)n were predominantly mapped in euchromatic regions, while the telomeric motif (TTAGG)n mapped to the ends of most chromosomes, including the B chromosome of P. poecilochroa. The other repetitive probes used, including the rDNA clusters, do not label the B chromosome of P. poecilochroa. CONCLUSIONS Our cytogenetic data highlight both similarities and differences when compared to other congeneric species, expanding the chromosomal data for both genera.
Collapse
Affiliation(s)
- Bárbara L F Andrade
- Departamento de Biologia Geral/Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ana Luiza G Lopes
- Departamento de Biologia Geral/Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Mara G Tavares
- Departamento de Biologia Geral/Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
18
|
Takagui FH, Viana P, Haerter CAG, Zuanon J, Birindelli JLO, Lui RL, Feldberg E, Margarido VP. Chromosomal analysis of two Acanthodoras species (Doradidae, Siluriformes): Insights into the oldest thorny catfish clade and its karyotype evolution. JOURNAL OF FISH BIOLOGY 2024; 105:1109-1119. [PMID: 39007200 DOI: 10.1111/jfb.15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Jansen Zuanon
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - José Luís Olivan Birindelli
- Museu de Zoologia, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Roberto Laridondo Lui
- Laboratório de Citogenética, Centro de Ciĉncias Biológicas e da Saúde, Cascavel, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | |
Collapse
|
19
|
Gavazzoni M, Brezinski FC, Pedroso TH, Pavanelli CS, Graça WJD, Blanco DR, Lui RL, Margarido VP. Integrative Taxonomy Suggests Resurrection of Species of the Astyanax bimaculatus Group (Characiformes, Characidae). Zebrafish 2024; 21:349-359. [PMID: 38980839 DOI: 10.1089/zeb.2024.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Using integrative tools can be effective for species identification, especially in complex groups like Astyanax. Astyanax bimaculatus group is composed of six valid species, including A. lacustris. "A. altiparanae", "A. asuncionensis", and "A. jacuhiensis" are considered as junior synonyms of A. lacustris. Seeking to test the operational taxonomic unit (OTU) status of the junior synonyms of A. lacustris ("A. altiparanae", "A. asuncionensis", and "A. jacuhiensis"), we used analyses through mitochondrial DNA (COI and Cytb), cytogenetic markers (classical and molecular), and morphometry ("truss network"). Analysis of mitochondrial DNA sequences separated A. lacustris from the other synonymized species. The cytogenetic and morphometric analyses did not corroborate the synonymization and suggest that besides A. lacustris, the OTUs A. altiparanae, A. asuncionensis, and A. jacuhiensis are valid species. The analysis of different characters proposed by the integrative taxonomy used on the same individuals could provide greater reliability and minimize the underestimation of biodiversity.
Collapse
Affiliation(s)
- Mariane Gavazzoni
- Universidade Estadual do Oeste do Paraná, Pós-Graduação em Conservação e Manejo de Recursos Naturais, Cascavel, Brazil
| | - Flavia C Brezinski
- Universidade Estadual do Oeste do Paraná, Pós-Graduação em Conservação e Manejo de Recursos Naturais, Cascavel, Brazil
| | - Thiago H Pedroso
- Universidade Estadual de Maringá, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Maringá, Brazil
| | - Carla S Pavanelli
- Universidade Estadual de Maringá, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Maringá, Brazil
- Universidade Estadual de Maringá, Centro de Ciências Biológicas, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Maringá, Brazil
| | - Weferson J da Graça
- Universidade Estadual de Maringá, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Maringá, Brazil
- Universidade Estadual de Maringá, Centro de Ciências Biológicas, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Maringá, Brazil
- Departamento de Biologia, Universidade Estadual de Maringá, Centro de Ciências Biológicas, Maringá, Brazil
| | - Daniel R Blanco
- Universidade Tecnológica Federal do Paraná, Campus Santa Helena, Santa Helena, Brazil
| | - Roberto L Lui
- Universidade Estadual do Oeste do Paraná, Pós-Graduação em Conservação e Manejo de Recursos Naturais, Cascavel, Brazil
| | - Vladimir P Margarido
- Universidade Estadual do Oeste do Paraná, Pós-Graduação em Conservação e Manejo de Recursos Naturais, Cascavel, Brazil
- Universidade Estadual de Maringá, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Maringá, Brazil
| |
Collapse
|
20
|
Mezzasalma M, Odierna G, Macirella R, Brunelli E. New Insights on Chromosome Diversification in Malagasy Chameleons. Animals (Basel) 2024; 14:2818. [PMID: 39409767 PMCID: PMC11476409 DOI: 10.3390/ani14192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
In this work, we performed a preliminary molecular analysis and a comparative cytogenetic study on 5 different species of Malagasy chameleons of the genus Brookesia (B. superciliaris) and Furcifer (F. balteautus, F. petteri, F. major and F. minor). A DNA barcoding analysis was first carried out on the study samples using a fragment of the mitochondrial gene coding for the cytochrome oxidase subunit 1 (COI) in order to assess the taxonomic identity of the available biological material. Subsequently, we performed on the studied individuals a chromosome analysis with standard karyotyping (5% Giemsa solution at pH 7) and sequential C-banding + Giemsa, + CMA3, and + DAPI. The results obtained indicate that the studied species are characterized by a different chromosome number and a variable heterochromatin content and distribution, with or without differentiated sex chromosomes. In particular, B. superciliaris (2n = 36) and F. balteatus (2n = 34) showed a similar karyotype with 6 macro- and 12-11 microchromosome pairs, without differentiated sex chromosomes. In turn, F. petteri, F. major, and F. minor showed a karyotype with a reduced chromosome number (2n = 22-24) and a differentiated sex chromosome system with female heterogamety (ZZ/ZW). Adding our newly generated data to those available from the literature, we highlight that the remarkable chromosomal diversification of the genus Furcifer was likely driven by non-homologous chromosome fusions, including autosome-autosome, Z-autosome, and W-autosome fusions. The results of this process resulted in a progressive reduction in the chromosome number and partially homologous sex chromosomes of different shapes and sizes.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| | - Gaetano Odierna
- Independent Researcher, Via Michelangelo 123, 81031 Aversa, Italy;
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| |
Collapse
|
21
|
Vidal MR, Lasmar LF, Nadai PCF, Oliveira C, Silva DMZA, Foresti F. Selecting reference genes for RT-qPCR studies involving the presence of B chromosomes in Psalidodon (Characiformes, Characidae). Mol Biol Rep 2024; 51:977. [PMID: 39259380 DOI: 10.1007/s11033-024-09911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND B chromosomes are extra non-essential elements present in several eukaryotes. Unlike A chromosomes which are essential and present in all individuals of a species, B chromosomes are not necessary for normal functioning of an organism. Formerly regarded as genetically inactive, B chromosomes have been discovered to not only express their own genes, but also to exert influence on gene expression in A chromosomes. Recent studies have shown that, in some Psalidodon (Characiformes, Characidae) species, B chromosomes might be associated with phenotypic effects, such as changes in the reproductive cycle and gene expression. METHODS AND RESULTS In this study, we aimed to establish stable reference genes for RT-qPCR experiments conducted on gonads of three fish species within Psalidodon genus, both in the presence and absence of B chromosomes. The stability of five selected reference genes was assessed using NormFinder, geNorm, BestKeeper, and RefFinder algorithms. We determined ppiaa and pgk1 as the most stable genes in P. fasciatus, whereas ppiaa and hmbsa showed the highest stability in P. bockmanni. For P. paranae, tbp and hprt1 were the most stable genes in females, and ppiaa and hprt1 were the most stable in males. CONCLUSIONS We determined the most stable reference genes in gonads of three Psalidodon species considering the presence of B chromosomes. This is the first report of reference gene stability in the genus and provides valuable tools to better understand the effects of B chromosomes at gene expression level.
Collapse
Affiliation(s)
- Mateus Rossetto Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil.
| | - Lucas F Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Pamela C F Nadai
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Duilio M Z A Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
22
|
Souza GM, Kretschmer R, Toma GA, de Oliveira AM, Deon GA, Setti PG, Zeni Dos Santos R, Goes CAG, Del Valle Garnero A, Gunski RJ, de Oliveira EHC, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Satellitome analysis on the pale-breasted thrush Turdus leucomelas (Passeriformes; Turdidae) uncovers the putative co-evolution of sex chromosomes and satellite DNAs. Sci Rep 2024; 14:20656. [PMID: 39232109 PMCID: PMC11375038 DOI: 10.1038/s41598-024-71635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Collapse
Affiliation(s)
- Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | | | - Ricardo José Gunski
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97307-020, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller Universität, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
23
|
Milani D, Gasparotto AE, Loreto V, Martí DA, Cabral-de-Mello DC. Chromosomal and genomic analysis suggests single origin and high molecular differentiation of the B chromosome of Abracris flavolineata. Genome 2024; 67:327-338. [PMID: 38723289 DOI: 10.1139/gen-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.
Collapse
Affiliation(s)
- Diogo Milani
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| | - Ana Elisa Gasparotto
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| | - Vilma Loreto
- Univ Federal de Pernambuco (UFPE), Centro de Biociências, Departamento de Genética, Recife, Pernambuco, Brazil
| | | | - Diogo C Cabral-de-Mello
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| |
Collapse
|
24
|
Mora P, Rico-Porras JM, Palomeque T, Montiel EE, Pita S, Cabral-de-Mello DC, Lorite P. Satellitome Analysis of Adalia bipunctata (Coleoptera): Revealing Centromeric Turnover and Potential Chromosome Rearrangements in a Comparative Interspecific Study. Int J Mol Sci 2024; 25:9214. [PMID: 39273162 PMCID: PMC11394905 DOI: 10.3390/ijms25179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic genomes exhibit a dynamic interplay between single-copy sequences and repetitive DNA elements, with satellite DNA (satDNA) representing a substantial portion, mainly situated at telomeric and centromeric chromosomal regions. We utilized Illumina next-generation sequencing data from Adalia bipunctata to investigate its satellitome. Cytogenetic mapping via fluorescence in situ hybridization was performed for the most abundant satDNA families. In silico localization of satDNAs was carried out using the CHRISMAPP (Chromosome In Silico Mapping) pipeline on the high-fidelity chromosome-level assembly already available for this species, enabling a meticulous characterization and localization of multiple satDNA families. Additionally, we analyzed the conservation of the satellitome at an interspecific scale. Specifically, we employed the CHRISMAPP pipeline to map the satDNAs of A. bipunctata onto the genome of Adalia decempunctata, which has also been sequenced and assembled at the chromosome level. This analysis, along with the creation of a synteny map between the two species, suggests a rapid turnover of centromeric satDNA between these species and the potential occurrence of chromosomal rearrangements, despite the considerable conservation of their satellitomes. Specific satDNA families in the sex chromosomes of both species suggest a role in sex chromosome differentiation. Our interspecific comparative study can provide a significant advance in the understanding of the repeat genome organization and evolution in beetles.
Collapse
Affiliation(s)
- Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - José M Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Eugenia E Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
- Biodiversity and Global Change Research Centre (CIBC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Sebastián Pita
- Section Evolutive Genetics, Faculty of Sciences, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
| | - Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP-São Paulo State University, Rio Claro 13506-900, SP, Brazil
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
25
|
Silva DSD, de Sousa RPC, Vallinoto M, Costa Lima MRD, Costa RAD, Furo IDO, Gomes AJB, Oliveira EHCD. Comparative molecular and conventional cytogenetic analyses of three species of Rhinella (Anura; Bufonidae). PLoS One 2024; 19:e0308785. [PMID: 39146271 PMCID: PMC11326569 DOI: 10.1371/journal.pone.0308785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The genus Rhinella corresponds to a group of anurans characterized by numerous taxonomic and systemic challenges, leading to their organization into species complexes. Cytogenetic data for this genus thus far are limited to the diploid number and chromosome morphology, which remain highly conserved among the species. In this study, we analyse the karyotypes of three species of the genus Rhinella (Rhinella granulosa, Rhinella margaritifera, and Rhinella marina) using both classical (conventional staining and C-banding) and molecular (FISH-fluorescence in situ hybridization with 18S rDNA, telomeric sequences, and microsatellite probes) cytogenetic approaches. The aim of this study is to provide data that can reveal variations in the distribution of repetitive sequences that can contribute to understanding karyotypic diversification in these species. The results revealed a conserved karyotype across the species, with 2n = 22 and FN = 44, with metacentric and submetacentric chromosomes. C-banding revealed heterochromatic blocks in the pericentromeric region for all species, with a proximal block on the long arms of pairs 3 and 6 in R. marina and on the short arms of pairs 4 and 6 in R. margaritifera. Additionally, 18S rDNA probes hybridized to pair 5 in R. granulosa, to pair 7 in R. marina, and to pair 10 in R. margaritifera. Telomeric sequence probes displayed signals exclusively in the distal region of the chromosomes, while microsatellite DNA probes showed species-specific patterns. These findings indicate that despite a conserved karyotypical macrostructure, chromosomal differences exist among the species due to the accumulation of repetitive sequences. This variation may be attributed to chromosome rearrangements or differential accumulation of these sequences, highlighting the dynamic role of repetitive sequences in the chromosomal evolution of Rhinella species. Ultimately, this study emphasizes the importance of the role of repetitive DNAs in chromosomal rearrangements to elucidate the evolutionary mechanisms leading to independent diversification in the distinct phylogenetic groups of Rhinella.
Collapse
Affiliation(s)
- David Santos da Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Marcelo Vallinoto
- Laboratório de Evolução, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Marlon Ramires da Costa Lima
- Laboratório de Biologia Molecular, Evolução e Microbiologia, Instituto Federal do Pará, Abaetetuba, Pará, Brazil
| | - Renato Araújo da Costa
- Laboratório de Biologia Molecular, Evolução e Microbiologia, Instituto Federal do Pará, Abaetetuba, Pará, Brazil
| | - Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, Universidade Federal Rural da Amazônia, Parauapebas, Pará, Brazil
| | - Anderson José Baia Gomes
- Laboratório de Biologia Molecular, Evolução e Microbiologia, Instituto Federal do Pará, Abaetetuba, Pará, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas Naturais e Exatas, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| |
Collapse
|
26
|
Teixeira GA, Travenzoli NM, Tavares MG. Chromosomal organization of different repetitive sequences in four wasp species of the genus Trypoxylon Latreille (Hymenoptera: Crabronidae) and insights into the composition of wasp telomeres. Genome 2024; 67:243-255. [PMID: 38593475 DOI: 10.1139/gen-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This study characterizes the chromosomal organization of DNA repetitive sequences and the karyotypic evolution in four representatives of the solitary wasp genus Trypoxylon using conventional and molecular cytogenetic techniques. Our findings present the first cytogenetic data for Trypoxylon rogenhoferi (2n = 30) and Trypoxylon albonigrum (2n = 32), while the karyotypes of Trypoxylon nitidum (2n = 30) and Trypoxylon lactitarse (2n = 30) were similar to those previously described. Fluorochrome staining and microsatellite distribution data revealed differences in the constitutive heterochromatin composition among species. Trypoxylon nitidum and T. albonigrum exhibited one major rDNA cluster, potentially representing an ancestral pattern for aculeate Hymenoptera, while T. rogenhoferi and T. lactitarse showed two pericentromeric rRNA gene sites, suggesting amplification events in their ancestral clade. The (TCAGG)n motif hybridized in the terminal regions of the chromosomes in all four Trypoxylon species, which may suggest that this sequence represents DNA telomeric repeat. Notably, the presence of this repetitive sequence in the centromeric regions of certain chromosome pairs in two species supports the hypothesis of chromosomal fusions or inversions in the ancestral karyotype of Trypoxylon. The study expands the chromosomal mapping data of repetitive sequences in wasps and offers insights into the dynamic evolutionary landscape of karyotypes in these insects.
Collapse
Affiliation(s)
| | - Natália Martins Travenzoli
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Laboratório de Citogenética de Insetos, Viçosa, Minas Gerais 36570-900, Brazil
| | - Mara Garcia Tavares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Laboratório de Citogenética de Insetos, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
27
|
Laus AC, Gomes INF, da Silva ALV, da Silva LS, Milan MB, AparecidaTeixeira S, Martin ACBM, do Nascimento Braga Pereira L, de Carvalho CEB, Crovador CS, de Paula FE, Nascimento FC, de Freitas HT, de Lima Vazquez V, Reis RM, da Silva-Oliveira RJ. Establishment and molecular characterization of HCB-541, a novel and aggressive human cutaneous squamous cell carcinoma cell line. Hum Cell 2024; 37:1170-1183. [PMID: 38565739 PMCID: PMC11194207 DOI: 10.1007/s13577-024-01054-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer that can result in significant morbidity, although it is usually well-managed and rarely metastasizes. However, the lack of commercially available cSCC cell lines hinders our understanding of this disease. This study aims to establish and characterize a new metastatic cSCC cell line derived from a Brazilian patient. A tumor biopsy was taken from a metastatic cSCC patient, immortalized, and named HCB-541 after several passages. The cytokeratin expression profile, karyotypic alterations, mutational analysis, mRNA and protein differential expression, tumorigenic capacity in xenograft models, and drug sensitivity were analyzed. The HCB-541 cell line showed a doubling time between 20 and 30 h and high tumorigenic capacity in the xenograft mouse model. The HCB-541 cell line showed hypodiploid and hypotetraploidy populations. We found pathogenic mutations in TP53 p.(Arg248Leu), HRAS (Gln61His) and TERT promoter (C228T) and high-level microsatellite instability (MSI-H) in both tumor and cell line. We observed 37 cancer-related genes differentially expressed when compared with HACAT control cells. The HCB-541 cells exhibited high phosphorylated levels of EGFR, AXL, Tie, FGFR, and ROR2, and high sensitivity to cisplatin, carboplatin, and EGFR inhibitors. Our study successfully established HCB-541, a new cSCC cell line that could be useful as a valuable biological model for understanding the biology and therapy of metastatic skin cancer.
Collapse
Affiliation(s)
- Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Izabela Natalia Faria Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Aline Larissa Virginio da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Luciane Sussuchi da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Mirella Baroni Milan
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Silvia AparecidaTeixeira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Ana Carolina Baptista Moreno Martin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Letícia do Nascimento Braga Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | | | - Camila Souza Crovador
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Flávia Escremin de Paula
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Flávia Caroline Nascimento
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Helder Teixeira de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Vinicius de Lima Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil
| | - Renato José da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil.
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil.
| |
Collapse
|
28
|
Zhang L, Xiang J, Li J, Zhou J, Hou J, Huang Y, Li H. Karyotype analysis of Quasipaaspinosa David, 1875 (Anura, Dicroglossidae) with conventional cytogenetic techniques. COMPARATIVE CYTOGENETICS 2024; 18:97-103. [PMID: 38948005 PMCID: PMC11214007 DOI: 10.3897/compcytogen.18.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 07/02/2024]
Abstract
The current study analyzed the chromosomal karyotype of Quasipaaspinosa David, 1875 from Hunan Province, China. The karyotype, C-banding, BrdU-banding pattern were characterized using direct preparation of bone-marrow cells and hemocyte cultures. The findings indicated that Q.spinosa was a diploid species (2n = 26) that lacked heteromorphic chromosomes and secondary constrictions. C-banding analysis revealed an abundance of positive signals in the centromere regions, while the BrdU-banding pattern showed three phases in both male and female, occurring consistently and in chronological sequence during S-phase. Notably, there was no asynchronous replication in the late phase. This study enhanced our understanding of the karyotypic structure of Q.spinosa by conventional cytogenetic techniques, thus providing essential scientific insights into the cytogenetics of Q.spinosa.
Collapse
Affiliation(s)
- Liaoruilin Zhang
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jianguo Xiang
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Juan Li
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jie Zhou
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jinliang Hou
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Yanfei Huang
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Hong Li
- College of Fisheries, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, Hunan Province,410128, ChinaHunan Agricultural UniversityChangshaChina
| |
Collapse
|
29
|
Rodrigues PP, Machado MDA, Pety AM, Oliveira da Silva W, Pieczarka JC, Nagamachi CY. Mapping of Repetitive Sequences in Brachyhypopomus brevirostris (Hypopomidae, Gymnotiformes) from the Brazilian Amazon. Animals (Basel) 2024; 14:1726. [PMID: 38929345 PMCID: PMC11200435 DOI: 10.3390/ani14121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Brachyhypopomus (Hypopomidae, Gymnotiformes) is a monophyletic genus consisting of 28 formally described species. Karyotypic data are available for 12 species. The same karyotype is described for two species (B. brevirostris and B. hamiltoni), as well as different karyotypes for the same species from distinct locations (B. brevirostris). In this context, B. brevirostris may constitute a cryptic species complex. Thus, in the present study, we analyzed the karyotype of B. brevirostris, from Santarém, Pará, and Tefé, Amazonas, using classical cytogenetics (conventional staining and C-banding) and molecular techniques (fluorescence in situ hybridization using 18S rDNA, 5S rDNA, U2 snRNA, and telomeric probes). The results show that samples from both locations present 2n = 38, with all chromosomes being acrocentric (FC = 38a). In both populations, 18S rDNA sequences are present on only one pair of homologous chromosomes and telomeric sequences occur only at the ends of the chromosomes. In the Tefé sample, the 5S rDNA occurs in two pairs, and the U2 snRNA in three pairs. These results are the first descriptions of these sequences for B. brevirostris samples from the Tefé locality, as well as the first karyotypic description for the Santarém locality. Future cytotaxonomic studies of this genus can benefit from these results.
Collapse
Affiliation(s)
| | | | | | | | | | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (P.P.R.); (M.d.A.M.); (A.M.P.); (W.O.d.S.); (J.C.P.)
| |
Collapse
|
30
|
Mezzasalma M, Odierna G, Macirella R, Brunelli E. Comparative Cytogenetics of the Malagasy Ground Geckos of the Paroedura bastardi and Paroedura picta Species Groups. Animals (Basel) 2024; 14:1708. [PMID: 38891755 PMCID: PMC11171197 DOI: 10.3390/ani14111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
We present a comparative chromosome study of several taxa of the Malagasy ground geckos of the Paroedura bastardi and P. picta species groups. We employed a preliminary molecular analysis using a trait of the mitochondrial 16S rRNA gene (of about 570 bp) to assess the taxonomic status of the samples studied and a cytogenetic analysis with standard karyotyping (5% Giemsa solution), silver staining (Ag-NOR staining) and sequential C-banding (C-banding + Giemsa and + fluorochromes). Our results show that all the taxa studied of the P. bastardi group (P. ibityensis, P. rennerae and P. cf. guibeae) have a similar karyotype composed of 2n = 34 chromosomes, with two metacentric pairs (1 and 3) and all other pairs being acrocentric. Chromosome diversification in the P. bastardi group was mainly linked to the diversification of heteromorphic sex chromosome systems (ZZ/ZW) in P. ibityensis and P. rennerae, while no heteromorphic sex chromosome pair was found in P. cf. guibeae. The two taxa investigated of the P. picta species group (here named P. picta and P. cf. picta based on molecular data) showed the same chromosome number of 2n = 36, mostly acrocentric elements, but differed in the number of metacentric elements, probably as a result of an inversion at chromosome pair 2. We highlight that the genus Paroedura is characterized by the independent diversification of heterogametic sex chromosomes in different evolutionary lineages and, similarly to other phylogenetically related gecko genera, by a progressive formation of a biarmed element by means of tandem fusions and inversions of distinct pairs.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| | - Gaetano Odierna
- Independent Researcher, Via Michelangelo 123, 81031 Aversa, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| |
Collapse
|
31
|
Balini LC, Fernandes CA, Portela-Castro ALDB, Melo RFD, Zawadzki CH, Borin-Carvalho LA. Initial Steps of XY Sex Chromosome Differentiation in the Armored Catfish Hypostomus albopunctatus (Siluriformes: Loricariidae) Revealed by Heterochromatin Accumulation. Zebrafish 2024; 21:265-273. [PMID: 38386543 DOI: 10.1089/zeb.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
In fish species, heterochromatinization is one process that could trigger sex chromosome differentiation. The present article describes a nascent XX/XY sex chromosome system evidenced by heterochromatin accumulation and microsatellite (GATA)8 in Hypostomus albopunctatus from two populations of the Paraná River basin. The specimens of H. albopunctatus from the Campo and Bossi Rivers share the same karyotype. The species exhibits 74 chromosomes (8m+14sm +16st +36a, fundamental number = 112). The C-banding technique suggests male heterogamety in H. albopunctatus, where the Y-chromosome is morphologically like the X-chromosome but differs from it for having long arms that are entirely heterochromatic. Double fluorescence in situ hybridization (FISH) with 18S and 5S rDNA probes confirmed the Ag-nucleolus organizer region sites in a single pair for both populations, and minor rDNA clusters showed interpopulational variation. FISH with the microsatellite (GATA)8 probe showed a dispersed pattern in the karyotype, accumulating these sequences of sex chromosomes of both populations. FISH with microsatellite (CGC)10 probe showed interpopulational variation. The absence of differentiated sex chromosomes in H. albopunctatus is described previously, and a new variant is documented herein where XY chromosomes can be seen in an early stage of differentiation.
Collapse
Affiliation(s)
- Ligia Carla Balini
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Carlos Alexandre Fernandes
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Rafael Fernando de Melo
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Cláudio Henrique Zawadzki
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
- Department of Biology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
32
|
Kretschmer R, Santos de Souza M, Gunski RJ, Del Valle Garnero A, de Freitas TRO, Zefa E, Toma GA, Cioffi MDB, Herculano Corrêa de Oliveira E, O'Connor RE, Griffin DK. Understanding the chromosomal evolution in cuckoos (Aves, Cuculiformes): a journey through unusual rearrangements. Genome 2024; 67:168-177. [PMID: 38346285 DOI: 10.1139/gen-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The Cuculiformes are a family of over 150 species that live in a range of habitats, such as forests, savannas, and deserts. Here, bacterial artificial chromosome (BAC) probes (75 from chicken and 14 from zebra finch macrochromosomes 1-10 +ZW and for microchromosomes 11-28 (except 16)) were used to investigate chromosome homologies between chicken and the squirrel cuckoo (Piaya cayana). In addition, repetitive DNA probes were applied to characterize the chromosome organization and to explore the role of these sequences in the karyotype evolution of P. cayana. We also applied BAC probes for chicken chromosome 17 and Z to the guira cuckoo (Guira guira) to test whether this species has an unusual Robertsonian translocation between a microchromosome and the Z chromosome, recently described in the smooth-billed ani (Crotophaga ani). Our results revealed extensive chromosome reorganization with inter- and intrachromosomal rearrangements in P. cayana, including a conspicuous chromosome size and heterochromatin polymorphism on chromosome pair 20. Furthermore, we confirmed that the Z-autosome Robertsonian translocation found in C. ani is also found in G. guira, not P. cayana. These findings suggest that this translocation occurred prior to the divergence between C. ani and G. guira, but after the divergence with P. cayana.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | | | - Edison Zefa
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Rebecca E O'Connor
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
33
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. First Karyotypic Insights into Potamotrygon schroederi Fernández-Yépez, 1958: Association of Different Classes of Repetitive DNA. Cytogenet Genome Res 2024; 164:60-68. [PMID: 38744250 DOI: 10.1159/000539331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Currently, there are 38 valid species of freshwater stingrays, and these belong to the subfamily Potamotrygoninae. However, cytogenetic information about this group is limited, with studies mainly using classical techniques, Giemsa, and C-banding. METHODS In this study, we used classical and molecular cytogenetic techniques - mapping of 18S and 5S rDNA and simple sequence repeats (SSRs) - in order to investigate the karyotypic composition of Potamotrygon schroederi and reveal the karyoevolutionary trends of this group. RESULTS The species presented 2n = 66 chromosomes with 18m + 12sm + 16st + 20a, heterochromatic blocks distributed in the centromeric regions of all the chromosomes, and terminal blocks in the q arm of pairs 2 and 3. Mapping of 18S rDNA regions revealed multiple clusters on pairs 2 and 7 and a homolog of pair 24. The 5S rDNA region was found in the pericentromeric portion of the subtelocentric pair 16. Furthermore, dinucleotide SSRs sequences were found in the centromeric and terminal regions of different chromosomal pairs, with preferential accumulation in pair 17. In addition, we identified conspicuous blocks of (GATA)n and (GACA)n sequences colocalized with the 5S rDNA (pair 16). CONCLUSION In general, this study corroborates the general trend of a reduction in 2n in the species of Potamotrygoninae subfamily. Moreover, we found that the location of rDNA regions is very similar among Potamotrygon species, and the SSRs accumulation in the second subtelocentric pair (17) seems to be a common trait in this genus.
Collapse
Affiliation(s)
- Alex M V Ferreira
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Patrik F Viana
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Leandro Marajó
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Eliana Feldberg
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| |
Collapse
|
34
|
Pensabene E, Augstenová B, Kratochvíl L, Rovatsos M. Differentiated sex chromosomes, karyotype evolution, and spontaneous triploidy in carphodactylid geckos. J Hered 2024; 115:262-276. [PMID: 38366660 DOI: 10.1093/jhered/esae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Geckos exhibit derived karyotypes without a clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterized by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerge through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of biarmed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.
Collapse
Affiliation(s)
- Eleonora Pensabene
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
35
|
Novaes CM, Teixeira GA, Juris EM, Lopes DM. Conventional cytogenetics and microsatellite chromosomal distribution in social wasp Mischocyttarus cassununga (Ihering, 1903) (Vespidae, Polistinae, Mischocyttarini). Genome 2024; 67:151-157. [PMID: 38262004 DOI: 10.1139/gen-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Cytogenetics has allowed the investigation of chromosomal diversity and repetitive genomic content in wasps. In this study, we characterized the karyotype of the social wasp Mischocyttarus cassununga using conventional cytogenetics and chromosomal mapping of repetitive sequences. This study was undertaken to extend our understanding of the genomic organization of repetitive DNA in social wasps and is the first molecular cytogenetic insight into the genus Mischocyttarus. The karyotype of M. cassununga had a chromosome number of 2n = 64 for females and n = 32 for males. Constitutive heterochromatin exhibited three distribution patterns: centromeric and pericentromeric regions along the smaller arms and extending almost the entire chromosome. The major ribosomal DNA sites were located on chromosome pair in females and one chromosome in males. Positive signals for the microsatellite probes (GA)n and (GAG)n were observed in the euchromatic regions of all chromosomes. The microsatellites, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n were not observed in any region of the chromosomes. Our results contrast with those previously obtained for Polybia fastidiosuscula, which showed that the microsatellites (GAG)n, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n are located predominantly in constitutive heterochromatin. This suggests variations in the diversity and chromosomal organization of repetitive sequences in the genomes of social wasps.
Collapse
Affiliation(s)
- Camila Moura Novaes
- Universidade Federal do Espírito Santo, Campus Alegre, Alto Universitário s/n, Guararema, Alegre, Espírito Santo, 29500-000, Brazil
| | - Gisele Amaro Teixeira
- Universidade Federal do Amapá, Campus Binacional - Oiapoque, n°3051, Bairro Universidade, Oiapoque, Amapá, 68980-000, Brazil
| | - Eydyeliana Month Juris
- Grupo de Investigación en Biotecnología, Universidad de Sucre, Facultad de Educación y Ciencias, Sincelejo, Colombia
| | - Denilce Meneses Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Viçosa, Avenida Peter Henry Rolfs s/n, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
36
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
37
|
Amorim KDJ, Costa GWWF, Motta-Neto CC, Soares RX, Borges AT, Benetti DD, Cioffi MB, Bertollo LAC, Tanomtong A, Molina WF. Karyotypic changes and diversification time in Epinephelidae groupers (Perciformes). Implications on reproductive isolation. AN ACAD BRAS CIENC 2024; 96:e20221011. [PMID: 38597487 DOI: 10.1590/0001-3765202420221011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/26/2023] [Indexed: 04/11/2024] Open
Abstract
Groupers (Epinephelidae and Serranidae) have attracted special attention to fish farming, and their species offer good opportunities for successful hybridizations. Cytogenetic data allow a better understanding of the role of karyotypic diversification in the acquisition of post-zygotic reproductive isolation (RI). Thus, chromosomal analyses were performed on E. striatus (Caribbean Sea), E. coioides and E. tauvina (Indo-Pacific Region), using standard procedures and mapping of six repetitive DNA classes by the in situ hybridization. The three species have 2n=48 chromosomes. The karyotypes of E. coioides and E. striatus are composed only of acrocentric chromosomes (FN=48), while E. tauvina has 8 submetacentric chromosomes (FN=56). Heterochromatin has a preferential centromeric distribution, and the microsatellite repeats are dispersed throughout the chromosomes of all species. The 18S and 5S rDNA sites are unique but show a colocalization arrangement in E. tauvina and E. striatus. The chromosomal organization suggests that the three species still maintain a significant amount of syntenic regions. The range of the karyotype divergence and the RI levels showed low, but goes turn proportionally greater in relation to the divergence time between the parental species. The slow acquisition of postzygotic RI is consistent with the high karyotype homogeneity presented by Epinephelidae family.
Collapse
Affiliation(s)
- Karlla Danielle J Amorim
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Gideão W W F Costa
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Clóvis C Motta-Neto
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Rodrigo X Soares
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Amanda T Borges
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Daniel D Benetti
- University of Miami, Rosenstiel School of Marine and Atmospheric Science (RSMAS), 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Marcelo B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002,Thailand
- Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Wagner F Molina
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| |
Collapse
|
38
|
de Oliveira AM, Souza GM, Toma GA, Dos Santos N, Dos Santos RZ, Goes CAG, Deon GA, Setti PG, Porto-Foresti F, Utsunomia R, Gunski RJ, Del Valle Garnero A, Herculano Correa de Oliveira E, Kretschmer R, Cioffi MDB. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome 2024; 67:109-118. [PMID: 38316150 DOI: 10.1139/gen-2023-0082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
39
|
Saraiva DM, de Souza MS, Tura V, de Rosso VO, Zefa E, Garnero ADV, Gunski RJ, Sassi FDMC, Cioffi MDB, Kretschmer R. Comparative Cytogenetics in Tyrannidae (Aves, Passeriformes): High Genetic Diversity despite Conserved Karyotype Organization. Cytogenet Genome Res 2024; 164:43-51. [PMID: 38547850 DOI: 10.1159/000538586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/26/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Passeriformes has the greatest species diversity among Neoaves, and the Tyrannidae is the richest in this order with about 600 valid species. The diploid number of this family remains constant, ranging from 2n = 76 to 84, but the chromosomal morphology varies, indicating the occurrence of different chromosomal rearrangements. Cytogenetic studies of the Tyrannidae remain limited, with approximately 20 species having been karyotyped thus far. This study aimed to describe the karyotypes of two species from this family, Myiopagis viridicata and Sirystes sibilator. METHODS Skin biopsies were taken from each individual to establish fibroblast cell cultures and to obtain chromosomal preparations using the standard methodology. The chromosomal distribution of constitutive heterochromatin was investigated by C-banding, while the location of simple repetitive sequences (SSRs), 18S rDNA, and telomeric sequences was found through fluorescence in situ hybridization. RESULTS The karyotypes of both species are composed of 2n = 80. The 18S rDNA probes hybridized into two pairs of microchromosomes in M. viridicata, but only a single pair in S. sibilator. Only the telomeric portions of each chromosome in both species were hybridized by the telomere sequence probes. Most of the SSRs were found accumulated in the centromeric and telomeric regions of several macro- and microchromosomes in both species, which likely correspond to the heterochromatin-rich regions. CONCLUSION Although both species analyzed showed a conserved karyotype organization (2n = 80), our study revealed significant differences in their chromosomal architecture, rDNA distribution, and SSR accumulation. These findings were discussed in the context of the evolution of Tyrannidae karyotypes.
Collapse
Affiliation(s)
- Diego Madruga Saraiva
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Victoria Tura
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Vitor Oliveira de Rosso
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Edison Zefa
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
40
|
Yurchenko A, Pšenička T, Mora P, Ortega JAM, Baca AS, Rovatsos M. Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos. Genes (Basel) 2024; 15:429. [PMID: 38674364 PMCID: PMC11049218 DOI: 10.3390/genes15040429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.
Collapse
Affiliation(s)
- Alona Yurchenko
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Juan Alberto Marchal Ortega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Antonio Sánchez Baca
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| |
Collapse
|
41
|
Kowalski S, Haerter CAG, Perin DP, Takagui FH, Viana PF, Feldberg E, Blanco DR, Traldi JB, Giuliano-Caetano L, Lui RL. Karyotypic characterization of Centromochlus schultzi Rössel 1962 (Auchenipteridae, Centromochlinae) from the Xingu River basin: New inferences on chromosomal evolution in Centromochlus. Genet Mol Biol 2024; 47:e20230105. [PMID: 38530404 PMCID: PMC10993310 DOI: 10.1590/1678-4685-gmb-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/20/2023] [Indexed: 03/28/2024] Open
Abstract
Centromochlinae is a widely diverse subfamily with more than 50 species and several taxonomic conflicts due to morphological similarity between Tatia and Centromochlus species. However, cytogenetic studies on this group have been limited to only four species so far. Therefore, here we present the karyotype of Centromochlus schultzi from the Xingu River in Brazil using classic cytogenetic techniques, physical mapping of the 5S and 18S rDNAs, and telomeric sequences (TTAGGG)n. The species had 58 chromosomes, simple NORs and 18S rDNA sites. Heterochromatic regions were detected on the terminal position of most chromosomes, including pericentromeric and centromeric blocks that correspond to interstitial telomeric sites. The 5S rDNA had multiple sites, including a synteny with the 18S rDNA in the pair 24st, which is an ancestral feature for Doradidae, sister group of Auchenipteridae, but appears to be a homoplastic trait in this species. So far, C. schultzi is only the second species within Centromochlus to be karyotyped, but it has already presented characteristics with great potential to assist in future discussions on taxonomic issues in the subfamily Centromochlinae, including the first synteny between rDNAs in Auchenipteridae and also the presence of heterochromatic ITSs that could represent remnants of ancient chromosomal fusions.
Collapse
Affiliation(s)
- Samantha Kowalski
- Universidade Estadual de Londrina, Centro de Ciências Biológicas,
Londrina, PR, Brazil
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Chrystian Aparecido Grillo Haerter
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Diana Paula Perin
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Fábio Hiroshi Takagui
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | | | | | | | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| |
Collapse
|
42
|
Rico-Porras JM, Mora P, Palomeque T, Montiel EE, Cabral-de-Mello DC, Lorite P. Heterochromatin Is Not the Only Place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes (Basel) 2024; 15:395. [PMID: 38674330 PMCID: PMC11049206 DOI: 10.3390/genes15040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The satellitome of the beetle Chrysolina americana Linneo, 1758 has been characterized through chromosomal analysis, genomic sequencing, and bioinformatics tools. C-banding reveals the presence of constitutive heterochromatin blocks enriched in A+T content, primarily located in pericentromeric regions. Furthermore, a comprehensive satellitome analysis unveils the extensive diversity of satellite DNA families within the genome of C. americana. Using fluorescence in situ hybridization techniques and the innovative CHRISMAPP approach, we precisely map the localization of satDNA families on assembled chromosomes, providing insights into their organization and distribution patterns. Among the 165 identified satDNA families, only three of them exhibit a remarkable amplification and accumulation, forming large blocks predominantly in pericentromeric regions. In contrast, the remaining, less abundant satDNA families are dispersed throughout euchromatic regions, challenging the traditional association of satDNA with heterochromatin. Overall, our findings underscore the complexity of repetitive DNA elements in the genome of C. americana and emphasize the need for further exploration to elucidate their functional significance and evolutionary implications.
Collapse
Affiliation(s)
- José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Eugenia E. Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
- Center for Research in Biodiversity and Global Change, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Diogo C. Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP—São Paulo State University, Rio Claro 13506-900, SP, Brazil;
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| |
Collapse
|
43
|
Miura I, Shams F, Ohki J, Tagami M, Fujita H, Kuwana C, Nanba C, Matsuo T, Ogata M, Mawaribuchi S, Shimizu N, Ezaz T. Multiple Transitions between Y Chromosome and Autosome in Tago's Brown Frog Species Complex. Genes (Basel) 2024; 15:300. [PMID: 38540359 PMCID: PMC10969965 DOI: 10.3390/genes15030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Jun’ichi Ohki
- Natural History Museum and Institute, Chiba 260-8682, Japan;
| | - Masataka Tagami
- Gifu World Freshwater Aquarium, Kakamigahara, Gifu 501-6021, Japan;
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama 369-1217, Japan;
| | - Chiao Kuwana
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Chiyo Nanba
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Takanori Matsuo
- Department of Preschool Education, Nagasaki Women’s Junior College, Nagasaki 850-0823, Japan;
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama 241-0804, Japan;
| | - Shuuji Mawaribuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| | - Norio Shimizu
- Hiroshima University Museum, Higashi-Hiroshima 739-8524, Japan;
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| |
Collapse
|
44
|
de Oliveira TD, Bertocchi NA, Kubiak BB, Galiano D, Althoff SL, de Freitas TRO. New Karyotype Information for Ctenomys (Rodentia: Ctenomyidae) from Midwest and Northern Brazil. Cytogenet Genome Res 2024; 164:33-42. [PMID: 38402854 DOI: 10.1159/000538014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Its wide karyotypic variation characterizes the genus Ctenomys, and in Brazil, the genus is distributed in the country's southern, Midwest, and northern regions. Recently, populations of Ctenomys have been found in the Midwest and northern Brazil, with two new lineages named C. sp. "xingu" and C. sp. "central." METHODS This work combines classical cytogenetic and molecular analyses to provide new chromosomal information on the boliviensis group distributed in northern and Midwestern Brazil. This includes the validation of the karyotype of C. bicolor and C. nattereri and the description of the karyotype of C. sp. "xingu" and C. sp. "central." RESULTS We found three different karyotypes: 2n = 40 for C. bicolor; 2n = 36 for C. nattereri, and specimens from a locality belonging to C. sp. "central"; 2n = 34 for the lineage C. sp. "xingu" and specimens from a locality belonging to C. sp. "central." Furthermore, GTG banding revealed homologous chromosomes between species/lineages and allowed the identification of the rearrangements that occurred, which proved the occurrence of fissions. CONCLUSION Considering our results on the variation of 2n in the boliviensis group, we found two possibilities: the first, deduced by parsimony, is that 2n = 36 appeared initially, and two fissions produced gave rise to 2n = 40, and an independent fusion gave rise to 2n = 34 from 2n = 36; moreover, the second explanation is that all karyotypes arose independently.
Collapse
Affiliation(s)
- Thays Duarte de Oliveira
- Departamento de zoologia, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Bruno Busnello Kubiak
- Departamento de zoologia, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Galiano
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Erechim, Brazil
| | - Sérgio Luiz Althoff
- Departamento de Ciências Naturais, Programa de Pós-Graduação em Biodiversidade, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Thales R O de Freitas
- Departamento de zoologia, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
45
|
Kretschmer R, Toma GA, Deon GA, dos Santos N, dos Santos RZ, Utsunomia R, Porto-Foresti F, Gunski RJ, Garnero ADV, Liehr T, de Oliveira EHC, de Freitas TRO, Cioffi MDB. Satellitome Analysis in the Southern Lapwing ( Vanellus chilensis) Genome: Implications for SatDNA Evolution in Charadriiform Birds. Genes (Basel) 2024; 15:258. [PMID: 38397247 PMCID: PMC10887557 DOI: 10.3390/genes15020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Gustavo A. Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| | - Natalia dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (R.J.G.); (A.D.V.G.)
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (R.J.G.); (A.D.V.G.)
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, University Hospital Jena, 07747 Jena, Germany
| | - Edivaldo Herculano Corra de Oliveira
- Laboratório de Citogenô mica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| |
Collapse
|
46
|
Souza KL, Melo S, Peixoto MA, Travenzoli NM, Feio RN, Dergam JA. Repetitive DNA Mapping in Five Genera of Tree Frogs (Amphibia: Anura) from the Atlantic Forest: New Highlights on Genomic Organization in Hylidae. Cytogenet Genome Res 2024; 163:317-326. [PMID: 38368863 DOI: 10.1159/000537875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION The tribes Cophomantini, Scinaxini, and Dendropsophini are anurans that belong to Hylidae, with wide distribution in tropical and subtropical regions around the world. The taxonomy and systematics of this family remain in a state of ongoing revision. Previous cytogenetic analyses of genera Boana, Bokermannohyla, Ololygon, Scinax, and Dendropsophus described some karyotypic characters such as conventional staining, C-banding and NORs, and FISH with specific probes. METHODS This study describes for the first time the karyotypes of four species: Bokermannohyla ibitipoca, Ololygon luizotavioi, Dendropsophus bipunctatus, and Dendropsophus ruschii. Furthermore, we map CA(15) and CAT(10) microsatellite sites for the aforementioned species and six more species from the same genera for insight into the chromosomal evolution within the subfamily Hyalinae. RESULTS B. ibitipoca and O. luizotavioi had 2n = 24 and karyotypic formulas 18m + 4sm + 2st and 8m + 12sm + 4st, while D. bipunctatus and D. ruschii showed 2n = 30 and karyotypic formulas 12m + 12sm + 4st + 2t and 10m + 10sm + 6st + 4t, respectively. The diploid numbers and karyotypic formulas revealed here follow the previously reported trend for Hylidae, except B. ibitipoca has a particularity of eight metacentric chromosomes, more than what is commonly found in species of this genus. The microsatellites probes CA(15) and CAT(10) had markings accumulated in blocks in the centromeric, pericentromeric, and terminal regions that were more specific for some species, as well as markings scattered along the chromosomes. We present a comprehensive review table of current data on cytogenetics of these genera. CONCLUSION Our findings showed that the karyotypes of the hylids studied here majority fit the postulated conserved diploid number (2n = 24) and morphological chromosome patterns, while the mapping of the microsatellites enabled us to detect differences between species that share similar chromosomal morphologies.
Collapse
Affiliation(s)
- Késsia Leite Souza
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Silvana Melo
- Department of Structural and Functional Biology, Laboratory of Fish Biology and Genetics, Botucatu Institute of Biosciences, Paulista State University, Botucatu, Brazil
| | - Marco Antônio Peixoto
- Department of General Biology, Biometrics Laboratory, Federal University of Viçosa, Vicosa, Brazil
| | - Natália Martins Travenzoli
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Renato Neves Feio
- Department of Animal Biology, Museum of Zoology João Moojen (MZUFV), Federal University of Viçosa, Vicosa, Brazil
| | - Jorge Abdala Dergam
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| |
Collapse
|
47
|
Bugrov A, Karamysheva T, Buleu O. New insights into the chromosomes of stoneflies: I. Karyotype, C-banding and localization of ribosomal and telomeric DNA markers in Skwalacompacta (McLachlan, 1872) (Polyneoptera, Plecoptera, Perlodidae) from Siberia. COMPARATIVE CYTOGENETICS 2024; 18:15-26. [PMID: 38313463 PMCID: PMC10835800 DOI: 10.3897/compcytogen.18.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
This study provides data on chromosome number (2n♂♀=26), sex determination mechanism (XY♂/XX♀), C-banding pattern, distribution of clusters of telomeric TTAGG repeats and 18S ribosomal DNA in the karyotype of the stonefly Skwalacompacta (McLachlan, 1872). For the first time in the history of stoneflies cytogenetics, we provide photos of the chromosomes of the Plecoptera insects. The karyotype of males and females of S.compacta consists of 12 pairs of autosomes. Three pairs of large autosomes and four pairs of medium-sized autosomes are subacrocentric. The remaining pairs of autosomes are small, with unclear morphology. Pericentromeric C-bands were revealed in all autosomes. The sex chromosomes are also subacrocentric. The short arms of X and Y chromosomes are entirely heterochromatic and are rich in ribosomal DNA sequences. In the X chromosome this arm is larger than in the Y chromosome. It is likely that this arm associated with the nucleolar organizer (NOR). Telomeric DNA (TTAGG)n repeats were detected in the terminal regions of all chromosomes.
Collapse
Affiliation(s)
- Alexander Bugrov
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia Novosibirsk State University Novosibirsk Russia
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091, Novosibirsk, Russia Institute of Systematics and Ecology of Animals, Russian Academy of Sciences Novosibirsk Russia
| | - Tatyana Karamysheva
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia Novosibirsk State University Novosibirsk Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Pr. Lavrentjeva 10, 630090, Novosibirsk, Russia Institute of Cytology and Genetics, Russian Academy of Sciences Novosibirsk Russia
| | - Olesya Buleu
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia Novosibirsk State University Novosibirsk Russia
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091, Novosibirsk, Russia Institute of Systematics and Ecology of Animals, Russian Academy of Sciences Novosibirsk Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Pr. Lavrentjeva 10, 630090, Novosibirsk, Russia Institute of Cytology and Genetics, Russian Academy of Sciences Novosibirsk Russia
| |
Collapse
|
48
|
Mezzasalma M. First Cytogenetic Analysis of Hemidactylus mercatorius Gray, 1842 Provides Insights on Interspecific Chromosomal Diversification in the Genus Hemidactylus (Squamata: Gekkonidae). Life (Basel) 2024; 14:181. [PMID: 38398689 PMCID: PMC10890220 DOI: 10.3390/life14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This contribution provides the first karyotype description of Hemidactylus mercatorius and discusses the interspecific chromosome diversification in the genus. Chromosomal analysis was performed on samples from different Malagasy populations using standard karyotyping, Ag-NOR staining, and banding methods (sequential C-banding + Giemsa, + Chromomycin A3, +4',6-diamidino-2-phenylindole). Irrespective of sex or sampling locality, H. mercatorius shows a karyotype of 2n = 42 with metacentric (1, 18-21), submetacentric (4), subtelocentric (5, 11), and acrocentric pairs (all the remaining pairs). There was no heteromorphic chromosome pair and no clear distinction between macro- and microchromosomes. NORs were localised close to the centromeres of a medium acrocentric pair (14). Heterochromatic blocks were identified on the telomeric and centromeric regions of most chromosome pairs. A comparison with the karyotype of H. mabouia highlights that the different morphology of several chromosome pairs clearly distinguishes the two species, contrasting the previously proposed synonymy. The differences between the karyotypes of H. mercatorius and H. mabouia concern the number of biarmed and acrocentric elements, suggesting the occurrence of several chromosome inversions. Considering all the available karyotype data on Hemidactylus and its sister genus Cyrtodactylus, it is possible to advance an evolutionary hypothesis on their chromosomal evolution, starting from a common ancestor with 2n = 48 and all acrocentric elements. From this ancestral condition, the karyotype diversification in the two genera has been prevalently characterised by a progressive accumulation of fusions and inversions which have reduced the total chromosome count and increased the number of biarmed chromosomes.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| |
Collapse
|
49
|
Oliveira da Silva W, Malcher SM, Ferguson-Smith MA, O'Brien PCM, Rossi RV, Geise L, Pieczarka JC, Nagamachi CY. Chromosomal rearrangements played an important role in the speciation of rice rats of genus Cerradomys (Rodentia, Sigmodontinae, Oryzomyini). Sci Rep 2024; 14:545. [PMID: 38177653 PMCID: PMC10766967 DOI: 10.1038/s41598-023-50861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Mato Grosso, Brazil
| | - Lena Geise
- Departamento de Zoologia, Laboratório de Mastozoologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.
| |
Collapse
|
50
|
Souza-Borges CH, Utsunomia R, Varani AM, Uliano-Silva M, Lira LVG, Butzge AJ, Gomez Agudelo JF, Manso S, Freitas MV, Ariede RB, Mastrochirico-Filho VA, Penaloza C, Barria A, Porto-Foresti F, Foresti F, Hattori R, Guiguen Y, Houston RD, Hashimoto DT. De novo assembly and characterization of a highly degenerated ZW sex chromosome in the fish Megaleporinus macrocephalus. Gigascience 2024; 13:giae085. [PMID: 39589439 PMCID: PMC11590113 DOI: 10.1093/gigascience/giae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/31/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Megaleporinus macrocephalus (piauçu) is a Neotropical fish within Characoidei that presents a well-established heteromorphic ZZ/ZW sex determination system and thus constitutes a good model for studying W and Z chromosomes in fishes. We used PacBio reads and Hi-C to assemble a chromosome-level reference genome for M. macrocephalus. We generated family segregation information to construct a genetic map, pool sequencing of males and females to characterize its sex system, and RNA sequencing to highlight candidate genes of M. macrocephalus sex determination. RESULTS The reference genome of M. macrocephalus is 1,282,030,339 bp in length and has a contig and scaffold N50 of 5.0 Mb and 45.03 Mb, respectively. In the sex chromosome, based on patterns of recombination suppression, coverage, FST, and sex-specific SNPs, we distinguished a putative W-specific region that is highly differentiated, a region where Z and W still share some similarities and is undergoing degeneration, and the PAR. The sex chromosome gene repertoire includes genes from the TGF-β family (amhr2, bmp7) and the Wnt/β-catenin pathway (wnt4, wnt7a), some of which are differentially expressed. CONCLUSIONS The chromosome-level genome of piauçu exhibits high quality, establishing a valuable resource for advancing research within the group. Our discoveries offer insights into the evolutionary dynamics of Z and W sex chromosomes in fish, emphasizing ongoing degenerative processes and indicating complex interactions between Z and W sequences in specific genomic regions. Notably, amhr2 and bmp7 are potential candidate genes for sex determination in M. macrocephalus.
Collapse
Affiliation(s)
| | - Ricardo Utsunomia
- School of Sciences, São Paulo State University (Unesp), Bauru, SP, 17033-360, Brazil
| | - Alessandro M Varani
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | | | - Lieschen Valeria G Lira
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Arno J Butzge
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - John F Gomez Agudelo
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Shisley Manso
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Milena V Freitas
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Raquel B Ariede
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | | | - Carolina Penaloza
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Agustín Barria
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Fábio Porto-Foresti
- School of Sciences, São Paulo State University (Unesp), Bauru, SP, 17033-360, Brazil
| | - Fausto Foresti
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, 18618-689, Brazil
| | - Ricardo Hattori
- São Paulo Agency of Agribusiness and Technology (APTA), São Paulo, SP, 01037-010, Brazil
| | | | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Diogo Teruo Hashimoto
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|