1
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, Tangudu NK, Uboveja A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. Mol Metab 2024; 89:102031. [PMID: 39304063 PMCID: PMC11462069 DOI: 10.1016/j.molmet.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Amanda J Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naveen Kumar Tangudu
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Apoorva Uboveja
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Katherine M Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Cereghetti G, Kissling VM, Koch LM, Arm A, Schmidt CC, Thüringer Y, Zamboni N, Afanasyev P, Linsenmeier M, Eichmann C, Kroschwald S, Zhou J, Cao Y, Pfizenmaier DM, Wiegand T, Cadalbert R, Gupta G, Boehringer D, Knowles TPJ, Mezzenga R, Arosio P, Riek R, Peter M. An evolutionarily conserved mechanism controls reversible amyloids of pyruvate kinase via pH-sensing regions. Dev Cell 2024; 59:1876-1891.e7. [PMID: 38788715 DOI: 10.1016/j.devcel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/15/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Amyloids are known as irreversible aggregates associated with neurodegenerative diseases. However, recent evidence shows that a subset of amyloids can form reversibly and fulfill essential cellular functions. Yet, the molecular mechanisms regulating functional amyloids and distinguishing them from pathological aggregates remain unclear. Here, we investigate the conserved principles of amyloid reversibility by studying the essential metabolic enzyme pyruvate kinase (PK) in yeast and human cells. We demonstrate that yeast PK (Cdc19) and human PK (PKM2) form reversible amyloids through a pH-sensitive amyloid core. Stress-induced cytosolic acidification promotes aggregation via protonation of specific glutamate (yeast) or histidine (human) residues within the amyloid core. Mutations mimicking protonation cause constitutive PK aggregation, while non-protonatable PK mutants remain soluble even upon stress. Physiological PK aggregation is coupled to metabolic rewiring and glycolysis arrest, causing severe growth defects when misregulated. Our work thus identifies an evolutionarily conserved, potentially widespread mechanism regulating functional amyloids during stress.
Collapse
Affiliation(s)
- Gea Cereghetti
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland; Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK.
| | - Vera M Kissling
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland; Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Empa, 9014 St. Gallen, Switzerland
| | - Lisa M Koch
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Alexandra Arm
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Claudia C Schmidt
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Yannik Thüringer
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, 8093 Zürich, Switzerland
| | - Miriam Linsenmeier
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Cédric Eichmann
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Sonja Kroschwald
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Yiping Cao
- Department of Health Sciences & Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Dorota M Pfizenmaier
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Thomas Wiegand
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Riccardo Cadalbert
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Govind Gupta
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Empa, 9014 St. Gallen, Switzerland
| | | | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Grasa L, Chueca E, Arechavaleta S, García-González MA, Sáenz MÁ, Valero A, Hördnler C, Lanas Á, Piazuelo E. Antitumor effects of lactate transport inhibition on esophageal adenocarcinoma cells. J Physiol Biochem 2023; 79:147-161. [PMID: 36342616 PMCID: PMC9905156 DOI: 10.1007/s13105-022-00931-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
As a consequence of altered glucose metabolism, cancer cell intake is increased, producing large amounts of lactate which is pumped out the cytosol by monocarboxylate transporters (MCTs). MCT 1 and MCT4 are frequently overexpressed in tumors, and recently, MCT inhibition has been reported to exert antineoplastic effects. In the present study, MCT1 and MCT4 levels were assessed in esophageal adenocarcinoma (EAC) cells and the effects of the MCT-1 selective inhibitor AZD3965, hypoxia, and a glucose overload were evaluated in vitro. Two EAC cell lines (OE33 and OACM5.1C) were treated with AZD3965 (10-100 nM) under different conditions (normoxia/hypoxia) and also different glucose concentrations, and parameters of cytotoxicity, oxidative stress, intracellular pH (pHi), and lactate levels were evaluated. MCT1 was present in both cell lines whereas MCT4 was expressed in OE33 cells and only in a small proportion of OACM5.1C cells. Glucose addition did not have any effect on apoptosis nor cell proliferation. AZD3965 increased apoptosis and reduced proliferation of OACM5.1C cells, effects which were abrogated when cells were growing in hypoxia. MCT1 inhibition increased intracellular lactate levels in all the cells evaluated, but this increase was higher in cells expressing only MCT1 and did not affect oxidative stress. AZD3965 induced a decrease in pHi of cells displaying low levels of MCT4 and also increased the sodium/hydrogen exchanger 1 (NHE-1) expression on these cells. These data provide in vitro evidence supporting the potential of MCT inhibitors as novel antineoplastic drugs for EAC and highlight the importance of achieving a complete MCT inhibition.
Collapse
Affiliation(s)
- Laura Grasa
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain.
- Faculty of Veterinary Medicine, University of Zaragoza, Calle Miguel Servet, 177, 50013, Saragossa, Spain.
| | - Eduardo Chueca
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Samantha Arechavaleta
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - María Asunción García-González
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
- IACS Aragón, Instituto Aragonés de Ciencias de La Salud, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
| | - María Ángeles Sáenz
- Faculty of Medicine, University of Zaragoza, Calle de Pedro Cerbuna, 12, 50009, Saragossa, Spain
| | - Alberto Valero
- Servicio de Patología, Hospital Universitario Miguel Servet, Paseo Isabel La Católica 1-3, 50009, Saragossa, Spain
| | - Carlos Hördnler
- Servicio de Patología, Hospital Universitario Miguel Servet, Paseo Isabel La Católica 1-3, 50009, Saragossa, Spain
| | - Ángel Lanas
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
- Faculty of Medicine, University of Zaragoza, Calle de Pedro Cerbuna, 12, 50009, Saragossa, Spain
| | - Elena Piazuelo
- IIS Aragón, Instituto de Investigación Sanitaria Aragón, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
- CIBERehd, Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029, Madrid, Spain
- IACS Aragón, Instituto Aragonés de Ciencias de La Salud, Avenida San Juan Bosco 13, 50009, Saragossa, Spain
| |
Collapse
|
4
|
Ishibashi JR, Keshri R, Taslim TH, Brewer DK, Chan TC, Lyons S, McManamen AM, Chen A, Del Castillo D, Ruohola-Baker H. Chemical Genetic Screen in Drosophila Germline Uncovers Small Molecule Drugs That Sensitize Stem Cells to Insult-Induced Apoptosis. Cells 2021; 10:cells10102771. [PMID: 34685753 PMCID: PMC8534514 DOI: 10.3390/cells10102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells, in contrast to their more differentiated daughter cells, can endure genotoxic insults, escape apoptosis, and cause tumor recurrence. Understanding how normal adult stem cells survive and go to quiescence may help identify druggable pathways that cancer stem cells have co-opted. In this study, we utilize a genetically tractable model for stem cell survival in the Drosophila gonad to screen drug candidates and probe chemical-genetic interactions. Our study employs three levels of small molecule screening: (1) a medium-throughput primary screen in male germline stem cells (GSCs), (2) a secondary screen with irradiation and protein-constrained food in female GSCs, and (3) a tertiary screen in breast cancer organoids in vitro. Herein, we uncover a series of small molecule drug candidates that may sensitize cancer stem cells to apoptosis. Further, we have assessed these small molecules for chemical-genetic interactions in the germline and identified the NF-κB pathway as an essential and druggable pathway in GSC quiescence and viability. Our study demonstrates the power of the Drosophila stem cell niche as a model system for targeted drug discovery.
Collapse
Affiliation(s)
- Julien Roy Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tommy Henry Taslim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Kennedy Brewer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tung Ching Chan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Anika Marie McManamen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ashley Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
5
|
Prasad H, Rao R. Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases. Rev Physiol Biochem Pharmacol 2020; 185:195-231. [PMID: 32737755 PMCID: PMC7614123 DOI: 10.1007/112_2020_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na+/H+ exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India, Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Patak J, Faraone SV, Zhang-James Y. Sodium hydrogen exchanger 9 NHE9 (SLC9A9) and its emerging roles in neuropsychiatric comorbidity. Am J Med Genet B Neuropsychiatr Genet 2020; 183:289-305. [PMID: 32400953 DOI: 10.1002/ajmg.b.32787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Abstract
Variations in SLC9A9 gene expression and protein function are associated with multiple human diseases, which range from Attention-deficit/hyperactivity disorder (ADHD) to glioblastoma multiforme. In an effort to determine the full spectrum of human disease associations with SLC9A9, we performed a systematic review of the literature. We also review SLC9A9's biochemistry, protein structure, and function, as well as its interacting partners with the goal of identifying mechanisms of disease and druggable targets. We report gaps in the literature regarding the genes function along with consistent trends in disease associations that can be used to further research into treating the respective diseases. We report that SLC9A9 has strong associations with neuropsychiatric diseases and various cancers. Interestingly, we find strong overlap in SLC9A9 disease associations and propose a novel role for SLC9A9 in neuropsychiatric comorbidity. In conclusion, SLC9A9 is a multifunctional protein that, through both its endosome regulatory function and its protein-protein interaction network, has the ability to modulate signaling axes, such as the PI3K pathway, among others.
Collapse
Affiliation(s)
- Jameson Patak
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yanli Zhang-James
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
7
|
Cervantes-Montelongo JA, Silva-Martínez GA, Pliego-Arreaga R, Guevara-Olvera L, Ruiz-Herrera J. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis. Arch Microbiol 2020; 202:2221-2232. [PMID: 32529509 DOI: 10.1007/s00203-020-01936-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
We report the characterization of the gene UMAG_00031 from Ustilago maydis, previously identified as upregulated at alkaline pH. This gene is located on chromosome 1 and contains an ORF of 1539 bp that encodes a putative protein of 512 amino acids with an MW of 54.8 kDa. The protein is predicted to contain seven transmembrane domains (TMDs) and a signal peptide suggesting that is located in the cell membrane. Null ΔUMAG_00031 mutants were constructed, and their phenotype was analyzed. The mutant displayed a pleiotropic phenotype suggesting its participation in processes of alkaline pH adaptation independent of the Pal/Rim pathway. Also, it was involved in the dimorphic process induced by fatty acids. These results indicate that the protein encoded by the UMAG_00031 gene possibly functions as a receptor of different signals in the cell membrane of the fungus.
Collapse
Affiliation(s)
- Juan Antonio Cervantes-Montelongo
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Ave. Tecnológico y Antonio García Cubas S/N, col. FOVISSSTE, 38010, Celaya, Gto, Mexico
| | | | - Raquel Pliego-Arreaga
- Escuela de Medicina de La Universidad de Celaya, Carretera Panamericana, Rancho Pinto km 269, 38080, Celaya, Gto, Mexico
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Ave. Tecnológico y Antonio García Cubas S/N, col. FOVISSSTE, 38010, Celaya, Gto, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 629, 36500, Irapuato, Gto, Mexico.
| |
Collapse
|
8
|
Electrochemical patterns during Drosophila oogenesis: ion-transport mechanisms generate stage-specific gradients of pH and membrane potential in the follicle-cell epithelium. BMC DEVELOPMENTAL BIOLOGY 2019; 19:12. [PMID: 31226923 PMCID: PMC6588877 DOI: 10.1186/s12861-019-0192-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Background Alterations of bioelectrical properties of cells and tissues are known to function as wide-ranging signals during development, regeneration and wound-healing in several species. The Drosophila follicle-cell epithelium provides an appropriate model system for studying the potential role of electrochemical signals, like intracellular pH (pHi) and membrane potential (Vmem), during development. Therefore, we analysed stage-specific gradients of pHi and Vmem as well as their dependence on specific ion-transport mechanisms. Results Using fluorescent indicators, we found distinct alterations of pHi- and Vmem-patterns during stages 8 to 12 of oogenesis. To determine the roles of relevant ion-transport mechanisms in regulating pHi and Vmem and in establishing stage-specific antero-posterior and dorso-ventral gradients, we used inhibitors of Na+/H+-exchangers and Na+-channels (amiloride), V-ATPases (bafilomycin), ATP-sensitive K+-channels (glibenclamide), voltage-dependent L-type Ca2+-channels (verapamil), Cl−-channels (9-anthroic acid) and Na+/K+/2Cl−-cotransporters (furosemide). Either pHi or Vmem or both parameters were affected by each tested inhibitor. While the inhibition of Na+/H+-exchangers (NHE) and amiloride-sensitive Na+-channels or of V-ATPases resulted in relative acidification, inhibiting the other ion-transport mechanisms led to relative alkalisation. The most prominent effects on pHi were obtained by inhibiting Na+/K+/2Cl−-cotransporters or ATP-sensitive K+-channels. Vmem was most efficiently hyperpolarised by inhibiting voltage-dependent L-type Ca2+-channels or ATP-sensitive K+-channels, whereas the impact of the other ion-transport mechanisms was smaller. In case of very prominent effects of inhibitors on pHi and/or Vmem, we also found strong influences on the antero-posterior and dorso-ventral pHi- and/or Vmem-gradients. For example, inhibiting ATP-sensitive K+-channels strongly enhanced both pHi-gradients (increasing alkalisation) and reduced both Vmem-gradients (increasing hyperpolarisation). Similarly, inhibiting Na+/K+/2Cl−-cotransporters strongly enhanced both pHi-gradients and reduced the antero-posterior Vmem-gradient. To minor extents, both pHi-gradients were enhanced and both Vmem-gradients were reduced by inhibiting voltage-dependent L-type Ca2+-channels, whereas only both pHi-gradients were reduced (increasing acidification) by inhibiting V-ATPases or NHE and Na+-channels. Conclusions Our data show that in the Drosophila follicle-cell epithelium stage-specific pHi- and Vmem-gradients develop which result from the activity of several ion-transport mechanisms. These gradients are supposed to represent important bioelectrical cues during oogenesis, e.g., by serving as electrochemical prepatterns in modifying cell polarity and cytoskeletal organisation. Electronic supplementary material The online version of this article (10.1186/s12861-019-0192-x) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Cervantes-Montelongo JA, Ruiz-Herrera J. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis. J Basic Microbiol 2018; 59:14-23. [PMID: 30357888 DOI: 10.1002/jobm.201800180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 11/05/2022]
Abstract
The most important signal transduction mechanism related to environmental pH responses in fungi is the Pal/Rim pathway. Our knowledge of this pathway came initially from studies on Ascomycota species where it is made by seven members divided into two complexes, one located at the plasma membrane, and other at the endosomal membrane. In Basidiomycota sepecies only the homologs of the endosomal membrane complex (genes PalA/Rim20, PalB/ Rim13, and PalC/ Rim23), plus the transcription factor PacC/Rim101 have been identified. In this study, we describe the identification in Ustilago maydis of a gene encoding a Rho-like protein (tentatively named RHO4) as a novel member of this pathway. The RHO4 gene possibly plays, among other functions, a role in the second proteolytic cleavage that leads to the activation of the transcription factor PacC/Rim101. Mutants in this gene showed a pleiotropic phenotype, displaying similar characteristics to the Pal/Rim mutants, such as a lower growth rate at alkaline pH, high sensitivity to ionic and osmotic stresses, and impairment in protease secretion, but no alteration of the yeast-to-mycelium dimorphic transition induced by acid pH whereas it has a function in the dimorphic transition induced by fatty acids.
Collapse
Affiliation(s)
- Juan A Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| |
Collapse
|
10
|
Shirani K, Nourbakhsh MS, Rafienia M. Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1482461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Keyvan Shirani
- Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Department of Materials and Metallurgical Engineering, Central Administration of Semnan University, Semnan University, Semnan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Cervantes-Montelongo JA, Aréchiga-Carvajal ET, Ruiz-Herrera J. Adaptation ofUstilago maydisto extreme pH values: A transcriptomic analysis. J Basic Microbiol 2016; 56:1222-1233. [DOI: 10.1002/jobm.201600130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Antonio Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato Gto. México
| | - Elva Teresa Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Laboratorio de Micología y Fitopatología; Unidad de Manipulación Genética, San Nicolás de los Garza; Nuevo León México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato Gto. México
| |
Collapse
|
12
|
Shin JJ, Aftab Q, Austin P, McQueen JA, Poon T, Li SC, Young BP, Roskelley CD, Loewen CJR. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets. Dis Model Mech 2016; 9:1039-49. [PMID: 27519690 PMCID: PMC5047693 DOI: 10.1242/dmm.023374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 07/18/2016] [Indexed: 12/12/2022] Open
Abstract
A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain complexes required for their proliferation.
Collapse
Affiliation(s)
- John J Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Qurratulain Aftab
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Pamela Austin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jennifer A McQueen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Tak Poon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Shu Chen Li
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
13
|
Fliefel R, Popov C, Tröltzsch M, Kühnisch J, Ehrenfeld M, Otto S. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH. J Craniomaxillofac Surg 2016; 44:715-24. [PMID: 27085985 DOI: 10.1016/j.jcms.2016.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. OBJECTIVE To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). METHODS We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. RESULTS Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. CONCLUSION pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis.
Collapse
Affiliation(s)
- Riham Fliefel
- Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University, Munich, Germany; Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany; Department of Oral and Maxillofacial Surgery, Alexandria-University, Alexandria, Egypt.
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Tröltzsch
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
AbdulQader ST, Rahman IA, Thirumulu KP, Ismail H, Mahmood Z. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells. J Biomater Appl 2016; 30:1300-11. [PMID: 26740503 DOI: 10.1177/0885328215625759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaP) of different porosities have been widely and successfully used as scaffolds with osteoblast cells for bone tissue regeneration. However, the effects of scaffold porosities on cell viability and differentiation of human dental pulp cells for dentin tissue regeneration are not well known. In this study, biphasic calcium phosphate (BCP) scaffolds of 20/80 hydroxyapatite to beta tricalcium phosphate ratio with a mean pore size of 300 μm were prepared into BCP1, BCP2, BCP3, and BCP4 of 25%, 50%, 65%, and 75% of total porosities, respectively. The extracts of these scaffolds were assessed with regard to cell viability, proliferation, and differentiation of human dental pulp cells. The high alkalinity, and more calcium and phosphate ions release that were exhibited by BCP3 and BCP4 decreased the viability and proliferation of human dental pulp cells as compared to BCP1 and BCP2. BCP2 significantly increased both cell viability and cell proliferation. However, the cells cultured with BCP3 extract revealed high alkaline phosphatase (ALP) activity and high expression of odontoblast related genes, collagen type I alpha 1, dentin matrix protein-1, and dentin sialophosphoprotein as compared to that cultured with BCP1, BCP2, and BCP4 extracts. The results highlight the effect of different scaffold porosities on the cell microenvironment and demonstrate that BCP3 scaffold of 65% porosity can support human dental pulp cells differentiation for dentin tissue regeneration.
Collapse
Affiliation(s)
- Sarah T AbdulQader
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ismail A Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Kannan P Thirumulu
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hanafi Ismail
- School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Zuliani Mahmood
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
15
|
Giannoni P, Villa F, Cordazzo C, Zardi L, Fattori P, Quarto R, Fiorini M. Rheological properties, biocompatibility and in vivo performance of new hydrogel-based bone fillers. Biomater Sci 2016; 4:1691-1703. [DOI: 10.1039/c6bm00478d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different heterologous substitutes for bone regeneration, manufactured with equine-derived cortical powder, cancellous chips and demineralized bone matrix granules, were compared in vitro and in vivo.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory
- Dept. of Experimental Medicine
- University of Genova
- c/o Advanced Biotechnology Centre
- 16132–Genova
| | - Federico Villa
- Stem Cell Laboratory
- Dept. of Experimental Medicine
- University of Genova
- c/o Advanced Biotechnology Centre
- 16132–Genova
| | - Cinzia Cordazzo
- Sirius-Biotech S.r.l
- c/o
- Advanced Biotechnology Centre
- 16132 Genova
- Italy
| | - Luciano Zardi
- Sirius-Biotech S.r.l
- c/o
- Advanced Biotechnology Centre
- 16132 Genova
- Italy
| | | | - Rodolfo Quarto
- Stem Cell Laboratory
- Dept. of Experimental Medicine
- University of Genova
- c/o Advanced Biotechnology Centre
- 16132–Genova
| | | |
Collapse
|
16
|
Xu X, Liu Y, Cui ZF. Effects of cryopreservation on human mesenchymal stem cells attached to different substrates. J Tissue Eng Regen Med 2014; 8:664-72. [DOI: 10.1002/term.1570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/10/2012] [Accepted: 06/12/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Xia Xu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing People's Republic of China
- Institute of Biomedical Engineering, Department of Engineering Science; Oxford University; UK
| | - Yang Liu
- Institute of Biomedical Engineering, Department of Engineering Science; Oxford University; UK
- Dalian R&D Centre for Stem Cell and Tissue Engineering, School of Chemical Engineering; Dalian University of Technology; People's Republic of China
- Regenerative Medicine Centre; Dalian Medical University First Affiliated Hospital; People's Republic of China
| | - Zhan Feng Cui
- Institute of Biomedical Engineering, Department of Engineering Science; Oxford University; UK
| |
Collapse
|
17
|
Kondapalli KC, Prasad H, Rao R. An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 2014; 8:172. [PMID: 25002837 PMCID: PMC4066934 DOI: 10.3389/fncel.2014.00172] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 12/02/2022] Open
Abstract
Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na(+)/H(+) exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder (ADHD), intellectual disability, and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na(+), K(+)) content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo. Drawing upon insights from model organisms and mammalian cells we show how eNHE affect surface expression and function of membrane receptors and neurotransmitter transporters. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
18
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
19
|
Xu X, Liu Y, Cui Z, Wei Y, Zhang L. Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J Biotechnol 2012; 162:224-31. [PMID: 22989486 DOI: 10.1016/j.jbiotec.2012.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/17/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022]
Abstract
Cryopreservation is one of the most practical methods for the long-term storage of cell-matrix systems to ensure off-shelf availability in tissue engineering, stem cell therapy and drug testing. The aim of this study is to investigate the effects of osmotic and cold shock caused by the procedures of cryoprotectant agent addition/removal and freezing during cryopreservation on cell viability, intracellular properties, such as filamentous actin distribution, mitochondria localization and intracellular pH, and further recovery of adherent human mesenchymal stem cells. Our results shows a significant decrease in cell viability around 30% after cryopreservation at the cooling rates of 1, 5 and 10°C/min in comparison to the adherent cells and the cells in suspension, implicating that the adherent cells are more vulnerable than the suspension cells. The osmotic shock and cold shock induced by freezing lead to dramatic changes in the intracellular properties. The cooling rate of 10°C/min results in acidification of intracellular pH, distortion and accumulation of filamentous actin, and aggregation of mitochondria. Our findings also suggest that the cooling rate of 1°C/min helps to maintain cell morphology and attachment, integrity and uniformity of filamentous actin, and leads to better cell recovery after cryopreservation.
Collapse
Affiliation(s)
- Xia Xu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | | | | | | | | |
Collapse
|
20
|
Effects of acute hypoxia/acidosis on intracellular pH in differentiating neural progenitor cells. Brain Res 2012; 1461:10-23. [PMID: 22608071 DOI: 10.1016/j.brainres.2012.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/26/2012] [Accepted: 04/20/2012] [Indexed: 01/19/2023]
Abstract
The response of differentiating mouse neural progenitor cells, migrating out from neurospheres, to conditions simulating ischemia (hypoxia and extracellular or intracellular acidosis) was studied. We show here, by using BCECF and single cell imaging to monitor intracellular pH (pH(i)), that two main populations can be distinguished by exposing migrating neural progenitor cells to low extracellular pH or by performing an acidifying ammonium prepulse. The cells dominating at the periphery of the neurosphere culture, which were positive for neuron specific markers MAP-2, calbindin and NeuN had lower initial resting pH(i) and could also easily be further acidified by lowering the extracellular pH. Moreover, in this population, a more profound acidification was seen when the cells were acidified using the ammonium prepulse technique. However, when the cell population was exposed to depolarizing potassium concentrations no alterations in pH(i) took place in this population. In contrast, depolarization caused an increase in pH(i) (by 0.5 pH units) in the cell population closer to the neurosphere body, which region was positive for the radial cell marker (GLAST). This cell population, having higher resting pH(i) (pH 6.9-7.1) also responded to acute hypoxia. During hypoxic treatment the resting pH(i) decreased by 0.1 pH units and recovered rapidly after reoxygenation. Our results show that migrating neural progenitor cells are highly sensitive to extracellular acidosis and that irreversible damage becomes evident at pH 6.2. Moreover, our results show that a response to acidosis clearly distinguishes two individual cell populations probably representing neuronal and radial cells.
Collapse
|
21
|
Fonseca-García C, León-Ramírez CG, Ruiz-Herrera J. The regulation of different metabolic pathways through the Pal/Rim pathway in Ustilago maydis. FEMS Yeast Res 2012; 12:547-56. [DOI: 10.1111/j.1567-1364.2012.00805.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| | - Claudia G. León-Ramírez
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| |
Collapse
|
22
|
Balgi AD, Diering GH, Donohue E, Lam KKY, Fonseca BD, Zimmerman C, Numata M, Roberge M. Regulation of mTORC1 signaling by pH. PLoS One 2011; 6:e21549. [PMID: 21738705 PMCID: PMC3126813 DOI: 10.1371/journal.pone.0021549] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
Background Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. Methodology/Findings We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1–TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1–TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. Conclusions This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions.
Collapse
Affiliation(s)
- Aruna D. Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Graham H. Diering
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth Donohue
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen K. Y. Lam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruno D. Fonseca
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carla Zimmerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Drug Research and Development, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
23
|
Blanchard V, Kaup M, Eigel S, Rieck S, Sandig V, Marx U, Tauber R, Berger M. Quantitative MALDI-TOF-MS Using Stable-isotope Labeling: Application to the Analysis of N-glycans of Recombinant α-1 Antitrypsin Produced Using Different Culture Parameters. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.605194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Mavrogonatou E, Kletsas D. Effect of varying osmotic conditions on the response of bovine nucleus pulposus cells to growth factors and the activation of the ERK and Akt pathways. J Orthop Res 2010; 28:1276-82. [PMID: 20309957 DOI: 10.1002/jor.21140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intervertebral disc and especially nucleus pulposus is characterized by low cellularity. Additionally, extreme variations in osmolality are observed in this tissue, as a result of its specific physicochemical environment, daily activities, or degeneration. In this study, we investigated the role of osmotic fluctuations in the proliferative response of nucleus pulposus cells to exogenous growth factors. In particular, we examined the effect of platelet-derived growth factor (PDGF) and insulin-like growth factor-I (IGF-I) on the proliferation of bovine nucleus pulposus cells and on the activation of the MEK/ERK and PI-3-K/Akt pathways under varying osmotic conditions, in an effort to understand the mechanisms regulating cell proliferation in the intact and the degenerated intervertebral disc. Exposure of cells to high osmolality restrained novel DNA synthesis induced by PDGF or IGF-I in a dose-dependent manner and reduced ERK and Akt activation stimulated by serum or isolated growth factors. Our findings indicate that hyperosmolality imposes a strict control in intervertebral disc cells' proliferation, while hypo-osmotic conditions prevailing in degenerated discs may offer a more permissive environment for cellular proliferation.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientific Research Demokritos, 153 10 Athens, Greece
| | | |
Collapse
|
25
|
Chen YC, Ostafin A, Mizukami H. Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors. NANOTECHNOLOGY 2010; 21:215503. [PMID: 20431200 DOI: 10.1088/0957-4484/21/21/215503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A rapid response dual wavelength emission pH sensor consisting of carboxySNARF-1 nanoreactors has been synthesized and shown to provide accurate pH measurements even in complex biological media, where the unprotected pH responsive dyes have failed. The carboxySNARF-1 nanoreactor is made of a calcium phosphate shell covering phosphatidylcholine liposomes filled with the dye. Its mean diameter is 150 nm with dynamic light scattering, the shell thickness is 5-7 nm with TEM, and it contains about 10 dyes/particle. The nanoreactor's response time to pH change nearly equals that of the dye in solution. Its pH titration curves at two different wavelengths are equivalent to those of the dye in solution and fluorescence intensity ratio dependent pH analysis is possible using the modified Henderson-Hasselbalch equation. However, the pH dependent fluorescence ratios of the dye in solution in the presence of plasma and albumin are distorted, and application of the Henderson-Hasselbalch equation is not possible. We have found that the distortions may be restored using cSNARF-1 nanoreactors and the pK(a) of the dye in the nanoreactor then equals that in solution. These results suggest that the interference to the dye for the pH analyses with the environmental molecules may be reduced or prohibited by usage of cSNARF-1 nanoreactors.
Collapse
Affiliation(s)
- Yen-Chi Chen
- Department of Materials Science, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
26
|
Xu X, Urban JPG, Tirlapur UK, Cui Z. Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads. Osteoarthritis Cartilage 2010; 18:433-9. [PMID: 19840877 DOI: 10.1016/j.joca.2009.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 09/30/2009] [Accepted: 09/05/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE With the development of engineered cartilage, the determination of the appropriate culture conditions is vital in order to maximize extracellular matrix synthesis. As osmolarity could affect the fate of chondrocytes, the purpose of this study was to determine the effects of osmolarity on chondrocytes during relatively long-term culture. DESIGN Bovine articular chondrocytes were cultured in alginate beads in a biocarbonate free system at 280, 380 and 550 mOsm at pH 7.4 for up to 12 days, respectively. Cell volume, intracellular pH (pH(i)), cell number, glucosaminoglycan (GAG) and collagen retention were measured at day 5 and 12. Cell viability and volume were monitored over the 12 days of culture. RESULTS By day 5 and 12, compared to the cell volume at 380 mOsm, around 20% (P<0.01) swelling and 15% (P<0.05) shrinkage were observed when the cells were cultured at 280 and 550 mOsm. The pH(i) over the 12 days of culture varied with osmolarity of the culture medium. In comparison with fresh cells, pH(i) became slightly more acidic by 0.15 pH units at 280 mOsm at day 5. However, by day 12, an alkalization of pH(i), by 0.2 pH units, was noted. A higher proliferation rate was seen at 280 mOsm than at other osmolarities while less GAG was produced. CONCLUSIONS Chronic exposure to anisotonic conditions results in cell swelling at 280 mOsm and shrinkage at 550 mOsm. The osmolarity of 280 mOsm appears to encourage proliferation of chondrocytes, but inhibits matrix production.
Collapse
Affiliation(s)
- X Xu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
27
|
McQueen A, Bailey JE. Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production. Biotechnol Bioeng 2009; 35:1067-77. [PMID: 18592485 DOI: 10.1002/bit.260351102] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of NH(4)Cl addition on batch hybridoma cell growth at different external pH values (pH(e)) were investigated in a bioreactor at constant pH and dissolved oxygen concentration. In agreement with measurements in flasks, changes in pH(e) over the range 6.8-7.6 had minor effects on growth. Addition of 3 mM NH(4)Cl had little effect on cell growth while 10 mM NH(4)Cl caused a substantial growth inhibition, Measurements of the effects of pH(e) and NH(4)Cl concentration on cell metabolism gave similar results for cells grown in flasks in an incubator and in the bioreactor. As pH(e) decreases, the integral cell yield on glucose increases. There is a correlation between the effects of pH(e) on glycolysis and previous measurements of its effects on intracellular pH (pH(i)). Increases in NH(4)Cl concentration were previously determined to decrease pH(i) and are shown here to decrease the integral cell yield on glucose. At all pH(e) values in the absence of NH(4)Cl, glutamine is depleted at the time the maximum cell density is reached. Both pH(e) decreases and NH(4)Cl concentration increases lead to decreases in the integral cell yield on glutamine. Changes in pH(e) and in the NH(4)Cl concentration that cause growth inhibition have no effect on the specific antibody production rate for cells grown in flasks in an incubator or in the bioreactor. Changes in the NH(4)Cl concentration have no effect on the quality of the antibody produced, to a first level of characterization.
Collapse
Affiliation(s)
- A McQueen
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
28
|
Walia V, Ding M, Kumar S, Nie D, Premkumar LS, Elble RC. hCLCA2 Is a p53-Inducible Inhibitor of Breast Cancer Cell Proliferation. Cancer Res 2009; 69:6624-32. [PMID: 19654313 DOI: 10.1158/0008-5472.can-08-4101] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
hCLCA2 is frequently down-regulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours postinfection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl(-) channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl(-) current in breast cancer cells and reduces pH to approximately 6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its down-regulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Vijay Walia
- Department of Pharmacology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, USA
| | | | | | | | | | | |
Collapse
|
29
|
Swietach P, Wigfield S, Cobden P, Supuran CT, Harris AL, Vaughan-Jones RD. Tumor-associated carbonic anhydrase 9 spatially coordinates intracellular pH in three-dimensional multicellular growths. J Biol Chem 2008; 283:20473-83. [PMID: 18482982 DOI: 10.1074/jbc.m801330200] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CA9 is a membrane-tethered, carbonic anhydrase (CA) enzyme, expressed mainly at the external surface of cells, that catalyzes reversible CO(2) hydration. Expression is greatly enhanced in many tumors, particularly in aggressive carcinomas. The functional role of CA9 in tumors is not well established. Here we show that CA9, when expressed heterologously in cultured spheroids (0.5-mm diameter, ~25,000 cells) of RT112 cells (derived from bladder carcinoma), induces a near-uniform intracellular pH (pH(i)) throughout the structure. Dynamic pH(i) changes during displacements of superfusate CO(2) concentration are also spatially coincident (within 2 s). In contrast, spheroids of wild-type RT112 cells lacking CA9 exhibit an acidic core (~0.25 pH(i) reduction) and significant time delays (~9 s) for pH(i) changes in core versus peripheral regions. pH(i) non-uniformity also occurs in CA9-expressing spheroids after selective pharmacological inhibition of the enzyme. In isolated RT112 cells, pH(i) regulation is unaffected by CA9 expression. The influence of CA9 on pH(i) is thus only evident in multicellular tissue. Diffusion-reaction modeling indicates that CA9 coordinates pH(i) spatially by facilitating CO(2) diffusion in the unstirred extracellular space of the spheroid. We suggest that pH(i) coordination may favor survival and growth of a tumor. By disrupting spatial pH(i) control, inhibition of CA9 activity may offer a novel strategy for the clinical treatment of CA9-associated tumors.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Science Centre, Oxford, UK
| | | | | | | | | | | |
Collapse
|
30
|
Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 2007; 52:905-19. [PMID: 18061308 DOI: 10.1016/j.neuint.2007.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 11/27/2022]
Abstract
The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that accompany metabolic stress but have no distinct implications for the pH regulatory mechanisms are not dealt with. In most cases, the vast body of knowledge derived from in vitro studies remains to be verified in in vivo settings.
Collapse
Affiliation(s)
- Marta Obara
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
31
|
Donnelly RF, McCarron PA, Woolfson AD. Drug Delivery of Aminolevulinic Acid from Topical Formulations Intended for Photodynamic Therapy¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01439.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
He B, Deng C, Zhang M, Zou D, Xu M. Reduction of intracellular pH inhibits the expression of VEGF in K562 cells after targeted inhibition of the Na+/H+ exchanger. Leuk Res 2007; 31:507-14. [PMID: 16884771 DOI: 10.1016/j.leukres.2006.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/09/2006] [Accepted: 06/22/2006] [Indexed: 11/24/2022]
Abstract
To explore the effect of inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) on the expression of vascular endothelial growth factor (VEGF) mRNA and protein in human myeloid K562 cells. The expression of VEGFmRNA was detected by RT-PCR technique. The levels of VEGF protein were measured by Western blotting and immunocytochemistry assay. pHi values were measured with fluorescence spectrophotometer. The three RT-PCR products detected were VEGF121, VEGF165, and VEGF189, respectively. Treatment of K562 cells either with amiloride (an inhibitor of NHE1) or with 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, a selective inhibitor of NHE1) resulted in significant decrease of VEGF mRNA and VEGF protein levels. Either amiloride or EIPA decreased intracellular pH (pHi) values in K562 cells. These data strongly suggested that the expression of VEGF mRNA and protein in K562 cells was inhibited accompanying its reduction in pHi value after targeted inhibition of NHE1.
Collapse
Affiliation(s)
- Bingyan He
- Pediatrics Department of Zhongnan Hospital, Wuhan University, East-lake Road, Wuhan, Hubei Province 430071, PR China.
| | | | | | | | | |
Collapse
|
33
|
Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells. Dig Liver Dis 2007; 39:60-9. [PMID: 16982221 DOI: 10.1016/j.dld.2006.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 07/25/2006] [Accepted: 07/28/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cells within the acidic extracellular environment of solid tumours maintain their intracellular pH through the activity of the Na(+)/H(+) exchanger and the Na(+) dependent Cl(-)/HCO(3)(-) exchanger. The inhibition of these mechanisms could therefore inhibit cancer cell growth. AIM We evaluated the effect of two selective inhibitors of these transporters (cariporide and S3705) on proliferation and apoptosis of human cholangiocarcinoma cells (HUH-28 and Mz-ChA-1 cells) as a function of external pH (7.4 and 6.8). METHODS/RESULTS HUH-28 cells incubated for 24h at external pH 7.4 or 6.8 without inhibitors maintained intracellular pH at physiological level, whereas incubation with cariporide and/or S3705 caused the intracellular pH of cells to drop. Incubation of HUH-28 cells with cariporide and/or S3705 was able to reduce proliferation, evaluated by a colorimetric ELISA method, and to induce apoptosis, evaluated by measuring caspase-3 activity and Annexin-V staining, and these effects were more evident at external pH 6.8. S3705 but not cariporide was able to inhibit serum-induced phosphorylation of ERK1/2, AKT and BAD, intracellular molecules involved in cancer cell proliferation and survival. Similar results were obtained in Mz-ChA-1 cells. CONCLUSIONS (1) Inhibition of intracellular pH regulatory mechanisms by cariporide and S3705 reduces proliferation and induces apoptosis in cholangiocarcinoma cells; and (2) these drugs might have potential therapeutic value against cholangiocarcinoma.
Collapse
|
34
|
Gilmore BF, McCarron PA, Morrow DIJ, Murphy DJ, Woolfson AD, Donnelly RF. In vitro phototoxicity of 5-aminolevulinic acid and its methyl ester and the influence of barrier properties on their release from a bioadhesive patch. Eur J Pharm Biopharm 2006; 63:295-309. [PMID: 16682177 DOI: 10.1016/j.ejpb.2006.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 03/10/2006] [Indexed: 11/15/2022]
Abstract
Topical administration of excess exogenous 5-aminolevulinic acid (ALA) leads to selective accumulation of the potent photosensitiser protoporphyrin IX (PpIX) in neoplastic cells, which can then be destroyed by irradiation with visible light. Due to its hydrophilicity, ALA penetrates deep lesions, such as nodular basal cell carcinomas (BCCs) poorly. As a result, more lipophilic esters of ALA have been employed to improve tissue penetration. In this study, the in vitro release of ALA and M-ALA from proprietary creams and novel patch-based systems across normal stratum corneum and a model membrane designed to mimic the abnormal stratum corneum overlying neoplastic skin lesions were investigated. Receiver compartment drug concentrations were compared with the concentrations of each drug producing high levels of PpIX production and subsequent light-induced kill in a model neoplastic cell line (LOX). LOX cells were found to be quite resistant to ALA- and M-ALA-induced phototoxicity. However, drug concentrations achieved in receiver compartments were comparable to those required to induce high levels of cell death upon irradiation in cell lines reported in the literature. Patches released significantly less drug across normal stratum corneum and significantly more across the model membrane. This is of major significance since the selectivity of PDT for neoplastic lesions will be further enhanced by the delivery system. ALA/M-ALA will only be delivered in significant amounts to the abnormal tissue. PpIX will only then accumulate in the neoplastic cells and the normal surrounding tissue will be unharmed upon irradiation.
Collapse
Affiliation(s)
- Brendan F Gilmore
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, Belfast, UK
| | | | | | | | | | | |
Collapse
|
35
|
Lin KA, Chen JH, Lee DF, Lin LY. Alkaline induces metallothionein gene expression and potentiates cell proliferation in Chinese hamster ovary cells. J Cell Physiol 2005; 205:428-36. [PMID: 15965962 DOI: 10.1002/jcp.20417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metallothionein (MT) gene expression is increased in cadmium resistant Chinese hamster ovary cells (CHO Cd(R)) upon medium (regular or serum-free) change during culturing. Among the major components of the medium, NaHCO3 was found to be able to induce MT gene expression in a dose- and time-dependent manner. The same effect was observed with other alkaline solutions, such as HEPES and NaOH. Using MT promoter-luciferase reporter gene constructs, we found that the presence of metal response elements (MREs) in the promoter region is necessary for NaHCO3-induced MT gene transcription. This finding is further supported by the observation that the binding activity between the metal-responsive transcription factor 1 (MTF-1) and the MRE were increased after NaHCO3 treatment. Following NaHCO3 treatment, an increase in cell proliferation was observed in CdR cells but not in the parental CHO K1 cells that do not express MT transcripts due to MT gene methylation. Using synchronized cells, an increase in cell proliferation was observed 9 h after NaHCO3 addition. Notably, proliferation of CHO K1 cells was increased when transfected with an MT gene. The effect of MT on cell growth was affirmed by treating CHO K1 cells with 5-azacytidine (Aza) to demethylate the MT gene. Proliferation increased in Aza-treated CHO K1 cells after NaHCO3 treatment. These results demonstrate that NaHCO3 stimulates MT gene expression and causes an enhancement of cell proliferation in CHO cells.
Collapse
Affiliation(s)
- Kuei-Ann Lin
- Institute of Radiation Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
36
|
McCarron PA, Donnelly RF, Gilmore BF, Woolfson AD, McClelland R, Zawislak A, Price JH. Phototoxicity of 5-aminolevulinic acid in the HeLa cell line as an indicative measure of photodynamic effect after topical administration to gynecological lesions of intraepithelial form. Pharm Res 2005; 21:1871-9. [PMID: 15553235 DOI: 10.1023/b:pham.0000045242.98628.0b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The depth-resolved pattern of aminolevulinic acid (ALA) concentration in excised vaginal tissue was determined after in vitro application of an ALA-loaded bioadhesive patch. From this data, the tissue concentration of ALA achievable at a specified depth from the surface could be related to the concentration needed to elicit a photodynamic effect in a model gynecological tumor cell line (HeLa). METHODS Excised vaginal tissue was mounted in a modified Franz diffusion cell and exposed to a water-soluble, ALA-loaded, bioadhesive patch. After a period of time, the tissue was cryostatically sectioned and the stratal concentration of radiolabeled ALA determined using scintillation spectroscopy. HeLa cells were cultured in media containing specific concentrations of ALA and exposed to standard photodynamic protocols of light exposure. RESULTS An ALA concentration of 65.6 mM was achievable at 2.375 mm from the tissue surface after application of ALA-loaded patch. The photodynamic effectiveness of this concentration was demonstrated in HeLa with exposure to concentrations exceeding 1.0 mM ALA bringing about reductions in viable cell numbers by 90%. An enhancement of PpIX production using adjunctive EDTA over the clinically relevant 4 h application time interval was shown to be minimal in HeLa. Instead, PpIX production was more closely correlated with ALA concentration, with 100 mM ALA producing approximately 3100 ng PpIX mg(-1) protein in the same time period. CONCLUSIONS Given that vaginal intraepithelial neoplasias can extend to 2.0 mm from the lesion surface, the ALA permeability derived from a bioadhesive patch is sufficient to induce photosensitization suitable for light induced destruction at deep sites of this type of lesion.
Collapse
Affiliation(s)
- Paul A McCarron
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Donnelly RF, McCarron PA, Woolfson AD. Drug Delivery of Aminolevulinic Acid from Topical Formulations Intended for Photodynamic Therapy¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-08-23-ir-283r1.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Hegde M, Roscoe J, Cala P, Gorin F. Amiloride Kills Malignant Glioma Cells Independent of Its Inhibition of the Sodium-Hydrogen Exchanger. J Pharmacol Exp Ther 2004; 310:67-74. [PMID: 15010500 DOI: 10.1124/jpet.103.065029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we demonstrated that malignant glioma cell lines have increased intracellular pH (pHi) as a result of increased activities of the type I sodium/hydrogen exchanger (NHE1). This alkalotic pHi of 7.2 to 7.4 is favorable for augmented glycolysis, DNA synthesis, and cell cycle progression. Conversely, reductions in pHi have been associated with reduced rates of proliferation in transformed cell types. The effects of reducing pHi directly and by NHE1 inhibition on human malignant glioma cells were systematically compared with those on primary rat astrocytes. Neither cariporide, nor direct acidification to pHi 6.9 altered the proliferative rates or viabilities of human U87 or U118 malignant glioma cell lines. However, amiloride significantly impaired glioma cell proliferation and viability while not affecting astrocytes at concentrations (500 microM) that exceeded its inhibition of NHE1 in glioma cells (IC50 = 17 microM). Preventing a reduction of pHi did not alter the drug's antiproliferative and cytotoxic effects on glioma cells. These findings indicated that amiloride's cytotoxic effects on glioma cells are independent of its ability to inhibit NHE1 or to reduce intracellular pHi. The amiloride derivative 2,4 dichlorobenzamil (DCB) inhibits the sodium-calcium exchanger (NCX) and was both antiproliferative and cytotoxic to glioma cells at low doses (20 microM). By contrast, KB-R7943 [(2-[2-[4-nitrobenzyloxy]phenyl]ethyl)-isothioureamethanesulfonate] preferentially blocks sodium-dependent calcium influx by NCX (reverse mode) and was nontoxic to glioma cells. It is proposed that DCB (20 microM) and amiloride (500 microM) impair calcium efflux by NCX, leading to elevations of intracellular calcium that initiate a morphologically necrotic, predominantly caspase-independent glioma cell death.
Collapse
Affiliation(s)
- Manu Hegde
- Department of Neurology, School of Medicine, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
39
|
Davis AJ, Tannock IF. Tumor physiology and resistance to chemotherapy: repopulation and drug penetration. Cancer Treat Res 2003; 112:1-26. [PMID: 12481709 DOI: 10.1007/978-1-4615-1173-1_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Alison J Davis
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Pirkebner D, Fuetsch M, Wittmann W, Weiss H, Haller T, Schramek H, Margreiter R, Amberger A. Reduction of intracellular pH inhibits constitutive expression of Cyclooxygenase-2 in human colon cancer cells. J Cell Physiol 2003; 198:295-301. [PMID: 14603531 DOI: 10.1002/jcp.10408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclooxygenase-2 (COX-2) over-expression is critically involved in tumor formation. Intracellular pH (pHi) has been shown to be alkaline in cancer cells, and to be an important trigger for cell proliferation. This study therefore analyzed the relationship between pHi and COX-2 expression. HRT-18 and Caco-2 cells cultured in medium with bicarbonate maintained a pHi of approximately 7.6, which is higher than that of non-neoplastic cells. Cells grown in bicarbonate-free medium with a pH at 6.8 showed a reduction in pHi to approximately 7.0. Importantly, reduction of pHi resulted in a complete inhibition of COX-2 mRNA and protein expression. When cells were grown in bicarbonate-supplemented medium at pH 6.8, pHi maintained at approximately 7.6 and COX-2 expression was not inhibited. Additionally, analysis utilizing protein synthesis inhibitor cycloheximide demonstrated that pHi mediated inhibition of COX-2 mRNA expression requires de novo protein synthesis of regulatory protein(s). These data strongly suggest that an alkaline pHi is an important trigger for constitutive COX-2 expression. Defining pHi-mediated mechanisms that govern the constitutive COX-2 expression may help in developing new strategies to block COX-2 over-expression in cancer cells.
Collapse
|
41
|
Wong P, Kleemann HW, Tannock IF. Cytostatic potential of novel agents that inhibit the regulation of intracellular pH. Br J Cancer 2002; 87:238-45. [PMID: 12107849 PMCID: PMC2376112 DOI: 10.1038/sj.bjc.6600424] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Revised: 04/26/2002] [Accepted: 04/26/2002] [Indexed: 11/08/2022] Open
Abstract
Cells within the acidic extracellular environment of solid tumours maintain their intracellular pH (pHi) through the activity of membrane-based ion exchange mechanisms including the Na(+)/H(+) antiport and the Na(+)-dependent Cl(-)/HCO(3)(-) exchanger. Inhibition of these regulatory mechanisms has been proposed as an approach to tumour therapy. Previously available inhibitors of these exchangers were toxic (e.g. 4,4-diisothiocyanstilbene-2,2-disulphonic acid), and/or non-specific (e.g. 5-N-ethyl-N-isopropyl amiloride). Using two human (MCF7, MDA-MB231) and one murine (EMT6) breast cancer cell lines, we evaluated the influence of two new agents, cariporide (an inhibitor of the Na(+)/H(+) antiport) and S3705 (an inhibitor of the Na(+)-dependent Cl(-)/HCO(3)(-) exchanger) on the regulation of intracellular pH (pHi). The cytotoxicity of the two agents was assessed by using clonogenic assays. Our results suggest that cariporide has similar efficacy and potency to 5-N-ethyl-N-isopropyl amiloride for inhibition of Na(+)/H(+) exchange while S3705 is more potent and efficient than 4,4-diisothiocyanstilbene-2,2-disulphonic acid in inhibiting Na+-dependent Cl(-)/HCO3(-) exchange. The agents inhibited the growth of tumour cells when they were incubated at low pHe (7.0-6.8), but were non-toxic to cells grown at doses that inhibited the regulation of pHi. Our results indicate that cariporide and S3705 are selective cytostatic agents under in vitro conditions that reflect the slightly acidic microenvironment found in solid tumours.
Collapse
Affiliation(s)
- P Wong
- Department of Medical Biophysics, Princess Margaret Hospital/Ontario Cancer Institute, University of Toronto, Toronto, M5G 2M9, Canada
| | | | | |
Collapse
|
42
|
Gallagher AM, Gottlieb RA. Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice. Am J Physiol Gastrointest Liver Physiol 2001; 281:G681-7. [PMID: 11518680 DOI: 10.1152/ajpgi.2001.281.3.g681] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Expression of a mutated cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to enhance proliferation within CF airways, and cells expressing a mutated CFTR have been shown to be less susceptible to apoptosis. Because the CFTR is expressed in the epithelial cells lining the gastrointestinal tract and all CF mouse models are characterized by gastrointestinal obstruction, we hypothesized that CFTR null mice would have increased epithelial cell proliferation and reduced apoptosis within the small intestine. The rate of intestinal epithelial cell migration from crypt to villus was increased in CFTR null mice relative to mice expressing the wild-type CFTR. This difference in migration could be explained by an increase in epithelial cell proliferation but not by a difference in apoptosis within the crypts of Lieberkühn. In addition, using two independent sets of CF cell lines, we found that epithelial cell susceptibility to apoptosis was unrelated to the presence of a functional CFTR. Thus increased proliferation but not alterations in apoptosis within epithelial cells might contribute to the pathophysiology of CF.
Collapse
Affiliation(s)
- A M Gallagher
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
43
|
Karagiannis J, Young PG. Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe. J Cell Sci 2001; 114:2929-41. [PMID: 11686297 DOI: 10.1242/jcs.114.16.2929] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate measurement of intracellular pH in unperturbed cells is fraught with difficulty. Nevertheless, using a variety of methods, intracellular pH oscillations have been reported to play a regulatory role in the control of the cell cycle in several eukaryotic systems. Here, we examine pH homeostasis in Schizosaccharomyces pombe using a non-perturbing ratiometric pH sensitive GFP reporter. This method allows for accurate intracellular pH measurements in living, entirely undisturbed, logarithmically growing cells. In addition, the use of a flow cell allows internal pH to be monitored in real time during nutritional, or growth state transition. We can find no evidence for cell-cycle-related changes in intracellular pH. By contrast, all data are consistent with a very tight homeostatic regulation of intracellular pH near 7.3 at all points in the cell cycle. Interestingly, pH set point changes are associated with growth state. Spores, as well as vegetative cells starved of either nitrogen, or a carbon source, show a marked reduction in their internal pH compared with logarithmically growing vegetative cells. However, in both cases, homeostatic regulation is maintained.
Collapse
Affiliation(s)
- J Karagiannis
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
44
|
Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod 2001; 64:1845-54. [PMID: 11369617 PMCID: PMC5087321 DOI: 10.1095/biolreprod64.6.1845] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In early cleavage stage hamster embryos, the inability to regulate intracellular pH (pHi) properly is associated with reduced developmental competence in vitro. The disruption of mitochondrial organization is also correlated with reduced development in vitro. To determine the relationship between pHi and the disruption of cytoplasmic organization, we examined the effects of altering pHi on hamster embryo development, mitochondrial distribution, and cytoskeletal organization. The weak base trimethylamine was used to increase pHi and was found to reduce embryo development and disrupt the perinuclear organization of mitochondria. The weak acid 5,5-dimethyl-2,4-oxazolinedione was used to decrease pH(i) and was also found to reduce development and disrupt the perinuclear organization of mitochondria. With either treatment, the microfilament organization was perturbed, but the microtubule cytoskeleton was not. However, the temporal progression of the disruption of mitochondrial distribution was more rapid in alkalinized embryos than acidified embryos, as revealed by two-photon imaging of living embryos. Additionally, the disruption of the microfilament network by the two treatments was not identical. The cytoplasmic disruptions observed were not due to acute toxicity of the compounds because embryos recovered developmentally when the treatment compounds were removed. These observations link ionic homeostasis, structural integrity and developmental competence in preimplantation hamster embryos.
Collapse
Affiliation(s)
- J M Squirrell
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
45
|
Urcelay E, Ibarreta D, Parrilla R, Ayuso MS, Martín-Requero A. Enhanced proliferation of lymphoblasts from patients with Alzheimer dementia associated with calmodulin-dependent activation of the na+/H+ exchanger. Neurobiol Dis 2001; 8:289-98. [PMID: 11300724 DOI: 10.1006/nbdi.2000.0381] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently reported that lymphoblasts from late onset Alzheimer's disease (AD) patients show distinct intracellular pH homeostatic features than those obtained from age-matched healthy donors. Here we report that another distinct feature of AD lymphoblasts is their increased rate of proliferation in serum containing medium, suggesting a different responsiveness of AD cells to serum activators. The increased proliferation of AD cells was accompanied by intracellular alkalinization and was prevented by blockers of the plasma membrane Na+/H+ antiporter (NHE), indicating that the exchanger had to be activated to elicit the cellular responses. The activity of this exchanger can be controlled through several signaling pathways, but only the inhibition of calmodulin activity impeded the serum-induced intracellular alkalinization and enhanced proliferation of AD cells. In contrast, the inhibition of calmodulin did not alter the rate of proliferation of normal cells. Thus, it seems plausible to conclude that the enhanced proliferation of AD cells is the result of a surface receptor-mediated activation of the Ca(2+)-calmodulin signaling pathway. Our observations add further support in favor that AD may be considered a systemic disease which underlying etiopathogenic mechanism may be an altered responsiveness to cell activating agents. Thus, the use of lymphoblastoid cells from AD patients may be a useful model to investigate cell biochemical aspects of this disease.
Collapse
Affiliation(s)
- E Urcelay
- Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, Madrid 28006, Spain
| | | | | | | | | |
Collapse
|
46
|
Berg K. Chapter 8 Basic principles of 5-aminolevulinic acid-based photodynamic therapy. COMPREHENSIVE SERIES IN PHOTOSCIENCES 2001. [DOI: 10.1016/s1568-461x(01)80112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Uehlinger P, Zellweger M, Wagnières G, Juillerat-Jeanneret L, van den Bergh H, Lange N. 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 54:72-80. [PMID: 10739146 DOI: 10.1016/s1011-1344(99)00159-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protoporphyrin IX (PpIX) is used as a fluorescence marker and photosensitizing agent in photodynamic therapy (PDT). A temporary increase of PpIX in tissues can be obtained by administration of 5-aminolevulinic acid (ALA). Lipophilicity is one of the key parameters defining the bioavailability of a topically applied drug. In the present work, octanol-water partition coefficients of ALA and several of its esters have been determined to obtain a parameter related to their lipophilicity. The influence of parameters such as lipophilicity, concentration, time, and pH value on PpIX formation induced by ALA and its esters is then investigated in human cell lines originating from the lung and bladder. ALA esters are found to be more lipophilic than the free acid. The optimal concentration (c(opt), precursor concentration at which maximal PpIX accumulation is observed) is then measured for each precursor. Long-chained ALA esters are found to decrease the c(opt) value by up to two orders of magnitude as compared to ALA. The reduction of PpIX formation observed at higher concentrations than c(opt) is correlated to reduced cell viability as determined by measuring the mitochondrial activity. Under optimal conditions, the PpIX formation rate induced by the longer-chained esters is higher than that of ALA or the shorter-chained esters. A biphasic pH dependence on PpIX generation is observed for ALA and its derivatives. Maximal PpIX formation is measured under physiological conditions (pH 7.0-7.6), indicating that further enhancement of intracellular PpIX content may be achieved by adjusting the pharmaceutical formulation of ALA or its derivatives to these pH levels.
Collapse
Affiliation(s)
- P Uehlinger
- Institute of Environmental Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Wyld L, Reed MW, Brown NJ. The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. Br J Cancer 1998; 77:1621-7. [PMID: 9635837 PMCID: PMC2150064 DOI: 10.1038/bjc.1998.265] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of light and a photosensitizing chemical. The photosensitizer protoporphyrin IX (PpIX) is generated via the haem biosynthetic pathway after administration of aminolaevulinic acid (ALA). The cellular microenvironment of tumours is hypoxic and acidotic relative to normal tissue, which may influence PpIX generation and compromise PDT efficacy. This study used bladder cancer cells, incubated with ALA at various oxygen tensions and H+ ion concentrations, and assessed the effects on PpIX generation and PDT sensitivity. PpIX production was reduced at 0%, 2.5% (19 mmHg) and 5% (38 mmHg) oxygen compared with that at 21% (160 mmHg) oxygen (0.15, 0.28 and 0.398 ng microg(-1) protein compared with 0.68 ng microg(-1) respectively; P < 0.05). The response to PDT was abolished by hypoxia, as a result of both reduced PpIX synthesis and reduced PDT toxicity. PpIX production was greater at pH 7.0 and 6.5 (0.75 and 0.66 ng microg(-1)) compared with that at pH 7.4 and 5.5 (0.41 and 0.55 ng microg(-1) respectively). PDT cytotoxicity was enhanced at lower pH values. These results suggest that ALA-induced PDT may be inhibited by hypoxia due to reduced intrinsic PpIX synthesis. Acidosis may slightly enhance the efficacy of ALA-induced PDT.
Collapse
Affiliation(s)
- L Wyld
- The Department of Surgical and Anaesthetic Sciences, Sheffield University, Royal Hallamshire Hospital, UK
| | | | | |
Collapse
|