1
|
Abstract
The protein-mediated formation of membrane contacts is a crucial event in many cellular processes ranging from the establishment of organelle contacts to the docking of vesicles to a target membrane. Annexins are Ca2+ regulated membrane-binding proteins implicated in providing such membrane contacts; however, the molecular basis of membrane bridging by annexins is not fully understood. We addressed this central question using annexin A2 (AnxA2) that functions in secretory vesicle exocytosis possibly by providing membrane bridges. By quantitatively analyzing membrane contact formation using a novel assay based on quartz crystal microbalance recordings, we show that monomeric AnxA2 can bridge membrane surfaces Ca2+ dependently. However, this activity depends on an oxidative crosslink involving a cysteine residue in the N-terminal domain and thus formation of disulfide-linked dimers. Alkylated AnxA2 in which this cysteine residue has been modified and AnxA2 mutants lacking the N-terminal domain are not capable of bridging membrane surfaces. In contrast, a heterotetrameric complex comprising two membrane binding AnxA2 subunits linked by a S100A10 dimer can provide membrane contacts irrespective of oxidation status. Thus, monomeric AnxA2 only contains one lipid binding site and AnxA2-mediated linking of membrane surfaces under non-oxidative intracellular conditions most likely requires AnxA2-S100 complex formation.
Collapse
|
2
|
Annexin A2 is involved in Ca 2+-dependent plasma membrane repair in primary human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1046-1053. [PMID: 27956131 DOI: 10.1016/j.bbamcr.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/23/2022]
Abstract
Many cells in an organism are exposed to constant and acute mechanical stress that can induce plasma membrane injuries. These plasma membrane wounds have to be resealed rapidly to guarantee cell survival. Plasma membrane resealing in response to mechanical strain has been studied in some detail in muscle, where it is required for efficient recovery after insult. However, less is known about the capacity of other cell types and tissues to perform membrane repair and the underlying molecular mechanisms. Here we show that vascular endothelial cells, which are subject to profound mechanical burden, can reseal plasma membrane holes inflicted by laser ablation. Resealing in endothelial cells is a Ca2+-dependent process, as it is inhibited when cells are wounded in Ca2+-free medium. We also show that annexin A1 (AnxA1), AnxA2 and AnxA6, Ca2+-regulated membrane binding proteins previously implicated in membrane resealing in other cell types, are rapidly recruited to the site of plasma membrane injury. S100A11, a known protein ligand of AnxA1, is also recruited to endothelial plasma membrane wounds, albeit with a different kinetic. Mutant expression experiments reveal that Ca2+ binding to AnxA2, the most abundant endothelial annexin, is required for translocation of the protein to the wound site. Furthermore, we show by knock-down and rescue experiments that AnxA2 is a positive regulator of plasma membrane resealing. Thus, vascular endothelial cells are capable of active, Ca2+-dependent plasma membrane resealing and this process requires the activity of AnxA2.
Collapse
|
3
|
Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the exocytotic process in chromaffin cells. J Neurochem 2016; 137:890-6. [DOI: 10.1111/jnc.13628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Marion Gabel
- INCI; UPR3212 CNRS; Université de Strasbourg; Strasbourg France
| | | |
Collapse
|
4
|
Hessner F, Dlugos CP, Chehab T, Schaefer C, Homey B, Gerke V, Weide T, Pavenstädt H, Rescher U. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10. Sci Rep 2016; 6:22649. [PMID: 26941067 PMCID: PMC4778132 DOI: 10.1038/srep22649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 11/09/2022] Open
Abstract
The superfamily of G-protein-coupled receptors (GPCR) conveys signals in response to various endogenous and exogenous stimuli. Consequently, GPCRs are the most important drug targets. CCR10, the receptor for the chemokines CCL27/CTACK and CCL28/MEC, belongs to the chemokine receptor subfamily of GPCRs and is thought to function in immune responses and tumour progression. However, there is only limited information on the intracellular regulation of CCR10. We find that S100A10, a member of the S100 family of Ca(2+) binding proteins, binds directly to the C-terminal cytoplasmic tail of CCR10 and that this interaction regulates the CCR10 cell surface presentation. This identifies S100A10 as a novel interaction partner and regulator of CCR10 that might serve as a target for therapeutic intervention.
Collapse
Affiliation(s)
- F Hessner
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - C P Dlugos
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - T Chehab
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - C Schaefer
- Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, and Interdisciplinary Clinical Research Centre, D-48149 Muenster, Germany
| | - B Homey
- Department of Dermatology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - V Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - T Weide
- Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, and Interdisciplinary Clinical Research Centre, D-48149 Muenster, Germany
| | - H Pavenstädt
- Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, and Interdisciplinary Clinical Research Centre, D-48149 Muenster, Germany
| | - U Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| |
Collapse
|
5
|
Jaiswal JK, Nylandsted J. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 2015; 14:502-9. [PMID: 25565331 DOI: 10.1080/15384101.2014.995495] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca(2+) entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca(2+) entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca(2+)-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member--S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- a Center for Genetic Medicine Research ; Children's National Medical Center ; Washington , DC USA
| | | |
Collapse
|
6
|
Lauritzen SP, Boye TL, Nylandsted J. Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin Cell Dev Biol 2015; 45:32-8. [DOI: 10.1016/j.semcdb.2015.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
|
7
|
Drücker P, Pejic M, Grill D, Galla HJ, Gerke V. Cooperative binding of annexin A2 to cholesterol- and phosphatidylinositol-4,5-bisphosphate-containing bilayers. Biophys J 2015; 107:2070-81. [PMID: 25418092 DOI: 10.1016/j.bpj.2014.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/14/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022] Open
Abstract
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca(2+)-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.
Collapse
Affiliation(s)
- Patrick Drücker
- Institute of Biochemistry, University of Muenster, Muenster, Germany
| | - Milena Pejic
- Institute of Medical Biochemistry, ZMBE, University of Muenster, Muenster, Germany
| | - David Grill
- Institute of Medical Biochemistry, ZMBE, University of Muenster, Muenster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Muenster, Muenster, Germany.
| |
Collapse
|
8
|
Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells. Cell Microbiol 2014; 16:64-77. [PMID: 23931152 PMCID: PMC3921270 DOI: 10.1111/cmi.12180] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non-phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin-driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium- and phospholipid-binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS-mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho-family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.
Collapse
Affiliation(s)
- Carrie Jolly
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Seth Winfree
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Olivia Steele-Mortimer
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| |
Collapse
|
9
|
Drücker P, Pejic M, Galla HJ, Gerke V. Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J Biol Chem 2013; 288:24764-76. [PMID: 23861394 DOI: 10.1074/jbc.m113.474023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of dynamic membrane microdomains is an important phenomenon in many signal transduction and membrane trafficking events. It is driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Here we analyzed the ability of one peripherally associated membrane protein, annexin A2 (AnxA2), to induce the formation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-rich domains in giant unilamellar vesicles (GUVs) of complex lipid composition. AnxA2 is a cytosolic protein that can bind PI(4,5)P2 and other acidic phospholipids in a Ca(2+)-dependent manner and that has been implicated in cellular membrane dynamics in endocytosis and exocytosis. We show that AnxA2 binding to GUVs induces lipid phase separation and the recruitment of PI(4,5)P2, cholesterol and glycosphingolipids into larger clusters. This property is observed for the full-length monomeric protein, a mutant derivative comprising the C-terminal protein core domain and for AnxA2 residing in a heterotetrameric complex with its intracellular binding partner S100A10. All AnxA2 derivatives inducing PI(4,5)P2 clustering are also capable of forming interconnections between PI(4,5)P2-rich microdomains of adjacent GUVs. Furthermore, they can induce membrane indentations rich in PI(4,5)P2 and inward budding of these membrane domains into the lumen of GUVs. This inward vesiculation is specific for AnxA2 and not shared with other PI(4,5)P2-binding proteins such as the pleckstrin homology (PH) domain of phospholipase Cδ1. Together our results indicate that annexins such as AnxA2 can efficiently induce membrane deformations after lipid segregation, a mechanism possibly underlying annexin functions in membrane trafficking.
Collapse
Affiliation(s)
- Patrick Drücker
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse, D-48149 Muenster, Germany
| | | | | | | |
Collapse
|
10
|
Grieve AG, Moss SE, Hayes MJ. Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012; 2012:852430. [PMID: 22505935 PMCID: PMC3296266 DOI: 10.1155/2012/852430] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/16/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Annexins are a family of calcium- and phospholipid-binding proteins found in nearly all eukaryotes. They are structurally highly conserved and have been implicated in a wide range of cellular activities. In this paper, we focus on Annexin A2 (AnxA2). Altered expression of this protein has been identified in a wide variety of cancers, has also been found on the HIV particle, and has been implicated in the maturation of the virus. Recently, it has also been shown to have an important role in the establishment of normal apical polarity in epithelial cells. We synthesize here the known biochemical properties of this protein and the extensive literature concerning its involvement in the endocytic pathway. We stress the importance of AnxA2 as a platform for actin remodeling in the vicinity of dynamic cellular membranes, in the hope that this may shed light on the normal functions of the protein and its contribution to disease.
Collapse
Affiliation(s)
- Adam G. Grieve
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Stephen E. Moss
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Matthew J. Hayes
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| |
Collapse
|
11
|
The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity. Differentiation 2011; 81:243-52. [PMID: 21330046 DOI: 10.1016/j.diff.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 01/23/2023]
Abstract
Functional intestinal epithelium relies on complete polarization of enterocytes marked by the formation of microvilli and the accurate trafficking of glycoproteins to relevant membrane domains. Numerous transport pathways warrant the unique structural identity and protein/lipid composition of the brush border membrane. Annexin II (Ca(2+)-dependent lipid-binding protein) is an important component of one of the apical protein transport machineries, which involves detergent-resistant membranes and the actin cytoskeleton. Here, we investigate in intestinal Caco-2 cells the contribution of annexin II to the sorting and transport of brush border hydrolases and role in intestinal cell polarity. Downregulation of annexin II in Caco-2-A4 cell line results in a severe reduction of the levels of the brush border membrane resident enzyme sucrase isomaltase (SI) as well as structural components such as ezrin. This reduction is accompanied by a redistribution of these proteins to intracellular compartments and a striking morphological transition of Caco-2 cells to rudimentary epithelial cells that are characterized by an almost flat apical membrane with sparse and short microvilli. Concomitant with this alteration is the redistribution of the intermediate filament protein keratin 19 to the intracellular membranes in Caco-2-A4 cells. Interestingly, keratin 19 interacts with annexin II in wild type Caco-2 cells and this interaction occurs exclusively in lipid rafts. Our findings suggest a role for annexin II and K19 in differentiation and polarization of intestinal cells.
Collapse
|
12
|
Backes P, Quinkert D, Reiss S, Binder M, Zayas M, Rescher U, Gerke V, Bartenschlager R, Lohmann V. Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol 2010; 84:5775-89. [PMID: 20335258 PMCID: PMC2876593 DOI: 10.1128/jvi.02343-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/16/2010] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.
Collapse
Affiliation(s)
- Perdita Backes
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Doris Quinkert
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Simon Reiss
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Ursula Rescher
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Volker Gerke
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
13
|
Rescher U, Ludwig C, Konietzko V, Kharitonenkov A, Gerke V. Tyrosine phosphorylation of annexin A2 regulates Rho-mediated actin rearrangement and cell adhesion. J Cell Sci 2008; 121:2177-85. [PMID: 18565825 DOI: 10.1242/jcs.028415] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion and motility require a dynamic remodelling of the membrane-associated actin cytoskeleton in response to extracellular stimuli that are primarily transmitted through receptor tyrosine kinases. In a cellular model system for tyrosine phosphorylation-based growth factor signaling, we observed that annexin A2 is tyrosine-phosphorylated upon insulin receptor activation. The phosphorylation precedes peripheral actin accumulations and subsequent cell detachment. These morphological changes are inhibited by annexin A2 depletion and require Rho/ROCK signaling downstream of tyrosine-phosphorylated annexin A2. A phospho-mimicking annexin A2 mutant is sufficient to drive peripheral actin accumulation and the resulting cell detachment in the absence of insulin stimulation. Thus, a tyrosine phosphorylation switch in annexin A2 is an important event in triggering Rho/ROCK-dependent and actin-mediated changes in cell morphology associated with the control of cell adhesion.
Collapse
Affiliation(s)
- Ursula Rescher
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Muenster, 48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
14
|
Cramm-Behrens CI, Dienst M, Jacob R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 2008; 9:2206-20. [PMID: 18785995 DOI: 10.1111/j.1600-0854.2008.00829.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial polarity is based on intracellular sorting machinery that maintains the asymmetric distribution of lipids and proteins to the cell surface. Dependent on their lipid raft affinity, newly synthesized apical polypeptides are segregated into distinct vesicle populations subsequent to the passage through the Golgi apparatus. Using a combined fluorescence microscopic and biochemical approach, we found that lipid raft-associated sucrase-isomaltase (SI) as well as non-raft-associated lactase-phlorizin hydrolase (LPH) traverse endosomal compartments before entering the apical membrane. Fluorescent fusion proteins of both hydrolases were co-stained with Rab4-, Rab8- and Rab11-positive endosomes in polarized Madin-Darby canine kidney and non-polarized COS-1 cells. Immunoisolation of post-Golgi vesicles subsequent to different times of TGN release revealed that LPH and SI navigate in chronological order through Rab4-, Rab8- and Rab11-positive endosomes. Thereafter, the two hydrolases are segregated into distinct vesicle populations. In addition, apical membrane traffic could be significantly inhibited by RNA interference-mediated depletion of these guanosine triphosphatases. These results suggest that in epithelial cells, lipid raft-dependent and -independent apical cargo follow a transendosomal route.
Collapse
|
15
|
Abstract
S100 proteins and annexins both constitute groups of Ca2+-binding proteins, each of which comprises more than 10 members. S100 proteins are small, dimeric, EF-hand-type Ca2+-binding proteins that exert both intracellular and extracellular functions. Within the cells, S100 proteins regulate various reactions, including phosphorylation, in response to changes in the intracellular Ca2+ concentration. Although S100 proteins are known to be associated with many diseases, exact pathological contributions have not been proven in detail. Annexins are non-EF-hand-type Ca2+-binding proteins that exhibit Ca2+-dependent binding to phospholipids and membranes in various tissues. Annexins bring different membranes into proximity and assist them to fuse, and therefore are believed to play a role in membrane trafficking and organization. Several S100 proteins and annexins are known to interact with each other in either a Ca2+-dependent or Ca2+-independent manner, and form complexes that exhibit biological activities. This review focuses on the interaction between S100 proteins and annexins, and the possible biological roles of these complexes. Recent studies have shown that S100-annexin complexes have a role in the differentiation of gonad cells and neurological disorders, such as depression. These complexes regulate the organization of membranes and vesicles, and thereby may participate in the appropriate disposition of membrane-associated proteins, including ion channels and/or receptors.
Collapse
Affiliation(s)
- Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Morel E, Gruenberg J. The p11/S100A10 light chain of annexin A2 is dispensable for annexin A2 association to endosomes and functions in endosomal transport. PLoS One 2007; 2:e1118. [PMID: 17971878 PMCID: PMC2040519 DOI: 10.1371/journal.pone.0001118] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 10/11/2007] [Indexed: 02/01/2023] Open
Abstract
Background Annexin A2 is a peripheral membrane protein that belongs to the annexin family of Ca2+ and phospholipid-binding proteins. This protein, which plays a role in membrane organization and dynamics in particular along the endocytic pathway, exists as a heterotetrameric complex, consisting of two annexin A2 molecules bound via their N-termini to a dimer of p11/S100A10 light chains. The light chain, and thus presumably formation of the heterotetramer, was reported to control annexin A2 association to the plasma membrane and to cortical actin, as well as the distribution of recycling endosomes. However, the specific role of the light chain and the functions of monomeric versus heterotetrameric annexin A2 have remained elusive in the endocytic pathway. Methodology/Principal Findings Here, we have investigated whether p11 plays a role in the endosomal functions of annexin A2. Using morphological and biochemical approaches, we found that p11, unlike annexin A2, was not present on early endosomes. Neither was the heterotetramer detected on purified early endosomes, while it was clearly present in total cell lysates. Moreover, knockdown of p11 with siRNAs did not affect annexin A2 targeting to early endosomes, and, conversely, binding of annexin A2 to purified endosomes or liposomes occurred without p11 in vitro. Finally, while we could confirm that annexin A2 knockdown inhibits transport beyond early endosomes, p11 knockdown had no such effects on early-to-late endosome transport. Conclusions/Significance Our data show that the binding of annexin A2 to endosomal membranes and its role in endosomal trafficking are independent of the p11/S100A10 light chain. We thus conclude that annexin A2 functions are fully supported by the monomeric form of the protein, at least the endocytic pathway leading to lysosomes.
Collapse
Affiliation(s)
- Etienne Morel
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
17
|
Rintala-Dempsey AC, Santamaria-Kisiel L, Liao Y, Lajoie G, Shaw GS. Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry 2007; 45:14695-705. [PMID: 17144662 DOI: 10.1021/bi061754e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100 proteins are a group of EF-hand calcium-signaling proteins, many of which interact with members of the calcium- and phospholipid-binding annexin family of proteins. This calcium-sensitive interaction enables two neighboring membrane surfaces, complexed to different annexin proteins, to be brought into close proximity for membrane reorganization, using the S100 protein as a bridging molecule. S100A11 and S100A10 are two members of the S100 family found to interact with the N-termini of annexins A1 and A2, respectively. Despite the high degree of structural similarity between these two complexes and the sequences of the peptides, earlier studies have shown that there is little or no cross-reactivity between these two S100s and the annexin peptides. In the current work the specificity and the affinity of the interaction of the N-terminal sequences of annexins A1 and A2 with Ca2+-S100A11 were investigated. Through the use of alanine-scanning peptide array experiments and NMR spectroscopy, an approximate 5-fold tighter interaction was identified between Ca2+-S100A11 and annexin A2 (approximately 3 microM) compared to annexin A1 (approximately 15 microM). Chemical shift mapping revealed that the binding site for annexin A2 on S100A11 was similar to that observed for the annexin A1 but with distinct differences involving the C-terminus of the annexin A2 peptide. In addition, kinetic measurements based on NMR titration data showed that annexin A2 binding to Ca2+-S100A11 occurs at a comparable rate (approximately 120 s(-1)) to that observed for membrane fusion processes such as endo- and exocytosis.
Collapse
Affiliation(s)
- Anne C Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
18
|
Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396:201-14. [PMID: 16683912 PMCID: PMC1462724 DOI: 10.1042/bj20060195] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 12/12/2022]
Abstract
The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40 degrees alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.
Collapse
Affiliation(s)
| | - Anne C. Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
19
|
Gekara NO, Jacobs T, Chakraborty T, Weiss S. The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 2006; 7:1345-56. [PMID: 16098221 DOI: 10.1111/j.1462-5822.2005.00561.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pore-forming toxin listeriolysin O (LLO) is the main virulence factor of Listeria monocytogenes. LLO is known to act as a pseudo cytokine/chemokine, which induces a broad spectrum of host responses that ultimately influences the outcome of listeriosis. In the present study we demonstrate that LLO is a potent aggregator of lipid rafts. LLO was found to aggregate the raft associated molecules GM1, the GPI-anchored proteins CD14 and CD16 as well as the tyrosine kinase Lyn. Abrogation of the cytolytic activity of LLO by cholesterol pretreatment was found not to interfere with LLO's ability to aggregate rafts or trigger tyrosine phosphorylation in cells. However, a monoclonal antibody that blocks the oligomerization of LLO was found to inhibit rafts' aggregation as well as the induction of tyrosine phosphorylation. This implies that rafts aggregation by LLO which is independent of cytolytic activity, is due to the oligomerization of its membrane bound toxin monomers. Thus, LLO most likely induces signalling through the coaggregation of rafts' associated receptors, kinases and adaptors.
Collapse
Affiliation(s)
- Nelson O Gekara
- Molecular Immunology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
20
|
Cheng CW, Rifai A, Ka SM, Shui HA, Lin YF, Lee WH, Chen A. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure. Kidney Int 2006; 68:2694-703. [PMID: 16316344 DOI: 10.1111/j.1523-1755.2005.00740.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rise in cellular calcium is associated with acute tubular necrosis, the most common cause of acute renal failure (ARF). The mechanisms that calcium signaling induce in the quiescent tubular cells to proliferate and differentiate during acute tubular necrosis have not been elucidated. METHODS Acute tubular necrosis induced in mice by single intravenous injection of uranyl nitrate and examined after 1, 3, 7, and 14 days. Renal function was monitored and kidneys were evaluated by histology, immunohistochemistry, Western blotting, in situ hybridization, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Models of folic acid induced-ARF and ischemic/reperfusion (I/R) injury were similarly investigated. RESULTS Analysis of mRNA expression of intracellular calcium and phospholipid-binding proteins demonstrated selective expression of S100A6 and Annexin A2 (Anxa2) in the renal cortex with marked elevation on day 3, and gradually decline on day 7 and further attenuation on day 14. Similarly, the expression of both proteins, as demonstrated by immunohistochemistry and Western blot analysis, was increased and reached the peak level on day 7 and then gradually declined by day 14. Vimentin, a marker of dedifferentiated cells, was highly expressed during the recovery phase. Combined in situ hybridization immunohistochemistry revealed colocalization of both S100A6 and Anxa2 with proliferating cell nuclear antigen (PCNA). The universality of this phenomenon was confirmed in two other mouse acute tubular necrosis models, the ischemic-reperfusion injury and folic acid-induced ARF. CONCLUSION Collectively, these findings demonstrate that S100A6 and Anxa2 expression, initiated in response to tubular injury, persist in parallel throughout the recovery process of tubular cells in acute renal failure.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Life Sciences, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Renigunta V, Yuan H, Zuzarte M, Rinné S, Koch A, Wischmeyer E, Schlichthörl G, Gao Y, Karschin A, Jacob R, Schwappach B, Daut J, Preisig-Müller R. The Retention Factor p11 Confers an Endoplasmic Reticulum-Localization Signal to the Potassium Channel TASK-1. Traffic 2005; 7:168-81. [PMID: 16420525 DOI: 10.1111/j.1600-0854.2005.00375.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The interaction of the adaptor protein p11, also denoted S100A10, with the C-terminus of the two-pore-domain K+ channel TASK-1 was studied using yeast two-hybrid analysis, glutathione S-transferase pull-down, and co-immunoprecipitation. We found that p11 interacts with a 40 amino-acid region in the proximal C-terminus of the channel. In heterologous expression systems, deletion of the p11-interacting domain enhanced surface expression of TASK-1. Attachment of the p11-interacting domain to the cytosolic tail of the reporter protein CD8 caused retention/retrieval of the construct in the endoplasmic reticulum (ER). Attachment of the last 36 amino acids of p11 to CD8 also caused ER localization, which was abolished by removal or mutation of a putative retention motif (H/K)xKxxx, at the C-terminal end of p11. Imaging of EGFP-tagged TASK-1 channels in COS cells suggested that wild-type TASK-1 was largely retained in the ER. Knockdown of p11 with siRNA enhanced trafficking of TASK-1 to the surface membrane. Our results suggest that binding of p11 to TASK-1 retards the surface expression of the channel, most likely by virtue of a di-lysine retention signal at the C-terminus of p11. Thus, the cytosolic protein p11 may represent a 'retention factor' that causes localization of the channel to the ER.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology, Marburg University, Deutschhausstr. 2, 35037 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chasserot-Golaz S, Vitale N, Umbrecht-Jenck E, Knight D, Gerke V, Bader MF. Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles. Mol Biol Cell 2005; 16:1108-19. [PMID: 15635098 PMCID: PMC551477 DOI: 10.1091/mbc.e04-07-0627] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Annexin 2 is a calcium-dependent phospholipid-binding protein that has been implicated in a number of membrane-related events, including regulated exocytosis. In chromaffin cells, we previously reported that catecholamine secretion requires the translocation and formation of the annexin 2 tetramer near the exocytotic sites. Here, to obtain direct evidence for a role of annexin 2 in exocytosis, we modified its expression level in chromaffin cells by using the Semliki Forest virus expression system. Using a real-time assay for individual cells, we found that the reduction of cytosolic annexin 2, and the consequent decrease of annexin 2 tetramer at the cell periphery, strongly inhibited exocytosis, most likely at an early stage before membrane fusion. Secretion also was severely impaired in cells expressing a chimera that sequestered annexin 2 into cytosolic aggregates. Moreover, we demonstrate that secretagogue-evoked stimulation triggers the formation of lipid rafts in the plasma membrane, essential for exocytosis, and which can be attributed to the annexin 2 tetramer. We propose that annexin 2 acts as a calcium-dependent promoter of lipid microdomains required for structural and spatial organization of the exocytotic machinery.
Collapse
Affiliation(s)
- Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2356, IFR 37 des Neurosciences, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Rescher U, Ruhe D, Ludwig C, Zobiack N, Gerke V. Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. J Cell Sci 2004; 117:3473-80. [PMID: 15226372 DOI: 10.1242/jcs.01208] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Annexin 2 is a Ca(2+)-regulated membrane protein and an F-actin-binding protein enriched at actin assembly sites both, on the plasma membrane and on endosomal vesicles. Here, we identify annexin 2 as a phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2))-interacting protein, thereby explaining this specific membrane association. Using the pleckstrin-homology (PH) domain of phospholipase Cdelta1 fused to yellow fluorescent protein as a marker for PtdIns(4,5)P(2), we show that annexin 2 and its ligand p11 (S100A10) are targeted to sites of PtdIns(4,5)P(2) enrichment where F-actin accumulates. At the plasma membrane, adhesion of pedestal-forming enteropathogenic Escherichia coli induces a recruitment of 1-phosphatidylinositol-4-phosphate 5-kinase (PtdIns4P 5-kinase) and an enrichment of PtdIns(4,5)P(2) and annexin 2-p11 at sites of bacterial adhesion. Induction of PtdIns(4,5)P(2)-enriched ruffles and PtdIns(4,5)P(2)-positive, actin-coated vacuoles by Arf6-mediated activation of PtdIns4P 5-kinase also leads to a concomitant accumulation of the annexin 2-p11 complex and the PH domain. Binding studies with immobilized phosphoinositides and phosphoinositide-containing liposomes reveal that the purified annexin 2-p11 complex directly and specifically binds to PtdIns(4,5)P(2) with an affinity comparable to that of the PH domain of phospholipase Cdelta1. Experiments using individual subunits identify annexin 2 as the PtdIns(4,5)P(2)-binding entity. Thus, the direct interaction of annexin 2 with PtdIns(4,5)P(2) is a means of specifically recruiting the annexin 2-p11 complex to sites of membrane-associated actin assembly.
Collapse
Affiliation(s)
- Ursula Rescher
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, von Esmarch-Str. 56, Münster 48149, Germany
| | | | | | | | | |
Collapse
|
24
|
Jacob R, Heine M, Eikemeyer J, Frerker N, Zimmer KP, Rescher U, Gerke V, Naim HY. Annexin II Is Required for Apical Transport in Polarized Epithelial Cells. J Biol Chem 2004; 279:3680-4. [PMID: 14670963 DOI: 10.1074/jbc.c300503200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sorting of apical proteins comprises an initial recognition step in the trans Golgi network and a final partitioning of the apical pool of proteins into at least two different types of vesicular carriers. One criteria of these carriers is the association or non-association of the protein content with lipid rafts. We have previously characterized a population containing the raft-associated sucrase-isomaltase-carrying vesicles (SAVs) and another one, the non-raft-associated lactase-phlorizin hydrolase-carrrying vesicles (LAVs) that are targeted separately to the apical membrane. Here, we demonstrate biochemically and by employing confocal laser microscopy that the annexin II-S100A10 complex is a component of SAVs and is absent from LAVs. The unequivocal role of annexin II in the apical targeting of SI is clearly demonstrated when down-regulation of this protein by annexin II-specific small interfering RNA drastically decreases the apical delivery of SI in the epithelial cell line Madin-Darby canine kidney. The annexin II-S100A10 complex plays therefore a crucial role in routing SAVs to the apical membrane of epithelial cells.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zobiack N, Rescher U, Ludwig C, Zeuschner D, Gerke V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell 2003; 14:4896-908. [PMID: 13679511 PMCID: PMC284793 DOI: 10.1091/mbc.e03-06-0387] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Ca2+- and lipid-binding protein annexin 2, which resides in a tight heterotetrameric complex with the S100 protein S100A10 (p11), has been implicated in the structural organization and dynamics of endosomal membranes. To elucidate the function of annexin 2 and S100A10 in endosome organization and trafficking, we used RNA-mediated interference to specifically suppress annexin 2 and S100A10 expression. Down-regulation of both proteins perturbed the distribution of transferrin receptor- and rab11-positive recycling endosomes but did not affect uptake into sorting endosomes. The phenotype was highly specific and could be rescued by reexpression of the N-terminal annexin 2 domain or S100A10 in annexin 2- or S100A10-depleted cells, respectively. Whole-mount immunoelectron microscopy of the aberrantly localized recycling endosomes in annexin 2/S100A10 down-regulated cells revealed extensively bent tubules and an increased number of endosome-associated clathrin-positive buds. Despite these morphological alterations, the kinetics of transferrin uptake and recycling was not affected to a significant extent, indicating that the proper positioning of recycling endosomes is not a rate-limiting step in transferrin recycling. The phenotype generated by this transient loss-of-protein approach shows for the first time that the annexin 2/S100A10 complex functions in the intracellular positioning of recycling endosomes and that both subunits are required for this activity.
Collapse
Affiliation(s)
- Nicole Zobiack
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
Lipid rafts are dynamic membrane microdomains enriched in cholesterol and sphingolipids and are involved in the regulation of a variety of cellular processes, such as proliferation, apoptosis and cell motility. We have previously described that large lipid raft aggregates are readily detectable on cultured keratinocyte cell line HaCaT by staining with the fluorescein-tagged cholera toxin (CTx-FITC). In this paper we adopted this method for the detection of lipid rafts in human epidermis and keratinocytes in culture. Double labelling of showed the non-overlapping clusters of basal cells in human epidermis: CD29dimCTx-FITCbright cells in the deep rate ridges and CD29brightCTx-FITCdim cells at the tips of dermal papillae. A similar patchy, non-overlapping staining pattern was observed in cultured keratinocytes in vitro. CTx-FITCbright cells are mitotically active whereas a large proportion of CTx-FITCdim cells are quiescent. We conclude that the epidermal stem-like cells, previously shown to occupy the tips of dermal papillae and to exhibit high density of membrane beta1 integrin have a low content of lipid rafts. In contrast, the putative transit amplifying cells in deep rate ridges show enrichment in lipid rafts. Thus, lipid rafts may be a factor controlling the mitotic activity of epidermal keratinocytes and possibly the differentiation of stem cells into the transit amplifying cells.
Collapse
Affiliation(s)
- Robert Gniadecki
- Department of Dermatology D92, Bispebjerg Hospital, Bispebjerg bake 23, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
27
|
Goebeler V, Ruhe D, Gerke V, Rescher U. Atypical properties displayed by annexin A9, a novel member of the annexin family of Ca(2+) and lipid binding proteins. FEBS Lett 2003; 546:359-64. [PMID: 12832069 DOI: 10.1016/s0014-5793(03)00634-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Annexin A9 is a novel member of the annexin family of Ca(2+) and phospholipid binding proteins which has so far only been identified in EST data bases and whose deduced protein sequence shows mutations in residues considered crucial for Ca(2+) coordination in other annexins. To elucidate whether the annexin A9 protein is expressed as such and to characterize its biochemical properties we probed cell extracts with specific anti-annexin A9 antibodies and developed a recombinant expression system. We show that the protein is found in HepG2 hepatoma cell lysates and that a green fluorescent protein-tagged form is abundantly expressed in the cytosol of HeLa cells. Recombinant expression in bacteria yields a soluble protein that can be enriched by conventional chromatographic procedures. The protein is capable of binding phosphatidylserine containing liposomes albeit only at Ca(2+) concentrations exceeding 2 mM. Moreover and in contrast to other annexins this binding appears to be irreversible as the liposome-bound annexin A9 cannot be released by Ca(2+) chelation. These results indicate that annexin A9 is a unique member of the annexin family whose intracellular activity is not subject to Ca(2+) regulation.
Collapse
Affiliation(s)
- Verena Goebeler
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, von-Esmarch-Str 56, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
28
|
Peterson EA, Sutherland MR, Nesheim ME, Pryzdial ELG. Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J Cell Sci 2003; 116:2399-408. [PMID: 12724354 DOI: 10.1242/jcs.00434] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-surface annexin 2 (A2) and its ligand p11 have been implicated in fibrinolysis because of their ability to accelerate tissue plasminogen activator (tPA)-mediated activation of plasminogen to plasmin. Because thrombin is a potent cell modulator obligately produced at the site of clot formation, we hypothesized that the amount of cell-surface A2 and p11 might be altered by thrombin with consequent effects on plasmin generation. In support of this hypothesis, immunofluorescence microscopy and hydrophilic biotinylation experiments showed that both A2 and p11 were significantly increased on the surface of human umbilical vein endothelial cells (HUVECs) treated with thrombin (0.8-8 nM) for 5 minutes followed by 1 hour at 37 degrees C. Intracellular immunofluorescence microscopy and immunoblot analyses of whole cell extracts revealed increased p11 but unchanged A2 in response to thrombin, suggesting that transbilayer trafficking of A2 might be controlled by p11. The thrombin receptor-activating peptide (TRAP) similarly affected cells, demonstrating that cell signaling at least involved the type-1 protease activated receptor (PAR-1). An effect on the fibrinolysis pathway after treatment of HUVECs with thrombin was shown by increased fluorescein-labeled plasminogen binding to cells, which was inhibited by an antibody specific for p11. This was confirmed by observing that thrombin pretreatment of HUVECs increased biotin-modified plasminogen binding. Utilizing a chromogenic assay, pretreatment of HUVECs by thrombin further enhanced activation of the Glu and Lys forms of plasminogen by tPA. These data suggest a novel mechanism that links the coagulation and fibrinolysis pathways by thrombin-mediated feedback.
Collapse
Affiliation(s)
- Erica A Peterson
- Canadian Blood Services, R&D Department, 1800 Alta Vista Drive, Ottawa, ON K1G 4J5, Canada
| | | | | | | |
Collapse
|
29
|
Roda O, Valero ML, Peiró S, Andreu D, Real FX, Navarro P. New insights into the tPA-annexin A2 interaction. Is annexin A2 CYS8 the sole requirement for this association? J Biol Chem 2003; 278:5702-9. [PMID: 12468550 DOI: 10.1074/jbc.m207605200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Annexin A2 has been described as an important receptor for tissue-type plasminogen activator in endothelium and other cell types. Interaction between tissue-type plasminogen activator and its cellular receptor is critical for many of the functions of this protease. The annexin A2 motif that mediates tissue plasminogen activator interaction has been assigned to the hexapeptide LCKLSL in the amino-terminal domain of the protein, and it has been proposed that Cys(8) of this sequence is essential for tPA binding. In an attempt to identify other amino acids critical for tPA-annexin A2 interaction, we have analyzed a set of peptides containing several modifications of the original hexapeptide, including glycine scans, alanine scans, d-amino acid scans, conservative mutations, cysteine blocking, and enantiomer and retroenantiomer sequences. Using a non-radioactive competitive binding assay, we have found that all cysteine-containing peptides, independently of their sequence, compete the interaction between tPA and annexin A2. Cysteine-containing peptides also inhibit tPA binding to the surface of cultured human umbilical vein endothelial cells (HUVEC). Mass spectrometry demonstrates that the peptides bind through a disulfide bond to a cysteine residue of annexin A2, the same mechanism that has been suggested for the inhibition mediated by homocysteine. These data call for a revision of the role of the LCKLSL sequence as the sole annexin A2 structural region required to bind tPA and indicate that further studies are necessary to better define the annexin A2-tPA interaction.
Collapse
Affiliation(s)
- Oriol Roda
- Departament de Ciències Experimentales i de la Salut, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra and Unitat de Biologia Cel.lular i Molecular, Institut Municipal d'Investigació Mèdica, 08003-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Fragoso R, Ren D, Zhang X, Su MWC, Burakoff SJ, Jin YJ. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:913-21. [PMID: 12517957 DOI: 10.4049/jimmunol.170.2.913] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
By mutagenesis, we demonstrated that the palmitoylation of the membrane-proximal Cys(396) and Cys(399)of CD4, and the association of CD4 with Lck contribute to the enrichment of CD4 in lipid rafts. Ab cross-linking of CD4 induces an extensive membrane patching on the T cell surface, which is related to lipid raft aggregation. The lipid raft localization of CD4 is critical for CD4 to induce the aggregation of lipid rafts. The localization of CD4 in lipid rafts also correlates to the ability of CD4 to enhance receptor tyrosine phosphorylation. Thus, our data suggest that CD4-induced aggregation of lipid rafts may play an additional role in CD4 signaling besides its adhesion to MHC molecules and association with Lck.
Collapse
Affiliation(s)
- Roben Fragoso
- Skirball Institute of Biomedical Research, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
31
|
de Diego I, Schwartz F, Siegfried H, Dauterstedt P, Heeren J, Beisiegel U, Enrich C, Grewal T. Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J Biol Chem 2002; 277:32187-94. [PMID: 12070178 DOI: 10.1074/jbc.m205499200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Annexins are Ca(2+)- and phospholipid-binding proteins that are widely expressed in mammalian tissues and that bind to different cellular membranes. In recent years its role in membrane traffic has emerged as one of its predominant functions, but the regulation of its intracellular distribution still remains unclear. We demonstrated that annexin 6 translocates to the late endocytic compartment in low density lipoprotein-loaded CHO cells. This prompted us to investigate whether cholesterol, one of the major constituents of low density lipoprotein, could influence the membrane binding affinity and intracellular distribution of annexin 6. Treatment of crude membranes or early and late endosomal fractions with digitonin, a cholesterol-sequestering agent, displayed a strong reduction in the binding affinity of a novel EDTA-resistant and cholesterol-sensitive pool of annexin 6 proteins. In addition, U18666A-induced accumulation of cholesterol in the late endosomal compartment resulted in a significant increase of annexin 6 in these vesicles in vivo. This translocation/recruitment correlates with an increased membrane binding affinity of GST-annexin 6 to late endosomes of U18666A-treated cells in vitro. In conclusion, the present study shows that changes in the intracellular distribution and concentration of cholesterol in different subcellular compartments participate in the reorganization of intracellular pools of Ca(2+)-dependent and -independent annexin 6.
Collapse
Affiliation(s)
- Iñaki de Diego
- Departament de Biologia Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 0836 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Okuse K, Malik-Hall M, Baker MD, Poon WYL, Kong H, Chao MV, Wood JN. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 2002; 417:653-6. [PMID: 12050667 DOI: 10.1038/nature00781] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tetrodotoxin-resistant sodium channel Na(V)1.8/SNS is expressed exclusively in sensory neurons and appears to have an important role in pain pathways. Unlike other sodium channels, Na(V)1.8 is poorly expressed in cell lines even in the presence of accessory beta-subunits. Here we identify annexin II light chain (p11) as a regulatory factor that facilitates the expression of Na(V)1.8. p11 binds directly to the amino terminus of Na(V)1.8 and promotes the translocation of Na(V)1.8 to the plasma membrane, producing functional channels. The endogenous Na(V)1.8 current in sensory neurons is inhibited by antisense downregulation of p11 expression. Because direct association with p11 is required for functional expression of Na(V)1.8, disrupting this interaction may be a useful new approach to downregulating Na(V)1.8 and effecting analgesia.
Collapse
Affiliation(s)
- Kenji Okuse
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Arcuri C, Giambanco I, Bianchi R, Donato R. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Neuroscience 2002; 109:371-88. [PMID: 11801372 DOI: 10.1016/s0306-4522(01)00330-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Annexins and S100 proteins constitute two multigenic families of Ca2+-modulated proteins that have been implicated in the regulation of both intracellular and extracellular activities. Some annexins can interact with certain S100 protein dimers thereby forming heterotetramers in which an S100 dimer crosslinks two copies of the partner annexin. It is suggested that S100 protein binding to an annexin might serve the function of regulating annexin function and annexin binding to an S100 protein might regulate S100 function. In the present study, annexin V, annexin VI (or ANXA5 and ANXA6, respectively, according to a novel nomenclature), S100A1 and S100B were analyzed for their subcellular localization in developing and adult avian skeletal muscles by confocal laser scanning microscopy, immunogold cytochemistry, and western blotting, and for their ability to form annexin-S100 heterocomplex in vivo by immunoprecipitation. These four proteins displayed distinct expression patterns, ANXA5 being the first to be expressed in myotubes (i.e. at embryonic day 8), followed by ANXA6 (at embryonic day 12) and S100A1 and S100B (between embryonic day 12 and embryonic day 15). The two annexins and the two S100 proteins were found associated to different extents with the sarcolemma, membranes of the sarcoplasmic reticulum, and putative transverse tubules where they appeared to be co-localized from embryonic day 18 onwards. No one of these proteins was found associated with the contractile apparatus of the sarcomeres. Immunoprecipitation studies indicated that ANXA6/S100A1 and ANXA6/S100B complexes formed in vivo. Whereas, ANXA5 was not recovered in S100A1 or S100B immunoprecipitates. From our data we suggest that: (i) ANXA5 and ANXA6, and S100A1 and S100B can be used as markers of skeletal muscle development; (ii) ANXA6 and S100A1 and S100B appear strategically located close to or on skeletal muscle membrane organelles that are critically involved in the regulation of Ca2+ fluxes, thus supporting previous in vitro observations implicating S100A1 and ANXA6 in the stimulation of Ca2+-induced Ca2+ release; and (iii) ANXA6/S100A1 and ANXA6/S100B complexes can form in vivo thereby regulating each other activities and/or acting in concert to regulate membrane-associated activities.
Collapse
Affiliation(s)
- C Arcuri
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
34
|
Gniadecki R, Christoffersen N, Wulf HC. Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: importance in the baseline and UVA-induced generation of reactive oxygen species. J Invest Dermatol 2002; 118:582-8. [PMID: 11918702 DOI: 10.1046/j.1523-1747.2002.01716.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biologic effects of ultraviolet radiation such as DNA damage, mutagenesis, cellular aging, and carcinogenesis are in part mediated by reactive oxygen species. In unirradiated cells the major known sources of reactive oxygen species are the mitochondrial respiratory chain and the membrane oxidases functionally coupled to several membrane growth factor receptors. There is evidence that mitochondria also play a role in oxidative stress after ultraviolet irradiation; however, it is unknown whether the biochemical processes at the level of the plasma membrane contribute to the regulation of reactive oxygen species synthesis. In order to elucidate this issue we examined here the importance of the microdomain plasma membrane organization in the regulation of oxidative stress in unirradiated and ultraviolet A (340-400 nm) irradiated HaCaT keratinocytes. Labeling of confluent HaCaT cultures with fluorescently tagged cholera toxin B subunit (FITC-CTx) revealed the presence of GM1 ganglioside and cholesterol-rich microdomains (lipid rafts) that formed junction-like structures in the membranes of adjacent cells and patchy microdomains elsewhere. There was a marked heterogeneity in the level of FITC-CTx labeling: there were groups of cells demonstrating prominent labeling (FITC-CTx(high)) whereas other cells were only weakly labeled (FITC-CTx(low)). When reactive oxygen species synthesis was measured with the fluorescent probe carboxy-2',7'-dichlorodihydrofluorescein diacetate, we found that (i) the baseline and ultraviolet-A-induced reactive oxygen species synthesis correlated with the magnitude of FITC-CTx labeling and was highest in the FITC-CTx(high) cells; (ii) reactive oxygen species synthesis was diminished in cells in which the integrity of membrane domains was disrupted by cholesterol sequestration with methyl-beta-cyclodextrin and filipin, or after treatment with GM1 ganglioside; (iii) reactive oxygen species synthesis in cholesterol-depleted cells was fully restored after cholesterol repletion. We conclude that the plasma membrane takes part in the regulation of oxidative stress in keratinocytes and disruption of its microdomain structure reduces reactive oxygen species synthesis both at the baseline and after ultraviolet A irradiation. We hypothesize that lipid-raft-associated protein(s) may be involved in the generation of reactive oxygen species and that pharmacologic modulation of membrane structure may provide a novel therapeutic approach relevant for photoprotection and cutaneous carcinogenesis.
Collapse
Affiliation(s)
- Robert Gniadecki
- Department of Dermatology, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | |
Collapse
|
35
|
Zobiack N, Gerke V, Rescher U. Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett 2001; 500:137-40. [PMID: 11445072 DOI: 10.1016/s0014-5793(01)02604-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ca(2+) and membrane binding protein annexin 2 can form a heterotetrameric complex with the S100A10 protein and this complex is thought to serve a bridging or scaffolding function in the membrane underlying cytoskeleton. To elucidate which of the subunits targets the complex to the subplasmalemmal region in live cells we employed YFP/CFP fusion proteins and live cell imaging in HepG2 cells. We show that monomeric annexin 2 is targeted to the plasma membrane whereas non-complexed S100A10 acquires a general cytosolic distribution. Co-expression of S100A10 together with annexin 2 and the resulting complex formation, however, lead to a recruitment of S100A10 to the plasma membrane thus identifying annexin 2 as the membrane targeting subunit.
Collapse
Affiliation(s)
- N Zobiack
- Institute for Medical Biochemistry, ZMBE, University of Münster, von-Esmarch-Str. 56, D-48149, Münster, Germany
| | | | | |
Collapse
|
36
|
Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33:637-68. [PMID: 11390274 DOI: 10.1016/s1357-2725(01)00046-2] [Citation(s) in RCA: 1169] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
S100 is a multigenic family of non-ubiquitous Ca(2+)-modulated proteins of the EF-hand type expressed in vertebrates exclusively and implicated in intracellular and extracellular regulatory activities. Within cells, most of S100 members exist in the form of antiparallelly packed homodimers (in some cases heterodimers), capable of functionally crossbridging two homologous or heterologous target proteins in a Ca(2+)-dependent (and, in some instances, Ca(2+)-independent) manner. S100 oligomers can also form, under the non-reducing conditions found in the extracellular space and/or within cells upon changes in the cell redox status. Within cells, S100 proteins have been implicated in the regulation of protein phosphorylation, some enzyme activities, the dynamics of cytoskeleton components, transcription factors, Ca(2+) homeostasis, and cell proliferation and differentiation. Certain S100 members are released into the extracellular space by an unknown mechanism. Extracellular S100 proteins stimulate neuronal survival and/or differentiation and astrocyte proliferation, cause neuronal death via apoptosis, and stimulate (in some cases) or inhibit (in other cases) the activity of inflammatory cells. A cell surface receptor, RAGE, has been identified on inflammatory cells and neurons for S100A12 and S100B, which transduces S100A12 and S100B effects. It is not known whether RAGE is a universal S100 receptor, S100 members interact with other cell surface receptors, or S100 protein interaction with other extracellular factors specifies the biological effects of a given S100 protein on a target cell. The variety of intracellular target proteins of S100 proteins and, in some cases, of a single S100 protein, and the cell specificity of expression of certain S100 members suggest that these proteins might have a role in the fine regulation of effector proteins and/or specific steps of signaling pathways/cellular functions. Future analyses should discriminate between functionally relevant S100 interactions with target proteins and in vitro observations devoid of physiological importance.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental and Biochemical Sciences, Section of Anatomy, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
37
|
Garbuglia M, Verzini M, Hofmann A, Huber R, Donato R. S100A1 and S100B interactions with annexins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:192-206. [PMID: 11108963 DOI: 10.1016/s0167-4889(00)00096-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Members of the annexin protein family interact with members of the S100 protein family thereby forming heterotetramers in which an S100 homodimer crossbridges two copies of the pertinent annexin. Previous work has shown that S100A1 and S100B bind annexin VI in a Ca(2+)-dependent manner and that annexin VI, but not annexin V, blocks the inhibitory effect of S100A1 and S100B on intermediate filament assembly. We show here that both halves of annexin VI (i.e., the N-terminal half or annexin VI-a and the C-terminal half or annexin VI-b) bind individual S100s on unique sites and that annexin VI-b, but not annexin VI-a, blocks the ability of S100A1 and S100B to inhibit intermediate filament assembly. We also show that the C-terminal extension of S100A1 (and, by analogy, S100B), that was previously demonstrated to be critical for S100A1 and S100B binding to several target proteins including intermediate filament subunits, is not part of the S100 surface implicated in the recognition of annexin VI, annexin VI-a, or annexin VI-b. Evaluation of functional properties with a liposome stability and a calcium influx assay reveals the ability of both S100 proteins to permeabilize the membrane bilayer in a similar fashion like annexins. When tested in combinations with different annexin proteins both S100 proteins mostly lead to a decrease in the calcium influx activity although not all annexin/S100 combinations behave in the same manner. Latter observation supports the hypothesis that the S100-annexin interactions differ mechanistically depending on the particular protein partners.
Collapse
Affiliation(s)
- M Garbuglia
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
38
|
Grewal T, Heeren J, Mewawala D, Schnitgerhans T, Wendt D, Salomon G, Enrich C, Beisiegel U, Jäckle S. Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J Biol Chem 2000; 275:33806-13. [PMID: 10940299 DOI: 10.1074/jbc.m002662200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexins are calcium-binding proteins with a wide distribution in most polarized and nonpolarized cells that participate in a variety of membrane-membrane interactions. At the cell surface, annexin VI is thought to remodel the spectrin cytoskeleton to facilitate budding of coated pits. However, annexin VI is also found in late endocytic compartments in a number of cell types, indicating an additional important role at later stages of the endocytic pathway. Therefore overexpression of annexin VI in Chinese hamster ovary cells was used to investigate its possible role in endocytosis and intracellular trafficking of low density lipoprotein (LDL) and transferrin. While overexpression of annexin VI alone did not alter endocytosis and degradation of LDL, coexpression of annexin VI and LDL receptor resulted in an increase in LDL uptake with a concomitant increase of its degradation. Whereas annexin VI showed a wide intracellular distribution in resting Chinese hamster ovary cells, it was mainly found in the endocytic compartment and remained associated with LDL-containing vesicles even at later stages of the endocytic pathway. Thus, data presented in this study suggest that after stimulating endocytosis at the cell surface, annexin VI remains bound to endocytic vesicles to regulate entry of ligands into the prelysosomal compartment.
Collapse
Affiliation(s)
- T Grewal
- Medizinische Kernklinik und Poliklinik, Universitäts Krankenhaus Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Röper K, Corbeil D, Huttner WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2000; 2:582-92. [PMID: 10980698 DOI: 10.1038/35023524] [Citation(s) in RCA: 469] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Membrane cholesterol-sphingolipid 'rafts', which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains.
Collapse
Affiliation(s)
- K Röper
- Department of Neurobiology, Interdisciplinary Center of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
40
|
Linder S, Schliwa M, Kube-Granderath E. Sequence analysis and immunofluorescence study of alpha- and beta-tubulins in Reticulomyxa filosa: implications of the high degree of beta2-tubulin divergence. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:164-78. [PMID: 9015204 DOI: 10.1002/(sici)1097-0169(1997)36:2<164::aid-cm6>3.0.co;2-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have cloned and sequenced 2 alpha- and 2 beta-tubulin isoforms from the giant freshwater amoeba Reticulomyxa filosa. The microtubules of this organism exhibit some unusual properties, including the highest rates of assembly and disassembly known and the inability to be stabilized by taxol. The cloned alpha-tubulins show a high degree of identity when compared to an alpha-tubulin consensus sequence. The beta-tubulins, however, are more divergent, the beta2-tubulin being the most unusual beta-tubulin found so far. The deduced amino acid sequence of beta2 shows 55% identity to a beta-tubulin consensus sequence. It also features 51 unique exchanges which cluster in the C-terminal half of the molecule. Several unique exchanges and two insertions occur in regions adjacent to, or directly implicated in, conserved beta-tubulin functions. A phylogenetic analysis places the beta-tubulins of R. filosa in the vicinity of beta-tubulins from fungi and slime molds. Monoclonal and polyclonal antibodies raised against R. filosa tubulins show that the electrophoretic mobility of alpha- and beta-tubulins is reversed with respect to tubulins from most other sources. Immunofluorescence experiments reveal a ubiquitous distribution of both beta-tubulins in the amoebal network. Our observations suggest possible links between the aberrant primary structure of the beta2-tubulin and the unusual properties of R. filosa microtubules.
Collapse
Affiliation(s)
- S Linder
- Adolf Butenandt Institute for Cell Biology, Munich, Federal Republic of Germany
| | | | | |
Collapse
|
41
|
Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:191-231. [PMID: 10395934 DOI: 10.1016/s0167-4889(99)00058-0] [Citation(s) in RCA: 499] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.
Collapse
Affiliation(s)
- R Donato
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
42
|
Sudo T, Hidaka H. Characterization of the calcyclin (S100A6) binding site of annexin XI-A by site-directed mutagenesis. FEBS Lett 1999; 444:11-4. [PMID: 10037139 DOI: 10.1016/s0014-5793(99)00014-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Residues in annexin XI-A essential for binding of calcyclin (S100A6) were examined by site-directed mutagenesis. GST fusion proteins with the calcyclin binding site of annexin XI-A, GST-AXI 34-62 and GST-AXI 49-77 bound to calcyclin-Sepharose Ca2+-dependently. The mutants GST-AXI L52E, M55E, A56E and M59E lost the binding ability, whereas GST-AXI A57E retained the ability. These results demonstrate that the hydrophobic residues L52, M55, A56 and M59 on one side surface of the alpha-helix are critical for the binding. Assays with GST fusion proteins and synthesized peptides corresponding to the calcyclin binding site indicated that other regions around the calcyclin binding site are important to stabilize the conformation.
Collapse
Affiliation(s)
- T Sudo
- Department of Pharmacology, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
43
|
König J, Prenen J, Nilius B, Gerke V. The annexin II-p11 complex is involved in regulated exocytosis in bovine pulmonary artery endothelial cells. J Biol Chem 1998; 273:19679-84. [PMID: 9677396 DOI: 10.1074/jbc.273.31.19679] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Annexin II is a member of a multigene family of Ca2+-regulated, membrane-binding proteins implicated through biochemical and perforated cell experiments in Ca2+-triggered secretion. Within most cells annexin II resides in a tight heterotetrameric complex with a cellular protein ligand, p11, and complex formation is mediated via the N-terminal 14 residues of annexin II including the N-terminal acetyl group. To analyze at the single cell level whether the annexin II-p11 complex is involved in regulated secretion, we used membrane capacitance measurements to follow exocytotic fusion events in bovine aortic endothelial cells manipulated with respect to their annexin II-p11 complex formation. Upon guanosine 5'-O-(thiotriphosphate) (GTPgammaS) stimulation, the endothelial cells show a significant increase in membrane capacitance which is generally preceded by a transient rise in intracellular Ca2+ and thus indicative of the occurrence of Ca2+-regulated secretion. The GTPgammaS-induced capacitance increase is markedly reduced in cells loaded with a synthetic peptide, Ac1-14, which corresponds in sequence to the N-terminal 14 residues of annexin II in their correctly acetylated form and which is capable of disrupting preformed annexin II-p11 complexes. The effect of the peptide is highly specific as the nonacetylated variant, N1-14, which is incapable of disrupting annexin II-p11, does not interfere with the GTPgammaS-induced increase in membrane capacitance. These data show that intact annexin II-p11 complexes are indispensable for regulated exocytosis to occur in an efficient manner in endothelial cells.
Collapse
Affiliation(s)
- J König
- Insitute for Medical Biochemistry, University of Münster, von-Esmarch-Str. 56, D-48149 Münster, Federal Republic of Germany
| | | | | | | |
Collapse
|
44
|
Harder T, Scheiffele P, Verkade P, Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 1998; 141:929-42. [PMID: 9585412 PMCID: PMC2132776 DOI: 10.1083/jcb.141.4.929] [Citation(s) in RCA: 987] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lateral assemblies of glycolipids and cholesterol, "rafts," have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T-lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.
Collapse
Affiliation(s)
- T Harder
- European Molecular Biology Laboratory, Cell Biology Programme, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Sudo T, Hidaka H. Regulation of calcyclin (S100A6) binding by alternative splicing in the N-terminal regulatory domain of annexin XI isoforms. J Biol Chem 1998; 273:6351-7. [PMID: 9497364 DOI: 10.1074/jbc.273.11.6351] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin XI is a Ca2+/phospholipid-binding protein that interacts with a member of S100 protein family, calcyclin (S100A6), in a Ca2+-dependent manner. There are two isoforms of annexin XI, annexin XI-A and -B, generated by alternative splicing in the N-terminal regulatory domain. To determine the role of the alternative splicing region in the calcyclin-binding, we identified and characterized its calcyclin binding site. Experiments with glutathione S-transferase fusion proteins with N-terminal sites of annexin XI-A showed the calcyclin binding site to be in residues Gln49-Thr62 of rabbit annexin XI-A, which contains part of the splicing region. A synthesized peptide corresponding to Tyr43-Thr62 of annexin XI-A inhibited the interaction of annexin XI with calcyclin in liposome co-pelleting assay. The calcyclin binding site possesses a hydrophobic residue cluster conserved among S100 binding sites of annexin I and II. Recombinant annexin XI isoforms were expressed in Sf9 cells using a baculovirus expression system. In contrast to annexin XI-A, it was found that annexin XI-B protein could not bind to calcyclin by the liposome co-pelleting assay. In Sf9 cells coexpressing calcyclin with annexin XI isoforms, the calcyclin binding was observed only for annexin XI-A isoform. These results indicate that the calcyclin binding ability of annexin XI is an annexin XI-A isoform-specific character, suggesting that annexin XI isoforms might play distinct roles in cells through each alternative splicing regions.
Collapse
Affiliation(s)
- T Sudo
- Department of Pharmacology, Nagoya University School of Medicine, Showa-ku, Nagoya, 466, Japan
| | | |
Collapse
|
46
|
Pietropaolo RL, Compton T. Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol 1997; 71:9803-7. [PMID: 9371650 PMCID: PMC230294 DOI: 10.1128/jvi.71.12.9803-9807.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cellular annexin II has been shown to specifically bind human cytomegalovirus (HCMV) and be a component of highly purified virions. In this report, we characterize the interaction of annexin II with HCMV. We found that the binding of annexin II to the HCMV envelope occurs partially through the calcium-dependent phospholipid-binding ability of annexin II since some annexin II was dissociated from virions with chelating agents. However, a substantial proportion of virion-associated annexin II was resistant to chelation, which suggested a calcium-independent interaction between annexin II and an HCMV envelope component. The search for a nonphospholipid component to account for this binding led to the discovery that HCMV glycoprotein B (gpUL55) (gB) can physically interact with annexin II. We present three lines of evidence to support the conclusion that HCMV gB can bind host cell annexin II.
Collapse
Affiliation(s)
- R L Pietropaolo
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, 53706-1532, USA
| | | |
Collapse
|
47
|
Sagot I, Regnouf F, Henry JP, Pradel LA. Translocation of cytosolic annexin 2 to a Triton-insoluble membrane subdomain upon nicotine stimulation of chromaffin cultured cells. FEBS Lett 1997; 410:229-34. [PMID: 9237635 DOI: 10.1016/s0014-5793(97)00594-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To gain a better understanding of the function of annexin 2, we have investigated the subcellular distribution of the monomeric and heterotetrameric forms of annexin 2 and their relationship to the cytoskeleton upon stimulation of chromaffin cells. Quantitative immunoblotting has revealed that in resting cells a large amount of annexin 2 is monomeric and cytosolic. Upon nicotine stimulation 80% of total annexin 2 becomes associated with a Triton-X100-insoluble fraction where the monomeric and the heterotetrameric forms are found. The translocation of monomeric annexin 2 is Ca2+-dependent and complete at 1 microM free Ca2+. We have shown that about 66% of the annexin 2 associated with the Triton-X100-insoluble fraction is soluble in octylglucoside while the remnants are insoluble in the detergent and remain likely associated with actin filaments and associated cytoskeleton proteins. The octylglucoside-soluble fraction contains integral proteins from the plasma membrane and from granule membrane, but does not contain caveolin. Moreover, upon nicotine stimulation, a redistribution of proteins was detected in this fraction. These dynamic processes appear concomitantly with the phosphorylation of annexin 2 in this compartment and with catecholamine release. It is suggested that the soluble octylglucoside fraction may represent a special lipidic membrane compartment where the NSF attachment proteins and the cytosolic proteins like annexin 2 and rab3a may become concentrated upon stimulation of the cell. The presence of annexin 2 is consistent with its proposed function on granule and target membrane proteins required for the close apposition of two distinct membranes and supports its functional role in the regulated exocytosis/endocytosis process.
Collapse
Affiliation(s)
- I Sagot
- Centre National de la Recherche Scientifique, U.P.R. 9071 de Neurobiologie Physicochimique, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
48
|
Diakonova M, Gerke V, Ernst J, Liautard JP, van der Vusse G, Griffiths G. Localization of five annexins in J774 macrophages and on isolated phagosomes. J Cell Sci 1997; 110 ( Pt 10):1199-213. [PMID: 9191044 DOI: 10.1242/jcs.110.10.1199] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Annexins are a family of structurally related proteins which bind phospholipids in a calcium-dependent manner. Although the precise functions of annexins are unknown, there is an accumulating set of data arguing for a role for some of them in vesicular transport and, specifically, in membrane-membrane or membrane-cytoskeletal interactions during these processes. Here we describe our qualitative and quantitative analysis of the localization of annexins I-V in J774 macrophages that had internalized latex beads, both with and without IgG opsonization. Our results show that whereas all these annexins are present on both the plasma membrane and on phagosomes, the localization on other organelles differs. Annexins I, II, III and V were detected on early endosomes, while only annexin V was seen on late endocytic organelles and mitochondria. Annexins I and II distributed along the plasma membrane non-uniformly and co-localized with F-actin at the sites of membrane protrusions. We also investigated by western blot analysis the association of annexins with purified phagosomes isolated at different time-points after latex bead internalization. While the amounts of annexins I, II, III and V associated with phagosomes were similar at all times after their formation, the level of annexin IV was significantly higher on older phagosomes. Whereas annexins I, II, IV and V could be removed from phagosome membranes with a Ca2+ chelator they remained membrane bound under low calcium conditions. In contrast, annexin III was removed under these conditions and needed a relatively high Ca2+ concentration to remain phagosome bound. Because of their purity and ease of preparation we suggest that phagosomes are a powerful system to study the potential role of annexins in membrane traffic.
Collapse
Affiliation(s)
- M Diakonova
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem 1997; 272:9496-502. [PMID: 9083090 DOI: 10.1074/jbc.272.14.9496] [Citation(s) in RCA: 434] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Myeloid-related protein (MRP) 8 and MRP14, two members of the S100 family expressed in myelomonocytic cells, have been ascribed some extracellular functions, e.g. antimicrobial, cytostatic, and chemotactic activities. Since S100 proteins lack structural requirements for secretion via the classical endoplasmic reticulum/Golgi route, the process of secretion is unclear. We now demonstrate the specific, energy-dependent release of MRP8 and MRP14 by human monocytes after activation of protein kinase C. This secretory process is not blocked by inhibitors of vesicular traffic through the endoplasmic reticulum and Golgi, and comparative studies on tumor necrosis factor-alpha and interleukin-1beta indicate that MRP8 and MRP14 follow neither the classical nor the interleukin-1-like alternative route of secretion. Inhibition by microtubule-depolymerizing agents revealed that MRP8/MRP14 secretion requires an intact tubulin network. Accordingly, upon initiation of MRP8/MRP14 secretion, immunofluorescence microscopy showed a co-localization of both proteins with tubulin filaments. Release of MRP8 and MRP14 is associated with down-regulation of their de novo synthesis, suggesting that extracellular signaling via MRP8/MRP14 is restricted to distinct differentiation stages of monocytes. Our data provide evidence that the S100 proteins MRP8 and MRP14 are secreted after activation of protein kinase C via a novel pathway requiring an intact microtubule network.
Collapse
Affiliation(s)
- A Rammes
- Institute of Experimental Dermatology, University of Münster, 48129 Münster, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Graham ME, Gerke V, Burgoyne RD. Modification of annexin II expression in PC12 cell lines does not affect Ca(2+)-dependent exocytosis. Mol Biol Cell 1997; 8:431-42. [PMID: 9188096 PMCID: PMC276095 DOI: 10.1091/mbc.8.3.431] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ca2+/phospholipid/cytoskeletal-binding protein annexin II has been proposed to play an important role in Ca(2+)-dependent exocytosis; however, the evidence for this role is inconclusive. More direct evidence obtained by manipulating annexin II levels in cells is still required. We have attempted to do this by generating stably transfected PC12 cell lines expressing proteins which elevate or lower functional annexin II levels and using these cell lines to investigate Ca(2+)-dependent exocytosis. Three cell lines were generated: one expressing an annexin II mutant which aggregates annexin II in at least a proportion of the cells, thereby removing functional protein from the cell; a mixed clonal cell line constitutively overexpressing human annexin II; and a clonal cell line capable of over-expressing annexin II in the presence of sodium butyrate. After digitonin permeabilization, Ca(2+)-dependent dopamine release from these cell lines was compared with that from control nontransfected cells, and, in addition, release was compared in induced to uninduced cells. There were no significant differences in Ca(2+)-dependent exocytosis between any of the transfected cell lines before or after induction and the control cells. In addition, nontransfected PC12 cells treated with nerve growth factor, which elevates annexin II levels severalfold, failed to increase Ca(2+)-dependent exocytosis after digitonin permeabilization, compared with control cells. We conclude that annexin II is not an important regulator of Ca(2+)-dependent exocytosis in PC12 cells.
Collapse
Affiliation(s)
- M E Graham
- Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | |
Collapse
|