1
|
Zaffini R, Gotte G, Menegazzi M. Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:281-293. [PMID: 29483769 PMCID: PMC5813949 DOI: 10.2147/dddt.s150846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asthma is a chronic lung disease affecting people of all ages worldwide, and it frequently begins in childhood. Because of its chronic nature, it is characterized by pathological manifestations, including airway inflammation, remodeling, and goblet cell hyperplasia. Current therapies for asthma, including corticosteroids and beta-2 adrenergic agonists, are directed toward relieving the symptoms of the asthmatic response, with poor effectiveness against the underlying causes of the disease. Asthma initiation and progression depends on the T helper (Th) 2 type immune response carried out by a complex interplay of cytokines, such as interleukin (IL) 4, IL5, and IL13, and the signal transducer and activator of transcription 6. Much of the data resulting from different laboratories support the role of poly(ADP-ribose) polymerase (PARP) 1 and PARP14 activation in asthma. Indeed, PARP enzymes play key roles in the regulation and progression of the inflammatory asthma process because they affect the expression of genes and chemokines involved in the immune response. Consistently, PARP inhibition achievable either upon genetic ablation or by using pharmacological agents has shown a range of therapeutic effects against the disease. Indeed, in the last two decades, several preclinical studies highlighted the protective effects of PARP inhibition in various animal models of asthma. PARP inhibitors showed the ability to reduce the overall lung inflammation acting with a specific effect on immune cell recruitment and through the modulation of asthma-associated cytokines production. PARP inhibition has been shown to affect the Th1–Th2 balance and, at least in some aspects, the airway remodeling. In this review, we summarize and discuss the steps that led PARP inhibition to become a possible future therapeutic strategy against allergic asthma.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Rouleau M, El-Alfy M, Lévesque MH, Poirier GG. Assessment of PARP-3 distribution in tissues of cynomolgous monkeys. J Histochem Cytochem 2009; 57:675-85. [PMID: 19332431 DOI: 10.1369/jhc.2009.953380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Poly(ADP-ribose) polymerase 3 (PARP-3) is a newly characterized PARP. In contrast to the two best-studied nuclear PARPs, PARP-1 and PARP-2, PARP-3 activity is apparently not stimulated by DNA damage. However, our previous work has demonstrated that PARP-3 interacts with several DNA damage response proteins, including Ku70/Ku80, DNA-PK, and PARP-1, suggesting that it contributes to the DNA damage response. Furthermore, a possible function for PARP-3 in the regulation of gene expression has been inferred from our observations that it associates with polycomb group proteins, which are responsible for epigenetic modifications leading to gene silencing. In this report, we extend our characterization of PARP-3 by revealing its distribution in the tissues and cell types of adult cynomolgous monkeys using a well-characterized PARP-3 polyclonal antibody. This study is the first to demonstrate that PARP-3 is genuinely expressed in most of the examined tissues. However, its expression is highly restricted to specific cell types of each tissue, indicating that PARP-3 expression is tightly regulated. One of the key findings of this study is that PARP-3 is highly expressed in the nuclei of epithelial cells forming the ducts of prostate, salivary glands, liver, and pancreas and in the neurons of terminal ganglia.
Collapse
Affiliation(s)
- Michèle Rouleau
- Health and Environment Unit, Centre Hospitalier Universitaire de Québec, Laval Université Research Center, Québec, Québec, G1V 4G2, Canada
| | | | | | | |
Collapse
|
3
|
Poitras MF, Koh DW, Yu SW, Andrabi SA, Mandir AS, Poirier GG, Dawson VL, Dawson TM. Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain. Neuroscience 2007; 148:198-211. [PMID: 17640816 PMCID: PMC2000859 DOI: 10.1016/j.neuroscience.2007.04.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are members of a family of enzymes that utilize nicotinamide adenine dinucleotide (NAD(+)) as substrate to form large ADP-ribose polymers (PAR) in the nucleus. PAR has a very short half-life due to its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). PARP-1 mediates acute neuronal cell death induced by a variety of insults including cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism, and CNS trauma. While PARP-1 is localized to the nucleus, PARG resides in both the nucleus and cytoplasm. Surprisingly, there appears to be only one gene encoding PARG activity, which has been characterized in vitro to generate different splice variants, in contrast to the growing family of PARPs. Little is known regarding the spatial and functional relationships of PARG and PARP-1. Here we evaluate PARG expression in the brain and its cellular and subcellular distribution in relation to PARP-1. Anti-PARG (alpha-PARG) antibodies raised in rabbits using a purified 30 kDa C-terminal fragment of murine PARG recognize a single band at 111 kDa in the brain. Western blot analysis also shows that PARG and PARP-1 are evenly distributed throughout the brain. Immunohistochemical studies using alpha-PARG antibodies reveal punctate cytosolic staining, whereas anti-PARP-1 (alpha-PARP-1) antibodies demonstrate nuclear staining. PARG is enriched in the mitochondrial fraction together with manganese superoxide dismutase (MnSOD) and cytochrome C (Cyt C) following whole brain subcellular fractionation and Western blot analysis. Confocal microscopy confirms the co-localization of PARG and Cyt C. Finally, PARG translocation to the nucleus is triggered by NMDA-induced PARP-1 activation. Therefore, the subcellular segregation of PARG in the mitochondria and PARP-1 in the nucleus suggests that PARG translocation is necessary for their functional interaction. This translocation is PARP-1 dependent, further demonstrating a functional interaction of PARP-1 and PARG in the brain.
Collapse
Affiliation(s)
- M F Poitras
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Broadway Research Building, 733 North Broadway, Suite 731, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kitamura T, Sekimata M, Kikuchi SI, Homma Y. Involvement of poly(ADP-ribose) polymerase 1 inERBB2expression in rheumatoid synovial cells. Am J Physiol Cell Physiol 2005; 289:C82-8. [PMID: 15743888 DOI: 10.1152/ajpcell.00486.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperplasia of synovial lining cells is one of the main features of rheumatoid arthritis (RA). We previously reported that ERBB2 is highly expressed in RA synovial cells and that it plays an important role in their hyperproliferative growth. Recent findings have suggested that poly(ADP-ribose) polymerase-1 (PARP-1) is involved in the transactivation of NF-κB-dependent genes such as ERBB2. In the present study, we investigated the role of PARP-1 in ERBB2 transcription in RA synovial cells. The expression level of PARP-1 was significantly high in synovial cells derived from three patients with RA, compared with three patients with osteoarthritis (OA). Luciferase assays revealed that PARP-1 augments the transcription of the ERBB2 gene and that a region between −404 and −368 is responsible for this activation. A protein with an apparent molecular mass of 115 kDa was isolated mainly from nuclear extracts of RA synovial cells with an affinity matrix harboring a DNA fragment identical to the above region. Mass spectrometric analysis demonstrated this protein to be PARP-1. Southwestern blot analysis showed that PARP-1 binds to this region, but not to adjacent regions. PARP-1 associates directly with NF-κB, and a chromatin immunoprecipitation assay indicated that these proteins interact with this enhancer region in the ERBB2 gene. Treatment of RA synovial cells with PARP-1 small interfering RNA attenuated their ERBB2 expression, while an inhibitor of the polymerase activity of PARP-1 had no effect. PARP-1 DNA binding is not required for transcriptional activation. These findings suggest that PARP-1 is involved in the expression of ERBB2 in concert with NF-κB, which might be associated with the proliferation of RA synovial cells.
Collapse
Affiliation(s)
- Takuya Kitamura
- Department of Biomolecular Science and Orthopedics, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | |
Collapse
|
5
|
Mocchegiani E, Giacconi R, Cipriano C, Gasparini N, Bernardini G, Malavolta M, Menegazzi M, Cavalieri E, Muzzioli M, Ciampa AR, Suzuki H. The variations during the circadian cycle of liver CD1d-unrestricted NK1.1+TCR gamma/delta+ cells lead to successful ageing. Role of metallothionein/IL-6/gp130/PARP-1 interplay in very old mice. Exp Gerontol 2004; 39:775-88. [PMID: 15130672 DOI: 10.1016/j.exger.2004.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/01/2004] [Accepted: 01/27/2004] [Indexed: 11/24/2022]
Abstract
NKT cells derive from the thymus and home to the liver. Liver NKT cells can be divided in two groups: 'classical' and 'non-classical'. The first is CD1d-restricted, the second is CD1d-unrestricted. NKT cells (classical and non-classical) co-express T-cell receptor (TCR) and NK-cell marker (NK1.1), display cytotoxicity and produce IFN-gamma under IL-12 stimulation affecting, thereby, Th1 response and innate immunity. NK1.1(+)TCR alpha/beta(+) cells belong to both groups. NK1.1(+)TCR gamma/delta(+) cells belong to the second group. Anyway, both NKT cell subtypes, via IFN-gamma production, protect against viruses and bacteria from early in life. Immune variations as well as zinc rhythmicity during the circadian cycle confer the immune plasticity, which is essential for successful ageing. Liver NK1.1(+)TCR gamma/delta(+) cells, rather than TCR alpha/beta(+), from young and very old mice display 'in vitro' (under IL-12 stimulation) nocturnal peaks in cytotoxicity and IFN-gamma production. The acrophase of liver NK1.1(+)TCR gamma/delta(+) cells is present in young and very old mice, not in old. The interplay among zinc-bound metallothionein (MT)/IL-6/gp130/poly(ADP-ribose) polymerase-1 (PARP-1) may be involved in conferring plasticity to liver NK1.1(+)TCR gamma/delta(+) cells. IL-6, via sub-unit receptor gp130, induces MTmRNA. At night, gene expressions of MT, IL-6, gp130 are lower in very old mice than old and young MT-I transgenic mice (MT-I*). In very old mice, this phenomenon allows limited sequester of intracellular zinc from MT leading to good free zinc ion bioavailability for immune efficiency and zinc-dependent PARP-1 activity. Indeed (1) in vitro, high IL-6 provokes strong accumulation of MT, impaired cytotoxicity and low zinc ion bioavailability in liver NK1.1(+)TCR gamma/delta(+) cells exclusively from old and MT-I* mice. (2) The ratio total/endogen PARP-1 activity is higher in very old than in old and MT-I* mice, suggesting a higher capacity of PARP-1 in base excision DNA-repair in very old age thanks to low zinc-bound MT. Cytotoxicity and IFN-gamma production from liver NK1.1(+)TCR gamma/delta(+) cells are thus preserved leading to successful ageing. In conclusion, MT/IL-6/gp130/PARP-1 interplay may confer plasticity to liver CD1d-unrestricted NK1.1(+)TCR gamma/delta(+) cells, where MT, IL-6, gp130 are the main upstream protagonists, and PARP-1 is the main downstream protagonist in immunosenescence.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, CD/physiology
- Antioxidants/physiology
- Cellular Senescence/immunology
- Cellular Senescence/physiology
- Circadian Rhythm/physiology
- Cytokine Receptor gp130
- Cytotoxicity, Immunologic/physiology
- Gene Expression
- Interferon-gamma/biosynthesis
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/immunology
- Interleukin-6/physiology
- Killer Cells, Natural/physiology
- Liver/physiology
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/physiology
- Metallothionein/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Poly (ADP-Ribose) Polymerase-1
- Poly(ADP-ribose) Polymerases/physiology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Signal Transduction/immunology
- Signal Transduction/physiology
- Zinc/physiology
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center, Section Nutrition, Immunity and Ageing, Res. Department, Italian National Research Centres on Ageing, Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Laniel MA, Poirier GG, Guérin SL. A conserved initiator element on the mammalian poly(ADP-ribose) polymerase-1 promoters, in combination with flanking core elements, is necessary to obtain high transcriptional activity. ACTA ACUST UNITED AC 2004; 1679:37-46. [PMID: 15245915 DOI: 10.1016/j.bbaexp.2004.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a conserved nuclear protein present in nearly all eukaryotes. In mammalian cells, its abundant expression and its ability to specifically bind to DNA strand breaks make it an important enzyme in the rapid cellular response to DNA damage. Although the promoter regions of the three known mammalian PARP-1 genes, from human, rat and mouse, are different, they share common features, such as multiple GC-rich regions, lack of a functional TATA box, and presence of a putative initiator element. In this study, we analyzed the core promoter region of the rat PARP-1 gene, and show that it contains a functional initiator element surrounding the transcription start site. This core element lies within an approximately 40-base-pair region that is highly conserved in all three mammalian PARP-1 promoters. Furthermore, we show that other core elements located upstream and downstream of the PARP-1 initiator, including a functional Sp1 target site, synergize to regulate rat PARP-1 transcription. As the initiator region of all three PARP-1 gene promoters is highly conserved, their transcriptional regulation is likely achieved through similar mechanisms.
Collapse
Affiliation(s)
- Marc-André Laniel
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center, 2705 Laurier Blvd., Ste-Foy, QC, Canada G1V 4G2
| | | | | |
Collapse
|
7
|
Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H, Miwa M. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A 2003; 101:82-6. [PMID: 14676324 PMCID: PMC314142 DOI: 10.1073/pnas.2237114100] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Poly(ADP-ribosyl)ation has been suggested to be involved in regulation of DNA repair, transcription, centrosome duplication, and chromosome stability. However, the regulation of degradation of poly(ADP-ribose) and its significance are not well understood. Here we report a loss-of-function mutant Drosophila with regard to poly(ADP-ribose) glycohydrolase, a major hydrolyzing enzyme of poly(ADP-ribose). The mutant lacks the conserved catalytic domain of poly(ADP-ribose) glycohydrolase, and exhibits lethality in the larval stages at the normal development temperature of 25 degrees C. However, one-fourth of the mutants progress to the adult stage at 29 degrees C but showed progressive neurodegeneration with reduced locomotor activity and a short lifespan. In association with this, extensive accumulation of poly(ADP-ribose) could be detected in the central nervous system. These results suggest that poly(ADP-ribose) metabolism is required for maintenance of the normal function of neuronal cells. The phenotypes observed in the parg mutant might be useful to understand neurodegenerative conditions such as the Alzheimer's and Parkinson's diseases that are caused by abnormal accumulation of substances in nervous tissue.
Collapse
Affiliation(s)
- Shuji Hanai
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Laniel MA, Poirier GG, Guerin SL. Nuclear factor 1 interferes with Sp1 binding through a composite element on the rat poly(ADP-ribose) polymerase promoter to modulate its activity in vitro. J Biol Chem 2001; 276:20766-73. [PMID: 11278663 DOI: 10.1074/jbc.m010360200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the rapid and extensive poly(ADP-ribosyl)ation of nuclear proteins in response to DNA strand breaks, and its expression, although ubiquitous, is modulated from tissue to tissue and during cellular differentiation. PARP-1 gene promoters from human, rat, and mouse have been cloned, and they share a structure common to housekeeping genes, as they lack a functional TATA box and contain multiple GC boxes, which bind the transcriptional activator Sp1. We have previously shown that, although Sp1 is important for rat PARP1 (rPARP) promoter activity, its finely tuned modulation is likely dependent on other transcription factors that bind the rPARP proximal promoter in vitro. In this study, we identified one such factor as NF1-L, a rat liver isoform of the nuclear factor 1 family of transcription factors. The NF1-L site on the rPARP promoter overlaps one of the Sp1 binding sites previously identified, and we demonstrated that binding of both factors to this composite element is mutually exclusive. Furthermore, we provide evidence that NF1-L has no effect by itself on rPARP promoter activity, but rather down-regulates the Sp1 activity by interfering with its ability to bind the rPARP promoter in order to modulate transcription of the rPARP gene.
Collapse
Affiliation(s)
- M A Laniel
- Oncology and Molecular Endocrinology Research Center and the Unit of Health and Environment, CHUL Research Center, Ste-Foy, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
9
|
Intano GW, McMahan CA, Walter RB, McCarrey JR, Walter CA. Mixed spermatogenic germ cell nuclear extracts exhibit high base excision repair activity. Nucleic Acids Res 2001; 29:1366-72. [PMID: 11239003 PMCID: PMC29752 DOI: 10.1093/nar/29.6.1366] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spermatogenic cells exhibit a lower spontaneous mutation frequency than somatic tissues in a lacI transgene and many base excision repair (BER) genes display the highest observed level of expression in the testis. In this study, uracil-DNA glycosylase-initiated BER activity was measured in nuclear extracts prepared from tissues obtained from each of three mouse strains. Extracts from mixed spermatogenic germ cells displayed the greatest activity followed by liver then brain for all three strains, and the activity for a given tissue was consistent among the three strains. Levels of various BER proteins were examined by western blot analyses and found to be consistent with activity levels. Nuclear extracts prepared from purified Sertoli cells, a somatic component of the seminiferous epithelium, exhibited significantly lower activity than mixed spermatogenic cell-type nuclear extracts, thereby suggesting that the high BER activity observed in mixed germ cell nuclear extracts was not a characteristic of all testicular cell types. Nuclear extracts from thymocytes and small intestines were assayed to assess activity in a mitotically active cell type and tissue. Overall, the order of tissues/cells exhibiting the greatest to lowest activity was mixed germ cells > Sertoli cells > thymocytes > small intestine > liver > brain.
Collapse
Affiliation(s)
- G W Intano
- Department of Cellular and Structural Biology and Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78284, USA.
| | | | | | | | | |
Collapse
|
10
|
Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol 1999; 19:296-306. [PMID: 9858553 PMCID: PMC83887 DOI: 10.1128/mcb.19.1.296] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 10/02/1998] [Indexed: 11/20/2022] Open
Abstract
Striated muscle-specific expression of the cardiac troponin T (cTNT) gene is mediated through two MCAT elements that act via binding of transcription enhancer factor 1 (TEF-1) to the MCAT core motifs and binding of an auxiliary protein to nucleotides flanking the 5' side of the core motif. Using DNA-protein and protein-protein binding experiments, we identified a 140-kDa polypeptide that bound both the muscle-specific flanking sequences of the most distal MCAT1 element and TEF-1. Screening of an expression library with the MCAT1 element yielded a cDNA encoding a truncated form of poly(ADP-ribose) polymerase (PARP). Endogenous PARP from embryonic tissue nuclear extracts migrated as a 140-kDa protein. Recombinant full-length PARP preferentially bound the wild-type MCAT1 element and was shown to physically interact with TEF-1. In addition, endogenous TEF-1 could be coimmunoprecipitated with PARP from extracts of primary skeletal muscle cells. Recombinant PARP was able to ADP-ribosylate TEF-1 in vitro. Inhibition of the enzymatic activity of PARP repressed expression of an MCAT1-dependent reporter in transiently transfected primary muscle cells. Together, these data implicate PARP as the auxiliary protein that binds with TEF-1 to the MCAT1 element to provide muscle-specific gene transcription.
Collapse
Affiliation(s)
- A J Butler
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
11
|
Hayashi F, Motoki Y, Tamura H, Watanabe T, Ogura T, Esumi H, Suga T. Induction of hepatic poly(ADP-ribose) polymerase by peroxisome proliferators, non-genotoxic hepatocarcinogens. Cancer Lett 1998; 127:1-7. [PMID: 9619851 DOI: 10.1016/s0304-3835(98)00002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two peroxisome proliferators, [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid (Wy-14,643) or di(2-ethylhexyl) phthalate (DEHP), were given orally to male F-344 rats for up to 78 or 97 weeks. At 1 week, the activity of poly(ADP-ribose) polymerase (pADPRP) was increased 2- and 1.8-fold in the liver of rats treated with Wy-14,643 and DEHP, respectively. The induction of the activity was maintained at 2.5- or 2-fold for up to 52 weeks. The immunoblot and Northern blot analyses revealed that the induction of pADPRP activity would be responsible for the increase in the amount of mRNA. In addition, in the liver tumor induced by Wy-14,643 and DEHP, the pADPRP mRNA level increased 3.6- or 3.7-fold. The magnitude of the increase in the mRNA level was higher than that in the non-tumor portion. These findings suggest that the induction of pADPRP may play an important role in the hepatocarcinogenesis induced by peroxisome proliferators.
Collapse
Affiliation(s)
- F Hayashi
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In order to evaluate at the ultrastructural level the chromatin arrangement during the S phase of the cell cycle, the detection of Bromodeoxyuridine (BrdU) by immunogold has been performed in synchronized 3T3 fibroblasts, regenerating liver, and Friend Leukemia Cells (FLC). After a 5-minute BrdU pulse, this label is detected in 10-nm-wide fibers, organized as lacework and assumed to be replication units. In the early part of the S phase, DNA replication units are localized exclusively in the dispersed chromatin domains far from the nuclear envelope. In the middle S, replication occurs at the border between condensed and dispersed chromatin and, finally, in late S, it mainly occurs in perinuclear heterochromatin regions. After replication, the 10-nm fibers can condense in heterochromatin without translocation. Chromatin is highly dispersed in early S and computer image analysis shows an increase in condensed chromatin areas ranging from 13 to 18% at the end of the S phase with a temporal and morphological pattern of distribution characteristic for each cell type. Scanning transmission electron microscopy demonstrates a regular and repetitive structure of dispersed chromatin, represented by a ring-like arrangement of the 10-nm fibers; assuming the same spatial distribution, gold particles that identify incorporated BrdU confirm this organization. By evaluating the organization and the distribution of DNA replication units during S phase, the results suggest that DNA replication occurs at a nucleosomal-like fiber level and that replicating enzymes machinery moves over a fixed template.
Collapse
Affiliation(s)
- G Mazzotti
- Istituto Anatomia Umana Normale, Università di Bologna, Italy
| | | | | | | |
Collapse
|
13
|
Zhou ZQ, Walter CA. Cloning and characterization of the promoter of baboon XRCC1, a gene involved in DNA strand-break repair. SOMATIC CELL AND MOLECULAR GENETICS 1998; 24:23-39. [PMID: 9776979 DOI: 10.1007/bf02677493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The DNA repair gene XRCC1 was the first cloned human DNA repair gene involved in resistance to ionizing radiation. Previous studies have shown that rodent and baboon homologs of XRCC1 are expressed in all tested tissues with significantly higher levels in testis. Furthermore, expression of murine XRCC1 is most abundant in pachytene spermatocytes and round spermatids. To begin to study regulation of XRCC1 expression, the 5' region of baboon XRCC1 was cloned and characterized. 400 bp of 5'-flanking region showed the greatest promoter activity, while -194 to -8 bp of the 5'-flanking region displayed core promoter activity in transient transfection assays. A comparison between baboon and human 5'-flanking sequences in the core promoter region revealed a potential CAAT-box, an imperfect CREB-binding site and two putative Sp1-binding sites. Results from transient transfection assays in which each putative binding site was individually mutated, indicated that the distal Sp1-binding site has a functional role in transcription. In comparison, both putative Sp1-binding sites bound protein(s) from HeLa cell nuclear extracts in vitro. In vitro binding was lost when mutated Sp1 sites were used in gel mobility shift assays. Finally, anti-Sp1 antibodies produced mobility supershifts, thereby indicating Sp1 or an Sp1-like protein bound to the DNA fragment in vitro.
Collapse
Affiliation(s)
- Z Q Zhou
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio 78240-7762, USA
| | | |
Collapse
|
14
|
Bergeron MJ, Leclerc S, Laniel MA, Poirier GG, Guérin SL. Transcriptional regulation of the rat poly(ADP-ribose) polymerase gene by Sp1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:342-53. [PMID: 9428683 DOI: 10.1111/j.1432-1033.1997.0342a.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the gene encoding poly(ADP-ribose) polymerase (PARP), although ubiquitous, nevertheless varies substantially between tissues. We have recently shown that Sp1 binds five distinct target sequences (US-1 and F1-F4) in the rat PARP (rPARP) gene promoter. Here we used deletion analyses and site-directed mutagenesis to address the regulatory function played by these Sp1 sites on the basal transcriptional activity directed by the rPARP promoter. Transfection experiments revealed that the most proximal Sp1 site is insufficient by itself to direct any promoter activity. In addition, a weak negative regulatory element was identified between positions -101 and -60. The rPARP promoter directed high levels of chloramphenicol acetyltransferase activity in Jurkat T-lymphoblastoid and Ltk- fibroblast cells but only moderate levels in pituitary GH4C1 and liver HTC cells, correlating with the amounts of PARP detected in these cells by western blot analysis. However, the reduced promoter efficiency in HTC and GH4C1 cells did not result from the lack of Sp1 activity in these cells but suggested that yet uncharacterized regulatory proteins might turn off PARP gene expression by binding negative regulatory elements from the rPARP promoter. Similarly, site-directed mutagenesis on the three most proximal Sp1 elements suggested the influence exerted by Sp1 on the rPARP promoter activity to vary substantially between cell types. It also provided evidence for a basal rPARP promoter activity driven through the recognition of unidentified cis-acting elements by transcription factors other than Sp1.
Collapse
Affiliation(s)
- M J Bergeron
- Laboratory of Molecular Endocrinology, CHUL Research Center, Ste-Foy, Qc, Canada
| | | | | | | | | |
Collapse
|
15
|
Laniel MA, Guérin SL. A nuclear factor other than Sp1 binds the GC-rich promoter of the gene encoding rat poly(ADP-ribose) polymerase in vitro. Biochem Cell Biol 1997. [DOI: 10.1139/o97-051] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Oei SL, Griesenbeck J, Schweiger M. The role of poly(ADP-ribosyl)ation. Rev Physiol Biochem Pharmacol 1997; 131:127-73. [PMID: 9204691 DOI: 10.1007/3-540-61992-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
17
|
Ennas MG, Suzuki H, Menegazzi M, Carcereri A, Hanaoka F, Gremo F, Nieddu M, Mezzanotte R. On the presence of DNA polymerase alpha in human lymphocyte nuclei and chromosomes. Heredity (Edinb) 1996; 77 ( Pt 2):186-91. [PMID: 8760400 DOI: 10.1038/hdy.1996.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Experiments were carried out to correlate the cytological localization of DNA polymerase alpha with the presence of its specific mRNA in human lymphocytes studied at different times after phytohaemagglutinin stimulation. Our data indicated that in resting cells it is not possible to detect DNA polymerase alpha protein or mRNA by Northern hybridization. By contrast, in stimulated cells the detection of mRNA specific for DNA polymerase alpha synthesis is possible after 16 h phytohaemagglutin stimulation, whereas immunolocalization is possible after only 4 h stimulation. Observation of cytological preparations from cells stimulated for times long enough to obtain mitoses surprisingly showed an intense immunoreaction in mitotic chromosomes treated with monoclonal antibodies to DNA polymerase alpha.
Collapse
Affiliation(s)
- M G Ennas
- Dipartimento di Citomorfologia, Università di Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cosi C, Suzuki H, Milani D, Facci L, Menegazzi M, Vantini G, Kanai Y, Skaper SD. Poly(ADP-ribose) polymerase: early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells. J Neurosci Res 1994; 39:38-46. [PMID: 7807591 DOI: 10.1002/jnr.490390106] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamate neurotoxicity is correlated with an increase of cytosolic free Ca2+. In some cell systems, activation of Ca2+ dependent endonucleases or formation of free radicals can damage DNA and activate the chromatin bound enzyme poly(ADP-ribose) polymerase (pADPRP). We have investigated whether pADPRP may be involved in glutamate neurotoxicity in vitro. Cerebellar granule cells at 12 days in culture when treated with a toxic dose of glutamate (100 microM) showed a rapid and transient increase of polyADP-ribose immunoreactivity. Cellular immunostaining was heterogeneous and returned to control levels after washout of glutamate. In the same cell preparations glutamate elicited a marked increase in enzyme protein immunoreactivity which persisted at later times. Non-toxic doses of glutamate did not affect immunostaining. In another set of experiments, pADPRP mRNA was increased 30 min after glutamate. In order to investigate the role of pADPRP in glutamate-mediated neurotoxicity, structurally different inhibitors of pADPRP (3-aminobenzamide, benzamide,3-aminophthalhydrazide) and their inactive analogues (benzoic acid and phthalimide) were tested in this model. Addition of the inhibitors to cultures 60 min before and during the 30 min of glutamate treatment prevented neuronal death by 60-100%, assessed 24 hr later. Glutamate-induced Ca2+ influx was not affected. Inactive analogues failed to afford neuroprotection. These data indicate that not only is pADPRP activated by the early, possibly Ca(2+)-mediated mechanisms initiated by glutamate, but that it might also actively contribute to the subsequent neuronal death.
Collapse
Affiliation(s)
- C Cosi
- Fidia Research Laboratories, Abano Terme, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zucconi GG, Carcereri de Prati A, Menegazzi M, Cosi C, Suzuki H. DNA repair enzymes in the brain. DNA polymerase beta and poly (ADP-ribose) polymerase. Ann N Y Acad Sci 1992; 663:432-5. [PMID: 1482076 DOI: 10.1111/j.1749-6632.1992.tb38691.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G G Zucconi
- Istituto di Biologia Cellulare, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
20
|
Menegazzi M, Carcereri de Prati A, Ogura T, Columbano A, Ledda-Columbano GM, Libonati M, Esumi H, Suzuki H. Involvement of DNA polymerase beta in proliferation of rat liver induced by lead nitrate or partial hepatectomy. FEBS Lett 1992; 310:135-8. [PMID: 1397262 DOI: 10.1016/0014-5793(92)81314-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have studied the expression pattern of DNA polymerase beta in two different models of in vivo cell proliferation. Both mRNA levels and enzyme activity of DNA polymerase beta markedly increased before and/or during DNA synthesis in proliferating hepatocytes in mitogen-treated and partially hepatectomized rats. The time-courses of the expression of the gene coding for DNA polymerase beta were significantly different in the two cell systems. A 5-fold increase in DNA polymerase beta mRNA was observed 8 h after lead nitrate administration, i.e. well before the onset of DNA synthesis. In the regenerative liver cells a 3-fold increase in the amount of mRNA was observed 24-48 h after partial hepatectomy, the event being coincident with extensive DNA synthesis. In both systems, the increase of mRNA levels was always paralleled by an increase in enzyme activity, suggesting that DNA polymerase beta activity may be regulated at a pre-translational level.
Collapse
Affiliation(s)
- M Menegazzi
- Istituto di Chimica Biologica, Università di Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|