1
|
Seidel R, Blumer M, Pechriggl EJ, Lyons K, Hall BK, Fratzl P, Weaver JC, Dean MN. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays). J Struct Biol 2017; 200:54-71. [PMID: 28923317 DOI: 10.1016/j.jsb.2017.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens.
Collapse
Affiliation(s)
- Ronald Seidel
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany.
| | - Michael Blumer
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kady Lyons
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Brian K Hall
- Department of Biology, Dalhousie University, Halifax NS, Canada
| | - Peter Fratzl
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Mason N Dean
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany
| |
Collapse
|
2
|
Inoue T, Hashimoto R, Matsumoto A, Jahan E, Rafiq AM, Udagawa J, Hatta T, Otani H. In vivo analysis of Arg-Gly-Asp sequence/integrin α5β1-mediated signal involvement in embryonic enchondral ossification by exo utero development system. J Bone Miner Res 2014; 29:1554-63. [PMID: 24375788 DOI: 10.1002/jbmr.2166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023]
Abstract
Enchondral ossification is a fundamental mechanism for longitudinal bone growth during vertebrate development. In vitro studies suggested that functional blockade with RGD peptides or with an antibody that interferes with integrin α5β1-ligand interactions inhibited pre-hypertrophic chondrocyte differentiation. The purpose of this study is to elucidate in vivo the roles of the integrin α5β1-mediated signal through the Arg-Gly-Asp (RGD) sequence in the cell-extracellular matrix (ECM) interaction in embryonic enchondral ossification by an exo utero development system. We injected Arg-Gly-Asp-Ser (RGDS) peptides and anti-integrin α5β1 antibody (α5β1 ab) in the upper limbs of mouse embryos at embryonic day (E) 15.5 (RGDS-injected limbs, α5β1 ab-injected limbs), and compared the effects on enchondral ossification with those found in the control limbs (Arg-Gly-Glu-Ser peptide-, mouse IgG-, or vehicle-injected, and no surgery) at E16.5. In the RGDS-injected limbs, the humeri were shorter and there were fewer BrdU-positive cells than in the control limbs. The ratios of cartilage length and area to those of the humerus were higher in the RGDS-injected limbs. The ratios of type X collagen to type 2 collagen mRNA and protein (Coll X/Coll 2) were significantly lower in the RGDS-injected limbs. In those limbs, TUNEL-positive cells were hardly observed, and the ratios of fractin to the Coll X/Coll 2 ratio were lower than in the control limbs. Furthermore, the α5β1 ab-injected limbs showed results similar to those of RGDS-injected limbs. The present in vivo study by exo utero development system showed that RGDS and α5β1 ab injection decreased chondrocyte proliferation, differentiation, and apoptosis in enchondral ossification, and suggested that the integrin α5β1-mediated ECM signal through the RGD sequence is involved in embryonic enchondral ossification.
Collapse
Affiliation(s)
- Takayuki Inoue
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Shimane, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Otero M, Favero M, Dragomir C, Hachem KE, Hashimoto K, Plumb DA, Goldring MB. Human chondrocyte cultures as models of cartilage-specific gene regulation. Methods Mol Biol 2012; 806:301-336. [PMID: 22057461 DOI: 10.1007/978-1-61779-367-7_21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis. However, expansion of primary chondrocytes in monolayer culture results in the loss of phenotype, particularly if high cell density is not maintained. This chapter describes strategies for maintaining or restoring differentiated phenotype by culture in suspension, gels, or scaffolds. Techniques for assessing phenotype involving primarily the analysis of synthesis of cartilage-specific matrix proteins as well as the corresponding mRNAs are also described. Approaches for studying gene regulation, including transfection of promoter-driven reporter genes with expression vectors for transcriptional and signaling regulators, chromatin immunoprecipitation, and DNA methylation are also described.
Collapse
Affiliation(s)
- Miguel Otero
- Laboratory for Cartilage Biology, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Koyama N, Okubo Y, Nakao K, Bessho K. Evaluation of Pluripotency in Human Dental Pulp Cells. J Oral Maxillofac Surg 2009; 67:501-6. [DOI: 10.1016/j.joms.2008.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 05/30/2008] [Accepted: 09/08/2008] [Indexed: 01/09/2023]
|
5
|
Yin M, Gentili C, Koyama E, Zasloff M, Pacifici M. Antiangiogenic treatment delays chondrocyte maturation and bone formation during limb skeletogenesis. J Bone Miner Res 2002; 17:56-65. [PMID: 11771670 DOI: 10.1359/jbmr.2002.17.1.56] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophic chondrocytes have important roles in promoting invasion of cartilage by blood vessels and its replacement with bone. However, it is unclear whether blood vessels exert reciprocal positive influences on chondrocyte maturation and function. Therefore, we implanted beads containing the antiangiogenic molecule squalamine around humeral anlagen in chick embryo wing buds and monitored the effects over time. Fluorescence microscopy showed that the drug diffused from the beads and accumulated in humeral perichondrial tissues, indicating that these tissues were the predominant targets of drug action. Diaphyseal chondrocyte maturation was indeed delayed in squalamine-treated humeri, as indicated by reduced cell hypertrophy and expression of type X collagen, transferrin, and Indian hedgehog (Ihh). Although reduced in amount, Ihh maintained a striking distribution in treated and control humeri, being associated with diaphyseal chondrocytes as well as inner perichondrial layer. These decreases were accompanied by lack of cartilage invasion and tartrate-resistant acid phosphatase-positive (TRAP+) cells and a significant longitudinal growth retardation. Recovery occurred at later developmental times, when in fact expression in treated humeri of markers such as matrix metalloproteinase 9 (MMP-9) and connective tissue growth factor (CTGF) appeared to exceed that in controls. Treating primary cultures of hypertrophic chondrocytes and osteoblasts with squalamine revealed no obvious changes in cell phenotype. These data provide evidence that perichondrial tissues and blood vessels in particular influence chondrocyte maturation in a positive manner and may cooperate with hypertrophic chondrocytes in dictating the normal pace and location of the transition from cartilage to bone.
Collapse
Affiliation(s)
- Melinda Yin
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003, USA
| | | | | | | | | |
Collapse
|
6
|
Nah HD, Pacifici M, Gerstenfeld LC, Adams SL, Kirsch T. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development. J Bone Miner Res 2000; 15:522-33. [PMID: 10750567 DOI: 10.1359/jbmr.2000.15.3.522] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can be expressed in specific in vitro and in vivo microenvironments.
Collapse
Affiliation(s)
- H D Nah
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
7
|
Freyria AM, Ronzière MC, Roche S, Rousseau CF, Herbage D. Regulation of growth, protein synthesis, and maturation of fetal bovine epiphyseal chondrocytes grown in high-density culture in the presence of ascorbic acid, retinoic acid, and dihydrocytochalasin B. J Cell Biochem 1999; 76:84-98. [PMID: 10581003 DOI: 10.1002/(sici)1097-4644(20000101)76:1<84::aid-jcb9>3.0.co;2-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 microM), and dihydrocytochalasin B (3, 10, 20 microM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid-treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15-20-fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 microM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two-dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two-dimensional gel electrophoresis along the study.
Collapse
Affiliation(s)
- A M Freyria
- Institut de Biologie et Chimie des Protéines, CNRS-UPR, 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
8
|
Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 1998; 80:1745-57. [PMID: 9875932 DOI: 10.2106/00004623-199812000-00004] [Citation(s) in RCA: 636] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mesenchymal progenitor cells provide a source of cells for the repair of musculoskeletal tissue. However, in vitro models are needed to study the mechanisms of differentiation of progenitor cells. This study demonstrated the successful induction of in vitro chondrogenesis with human bone-marrow-derived osteochondral progenitor cells in a reliable and reproducible culture system. Human bone marrow was removed and fractionated, and adherent cell cultures were established. The cells were then passaged into an aggregate culture system in a serum-free medium. Initially, the cell aggregates contained type-I collagen and neither type-II nor type-X collagen was detected. Type-II collagen was typically detected in the matrix by the fifth day, with the immunoreactivity localized in the region of metachromatic staining. By the fourteenth day, type-II and type-X collagen were detected throughout the cell aggregates, except for an outer region of flattened, perichondrial-like cells in a matrix rich in type-I collagen. Aggrecan and link protein were detected in extracts of the cell aggregates, providing evidence that large aggregating proteoglycans of the type found in cartilaginous tissues had been synthesized by the newly differentiating chondrocytic cells; the small proteoglycans, biglycan and decorin, were also detected in extracts. Immunohistochemical staining with antibodies specific for chondroitin 4-sulfate and keratan sulfate demonstrated a uniform distribution of proteoglycans throughout the extracellular matrix of the cell aggregates. When the bone-marrow-derived cell preparations were passaged in monolayer culture as many as twenty times, with cells allowed to grow to confluence at each passage, the chondrogenic potential of the cells was maintained after each passage.
Collapse
Affiliation(s)
- J U Yoo
- Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238:265-72. [PMID: 9457080 DOI: 10.1006/excr.1997.3858] [Citation(s) in RCA: 1725] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A culture system that facilitates the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal progenitor cells has been developed. Cells obtained in bone marrow aspirates were first isolated by monolayer culture and then transferred into tubes and allowed to form three-dimensional aggregates in a chemically defined medium. The inclusion of 10(-7) M dexamethasone in the medium induced chondrogenic differentiation of cells within the aggregate as evidenced by the appearance of toluidine blue metachromasia and the immunohistochemical detection of type II collagen as early as 7 days after beginning three-dimensional culture. After 21 days, the matrix of the entire aggregate contained type II collagen. By 14 days of culture, there was also evidence for type X collagen present in the matrix and the cells morphologically resembled hypertrophic chondrocytes. However, chondrogenic differentiation was achieved in only approximately 25% of the marrow cell preparations used. In contrast, with the addition of transforming growth factor-beta 1 (TGF-beta 1), chondrogenesis was induced in all marrow cell preparations, with or without the presence of 10(-7) M dexamethasone. The induction of chondrogenesis was accompanied by an increase in the alkaline phosphatase activity of the aggregated cells. The results of RT-PCR experiments indicated that both type IIA and IIB collagen mRNAs were detected by 7 days postaggregation as was mRNA for type X collagen. Conversely, the expression of the type I collagen mRNA was detected in the preaggregate cells but was no longer detectable at 7 days after aggregation. These results provide histological, immunohistochemical, and molecular evidence for the in vitro chondrogenic differentiation of adult mammalian progenitor cells derived from bone marrow.
Collapse
Affiliation(s)
- B Johnstone
- Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
10
|
Arias JL, Nakamura O, Fernández MS, Wu JJ, Knigge P, Eyre DR, Caplan AI. Role of type X collagen on experimental mineralization of eggshell membranes. Connect Tissue Res 1997; 36:21-33. [PMID: 9298621 DOI: 10.3109/03008209709160211] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type X collagen is a transient and developmentally regulated collagen that has been postulated to be involved in controlling the later stages of endochondral bone formation. However, the role of this collagen in these events is not yet known. In order to understand the function of type X collagen, if any, in the process of biomineralization, the properties of type X collagen in eggshell membranes were further investigated. Specifically, calvaria-derived osteogenic cells were tested for their ability to mineralize eggshell membranes in vitro. Immunohistochemistry with specific monoclonal antibodies was used to correlate the presence or absence of type X collagen or its propeptide domains with the ability of shell membranes to be mineralized. The extent of mineralization was assessed by Von Kossa staining, scanning electron microscopy and energy-dispersive spectroscopy. The results indicate that the non-helical domains of type X collagen must be removed to facilitate the cell-mediated mineralization of eggshell membranes. In this tissue, intact type X collagen does not appear to stimulate or support cell-mediated mineralization. We postulate that the non-helical domains of type X collagen function in vivo to inhibit mineralization and thereby establish boundaries which are protected from mineral deposition.
Collapse
Affiliation(s)
- J L Arias
- Department of Animal Biology, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
In serum-containing medium, ascorbic acid induces maturation of prehypertrophic chick embryo sternal chondrocytes. Recently, cultured chondrocytes have also been reported to undergo maturation in the presence of bone morphogenetic proteins or in serum-free medium supplemented with thyroxine. In the present study, we have examined the combined effect of ascorbic acid, BMP-2, and serum-free conditions on the induction of alkaline phosphatase and type X collagen in chick sternal chondrocytes. Addition of either ascorbate or rhBMP-2 to nonconfluent cephalic sternal chondrocytes produced elevated alkaline phosphatase levels within 24-72 h, and simultaneous exposure to both ascorbate and BMP yielded enzyme levels at least threefold those of either inducer alone. The effects of ascorbate and BMP were markedly potentiated by culture in serum-free medium, and alkaline phosphatase levels of preconfluent serum-free cultures treated for 48 h with BMP+ascorbate were equivalent to those reached in serum-containing medium only after confluence. While ascorbate addition was required for maximal alkaline phosphatase activity, it did not induce a rapid increase in type X collagen mRNA. In contrast, BMP added to serum-free medium induced a three- to fourfold increase in type X collagen mRNA within 24 h even in the presence of cyclohexamide, indicating that new protein synthesis was not required. Addition of thyroid hormone to serum-free medium was required for maximal ascorbate effects but not for BMP stimulation. Neither ascorbate nor BMP induced alkaline phosphatase activity in caudal sternal chondrocytes, which do not undergo hypertrophy during embryonic development. These results indicate that ascorbate+BMP in serum-free culture induces rapid chondrocyte maturation of prehypertrophic chondrocytes. The mechanisms for ascorbate and BMP action appear to be distinct, while BMP and thyroid hormone may share a similar mechanism for induction.
Collapse
Affiliation(s)
- P S Leboy
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | |
Collapse
|
12
|
Kirsch T, Nah HD, Shapiro IM, Pacifici M. Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 1997; 137:1149-60. [PMID: 9166414 PMCID: PMC2136219 DOI: 10.1083/jcb.137.5.1149] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1996] [Revised: 12/09/1996] [Indexed: 02/04/2023] Open
Abstract
Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro-osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that hypertrophic chondrocytes can qualitatively modulate their production of matrix vesicles and only when induced to initiate mineralization, will release mineralization-competent matrix vesicles rich in annexin V and alkaline phosphatase. The occurrence of type I collagen in concert with cartilage matrix calcification suggests that the protein may facilitate crystal growth after rupture of the matrix vesicle membrane; it may also offer a smooth transition from mineralized type II/type X collagen-rich cartilage matrix to type I collagen-rich bone matrix.
Collapse
Affiliation(s)
- T Kirsch
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
13
|
Pallante KM, Niu Z, Zhao Y, Cohen AJ, Nah HD, Adams SL. The chick alpha2(I) collagen gene contains two functional promoters, and its expression in chondrocytes is regulated at both transcriptional and post-transcriptional levels. J Biol Chem 1996; 271:25233-9. [PMID: 8810284 DOI: 10.1074/jbc.271.41.25233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Embryonic chick cartilages contain transcripts derived from the alpha2(I) collagen gene, although type I collagen is not normally found in these tissues; most of these RNAs are alternative transcripts initiating within intron 2. Use of the internal start site results in replacement of exons 1 and 2 with a previously undescribed exon and a change in the translational reading frame; thus, the alternative transcript cannot encode alpha2(I) collagen. We have demonstrated that production of the alternative transcript is due to activation of an internal promoter in chondrocytes and have identified a 179-base pair domain that is required for its activity. Furthermore, we have shown that the alternative transcript resulting from activation of the internal promoter turns over relatively rapidly; thus, the steady-state level of this transcript is less than predicted based on the transcription rate. The upstream promoter is only partially repressed in chondrocytes, suggesting that the lack of authentic alpha2(I) collagen mRNA may also be due in part to decreased mRNA stability. Thus, repression of alpha2(I) collagen synthesis in cartilage involves both transcriptional and post-transcriptional mechanisms. In contrast, repression of alpha1(I) collagen synthesis appears to be mediated primarily at the level of transcription.
Collapse
Affiliation(s)
- K M Pallante
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6003, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cancedda R, Descalzi Cancedda F, Castagnola P. Chondrocyte differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 159:265-358. [PMID: 7737795 DOI: 10.1016/s0074-7696(08)62109-9] [Citation(s) in RCA: 285] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Data obtained while investigating growth plate chondrocyte differentiation during endochondral bone formation both in vivo and in vitro indicate that initial chondrogenesis depends on positional signaling mediated by selected homeobox-containing genes and soluble mediators. Continuation of the process strongly relies on interactions of the differentiating cells with the microenvironment, that is, other cells and extracellular matrix. Production of and response to different hormones and growth factors are observed at all times and autocrine and paracrine cell stimulations are key elements of the process. Particularly relevant is the role of the TGF-beta superfamily, and more specifically of the BMP subfamily. Other factors include retinoids, FGFs, GH, and IGFs, and perhaps transferrin. The influence of local microenvironment might also offer an acceptable settlement to the debate about whether hypertrophic chondrocytes convert to bone cells and live, or remain chondrocytes and die. We suggest that the ultimate fate of hypertrophic chondrocytes may be different at different microanatomical sites.
Collapse
Affiliation(s)
- R Cancedda
- Centro di Biotecnologie Avanzate, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | |
Collapse
|
15
|
Chen P, Vukicevic S, Sampath TK, Luyten FP. Osteogenic protein-1 promotes growth and maturation of chick sternal chondrocytes in serum-free cultures. J Cell Sci 1995; 108 ( Pt 1):105-14. [PMID: 7738088 DOI: 10.1242/jcs.108.1.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the effect of recombinant human osteogenic protein-1 (OP-1, or bone morphogenetic protein-7), a member of the bone morphogenetic protein family, on growth and maturation of day 11, 15 and 17 chick sternal chondrocytes in high density monolayers, suspension and agarose cultures for up to 5 weeks. OP-1 dose-dependently (10-50 ng/ml) promoted chondrocyte maturation associated with enhanced alkaline phosphatase activity, and increased mRNA levels and protein synthesis of type X collagen in both the presence and absence of serum. In serum-free conditions, OP-1 promoted cell proliferation and chondrocyte maturation, without requiring either thyroid hormone or insulin, agents known to support chick chondrocyte differentiation in vitro. When grown in agarose under the same conditions, TGF-beta 1 and retinoic acid neither initiated nor promoted chondrocyte differentiation. The results demonstrate that OP-1, as the sole medium supplement, supports the maturation of embryonic chick sternal chondrocytes in vitro.
Collapse
Affiliation(s)
- P Chen
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-1188, USA
| | | | | | | |
Collapse
|
16
|
Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 1994; 94:2307-16. [PMID: 7989586 PMCID: PMC330059 DOI: 10.1172/jci117595] [Citation(s) in RCA: 353] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Immortalized human chondrocytes were established by transfection of primary cultures of juvenile costal chondrocytes with vectors encoding simian virus 40 large T antigen and selection in suspension culture over agarose. Stable cell lines were generated that exhibited chondrocyte morphology, continuous proliferative capacity (> 80 passages) in monolayer culture in serum-containing medium, and expression of mRNAs encoding chondrocyte-specific collagens II, IX, and XI and proteoglycans in an insulin-containing serum substitute. They did not express type X collagen or versican mRNA. These cells synthesized and secreted extracellular matrix molecules that were reactive with monoclonal antibodies against type II collagen, large proteoglycan (PG-H, aggrecan), and chondroitin-4- and chondroitin-6-sulfate. Interleukin-1 beta (IL-1 beta) decreased the levels of type II collagen mRNA and increased the levels of mRNAs for collagenase, stromelysin, and immediate early genes (egr-1, c-fos, c-jun, and jun-B). These cell lines also expressed reporter gene constructs containing regulatory sequences (-577/+3,428 bp) of the type II collagen gene (COL2A1) in transient transfection experiments, and IL-1 beta suppressed this expression by 50-80%. These results show that immortalized human chondrocytes displaying cartilage-specific modulation by IL-1 beta can be used as a model for studying normal and pathological repair mechanisms.
Collapse
Affiliation(s)
- M B Goldring
- Arthritis Research Laboratory, Massachusetts General Hospital, Charlestown 02129
| | | | | | | | | | | | | | | |
Collapse
|
17
|
O'Keefe RJ, Puzas JE, Loveys L, Hicks DG, Rosier RN. Analysis of type II and type X collagen synthesis in cultured growth plate chondrocytes by in situ hybridization: rapid induction of type X collagen in culture. J Bone Miner Res 1994; 9:1713-22. [PMID: 7863822 DOI: 10.1002/jbmr.5650091107] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Type X collagen is produced by hypertrophic chondrocytes and serves as a highly specific marker for chondrocyte maturation. This study was designed to compare the expression of type II and type X collagen in growth plate sections and in distinct populations of chondrocytes in culture by in situ hybridization. Growth plate sections were treated with type II and type X collagen cDNA probes. Type II collagen mRNA was present throughout the growth plate but greatest in the lower proliferating and upper hypertrophic regions. In contrast, type X collagen was expressed only in the hypertrophic region. Northern analysis confirmed the specificity of the probe for type X collagen mRNA. Chick growth plate chondrocytes were separated by countercurrent centrifugal elutriation into five distinct populations and plated in serum-containing medium. These cultures were examined at varying times after plating for the expression of type II and type X collagen mRNA. At 3 h, type II collagen was present in the majority of the cells in all fractions, and approximately 15-20% of the cells expressed type X collagen mRNA. The cells expressing type X were from the hypertrophic region. At 24 h, however, nearly all cells in culture expressed type X mRNA, and there was a decrease in expression of type II collagen mRNA. Similar results were obtained in cultures in the absence of serum, and SDS-PAGE analysis of collagen synthesis confirmed the expression of type X collagen in all populations of fractionated cells at 24 h at the protein level. Type X collagen is an important marker through which cellular matruation can be evaluated in culture.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R J O'Keefe
- Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, New York
| | | | | | | | | |
Collapse
|
18
|
Nah H, Niu Z, Adams S. An alternative transcript of the chick type III collagen gene that does not encode type III collagen. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34026-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Iwamoto M, Yagami K, Lu Valle P, Olsen B, Petropoulos C, Ewert D, Pacifici M. Expression and role of c-myc in chondrocytes undergoing endochondral ossification. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98398-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
Hunter GK, Holmyard DP, Pritzker KP. Calcification of chick vertebral chondrocytes grown in agarose gels: a biochemical and ultrastructural study. J Cell Sci 1993; 104 ( Pt 4):1031-8. [PMID: 8314888 DOI: 10.1242/jcs.104.4.1031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chick embryo vertebral chondrocytes (CHECOV cells) grown in agarose gels form spherical colonies containing cells of hypertrophic morphology and a metachromatically staining matrix. Biochemical analysis of these cultures resulted in the following findings. (i) Calcification of CHECOV cultures can be induced by addition of Pi (at least 1.9 mM) or beta-glycerol phosphate (BGP). (ii) Alkaline phosphatase activity reaches a maximal value at the time when mineral deposition is initiated. (iii) Added BGP is converted to Pi; maximal production of Pi occurs at the time of maximal alkaline phosphatase activity. (iv) BGP-supplemented cultures produce a degree of calcification that corresponds to the amount of BGP conversion to Pi. It can be concluded that Pi is rate-limiting for the calcification of chondrocyte cultures. BGP promotes calcification of these cultures by acting as a substrate for the alkaline phosphatase-mediated production of inorganic phosphate.
Collapse
Affiliation(s)
- G K Hunter
- Department of Oral Biology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
21
|
Elima K, Eerola I, Rosati R, Metsäranta M, Garofalo S, Perälä M, De Crombrugghe B, Vuorio E. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern. Biochem J 1993; 289 ( Pt 1):247-53. [PMID: 8424763 PMCID: PMC1132157 DOI: 10.1042/bj2890247] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Overlapping genomic clones covering the 7.2 kb mouse alpha 1(X) collagen gene, 0.86 kb of promoter and 1.25 kb of 3'-flanking sequences were isolated from two genomic libraries and characterized by nucleotide sequencing. Typical features of the gene include a unique three-exon structure, similar to that in the chick gene, with the entire triple-helical domain of 463 amino acids coded by a single large exon. The highest degree of amino acid and nucleotide sequence conservation was seen in the coding region for the collagenous and C-terminal non-collagenous domains between the mouse and known chick, bovine and human collagen type X sequences. More divergence between the sequences occurred in the N-terminal non-collagenous domain. Similarity between the mammalian collagen X sequences extended into the 3'-untranslated sequence, particularly near the polyadenylation site. The promoter of the mouse collagen X gene was found to contain two TATAA boxes 159 bp apart; primer extension analyses of the transcription start site revealed that both were functional. The promoter has an unusual structure with a very low G + C content of 28% between positions -220 and -1 of the upstream transcription start site. Northern and in situ hybridization analyses confirmed that the expression of the alpha 1(X) collagen gene is restricted to hypertrophic chondrocytes in tissues undergoing endochondral calcification. The detailed sequence information of the gene is useful for studies on the promoter activity of the gene and for generation of transgenic mice.
Collapse
Affiliation(s)
- K Elima
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stephens M, Kwan AP, Bayliss MT, Archer CW. Human articular surface chondrocytes initiate alkaline phosphatase and type X collagen synthesis in suspension culture. J Cell Sci 1992; 103 ( Pt 4):1111-6. [PMID: 1487493 DOI: 10.1242/jcs.103.4.1111] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type X collagen is a short chain collagen associated with calcific cartilage and/or the expression of the hypertrophic chondrocyte phenotype. In articular cartilage, type X collagen is restricted to the basal zone of calcified cartilage adjacent to the subchondral bone. However, during pathological change such as in osteoarthritis, the synthesis of type X collagen becomes more widespread but never extends to the articular surface. Using immunocytochemistry and fluorography of newly synthesised collagens, we report that surface articular chondrocytes (which occupy the uppermost 10–15% of the tissue depth) from normal human cartilage initiate de novo synthesis of both type X collagen and alkaline phosphatase when maintained in suspension culture.
Collapse
Affiliation(s)
- M Stephens
- Department of Orthopaedic Surgery, Institute of Orthopaedics (University College and Middlesex School of Medicine), Stanmore, UK
| | | | | | | |
Collapse
|