1
|
Patel C, Goody R, Hu W, Kurian A, James D, Torres R, Christie LA, Hohman T, Lawrence M. Primate model of chronic retinal neovascularization and vascular leakage. Exp Eye Res 2020; 195:108031. [PMID: 32275921 DOI: 10.1016/j.exer.2020.108031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to characterize and develop a primate model of chronic retinal neovascularization and vascular leakage that can be employed to assess efficacy of experimental therapeutics targeting retinal ischemic and neovascular diseases. African green monkeys received bilateral intravitreal (IVT) injection of DL-alpha-aminoadipic acid (DLAAA; 5 mg) following ophthalmic examination, color fundus photography, fluorescein angiography (FA) and optical coherence tomography (OCT). Imaging was repeated to evaluate progression and subsequent stabilization of retinal vascular pathology elicited by DLAAA. Aflibercept (Eylea) was administered IVT (1.4 mg) to assess effects on vascular leakage. Ocular tissue was collected for histopathology and glial fibrillary acidic protein (GFAP), von Willebrand Factor (vWF), CD105/endoglin, VEGF and CD68 immunohistochemistry to study retinal degeneration and vascular remodeling. IVT DLAAA administration resulted in telangiectatic vessel formation as early as two-weeks post-injection, followed by retinal vascular leakage and inner retinal edema. Neovascular lesion progression was evident up to 8-10 weeks post-injection before stabilizing into a vascular leakage state that persisted beyond 90 weeks. Histopathology and immunostaining revealed retinal degeneration and neovascularization, increased expression of vWF, CD105/endoglin, VEGF and CD68 immunoreactivities in addition to Müller cell loss. Aflibercept significantly attenuated vascular leakage for 2-4 weeks before progressive return of leakage from weeks 4-8. Lesions remained responsive to anti-VEGF administration at 90 weeks after DLAAA injection. Findings support application of the primate DLAAA-induced retinal vascular leakage model for efficacy evaluations of candidate therapeutics and sustained release strategies targeting exudative AMD, diabetic retinopathy, macular telangiectasia and other retinal ischemic and neovascular diseases. Findings confirm relevance of the DLAAA primate phenotype to understanding shared retinal vascular disease mechanisms and macular susceptibility to vascular and metabolic insults.
Collapse
Affiliation(s)
- Chintan Patel
- Virscio, Inc., 4 Science Park, New Haven, CT 06511, USA.
| | - Robin Goody
- Virscio, Inc., 4 Science Park, New Haven, CT 06511, USA
| | - Wenzheng Hu
- Virscio, Inc., 4 Science Park, New Haven, CT 06511, USA
| | - Anish Kurian
- Virscio, Inc., 4 Science Park, New Haven, CT 06511, USA
| | | | - Richard Torres
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lori-Ann Christie
- Department of Biological Sciences, Allergan plc, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Thomas Hohman
- Envision Consulting, LLC, 2009 Glenwood Dr, Ocean City, NJ 08226, USA
| | | |
Collapse
|
2
|
Tsai ELS, Ortin-Martinez A, Gurdita A, Comanita L, Yan N, Smiley S, Delplace V, Shoichet MS, Nickerson PEB, Wallace VA. Modeling of Photoreceptor Donor-Host Interaction Following Transplantation Reveals a Role for Crx, Müller Glia, and Rho/ROCK Signaling in Neurite Outgrowth. Stem Cells 2019; 37:529-541. [DOI: 10.1002/stem.2985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- En L. S. Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Nicole Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Sheila Smiley
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Vianney Delplace
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Philip E. B. Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Valerie A. Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
- Department of Ophthalmology and Vision Sciences; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
3
|
Lau CML, Yu Y, Jahanmir G, Chau Y. Controlled release technology for anti-angiogenesis treatment of posterior eye diseases: Current status and challenges. Adv Drug Deliv Rev 2018; 126:145-161. [PMID: 29625138 DOI: 10.1016/j.addr.2018.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
Antiangiogenic therapeutics, such as corticosteroids, VEGF targeting antibodies and aptamers have been demonstrated effective in controlling retinal and choroidal neovascularization related vision loss. However, to manage the chronic conditions, it requires long term and frequent intravitreal injections of these drugs, resulting in poor patient compliance and suboptimal treatment. In addition, emerging drugs such as tyrosine kinase inhibitors and siRNAs received much expectations, but the late stage clinical trials encountered various obstacles. Controlled release technology could improve the existing treatment regimen by extending therapeutic duration, reducing risks and burdens caused by frequent injections, and enabling new drugs to overcome the hurdles of translation. Here, we give qualitative and quantitative discussions about the principle mechanisms of polymeric reservoir, polymeric matrix and hydrogel systems. We also reveal the design rationales of the existing drug delivery and release systems in preclinical and clinical stages. Lastly, the animal models of ocular angiogenesis diseases are critically reviewed, which could help to facilitate the translation of controlled release technologies from bench to bedside.
Collapse
Affiliation(s)
- Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Yu Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; Pleryon Therapeutics Limited, Hong Kong
| | - Ghodsiehsadat Jahanmir
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; The Hong Kong University of Science and Technology Shenzhen Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Li H, Bui BV, Cull G, Wang F, Wang L. Glial Cell Contribution to Basal Vessel Diameter and Pressure-Initiated Vascular Responses in Rat Retina. Invest Ophthalmol Vis Sci 2017; 58:1-8. [PMID: 28055098 PMCID: PMC5225997 DOI: 10.1167/iovs.16-20804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that retinal glial cells modify basal vessel diameter and pressure-initiated vascular regulation in rat retina. Methods In rats, L-2-aminoadipic acid (LAA, 10 nM) was intravitreally injected to inhibit glial cell activity. Twenty-four hours following injection, retinal glial intracellular calcium (Ca2+) was labeled with the fluorescent calcium indicator Fluo-4/AM (F4, 1 mM). At 110 minutes after injection, intraocular pressure (IOP) was elevated from 20 to 50 mm Hg. Prior to and during IOP elevation, Ca2+ and retinal vessel diameter were assessed using a spectral-domain optical coherence tomography/confocal scanning laser ophthalmoscope. Dynamic changes in Ca2+ and diameter from IOP elevation were quantified. The response in LAA-treated eyes was compared with vehicle treated control eyes. Results L-2-Aminoadipic acid treatment significantly reduced F4-positive cells in the retina (LAA, 16 ± 20 vs. control, 55 ± 37 cells/mm2; P = 0.02). Twenty-four hours following LAA treatment, basal venous diameter was increased from 38.9 ± 3.9 to 51.8 ± 6.4 μm (P < 0.0001, n = 20), whereas arterial diameter was unchanged (from 30.3 ± 3.5 to 30.7 ± 2.8 μm; P = 0.64). In response to IOP elevation, LAA-treated eyes showed a smaller increase in glial cell Ca2+ around both arteries and veins in comparison with control (P < 0.001 for both). There was also significantly greater IOP-induced vasoconstriction in both vessel types (P = 0.05 and P = 0.02, respectively; n = 6 each). Conclusions The results suggest that glial cells can modulate basal retinal venous diameter and contribute to pressure-initiated vascular responses.
Collapse
Affiliation(s)
- Hui Li
- Department of Ophthalmology, The Tenth People's Hospital, Shanghai, Tongji University School of Medicine, Shanghai, China 2Devers Eye Institute, Legacy Research Institute, Portland, Oregon, USA
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Grant Cull
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, USA
| | - Fang Wang
- Department of Ophthalmology, The Tenth People's Hospital, Shanghai, Tongji University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Ophthalmology, The Tenth People's Hospital, Shanghai, Tongji University School of Medicine, Shanghai, China 2Devers Eye Institute, Legacy Research Institute, Portland, Oregon, USA
| |
Collapse
|
5
|
α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats. Neurotox Res 2017; 32:276-290. [DOI: 10.1007/s12640-017-9735-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
|
6
|
Chen X, Chen Z, Li Z, Zhao C, Zeng Y, Zou T, Fu C, Liu X, Xu H, Yin ZQ. Grafted c-kit +/SSEA1 - eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses. Stem Cell Res Ther 2016; 7:191. [PMID: 28038685 PMCID: PMC5203726 DOI: 10.1186/s13287-016-0451-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Methods Eye-wall c-kit+/stage-specific embryonic antigen 1 (SSEA1)− cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit+/SSEA1− cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Results Eye-wall c-kit+/SSEA1− cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit+/SSEA1− cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit+/SSEA1− cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit+/SSEA1− cells were capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit+/SSEA1− cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Conclusions Grafted c-kit+/SSEA1− cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.,School of Medicine, Nankai University, Tianjin, 300071, China.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zehua Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Chen Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
7
|
Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle. J Neurosci 2016; 36:4209-17. [PMID: 27076420 DOI: 10.1523/jneurosci.2629-14.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In addition to rods and cones, mammals have inner retinal photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGCs), which use the photopigment melanopsin and mediate nonimage-forming visual responses, such as pupil reflexes and circadian entrainment. After photic activation, photopigments must be reverted to their dark state to be light-sensitive again. For rods and to some extent cones, photopigment regeneration depends on the retinoid cycle in the adjacent retinal pigment epithelium (RPE). By contrast, ipRGCs are far from the RPE, and previous work suggests that melanopsin is capable of light-dependent self-regeneration. Here, we used in vitro ipRGC recording and in vivo pupillometry to show that the RPE is required for normal melanopsin-based responses to prolonged light, especially at high stimulus intensities. Melanopsin-based photoresponses of rat ipRGCs were remarkably sustained when a functional RPE was attached to the retina, but became far more transient if the RPE was removed, or if the retinoid cycle was inhibited, or when Müller glia were poisoned. Similarly, retinoid cycle inhibition markedly reduced the steady-state amplitude of melanopsin-driven pupil reflexes in both mice and rats. However, melanopsin photoresponses in RPE-separated rat retinas became more sustained in the presence of an 11-cis-retinal analog. In conclusion, during prolonged illumination, melanopsin regeneration depends partly on 11-cis-retinal from the RPE, possibly imported via Müller cells. Implications for RPE-related eye diseases and the acne drug isotretinoin (a retinoid cycle inhibitor) are discussed. SIGNIFICANCE STATEMENT Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and drive subconscious physiological responses to light, e.g., pupillary constriction and neuroendocrine regulation. In darkness, each photopigment molecule in ipRGCs, as well as rod/cone photoreceptors, contains 11-cis-retinal (a vitamin A derivative) and light isomerizes it to all-trans-retinal, which activates the photopigment. To make this photopigment excitable again,all-trans-retinal must be reisomerized to 11-cis-retinal. For rods and to some extent cones, this reisomerization occurs in the adjacent retinal pigment epithelium (RPE), but because ipRGCs are far from the RPE, they are thought to regenerate excitable melanopsin exclusively through RPE-independent means. Here, we present electrophysiological and behavioral evidence that ipRGCs depend on the RPE to continuously regenerate melanopsin during intense prolonged photostimulation.
Collapse
|
8
|
A Novel Role for the Visual Retinoid Cycle in Melanopsin Chromophore Regeneration. J Neurosci 2016; 36:9016-8. [PMID: 27581445 DOI: 10.1523/jneurosci.1883-16.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
|
9
|
Yu WQ, Eom YS, Shin JA, Nair D, Grzywacz SXZ, Grzywacz NM, Craft CM, Lee EJ. Reshaping the Cone-Mosaic in a Rat Model of Retinitis Pigmentosa: Modulatory Role of ZO-1 Expression in DL-Alpha-Aminoadipic Acid Reshaping. PLoS One 2016; 11:e0151668. [PMID: 26977812 PMCID: PMC4792433 DOI: 10.1371/journal.pone.0151668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
In S334ter-line-3 rat model of Retinitis Pigmentosa (RP), rod cell death induces the rearrangement of cones into mosaics of rings while the fibrotic processes of Müller cells remodel to fill the center of the rings. In contrast, previous work established that DL-alpha-aminoadipic-acid (AAA), a compound that transiently blocks Müller cell metabolism, abolishes these highly structured cone rings. Simultaneously, adherens-junction associated protein, Zonula occludens-1 (ZO-1) expression forms in a network between the photoreceptor segments and Müller cells processes. Thus, we hypothesized that AAA treatment alters the cone mosaic rings by disrupting the distal sealing formed by these fibrotic processes, either directly or indirectly, by down regulating the expression of ZO-1. Therefore, we examined these processes and ZO-1 expression at the outer retina after intravitreal injection of AAA and observed that AAA treatment transiently disrupts the distal glial sealing in RP retina, plus induces cones in rings to become more homogeneous. Moreover, ZO-1 expression is actively suppressed after 3 days of AAA treatment, which coincided with cone ring disruption. Similar modifications of glial sealing and cone distribution were observed after injection of siRNA to inhibit ZO-1 expression. These findings support our hypothesis and provide additional information about the critical role played by ZO-1 in glial sealing and shaping the ring mosaic in RP retina. These studies represent important advancements in the understanding of retinal degeneration's etiology and pathophysiology.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Structure, University of Washington, Seattle, United States of America
| | - Yun Sung Eom
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Anatomy, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Divya Nair
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Sara X. Z. Grzywacz
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Norberto M. Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Neuroscience, Georgetown University, Washington D.C., United States of America
- Department of Physics, Georgetown University, Washington D.C., United States of America
| | - Cheryl Mae Craft
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
|
11
|
Majdi JA, Qian H, Li Y, Langsner RJ, Shea KI, Agrawal A, Hammer DX, Hanig JP, Cohen ED. The use of time-lapse optical coherence tomography to image the effects of microapplied toxins on the retina. Invest Ophthalmol Vis Sci 2014; 56:587-97. [PMID: 25525175 DOI: 10.1167/iovs.14-15594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We developed a novel technique for accelerated drug screening and retinotoxin characterization using time-lapse optical coherence tomography (OCT) and a drug microapplication device. METHODS Using an ex vivo rabbit eyecup preparation, we studied retinotoxin effects in real-time by microperfusing small retinal areas under a transparent fluoropolymer tube. Known retinotoxic agents were applied to the retina for 5-minute periods, while changes in retinal structure, thickness, and reflectance were monitored with OCT. The OCT images of two agents with dissimilar mechanisms, cyanide and kainic acid, were compared to their structural changes seen histologically. RESULTS We found the actions of retinotoxic agents tested could be classified broadly into two distinct types: (1) agents that induce neuronal depolarization, such as kainic acid, causing increases in OCT reflectivity or thickness of the inner plexiform and nuclear layers, and decreased reflectivity of the outer retina; and (2) agents that disrupt mitochondrial function, such as cyanide, causing outer retinal structural changes as evidenced by a reduction in the OCT reflectivity of the photoreceptor outer segment and pigment epithelium layers. CONCLUSIONS Retinotoxin-induced changes in retinal layer reflectivity and thickness under the microperfusion tube in OCT images closely matched the histological evidence of retinal injury. Time-lapse OCT imaging of the microperfused local retina has the potential to accelerate drug retinotoxicological screening and expand the use of OCT as an evaluation tool for preclinical animal testing.
Collapse
Affiliation(s)
- Joseph A Majdi
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Haohua Qian
- National Eye Institute, Visual Function Core, National Institutes of Health, Bethesda, Maryland, United States
| | - Yichao Li
- National Eye Institute, Visual Function Core, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert J Langsner
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Katherine I Shea
- Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Joseph P Hanig
- Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| |
Collapse
|
12
|
Pearson RA. Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv 2014; 32:485-91. [PMID: 24412415 PMCID: PMC4070022 DOI: 10.1016/j.biotechadv.2014.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/26/2013] [Accepted: 01/01/2014] [Indexed: 02/01/2023]
Abstract
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
13
|
Schafer KA, Render JA. Toxicologic Pathology of the Eye: Alterations of the Lens and Posterior Segment. ASSESSING OCULAR TOXICOLOGY IN LABORATORY ANIMALS 2012. [DOI: 10.1007/978-1-62703-164-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Shen W, Li S, Chung SH, Gillies MC. Retinal vascular changes after glial disruption in rats. J Neurosci Res 2010; 88:1485-99. [PMID: 20029988 DOI: 10.1002/jnr.22317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glial dysfunction is found in a number of retinal vascular diseases but its link with blood-retinal barrier (BRB) breakdown remains poorly understood. The present study tested the hypothesis that glial dysfunction is a major contributor to the BRB breakdown that is a hallmark of retinal vascular diseases. We investigated the specificity of the purportedly selective glial toxin, DL-alpha-aminoadipic acid (DL-alpha-AAA) on different types of ocular cells in vitro and then tested the effect of glial disruption on retinal vasculature after intraocular injection of DL-alpha-AAA or siRNA targeting glutamine synthetase (GS) in rats. DL-alpha-AAA was toxic to astrocytes and Müller cells but not to other types of BRB-related cells in vitro. Subretinal injection of DL-alpha-AAA disrupted retinal glial cells, induced vascular telangiectasis and increased vascular permeability from 4 days to over 2 months post-injection. Vascular changes induced by DL-alpha-AAA were observed predominantly in regions of glial disruption, as reflected by reduced expression of GS and increased expression of glial fibrillary acidic protein and vimentin. Confocal microscopy showed changes in all three layers of the retinal vasculature, which co-localised with areas of Müller cell disruption. Double labeling immunohistochemistry revealed that retinal glial disruption after DL-alpha-AAA injection was accompanied by increased expression of vascular endothelial growth factor and reduced expression of the tight junction protein claudin-5. Intravitreal injection of GS siRNA induced similar changes in Müller cells and BRB breakdown. Our data are consistent with the hypothesis that glial dysfunction is a primary contributor to the BRB breakdown in retinal vascular diseases.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
15
|
Wang Y, Xiao SH, Xue J, Singer BH, Utzinger J, Holmes E. Systems metabolic effects of a necator americanus infection in Syrian hamster. J Proteome Res 2010; 8:5442-50. [PMID: 19810771 DOI: 10.1021/pr900711j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hookworms (Ancylostoma duodenale and Necator americanus) are blood-feeding intestinal nematodes that infect approximately 700 million people worldwide. To further our understanding of the systems metabolic response of the mammalian host to hookworm infection, we employed a metabolic profiling strategy involving the combination of (1)H NMR spectroscopic analysis of urine and serum and multivariate data analysis techniques to investigate the biochemical consequences of a N. americanus infection in the hamster. The infection was characterized by altered energy metabolism, consistent with hookworm-induced anemia. Additionally, disturbance of gut microbiotal activity was associated with a N. americanus infection, manifested in the alterations of microbial-mammalian cometabolites, including phenylacetylglycine, p-cresol glucuronide, 4-hydroxy-3-methyl-phenylpropionic acid, hippurate, 4-hydroxyphenylactate, and dimethylamine. The correlation between worm burden and metabolite concentrations also reflected a changed energy metabolism and gut microbial state. Furthermore, elevated levels of urinary 2-aminoadipate was a characteristic feature of the infection, which may be associated with the documented neurological consequences of hookworm infection.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
16
|
Pearson RA, Barber AC, West EL, MacLaren RE, Duran Y, Bainbridge JW, Sowden JC, Ali RR. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant 2010; 19:487-503. [PMID: 20089206 DOI: 10.3727/096368909x486057] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diseases culminating in photoreceptor loss are a major cause of untreatable blindness. Transplantation of rod photoreceptors is feasible, provided donor cells are at an appropriate stage of development when transplanted. Nevertheless, the proportion of cells that integrate into the recipient outer nuclear layer (ONL) is low. The outer limiting membrane (OLM), formed by adherens junctions between Müller glia and photoreceptors, may impede transplanted cells from migrating into the recipient ONL. Adaptor proteins such as Crumbs homologue 1 (Crb1) and zona occludins (ZO-1) are essential for localization of the OLM adherens junctions. We investigated whether targeted disruption of these proteins enhances donor cell integration. Transplantation of rod precursors in wild-type mice achieved 949 +/- 141 integrated cells. By contrast, integration is significantly higher when rod precursors are transplanted into Crb1(rd8/rd8) mice, a model of retinitis pigmentosa and Lebers congenital amaurosis that lacks functional CRB1 protein and displays disruption of the OLM (7,819 +/- 1,297; maximum 15,721 cells). We next used small interfering (si)RNA to transiently reduce the expression of ZO-1 and generate a reversible disruption of the OLM. ZO-1 knockdown resulted in similar, significantly improved, integration of transplanted cells in wild-type mice (7,037 +/- 1,293; maximum 11,965 cells). Finally, as the OLM remains largely intact in many retinal disorders, we tested whether transient ZO-1 knockdown increased integration in a model of retinitis pigmentosa, the rho(-/-) mouse; donor cell integration was significantly increased from 313 +/- 58 cells without treatment to 919 +/- 198 cells after ZO-1 knockdown. This study shows that targeted disruption of OLM junctional proteins enhances integration in the wild-type and degenerating retina and may be a useful approach for developing photoreceptor transplantation strategies.
Collapse
Affiliation(s)
- R A Pearson
- Department of Genetics, University College London Institute of Ophthalmology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nat Neurosci 2009; 12:295-302. [PMID: 19182795 PMCID: PMC2707787 DOI: 10.1038/nn.2258] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 12/16/2008] [Indexed: 11/12/2022]
Abstract
Daytime vision is mediated by retinal cones which, unlike rods, remain functional even in bright light and dark-adapt rapidly. These cone properties are enabled by rapid regeneration of their pigment. This in turn requires rapid chromophore recycling which may not be achieved by the canonical retinal pigment epithelium visual cycle. Recent biochemical studies have suggested the presence of a second, cone-specific visual cycle, although its physiological function remains to be established. Here we report that the Müller cells within the salamander neural retina promote cone-specific pigment regeneration and dark adaptation that are independent of the pigment epithelium. Without this pathway, dark adaptation of cones is slow and incomplete. Interestingly, the rates of cone pigment regeneration by the retina and pigment epithelium visual cycles are essentially identical suggesting a possible common rate-limiting step. Finally, we also observed cone dark adaptation in the isolated mouse retina.
Collapse
|
18
|
West E, Pearson R, MacLaren R, Sowden J, Ali R. Cell transplantation strategies for retinal repair. PROGRESS IN BRAIN RESEARCH 2009; 175:3-21. [PMID: 19660645 PMCID: PMC3272389 DOI: 10.1016/s0079-6123(09)17501-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell transplantation is a novel therapeutic strategy to restore visual responses to the degenerate adult neural retina and represents an exciting area of regenerative neurotherapy. So far, it has been shown that transplanted postmitotic photoreceptor precursors are able to functionally integrate into the adult mouse neural retina. In this review, we discuss the differentiation of photoreceptor cells from both adult and embryonic-derived stem cells and their potential for retinal cell transplantation. We also discuss the strategies used to overcome barriers present in the degenerate neural retina and improve retinal cell integration. Finally, we consider the future translation of retinal cell therapy as a therapeutic strategy to treat retinal degeneration.
Collapse
Affiliation(s)
- E.L. West
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - R.A. Pearson
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - R.E. MacLaren
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
- Vitreoretinal Service, Moorfields Eye Hospital, London, UK
| | - J.C. Sowden
- Developmental Biology Unit, UCL Institute of Child Health, London, UK
| | - R.R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
- Molecular Immunology Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
19
|
West EL, Pearson RA, Tschernutter M, Sowden JC, MacLaren RE, Ali RR. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp Eye Res 2008; 86:601-11. [PMID: 18294631 PMCID: PMC2394572 DOI: 10.1016/j.exer.2008.01.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 11/27/2022]
Abstract
Retinal degeneration is the leading cause of untreatable blindness in the developed world. Cell transplantation strategies provide a novel therapeutic approach to repair the retina and restore sight. Previously, we have shown that photoreceptor precursor cells can integrate and form functional photoreceptors after transplantation into the subretinal space of the adult mouse. In a clinical setting, however, it is likely that far greater numbers of integrated photoreceptors would be required to restore visual function. We therefore sought to assess whether the outer limiting membrane (OLM), a natural barrier between the subretinal space and the outer nuclear layer (ONL), could be reversibly disrupted and if disruption of this barrier could lead to enhanced numbers of transplanted photoreceptors integrating into the ONL. Transient chemical disruption of the OLM was induced in adult mice using the glial toxin, dl-alpha-aminoadipic acid (AAA). Dissociated early post-natal neural retinal cells were transplanted via subretinal injection at various time-points after AAA administration. At 3 weeks post-injection, the number of integrated, differentiated photoreceptor cells was assessed and compared with those found in the PBS-treated contralateral eye. We demonstrate for the first time that the OLM can be reversibly disrupted in adult mice, using a specific dose of AAA administered by intravitreal injection. In this model, OLM disruption is maximal at 72 h, and recovers by 2 weeks. When combined with cell transplantation, disruption of the OLM leads to a significant increase in the number of photoreceptors integrated within the ONL compared with PBS-treated controls. This effect was only seen in animals in which AAA had been administered 72 h prior to transplantation, i.e. when precursor cells were delivered into the subretinal space at a time coincident with maximal OLM disruption. These findings suggest that the OLM presents a physical barrier to photoreceptor integration following transplantation into the subretinal space in the adult mouse. Reversible disruption of the OLM may provide a strategy for increasing cell integration in future therapeutic applications.
Collapse
Affiliation(s)
- E L West
- Division of Molecular Therapy, University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|
20
|
Influence of glial cells in the dopamine releasing effect resulting from the stimulation of striatal δ-opioid receptors. Neuroscience 2007; 150:131-43. [DOI: 10.1016/j.neuroscience.2007.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/31/2007] [Accepted: 09/11/2007] [Indexed: 11/22/2022]
|
21
|
Abstract
Within the retina, the Müller cells and photoreceptors are in close physical proximity and are metabolically coupled. It is unknown, however, whether Müller cells affect photoreceptor differentiation and outer segment membrane assembly. The objective of this study was to determine whether targeted disruption of Müller cell metabolism would induce photoreceptor dysmorphogenesis. Intact isolated Xenopus laevis embryonic eyes were cultured in medium with or without Müller cell-specific inhibitors (i.e., alpha-aminoadipic acid and fluorocitrate). To assess Müller cell injury, the gross retinal morphology was examined along with immunocytochemical assessment of Müller cell-specific protein expression patterns. The steady-state levels of opsin were quantified to determine whether the Müller cell inhibitors negatively affected photoreceptor protein synthesis. Müller and photoreceptor cell ultrastructure was scrutinized and the organization of the outer segment membranes was graded. In control retinas, there was no swelling of Müller cell cytoplasm. Glial fibrillary acidic protein (GFAP) was undetectable, whereas glutamine synthetase was abundant. The steady-state level of opsin was high and photoreceptors elaborated properly folded outer segments. Exposure to both Müller cell-specific inhibitors induced swelling of Müller cell endfeet, cytoplasmic paling and alterations of Müller cell-specific protein expression patterns. The steady-state level of opsin in retinas exposed to alpha-aminoadipic acid was unchanged compared with control eyes, whereas, in eyes exposed to fluorocitrate, opsin levels were slightly reduced. The most significant finding was that targeted disruption of Müller cell metabolism adversely affected photoreceptor outer segment membrane assembly, causing dysmorphogenesis of nascent outer segments. These results suggest that the termination signal(s) necessary for proper outer segment folding were disrupted by targeted inhibition of Müller cells and support the hypothesis that Müller cells interact with photoreceptors through mechanisms that may regulate, at least in part, the assembly of photoreceptor outer segment membranes.
Collapse
Affiliation(s)
- M M Jablonski
- Retinal Degeneration Research Center, Department of Ophthalmology, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
22
|
O'Byrne M, Tipton K, McBean G, Kollegger H. Assessment of neurotoxicity and "neuroprotection". JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1997; 50:153-64. [PMID: 9120415 DOI: 10.1007/978-3-7091-6842-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coronal brain slices allow the study of neurotoxicity and "neuroprotection" under conditions where the differentiation-state and interrelationships of the neurones and glial cells are closer to those occurring in the intact tissue than is the case for co-cultured cell systems. The involvement of glial cells in the excitotoxicity of kainate and the potentiation of this toxicity by inhibition of glutamine synthase can be demonstrated. Longer-term toxicity of kainate may also be compounded by depletion of glutathione levels resulting from inhibition of gamma-glutamylcysteine synthase. The involvement of nitric oxide formation in the toxicity of N-methyl-D-aspartate can also be shown. The neurotoxicity of 1-methyl-4-phenylpyridinium can be readily demonstrated in coronal slice preparations. Taurine affords protection against this neurotoxicity. The possible mechanisms of these effects are considered in terms of the cyclic interrelationships between the different events which can lead to cell death.
Collapse
Affiliation(s)
- M O'Byrne
- Department of Biochemistry, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
23
|
Abstract
The efficacy and the specificity of the putative astrotoxin, alpha-aminoadipate, were examined in this study. The integrity of astrocytes was evaluated at several time points following a single injection of alpha-aminoadipate into amygdala of adult rats using immunohistochemistry. The density and the morphological appearance of neurons and the response of microglia were also examined. The injection of alpha-aminoadipate disrupted the astrocytic network in that region. There was a profound loss of glial fibrillary acidic protein-positive and S100 beta-positive astrocytes, normally present in the region, while vimentin immunohistochemistry revealed the presence of deformed cell processes, presumably astrocytic. The presence of reactive microglia at the injection site was suggestive of an active degenerative process, while the normal neuronal density and appearance, as compared to controls, suggested that the damage was confined to astrocytes. The confirmed effectiveness and cellular specificity of alpha-aminoadipate in vivo makes it a potentially important experimental tool for attempting to decipher the functional significance of astrocytes.
Collapse
Affiliation(s)
- M Khurgel
- Department of Anatomy and Cell Biology, University of Toronto, ON, Canada
| | | | | |
Collapse
|
24
|
|
25
|
Rich KA, Figueroa SL, Zhan Y, Blanks JC. Effects of Müller cell disruption on mouse photoreceptor cell development. Exp Eye Res 1995; 61:235-48. [PMID: 7556487 DOI: 10.1016/s0014-4835(05)80043-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Müller cells have been proposed to play an important role in photoreceptor cell development during the final stages of retinal maturation. The effect of disrupting Müller cells during mouse retinal development was investigated using the specific glial cell toxin, DL-alpha-aminoadipic acid (AAA). By giving multiple systemic injections over several days, impairment of Müller cell function was maintained during the period of photoreceptor migration and differentiation. Following three consecutive days of AAA treatment [commencing on post-natal (P) day 3, 5, 7 or 9, and examined at P8-P14], clumps of photoreceptor nuclei were displaced through the inner segments, lying immediately beneath the retinal pigment epithelium (RPE). Apart from the scalloped appearance of the outer retina, the overall lamination pattern of the retina was relatively well preserved. Even when AAA treatment commenced as early as P3, several days prior to the formation of the outer nuclear layer, the majority of photoreceptors migrated to their correct position and formed inner and outer segments. Therefore, the signals for photoreceptor migration are either provided by the Müller cells prior to P3, or, alternatively, are derived from different intrinsic or extrinsic cues. Disruption of Müller cell function was evidenced by decreased glutamine synthetase activity as well as by increased glial fibrillary acidic protein (GFAP) and decreased cellular retinaldehyde-binding protein (CRALBP) immunoreactivity. Immunocytochemistry with an antibody to CD44, which labels the microvilli of Müller cells at the outer limiting membrane, coupled with electron microscopic analysis, demonstrated that the zonulae adherentes between Müller cells and photoreceptors were either irregular or absent in areas adjacent to displaced clumps of photoreceptors. Thus AAA treatment of early post-natal mice results in localized disruption of the contacts between Müller cells and photoreceptors. These pathologic changes persist into adulthood since at P28, while short stretches of photoreceptors appeared relatively normal with fully developed outer segments, periodic clumps of displaced photoreceptor nuclei were still present adjacent to the RPE. In conclusion, Müller cell processes at the outer limiting membrane appear to play a critical role in providing a barrier to aberrant photoreceptor migration into the subretinal space.
Collapse
Affiliation(s)
- K A Rich
- Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
26
|
Grossman R, Fox LE, Gorovits R, Ben-Dror I, Reisfeld S, Vardimon L. Molecular basis for differential expression of glutamine synthetase in retina glia and neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 21:312-20. [PMID: 7909577 DOI: 10.1016/0169-328x(94)90262-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamine synthetase (GS) is a differentiation marker of retina glial cell. It is expressed in the chicken neural retina at a particularly high level, is inducible by glucocorticoids and is always confined to Müller glia. This study investigated the molecular basis for tissue and cell-type specific expression of the GS gene. A high level of GS expression in the retina was found to coincide with the accumulation of a relatively high level of GS mRNA in this tissue. The gliatoxic agent alpha-aminoadipic acid, which can selectively destroy glia cells, was used to demonstrate that restriction of GS induction to Müller glia is controlled at a transcriptional level. Cortisol could induce accumulation of GS mRNA and transcription of the GS gene in Müller glia but not in retina neurons. Glia and neurons were also found to differ in their ability to express the glucocorticoid inducible CAT construct, p delta G46TCO, which is controlled by a 'simple GRE' promoter. When introduced into cells of retina tissue, this construct was cortisol-inducible in glia whereas in neurons it was only slightly inducible or not at all. Introduction of a glucocorticoid receptor expression vector into the cells facilitated induction of the CAT construct in neurons. Analysis by immunoblotting revealed that expression of the glucocorticoid receptor protein is predominantly restricted to Müller glia. These results suggest that differential levels of glucocorticoid receptor expression in glia and neurons might be the basis for cell-type specific induction of GS.
Collapse
Affiliation(s)
- R Grossman
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Pearlman EM, Seigel GM, Notter MF. Induction of c-fos by excitatory amino acids in developing chick retina is affected by changes in cellular interactions. J Neurosci Res 1993; 36:252-9. [PMID: 8271308 DOI: 10.1002/jnr.490360303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell contact is important for normal maturation of chicken retinal Müller cells. In order to gain a better understanding as to how this occurs, we examined the ability of retinal cells with altered cell contacts to respond to an environmental stimulus. The response of Müller cells cultured under conditions which alter cell contacts was measured by activating intracellular signaling systems leading to induction of the early-inducible gene c-fos. Chicken retinal cells were cultured as explants, reaggregates, and monolayers and exposed to extracellular stimuli in the form of the excitatory amino acids D,L-alpha aminoadipic acid (AAA) and N-methyl-D,L-aspartic acid (NMDA). Each culture was exposed to 1.25 mM AAA, 2.5 mM AAA, 50 microM NMDA, or 100 microM NMDA. Toxicity was assessed histologically and by immunocytochemical labeling of Müller cells after 2 days of exposure. Activation of c-fos was determined by Western blot analysis for Fos protein after 30, 60, and 120 minutes of exposure. Exposure to AAA led to a loss of Müller cells in explant and reaggregate cultures; however, Müller cells in monolayer culture were not susceptible to AAA at either dose. NMDA was toxic to a specific population of neurons under all three culture conditions. Fos protein expression paralleled the histologic findings. Fos protein was significantly elevated after exposure to either dose of AAA in explant and reaggregate cultures but not in monolayer cultures.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E M Pearlman
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, New York
| | | | | |
Collapse
|
28
|
Daniotti JL, Landa CA, Rosner H, Maccioni HJ. Adult rat retina interneurons synthesize GD3: GD3 expression by these cells is regulated by cell-cell interactions. J Neurochem 1992; 59:107-17. [PMID: 1613492 DOI: 10.1111/j.1471-4159.1992.tb08881.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GD3, a ganglioside of the lactosyl series, is prevalent in rat retina neuronal cells. We studied here whether rat retina neurons synthesize their own surface GD3 or if they acquire it from Müller glia cells. We analyzed the activity of GD3 synthase and the in vivo labeling of gangliosides from N-[3H]acetylmannosamine in adult rat retinas after selective destruction of Müller glia cells with the gliotoxic alpha-D,L-aminoadipate (AAA). Immunostaining of rat retina sections and western blot analysis with an antivimentin antibody confirmed the gliotoxic effect of AAA. Neither GD3 synthase activity nor the in vivo labeling of GD3 and other gangliosides was significantly affected by AAA, indicating that neuronal cells synthesize their own GD3. We next analyzed the regulation of the expression of GD3 by these neurons in culture. About 80% of freshly dissociated cells from retina of 4-day-old rats (R4) immunoexpress surface GD3. After 3 days in dispersed cell culture conditions, GD3 expression was under the limit of detection in 80% of neuronal cells, indicating a failure of these cells to maintain the expression of surface GD3 in these experimental conditions. Most flat Müller glia-derived cells present in these cultures were GD3 positive. Surface GD3 was detected in approximately 60% of neuronal cells dissociated from R4 tissue that was developed in vitro as an organ culture for 3 days. Likewise, approximately 50% of neurites that had grown out from R4 retinal explants within 3 days in culture and whose neuronal character was indicated by immunoexpression of growth-associated protein GAP-43 were GD3 positive. These findings suggest that the tissue organization and/or specific interactions modulate GD3 expression in neuronal cells. Under dispersed-cell culture conditions, c-pathway gangliosides (GQ1c and GT1c), which are built up from the sialylation of GD3 and later completion of the oligosaccharide backbone, were detected in approximately 60% of neuronal cells, suggesting a maintenance of production of GD3 as an intermediate for gangliotetraosyl gangliosides.
Collapse
Affiliation(s)
- J L Daniotti
- Centro de Investigaciones en Quimica Biologica de Cordoba (CIQUIBIC), Departamento de Quimica Biologica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Argentina
| | | | | | | |
Collapse
|
29
|
Wakakura M, Yamamoto N. Rapid increase of intracellular Ca2+ concentration caused by aminoadipic acid enantiomers in retinal Müller cells and neurons in vitro. Doc Ophthalmol 1992; 80:385-95. [PMID: 1473456 DOI: 10.1007/bf00154389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of the gliotoxic compounds D,L-, D- or L-2-aminoadipic acid (AAA) to increase selectively the intracellular concentration of free calcium ion ([Ca2+]i) was examined in Müller cells cultured with or without retinal neurons. The monitoring of [Ca2+]i following exposure to 0.06 to 6 mM AAA was performed by a microfluorometry using a fluorescent Ca2+ indicator, Fura-2 acetoxymethyl ester. A rapid increase of [Ca2+]i occurred in the Müller cells following exposure to a relatively low concentration of the L-isomer. This is compatible with the known strong gliotoxicity of this isomer. The D,L- and D-forms of AAA activated neurons at low concentrations and activated the Müller cells at higher concentrations. The D-isomer appears to act selectively on retinal neurons and may be an agonist of an excitatory amino acid receptor. These results indicate that the ability of AAA to elevate cytosolic [Ca2+]i depends on the stereospecificity of the AAA and on cell type.
Collapse
Affiliation(s)
- M Wakakura
- Department of Ophthalmology, School of Medicine, Kitasato University, Japan
| | | |
Collapse
|
30
|
Sahel JA, Albert DM, Lessell S, Adler H, McGee TL, Konrad-Rastegar J. Mitogenic effects of excitatory amino acids in the adult rat retina. Exp Eye Res 1991; 53:657-64. [PMID: 1743264 DOI: 10.1016/0014-4835(91)90226-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We studied the retinas of adult rats after the intravitreal injection of excitatory amino acids and ouabain. Kainic acid, domoic acid, N-methyl D-asparate and ouabain produced swelling and vacuolization of the outer plexiform, inner nuclear and inner plexiform layers and pyknosis. Mitoses were present in retinas treated with all agents other than N-methyl D-asparate. Rompun ketamine anesthesia blocked the mitogenic effects. Immunohistochemical labeling of both glial fibrillary acidic protein and S100 protein would indicate that the mitoses are occurring in glial cells. We suggest that the mitogenic effects are mediated through action on glial cationic channels, and might account for the reactive gliosis observed in some retinal lesions.
Collapse
Affiliation(s)
- J A Sahel
- David G. Cogan Eye Pathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Crewther DP, Crewther SG. Pharmacological modification of eye growth in normally reared and visually deprived chicks. Curr Eye Res 1990; 9:733-40. [PMID: 1703472 DOI: 10.3109/02713689008999568] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regular injections of the gliotoxins D-alpha-aminoadipic acid and L-alpha-aminoadipic acid were made into the vitreous chamber of the eyes of newly-hatched chicks reared either in a normal visual environment or under conditions of monocular occlusion. Striking differences in the growth rates of the eyes from the different groups were observed. Injection of D-alpha-aminoadipic acid, which causes the Müller glial cells to swell and diminishes the retinal OFF-response, resulted in a marked increase in the rate of axial growth of the eye compared with normal eyes. However, injection of D-alpha-aminoadipic acid into occluded eyes caused a lesser growth rate than was observed in occluded control eyes. By contrast, injection of L-alpha-aminoadipic acid, which also causes severe glial swelling and abolishes the retinal ON-response, caused reduced eye growth in non-occluded eyes. However, injection of L-alpha-aminoadipic acid into occluded eyes caused eye growth in excess of that recorded in the occluded controls. We concluded that the different growth rates observed is more likely a result of the disruption of the neural ON and OFF mechanisms than of the indisposition of the Müller cells.
Collapse
Affiliation(s)
- D P Crewther
- Visual Science Unit, School of Optometry, University of New South Wales, Kensington, Australia
| | | |
Collapse
|
33
|
Abstract
Intrastriatal injection of the excitatory amino acid analogue DL-alpha-aminoadipate (100 micrograms in 2 microliters saline, pH 7.4) into anesthetized rats caused a significant reduction in striatal glutamine synthetase activity in the ipsilateral compared to the contralateral striatum 6 h after the injection. Striatal neurons were unaffected by this treatment, and by 24 h after the injection, glutamine synthetase activity had returned to normal. In contrast to the situation in vivo, incubation of coronal slices (which included the striatum) in vitro with DL-alpha-aminoadipate (1-3 mM) for periods of up to 1 h caused no change in glutamine synthetase activity. Increased doses of DL-alpha-aminoadipate coupled with longer incubation times led to widespread neuronal degeneration within the striatum. Preparation of coronal slices from striata which had been injected 6 h previously with DL-alpha-aminoadipate, and subsequently incubated with 300 microM kainate, showed a marked survival of some neurons particularly those ordering the injection tract. The toxicity of 500 microM N-methyl-D-aspartate in similar slices was unchanged. Conversely, co-incubation of DL-alpha-aminoadipate with excitotoxins in vitro provided protection of striatal cells against degeneration by N-methyl-D-aspartate, but not kainate. These findings suggest that, in vivo, DL-alpha-aminoadipate has a specific effect on glial cell metabolism which, in contrast to incubation of coronal slices with the compound in vitro, is not related to the amino acid antagonist properties associated with the D-isomer. Thus, the reduced toxicity of kainate observed in striatal slices following DL-alpha-aminoadipate injection in vivo may indicate a non-neuronal site of action of kainate.
Collapse
Affiliation(s)
- G J McBean
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| |
Collapse
|
34
|
Kato S, Sugawara K, Matsukawa T, Negishi K. Gliotoxic effects of alpha-aminoadipic acid isomers on the carp retina: a long term observation. Neuroscience 1990; 36:145-53. [PMID: 1977098 DOI: 10.1016/0306-4522(90)90357-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The glutamate analogue, alpha-aminoadipic acid was intravitreally administered in the D-, DL- and L-forms to carp (Cyprinus carpio) retina in vivo. To make a quantitative assessment of its gliotoxic action, the activity of glutamine synthetase, whose localization was confirmed in glial Müller cells by an immunohistochemical technique, was examined at various intervals over one month. Intravitreal injection of 8 mumol alpha-aminoadipic acids reduced the glutamine synthetase activity within 4 h and maximally by 24 h. The maximum reduction evoked by L-, DL- and D-forms was about 65, 45 and 28% in reduction, and their minimum effective dose was 0.8, 1.5 and 2.0 mumol, respectively. At three to four days after alpha-aminoadipic acids injection, sodium dodecyl sulphate gel electrophoresis suggested that some retinal proteins including glutamine synthetase were significantly reduced, whilst others were increased. These biochemical changes were fully reversed one to two weeks after administration of the D- or DL-forms, but not until one month with the L-form. The electroretinographic b-wave, reflecting glial activity, was completely blocked by 8 mumol alpha-aminoadipic acids within 4 h. The electroretinographic b-wave was recovered first in the case of D- and then of DL-form at two to three weeks after injection, but only 50% recovery was seen in the case of L-form even two months later. A high dose of DL-alpha-aminoadipic acid (16 mumol) induced as long lasting a suppression in the glutamine synthetase and electroretinographic b-wave activities as 8 mumol L-alpha-aminoadipic acid. Therefore, the gliotoxic efficacy of L-alpha-aminoadipic acid at micromol orders was two-fold higher than that of DL-alpha-aminoadipic acid. Differences in the time-course of recovery of the suppression of glutamate synthetase and electroretinographic b-wave activities induced by alpha-aminoadipic acids are discussed in terms of its gliotoxicity.
Collapse
Affiliation(s)
- S Kato
- Department of Neurophysiology, University of Kanazawa School of Medicine, Ishikawa, Japan
| | | | | | | |
Collapse
|
35
|
Bähr M, Schlosshauer B. JONES ganglioside expression on retinal glia increases after axotomy. JOURNAL OF NEUROCYTOLOGY 1989; 18:553-63. [PMID: 2809636 DOI: 10.1007/bf01474550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The monoclonal antibody JONES recognizes a small group of gangliosides. Within the visual system of the adult rat JONES gangliosides are found only in those regions where neuronal regeneration is known to occur, i.e. the unmyelinated retina and optic nerve head. A transient increase in JONES ganglioside expression could be observed in the retinae of adult rats after optic nerve axotomy or in the retinae of animals receiving autologous sciatic nerve grafts. The highest levels of gangliosides identified by JONES were observed five days after surgery--contemporaneous with the maximum regenerative response of the adult rat retina after crush lesions. By double-labelling experiments using antibodies against glial cell markers--glial fibrillary acidic protein, S-100 and vimentin in conjunction with JONES-JONES gangliosides were shown to be expressed on retinal glial cells in vivo and in vitro. Elimination of glial cells by intraocular injection of aminoadipic acid abolished JONES labelling in vivo.
Collapse
Affiliation(s)
- M Bähr
- Max-Planck Institut für Entwicklungsbiologie, Tübingen, Federal Republic of Germany
| | | |
Collapse
|
36
|
Prada FA, Magalhaes MM, Coimbra A, Genis-Galvez JM. Morphological differentiation of the Müller cell: Golgi and electron microscopy study in the chick retina. J Morphol 1989; 201:11-22. [PMID: 2746646 DOI: 10.1002/jmor.1052010103] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sequence of morphological differentiation of Müller cells in the chick retina was investigated in relation to the differentiation of the retinal neurons using the Golgi method. From the beginning of differentiation, the Müller cell develops spurs and lateral processes. Some of these glial processes become transformed into accessory prolongations of the Müller cell. From the 17th or 18th day of incubation, the morphology of the Müller cells is similar to that of the adult retina. On the basis of their inner prolongation, two types of Müller cells were identified. The first type, with diffuse and abundant descending processes, is identical to that described classically. The second type is a cell characterized by sparse and scanty inner ramifications. This report also describes electron microscopic observations of Müller cells and their enwrapping relationship with the axons of the optic nerve fiber layer.
Collapse
Affiliation(s)
- F A Prada
- Instituto de Biologia del Desarrollo, Facultad de Medicina, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
37
|
Karwoski CJ. Chemicals that interfere with glial function in the vertebrate retina. NEUROSCIENCE RESEARCH. SUPPLEMENT : THE OFFICIAL JOURNAL OF THE JAPAN NEUROSCIENCE SOCIETY 1989; 10:S163-72. [PMID: 2480558 DOI: 10.1016/0921-8696(89)90018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- C J Karwoski
- Department of Psychology, University of Georgia, Athens 30602
| |
Collapse
|
38
|
|
39
|
Piccoli F, Guarneri P, Guarneri R, Ponte F. L-[3H]lysine binding to rat retinal membrane: II. Effect of kainic acid, D,L-alpha-aminoadipic acid, iodoacetic acid, and modification by dark-exposure. Neurochem Res 1986; 11:1719-26. [PMID: 3102985 DOI: 10.1007/bf00967750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The rat retina and the different brain regions contain membranes sites that bind L-lysine in the nanomolar range. These binding sites undergo changes in different experimental conditions, thus: intraocular injection of kainic acid induces a reduction of the density of L-lysine binding sites, D,L-alpha-aminoadipic acid injected into the eye enhances both kinetic parameters (Bmax and Kd) of L-[3H]lysine binding sites, the intraperitoneal injection of iodoacetic acid decreases the sensitivity for its ligand binding sites, and the exposure to darkness of the rats reduces L-[3H]lysine binding in the retina, thalamus, hypothalamus and superior colliculus, but not in the occipital cortex; such a decrease appears to be characterized, at least in the retina, by a lower sensitivity of the binding sites for L-lysine after the exposure to darkness. The results show that L-lysine binding sites are located on kainic acid-sensitive cells and can be involved in the physiological mechanism of vision.
Collapse
|
40
|
Bonaventure N, Wioland N, Roussel G. Stereospecific effects of the alpha-aminoadipic acid on the retina: a morphological and electrophysiological study. Doc Ophthalmol 1985; 61:71-7. [PMID: 4064893 DOI: 10.1007/bf00143218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In both frog and chicken an intravitreal injection of the dextrorotatory (D)-isomer of alpha-aminoadipic acid (alpha-aaa) leads to a progressive disappearance of the ERG b-wave without affecting a and c components. Tectal evoked potentials (TEP) are no longer recorded. These physiological effects are concomitant with a specific glial cell damage, without any apparent damage to neurons. The levorotatory (L)-isomer at low concentrations is more gliotoxic than the D-isomer, the ERG b-wave is suppressed, while the amplitude of both a and c components is increased. TEPs are always recorded, i.e., a visual message is still generated in the retina and transmitted to the optic tectum when the Müller cells have been damaged and the b-wave is abolished. At higher concentrations the L-isomer suppresses TEPs and damages both glial and neuronal cells. Thus alpha-aaa appears to be a good tool for analyzing ERG components, especially subcomponents of the c-wave.
Collapse
|
41
|
Textorius O, Welinder E, Nilsson SE. Combined effects of DL-alpha-aminoadipic acid with sodium iodate, ethyl alcohol, or light stimulation on the ERG c-wave and on the standing potential of albino rabbit eyes. Doc Ophthalmol 1985; 60:393-400. [PMID: 4064879 DOI: 10.1007/bf00158929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Albino rabbits were treated with intravitreal injections of DL-alpha-aminoadipic acid (alpha-AAA) into one eye (0.1 ml of a 0.15 M solution) and 0.1 ml of saline into the contralateral eye. Thirteen to fourteen hours later the DC electroretinogram (ERG) and/or the standing potential (SP) were recorded. (1) In eight of nine animals the c-wave amplitude of alpha-AAA injected eyes was increased compared with that of control eyes. Following intravenous injection of Sodium Iodate (40 mg/kg in 2% solution) the c-waves of both eyes were rapidly replaced by negative potentials. In 8 of 9 animals the amplitude reduction was more marked in alpha-AAA-treated eyes than in control eyes, but the final amplitude was higher in the former than in the latter. The SP was reduced with difference in curve form but not significantly in amplitude between the eyes. (2) In nine other rabbits iv.-injected ethyl alcohol (0.4 g/kg in 20% solution) provoked a transient increase of SP level and c-wave amplitude in control eyes and smaller but similar changes in alpha-AAA injected eyes. (3) In another five animals the SP was recorded following a step from darkness to continuous light stimulation. The light peak was less pronounced in alpha-AAA treated eyes than in control eyes.
Collapse
|
42
|
Reichenbach A, Wohlrab F. Effects of alpha-aminoadipic acid on the glutamate-isolated P III of the rabbit electroretinogram. Doc Ophthalmol 1985; 59:359-64. [PMID: 2863098 DOI: 10.1007/bf00159170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
alpha-Aminoadipic acid was intravitreally applied to adult rabbits. After 5 h, the retinae of these animals were examined by electroretinography and histochemistry. The retinal Müller cells were extremely swollen, and the electroretinographic slow P III was extinguished. The mass receptor potential was somewhat diminished. The results are consistent with the opinion that the slow P III is the reaction of the Müller cells to the changed external potassium ion concentration caused by the activity of the photoreceptors.
Collapse
|
43
|
|
44
|
|
45
|
Zimmerman RP, Corfman TP. A comparison of the effects of isomers of alpha-aminoadipic acid and 2-amino-4-phosphonobutyric acid on the light response of the müller glial cell and the electroretinogram. Neuroscience 1984; 12:77-84. [PMID: 6462455 DOI: 10.1016/0306-4522(84)90139-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Intracellular recordings of the light response of retinal Müller glial cells revealed differential effects of optical isomers of alpha-aminoadipic acid, a putative gliotoxin. L-alpha-aminoadipic acid preferentially abolished the "on" component but not the "off" component of the intracellularly recorded Müller cell light response, abolished the b-wave but not the d-wave of the electroretinogram, and caused histological damage to the Müller cells. D-alpha-aminoadipic acid preferentially reduced the "off" component of the Müller cell light response and the d-wave of the electroretinogram, and did not cause appreciable histological damage to the Müller cells. 2-amino-4-phosphonobutyric acid, which has been shown to act preferentially at the synapse of photoreceptors onto depolarizing bipolar cells in the mudpuppy retina, abolished the "on" response of Müller cells and the b-wave of the electroretinogram, but caused no histological damage to the Müller glial cells. None of the agents caused a significant change in the resting membrane potential of the glial cells. The similarity of the electrical effects of L-alpha-aminoadipic acid and 2-amino-4-phosphonobutyric acid suggests that the initial loss of the b-wave following L-alpha-aminoadipic acid treatment is due to action of the amino acid at a synaptic site via a mechanism distinct from that which causes subsequent histological damage to the glial cells.
Collapse
|
46
|
Bruni JE, Vriend J. Effect of D, L-alpha-aminoadipate on the mediobasal hypothalamus and endocrine function in the rat. Acta Neuropathol 1984; 64:129-38. [PMID: 6433645 DOI: 10.1007/bf00695576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using the glutamate analog, D,L-alpha-aminoadipic acid (D,L-alpha AA), experiments were conducted to examine the nature, extent, and specificity of its toxicity in the mediobasal hypothalamus and to determine its effect on endocrine homeostasis. Neonatal rats received daily injections of D,L-alpha AA (4 g/kg BW) on postnatal days 5-10 and were killed at various post-treatment intervals. Sex-matched littermates were given equimolar amounts of NaCl and served as controls. Treated rats killed 18 days post injection weighed slightly less than controls and had reduced testicular, ovarian, and uterine weights, but the differences were not statistically significant. In D,L-alpha AA treated rats serum and pituitary levels of TSH and PRL were comparable to control values. Pituitary content of LH (male's and female's) and FSH (female's), however, was lower (P less than 0.05) in D,L-alpha AA treated rats than in controls, but serum levels were not significantly different. Distinct cytopathologic changes were evident in the arcuate nucleus and median eminence of D,L-alpha AA-treated rats killed at 2 and 6 h post injection only. By 12 h evidence of acute damage had largely disappeared. Both glial and ependymal cells underwent edematous swelling and necrosis, but neurons were largely unaffected. Evidence of reactive changes, such as gliosis, infiltration of microglia, and removal of debris, however, were not very conspicious. A random sample of mediobasal hypothalami of rats killed 18 days post injection failed to show any detectable lesion or residual effects of earlier pathology. Age at the time of exposure to the gliotoxin was found to be an important variable affecting both extent and duration of injury. The most deleterious effects were observed when the gliotoxin was administered in the form of a single injection on postnatal day 5 only. The results suggest that normal neuronal activity and endocrine homeostasis, specifically gonadotropin, may be irreversibly altered as a consequence of transient disruption of the glial compartment.
Collapse
|
47
|
Linser PJ, Moscona AA. The influence of neuronal-glial interactions on glia-specific gene expression in embryonic retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1984; 181:185-202. [PMID: 6152374 DOI: 10.1007/978-1-4684-4868-9_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
|
49
|
Karlsen RL, Pedersen OO, Schousboe A, Langeland A. Toxic effects of DL-alpha-aminoadipic acid on müller cells from rats in vivo and cultured cerebral astrocytes. Exp Eye Res 1982; 35:305-11. [PMID: 6749540 DOI: 10.1016/s0014-4835(82)80055-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Casper DS, Trelstad RL, Reif-Lehrer L. Glutamate-induced cellular injury in isolated chick embryo retina: Müller cell localization of initial effects. J Comp Neurol 1982; 209:79-90. [PMID: 6126495 DOI: 10.1002/cne.902090108] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neurotoxic and gliotoxic effects of glutamate and several glutamate analogues were studied in isolated chick embryo retinas. To facilitate examination of initial pathological events, a short-term incubation system was developed and used for light microscopic and autoradiographic investigation. Low-dose, short-term glutamate treatment of 12-day retinas resulted in a glial-specific lesion in the Müller cells, characterized by extensive cellular edema; at higher concentrations and/or longer treatment times, neurotoxic as well as gliotoxic effects were seen. The early glial damage was identical in appearance to that seen after incubation with DL-alpha-aminoadipate and other reported gliotoxins. No evidence of a similar glial-specific action was seen after administration of kainic acid, although extensive neuronal degeneration did result. Incubation of retinas with tritiated glutamate (3H-glu) revealed a selective uptake of the label by Müller cells. Autoradiographic grains were localized over Müller foot processes at the inner limiting membrane, and by 30 minutes labeled the entire glial system. Prior treatment with neurotoxic levels of glutamate did not alter the autoradiographic localization to glial cells. Possible glial-neuronal interactions and their effect on cytotoxic patterns are discussed.
Collapse
|