1
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
2
|
An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. MEMBRANES 2022; 12:membranes12050522. [PMID: 35629848 PMCID: PMC9146655 DOI: 10.3390/membranes12050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
The lens of the eye loses elasticity with age, while α-crystallin association with the lens membrane increases with age. It is unclear whether there is any correlation between α-crystallin association with the lens membrane and loss in lens elasticity. This research investigated α-crystallin membrane association using atomic force microscopy (AFM) for the first time to study topographical images and mechanical properties (breakthrough force and membrane area compressibility modulus (KA), as measures of elasticity) of the membrane. α-Crystallin extracted from the bovine lens cortex was incubated with a supported lipid membrane (SLM) prepared on a flat mica surface. The AFM images showed the time-dependent interaction of α-crystallin with the SLM. Force spectroscopy revealed the presence of breakthrough events in the force curves obtained in the membrane regions where no α-crystallin was associated, which suggests that the membrane’s elasticity was maintained. The force curves in the α-crystallin submerged region and the close vicinity of the α-crystallin associated region in the membrane showed no breakthrough event within the defined peak force threshold, indicating loss of membrane elasticity. Our results showed that the association of α-crystallin with the membrane deteriorates membrane elasticity, providing new insights into understanding the molecular basis of lens hardening and presbyopia.
Collapse
|
3
|
Abstract
The crystallins (α, β and γ), major constituent proteins of eye lens fiber cells play their critical role in maintaining the transparency and refractive index of the lens. Under different stress factors and with aging, β- and γ-crystallins start to unfold partially leading to their aggregation. Protein aggregation in lens basically enhances light scattering and causes the vision problem, commonly known as cataract. α-crystallin as a molecular chaperone forms complexes with its substrates (β- and γ-crystallins) to prevent such aggregation. In this chapter, the structural features of β- and γ-crystallins have been discussed. Detailed structural information linked with the high stability of γC-, γD- and γS-crystallins have been incorporated. The nature of homologous and heterologous interactions among crystallins has been deciphered, which are involved in their molecular association and complex formation.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India.
| | - Priyanka Chauhan
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India
| |
Collapse
|
4
|
Kumar CS, Singh BP, Alim S, Swamy MJ. Factors Influencing the Chaperone-Like Activity of Major Proteins of Mammalian Seminal Plasma, Equine HSP-1/2 and Bovine PDC-109: Effect of Membrane Binding, pH and Ionic Strength. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:53-68. [DOI: 10.1007/978-981-13-3065-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Biswas A, Karmakar S, Chowdhury A, Das KP. Interaction of α-crystallin with some small molecules and its effect on its structure and function. Biochim Biophys Acta Gen Subj 2015; 1860:211-21. [PMID: 26073614 DOI: 10.1016/j.bbagen.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/23/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND α-Crystallin acts like a molecular chaperone by interacting with its substrate proteins and thus prevents their aggregation. It also interacts with various kinds of small molecules that affect its structure and function. SCOPE OF REVIEW In this article we will present a review of work done with respect to the interaction of ATP, peptide generated from lens crystallin and other proteins and some bivalent metal ions with α-crystallin and discuss the role of these interactions on its structure and function and cataract formation. We will also discuss the interaction of some hydrophobic fluorescence probes and surface active agents with α-crystallin. MAJOR CONCLUSIONS Small molecule interaction controls the structure and function of α-crystallin. ATP and Zn+2 stabilize its structure and enhance chaperone function. Therefore the depletion of these small molecules can be detrimental to maintenance of lens transparency. However, the accumulation of small peptides due to protease activity in the lens can also be harmful as the interaction of these peptides with α-crystallin and other crystallin proteins in the lens promotes aggregation and loss of lens transparency. The use of hydrophobic probe has led to a wealth of information regarding the location of substrate binding site and nature of chaperone-substrate interaction. Interaction of surface active agents with α-crystallin has helped us to understand the structural stability and oligomeric dissociation in α-crystallin. GENERAL SIGNIFICANCE These interactions are very helpful in understanding the mechanistic details of the structural changes and chaperone function of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- A Biswas
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - S Karmakar
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - A Chowdhury
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - K P Das
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
6
|
Real-time heterogeneous protein–protein interaction between αA-crystallin N-terminal mutants and αB-crystallin using quartz crystal microbalance (QCM). Amino Acids 2015; 47:1035-43. [DOI: 10.1007/s00726-015-1935-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
|
7
|
Structural Properties of Silkworm Small Heat-Shock Proteins: sHSP19.9 and sHSP20.8. Biosci Biotechnol Biochem 2014; 74:1556-63. [DOI: 10.1271/bbb.100131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Sankhala RS, Damai RS, Swamy MJ. Correlation of membrane binding and hydrophobicity to the chaperone-like activity of PDC-109, the major protein of bovine seminal plasma. PLoS One 2011; 6:e17330. [PMID: 21408153 PMCID: PMC3050878 DOI: 10.1371/journal.pone.0017330] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Abstract
The major protein of bovine seminal plasma, PDC-109 binds to choline phospholipids present on the sperm plasma membrane upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. PDC-109 also shares significant similarities with small heat shock proteins and exhibits chaperone-like activity (CLA). Although the polydisperse nature of this protein has been shown to be important for its CLA, knowledge of other factors responsible for such an activity is scarce. Since surface exposure of hydrophobic residues is known to be an important factor which modulates the CLA of chaperone proteins, in the present study we have probed the surface hydrophobicity of PDC-109 using bisANS and ANS. Further, effect of phospholipids on the structure and chaperone-like activity of PDC-109 was studied. Presence of DMPC was found to increase the CLA of PDC-109 significantly, which could be due to the considerable exposure of hydrophobic regions on the lipid-protein recombinants, which can interact productively with the nonnative structures of target proteins, resulting in their protection. However, inclusion of DMPG instead of DMPC did not significantly alter the CLA of PDC-109, which could be due to the lower specificity of PDC-109 for DMPG as compared to DMPC. Cholesterol incorporation into DMPC membranes led to a decrease in the CLA of PDC-109-lipid recombinants, which could be attributed to reduced accessibility of hydrophobic surfaces to the substrate protein(s). These results underscore the relevance of phospholipid binding and hydrophobicity to the chaperone-like activity of PDC-109.
Collapse
Affiliation(s)
| | - Rajani S. Damai
- School of Chemistry, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
9
|
Short-chain peptides as a promising class of chaperone-like anticataract agents: Molecular mechanism of inhibition of crystallin aggregation by pantethine. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Liu BF, Song S, Hanson M, Liang JJN. Protein-protein interactions involving congenital cataract T5P gammaC-crystallin mutant: a confocal fluorescence microscopy study. Exp Eye Res 2008; 87:515-20. [PMID: 18926820 DOI: 10.1016/j.exer.2008.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/14/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
Abstract
The human lens crystallin gene CRYGC T5P is associated with Coppock-like cataract and has a phenotype of a dust-like opacity of the fetal lens nucleus and deep cortical region. Previous in vitro mutation studies indicate that the protein has changed conformation, solubility, and stability, which may make it susceptible to aggregation, as seen in cataractous lens and cell culture expression. To investigate the mechanisms leading to these events, we studied protein-protein interactions using confocal fluorescence resonance energy transfer (FRET) microscopy. The method detects protein-protein interactions in the natural environment of living cells. Crystallin genes (CRYGC T5P, CRYGC, and CRYAA) were fused to either the green fluorescence protein (GFP) or red fluorescence protein (DsRED or RFP) vector. Each of the following GFP-RFP (donor-acceptor) plasmid pairs was cotransfected into HeLa cells: gammaC-gammaC, gammaC-gammaCT5P, gammaCT5P-gammaCT5P, alphaA-gammaC, and alphaA-gammaCT5P. After culture, confocal fluorescence cell images were taken. Protein-protein interactions in the form of net FRET were evaluated. The confocal fluorescence images show that cells expressing T5P gammaC-crystallin contain many protein aggregates, but cells co-expressing with either gammaC- or alphaA-crystallin reduce the aggregation considerably. FRET determination indicates that gammaCT5P-gammaCT5P shows less protein-protein interaction than either gammaC-gammaC or gammaC-gammaCT5P. Cotransfection with alphaA-crystallin (alphaA-gammaC or alphaA-T5PgammaC) increases nFRET compared with gammaC-gammaC or gammaC-T5PgammaC. Our results demonstrate that T5P gammaC-crystallin shows more protein aggregates and less protein-protein interaction than WT gammaC-crystallin. Chaperone alphaA-crystallin can rescue T5P gammaC-crystallin from aggregation through increased protein interaction. The formation of congenital cataract may be due to reduced protein-protein interactions and increased aggregation from an insufficient amount of alpha-crystallin for protection.
Collapse
Affiliation(s)
- Bing-Fen Liu
- Center for Ophthalmic Research, Brigham and Women's Hospital, Boston, MA 02115-5822, USA
| | | | | | | |
Collapse
|
11
|
Youssef T, Brazard J, Ley C, Lacombat F, Plaza P, Martin MM, Sgarbossa A, Checcucci G, Lenci F. Steady-state and femtosecond photoinduced processes of blepharismins bound to alpha-crystallin. Photochem Photobiol Sci 2008; 7:844-53. [DOI: 10.1039/b800848e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Reddy GB, Kumar PA, Kumar MS. Chaperone-like activity and hydrophobicity of alpha-crystallin. IUBMB Life 2007; 58:632-41. [PMID: 17085382 DOI: 10.1080/15216540601010096] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
alpha-Crystallin, a prominent member of small heat shock protein (sHsp) family and a major structural protein of the eye lens is a large polydisperse oligomer of two isoforms, alphaA- and alphaB-crystallins. Numerous studies have demonstrated that alpha-crystallin functions like a molecular chaperone in preventing the aggregation of various proteins under a wide range of stress conditions. The molecular chaperone function of alpha-crystallin is thus considered to be vital in the maintenance of lens transparency and in cataract prevention. alpha-Crystallin selectively interacts with non-native proteins thereby preventing them from aggregation and helps maintain them in a folding competent state. It has been proposed and generally accepted that alpha-crystallin suppresses the aggregation of other proteins through the interaction between hydrophobic patches on its surface and exposed hydrophobic sites of partially unfolded substrate protein. However, a quantifiable relationship between hydrophobicity and chaperone-like activity remains a matter to be concerned about. On an attentive review of studies on alpha-crystallin chaperone-like activity, particularly the studies that have direct or indirect implications to hydrophobicity and chaperone-like activity, we found several instances wherein the correlation between hydrophobicity and its chaperone-like activity is paradoxical. We thus attempted to provide an overview on the role of hydrophobicity in chaperone-like activity of alpha-crystallin, the kind of evaluation done for the first time.
Collapse
|
13
|
Kundu M, Sen PC, Das KP. Structure, stability, and chaperone function of αA-crystallin: Role of N-terminal region. Biopolymers 2007; 86:177-92. [PMID: 17345631 DOI: 10.1002/bip.20716] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Small heat shock protein alphaA-crystallin, the major protein of the eye lens, is a molecular chaperone. It consists of a highly conserved central domain flanked by the N-terminal and C-terminal regions. In this article we studied the role of the N-terminal domain in the structure and chaperone function of alphaA-crystallin. Using site directed truncation we raised several deletion mutants of alphaA-crystallin and their protein products were expressed in Escherichia coli. Size exclusion chromatography of these purified proteins showed that deletion from the N-terminal beyond the first 20 residues drastically reduced the oligomeric association of alphaA-crystallin and its complete removal resulted in a tetramer. Chaperone activity of alphaA-crystallin, determined by thermal and nonthermal aggregation and refolding assay, decreased with increasing length of deletion and little activity was observed for the tetramer. However it was revealed that N-terminal regions were not responsible for specific recognition of natural substrates and that low affinity substrate binding sites existed in other part of the molecule. The number of exposed hydrophobic sites and the affinity of binding hydrophobic probe bis-ANS as well as protein substrates decreased with N-terminal deletion. The stability of the mutant proteins decreased with increase in the length of deletion. The role of thermodynamic stability, oligomeric size, and surface hydrophobicity in chaperone function is discussed. Detailed analysis showed that the most important role of N-terminal region is to control the oligomerization, which is crucial for the stability and in vivo survival of this protein molecule.
Collapse
Affiliation(s)
- Madhuchhanda Kundu
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India
| | | | | |
Collapse
|
14
|
Kumar MS, Kapoor M, Sinha S, Reddy GB. Insights into Hydrophobicity and the Chaperone-like Function of αA- and αB-crystallins. J Biol Chem 2005; 280:21726-30. [PMID: 15817465 DOI: 10.1074/jbc.m500405200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-crystallin, composed of two subunits, alphaA and alphaB, has been shown to function as a molecular chaperone that prevents aggregation of other proteins under stress conditions. The exposed hydrophobic surfaces of alpha-crystallins have been implicated in this process, but their exact role has not been elucidated. In this study, we quantify the hydrophobic surfaces of alphaA- and alphaB-crystallins by isothermal titration calorimetry using 8-anilino-1-napthalenesulfonic acid (ANS) as a hydrophobic probe and analyze its correlation to the chaperone potential of alphaA- and alphaB-crystallins under various conditions. Two ANS binding sites, one with low and another with high affinity, were clearly detected, with alphaB showing a higher number of sites than alphaA at 30 degrees C. In agreement with the higher number of hydrophobic sites, alphaB-crystallin demonstrated higher chaperone activity than alphaA at this temperature. Thermodynamic analysis of ANS binding to alphaA- and alphaB-crystallins indicates that high affinity binding is driven by both enthalpy and entropy changes, with entropy dominating the low affinity binding. Interestingly, although the number of ANS binding sites was similar for alphaA and alphaB at 15 degrees C, alphaA was more potent than alphaB in preventing aggregation of the insulin B-chain. Although there was no change in the number of high affinity binding sites of alphaA and alphaB for ANS upon preheating, there was an increase in the number of low affinity sites of alphaA and alphaB. Preheated alphaA, in contrast to alphaB, exhibited remarkably enhanced chaperone activity. Our results indicate that although hydrophobicity appears to be a factor in determining the chaperone-like activity of alpha-crystallins, it does not quantitatively correlate with the chaperone function of alpha-crystallins.
Collapse
Affiliation(s)
- M Satish Kumar
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
15
|
Seidler NW, Yeargans GS, Morgan TG. Carnosine disaggregates glycated alpha-crystallin: an in vitro study. Arch Biochem Biophys 2004; 427:110-5. [PMID: 15178493 DOI: 10.1016/j.abb.2004.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 04/27/2004] [Indexed: 11/19/2022]
Abstract
Protein glycation, which promotes aggregation, involves the unwanted reaction of carbohydrate oxidation products with proteins. Glycation of lens alpha-crystallin occurs in vivo and may contribute to cataractogenesis. Anti-glycation compounds such as carnosine may be preventive, but interestingly carnosine reverses lens opacity in human trials. The mechanism for this observation may involve carnosine's ability to disaggregate glycated protein. We investigated this hypothesis using glycated alpha-crystallin as our in vitro model. Methylglyoxal-induced glycation of alpha-crystallin caused aggregation as evidenced by increased 90 degrees light scattering. After addition of carnosine, light scattering returned to baseline levels suggesting that the size of the glycation-induced aggregates decreased. Additionally, carnosine decreased tryptophan fluorescence polarization of glycated alpha-crystallin, suggesting that carnosine increased peptide chain mobility, which may contribute to the controlled unfolding of glycated protein. Comparatively, guanidine-HCl and urea had no effect. Our data support the hypothesis that carnosine disaggregates glycated alpha-crystallin.
Collapse
Affiliation(s)
- Norbert W Seidler
- University of Health Sciences, Department of Biochemistry, 1750 Independence Avenue, Kansas City, MO 64106-1453, USA.
| | | | | |
Collapse
|
16
|
Bertsch M, Kassner RJ. Selective Staining of Proteins with Hydrophobic Surface Sites on a Native Electrophoretic Gel. J Proteome Res 2003; 2:469-75. [PMID: 14582643 DOI: 10.1021/pr025579+] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical proteomics aims to characterize all of the proteins in the proteome with respect to their function, which is associated with their interaction with other molecules. We propose the identification of a subproteomic library of expressed proteins whose native structures are typified by the presence of hydrophobic surface sites, which are often involved in interactions with small molecules, membrane lipids, and other proteins, pertaining to their functions. We demonstrate that soluble globular proteins with hydrophobic surface sites can be detected selectively by staining on an electrophoretic gel run under nondenaturing conditions. The application of these staining techniques may help elucidate new catalytic, transport, and regulatory functionalities in complex proteomic screenings.
Collapse
Affiliation(s)
- Martina Bertsch
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Suite 4500, Chicago, Illinois 60607, USA
| | | |
Collapse
|
17
|
Fu L, Liang JJN. Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem 2002; 277:4255-60. [PMID: 11700327 DOI: 10.1074/jbc.m110027200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Crystallin consists of two subunits, alphaA and alphaB, and each can form an oligomer by itself or with the other. The aggregation arises from interdomain interactions. However, it is not known whether such interactions also exist among alpha-, beta-, and gamma-crystallins. This heterogeneous crystallin interaction is far weaker than the homogeneous crystallin interaction and is difficult to detect by conventional spectroscopic measurements. We used a mammalian two-hybrid system in this study. The major crystallin components, alphaA-, alphaB-, betaB2-, and gammaC-crystallin genes, were subcloned into the DNA binding domain and transcription activation domain vectors of the two-hybrid system, and they were cotransfected along with a chloramphenicol acetyltransferase (CAT) reporter vector into HeLa cells. Chloramphenicol acetyltransferase activity indicated that there were interactions between alphaA- (or alphaB-) and betaB2- or gammaC-crystallins but with an intensity of one-third that of alphaA-alphaB interactions. Hsp27, a member of the family of the small heat-shock proteins, showed a similar interaction property with alphaB-crystallin. Using the N- and C-terminal domain-truncated mutants, we demonstrated that both domains were important in the alphaA-crystallin self-interaction, but that only the C-terminal domain was important in the alphaB-crystallin self-interaction. These results show that the two-hybrid system can detect interactions among various crystallins and may be used in mapping interaction domains.
Collapse
Affiliation(s)
- Ling Fu
- Center for Ophthalmic Research, Brigham and Women's Hospital, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
18
|
Cobb BA, Petrash JM. alpha-Crystallin chaperone-like activity and membrane binding in age-related cataracts. Biochemistry 2002; 41:483-90. [PMID: 11781086 PMCID: PMC2902969 DOI: 10.1021/bi0112457] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alpha-Crystallin, the major protein component of the vertebrate lens, is thought to play a critical role in the maintenance of transparency through its ability to inhibit stress-induced protein aggregation. However, during aging and cataract formation the amount of membrane-bound alpha-crystallin increases significantly while high molecular weight complexes (HMWCs) comprised of alpha-crystallin and other lens crystallins accumulate. These and other recent data suggest a possible link between cataract formation, the formation of high molecular weight alpha-crystallin aggregates, and the progressive increase in membrane association of alpha-crystallin. To better understand these processes, we characterized the chaperone-like activity (CLA) and subunit exchange of membrane bound alpha-crystallin. In addition, we measured the membrane binding properties of in vitro constituted HMWCs to understand the mechanism by which increased alpha-crystallin is bound to the membrane of old and cataractous lens cells in vivo. Membrane-associated alpha-crystallin complexes have measurably reduced CLA compared to complexes in solution; however, membrane binding does not alter the time required for alpha-crystallin complexes to reach subunit exchange equilibrium. In addition, HMWCs prepared in vitro have a profoundly increased membrane binding capacity as compared to native alpha-crystallin. These results are consistent with a model in which increased membrane binding of alpha-crystallin is an integral step in the pathogenesis of many forms of cataracts.
Collapse
Affiliation(s)
| | - J. Mark Petrash
- To whom correspondence should be addressed at the Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Ave., Box 8096, St. Louis, MO 63110. Telephone: 314-362-1172. Fax: 314-362-3638. . Web: http://petrash-lab.wustl.edu
| |
Collapse
|
19
|
Bazzi MD, Rabbani N, Duhaiman AS. Hydrophobicity of the NADPH binding domain of camel lens zeta-crystallin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:71-8. [PMID: 11257509 DOI: 10.1016/s0167-4838(00)00264-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interaction of camel lens zeta-crystallin with the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) enhanced the ANS fluorescence and quenched the protein fluorescence. Both of these events were concentration-dependent and showed typical saturation curves suggesting specific ANS-zeta-crystallin binding. Quantitative analysis indicated that 1 mole zeta-crystallin bound at most 1 mole ANS. NADPH but not 9,10-phenanthrenequinone (PQ) was able to displace zeta-crystallin-bound ANS. These results suggested the presence of a hydrophobic domain in zeta-crystallin, possibly at the NADPH binding site. alpha-Crystallin as well as NADPH protected zeta-crystallin against thermal inactivation suggesting the importance of this site for enzyme stability. The NADPH:quinone oxidoreductase activity of zeta-crystallin was inhibited by ANS with NADPH as electron donor and PQ as electron acceptor. Lineweaver-Burk plots indicated mixed-type inhibition with respect to NADPH, with a K(i) of 2.3 microM. Secondary plots of inhibition with respect to NADPH indicated a dissociation constant (K'I) of 12 microM for the zeta-crystallin-NADPH-ANS complex. The K(i) being smaller than K'I suggested that competitive inhibition at the NADPH binding site was predominant over non-competitive inhibition. Like ANS-zeta-crystallin binding, inhibition was dependent on ANS concentration but independent of incubation time.
Collapse
Affiliation(s)
- M D Bazzi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
20
|
Huang FY, Ho Y, Shaw TS, Chuang SA. Functional and structural studies of alpha-crystallin from galactosemic rat lenses. Biochem Biophys Res Commun 2000; 273:197-202. [PMID: 10873586 DOI: 10.1006/bbrc.2000.2924] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaperone-like activity and structural changes of lens alpha-crystallin from rats fed with galactose at various time intervals have been studied using high-performance liquid chromatograph (HPLC), circular dichroism (CD), and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence emission. It was found that chaperone-like activity of alpha-crystallin from galactose-fed rats toward dithiothreitol (DTT)-induced insulin B aggregation started to decrease after 3 weeks and decreased significantly after 5 weeks. Consistent results were observed in lens morphology, and lens opacity slightly developed after 3 weeks and became obvious after 5 weeks. HPLC analysis for chaperone function showed that the formation of high molecular weight aggregates (HMWA) of alpha-/gamma-crystallins decreases with the increase of galactose-feeding time, revealing that chaperone-like activity is concomitant with the formation of HMWA. Circular dichroism results showed the reduction of beta-sheet structure and loss of microenvironment of aromatic-type amino acids for opaque lenses, indicating alpha-crystallin's secondary and tertiary structure changed with the development of the lens opacity. ANS binding site estimated by Klotz equation showed it is 1.5 times higher at room temperature and is 2.4 times higher at 58 degrees C for age-matched normal alpha-crystallin than for 5-week galactose-fed lens alpha-crystallin, indicating opaque lens alpha-crystallin loses the ability to assemble into an appropriately placed hydrophobic regions. The overall results accordingly indicated that galactose-induced cataractous alpha-crystallin has disordered structure, leading to the loss of its chaperone-like activity.
Collapse
Affiliation(s)
- F Y Huang
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan.
| | | | | | | |
Collapse
|
21
|
Smith RS, Hawes NL, Chang B, Roderick TH, Akeson EC, Heckenlively JR, Gong X, Wang X, Davisson MT. Lop12, a mutation in mouse Crygd causing lens opacity similar to human Coppock cataract. Genomics 2000; 63:314-20. [PMID: 10704279 DOI: 10.1006/geno.1999.6054] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new cataract mutation was discovered in an ongoing program to identify new mouse models of hereditary eye disease. Lens opacity 12 (Lop12) is a semidominant mutation that results in an irregular nuclear lens opacity similar to the human Coppock cataract. Lop12 is associated with a small nonrecombining segment that maps to mouse Chromosome 1 close to the eye lens obsolescence mutation (Cryge(Cat2-Elo)), a member of the gamma-crystallin gene cluster (Cryg). Using a systemic candidate gene approach to analyze the entire Cryg cluster, a G to A transition was found in exon 3 of Crygd associated with the Lop12 mutation and has been designated Crygd(Lop12). The mutation Crygd(Lop12) leads to the formation of an in-frame stop codon that produces a truncated protein of 156 amino acids. It is predicted that the defective gene product alters protein folding of the gamma-crystallin(s) and results in lens opacity.
Collapse
Affiliation(s)
- R S Smith
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Akhtar NJ, Sun TX, Liang JJ. Conformational study of N(epsilon)-(carboxymethyl)lysine adducts of recombinant alpha-crystallins. Curr Eye Res 1999; 18:270-6. [PMID: 10372986 DOI: 10.1076/ceyr.18.4.270.5364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Lens proteins underwent nonenzymatic glycation, and the advanced glycation end products (AGEs) were detected by immunological assays. One of the major AGE structures is N(epsilon)-(carboxymethyl)lysine (CML). Since the involvement of AGEs in the pathogenesis of diabetic complications is speculated, the effects of CML formation on proteins were studied. METHODS CML adducts were generated in recombinant alphaA- and alphaB-crystallins by incubation with glyoxylic acid and NaBH3CN. SDS-PAGE and size exclusion chromatography were used to detect subunit degradation and high-molecular-weight (HMW) aggregation. Conformational change was determined by fluorescence and circular dichroism (CD) measurements. The chaperone function was studied by DTT-induced aggregation of insulin. RESULTS Lysine modification was estimated to be 60-90% depending on the conditions of incubation. No subunit degradation or HMW aggregation was observed. Fluorescence and CD measurements detected a conformational change in CML adducts. Measurements of chaperone-like activity, however, indicated that the formation of CML increased the protein's ability to protect insulin against DTT-induced aggregation. CONCLUSIONS Although CML adducts of alphaA- and alphaB-crystallins, the major AGE structures formed in vitro, changed protein conformation, no subunit degradation and HMW aggregation were observed. Moreover, the CML adducts increased chaperone-like activity of both alphaA- and alphaB-crystallins. The results suggest that CML formation alone may not play a major role in protein aggregation and lens opacity.
Collapse
Affiliation(s)
- N J Akhtar
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-5822, USA
| | | | | |
Collapse
|
23
|
Sun TX, Akhtar N, Liang JJ. Conformational change of human lens insoluble alpha-crystallin. JOURNAL OF PROTEIN CHEMISTRY 1998; 17:679-84. [PMID: 9853683 DOI: 10.1007/bf02780970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human lens alpha-crystallin becomes progressively insoluble with age and is the major crystallin component in the water-insoluble (WI) fraction. The mechanism that causes the originally water-soluble (WS) alpha-crystallin to become insoluble is unknown. A conformational change by chemical modification may be the cause, but the nature of insolubility renders it impossible to study protein conformation in the WI fraction by most spectroscopic measurements. In the present study, alpha-crystallin in the WI fraction was extracted by urea and reconstituted to a folded protein by dialysis. The refolded urea-soluble (US) alpha-crystallin was compared with WS alpha-crystallin. The US alpha-crystallin has a greater amount of polymeric species, but fewer degraded subunits than the WS alpha-crystallin as shown by SDS-PAGE and Western blot. Circular dichroism (CD) measurements indicate that they have the same secondary structure but a different tertiary structure, possibly a partial unfolding in the US alpha-crystallin. This is supported by fluorescence measurements: Trp residues are more exposed and protein has a more-hydrophobic surface in the US than in the WS alpha-crystallin. Blue fluorescence further indicates that the US alpha-crystallin has a greater amount of pigment than the WS alpha-crystallin. Together, these results indicate that the US alpha-crystallin is a chemically and conformationally modified protein.
Collapse
Affiliation(s)
- T X Sun
- Center for Ophthalmic Research, Brigham and Women's Hospital, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Sun TX, Akhtar NJ, Liang JJ. Subunit exchange of lens alpha-crystallin: a fluorescence energy transfer study with the fluorescent labeled alphaA-crystallin mutant W9F as a probe. FEBS Lett 1998; 430:401-4. [PMID: 9688580 DOI: 10.1016/s0014-5793(98)00707-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A Trp-free alphaA-crystallin mutant (W9F) was prepared by site-directed mutation. This mutant appears to be identical to the wild-type in terms of conformation (secondary and tertiary structures). W9F was labeled with a sulfhydryl-specific fluorescent probe, 2-(4'-maleimidylanilino) naphthalene-6-sulfonate (MIANS), and used in a subunit exchange between alphaA- and alphaA-crystallins as well as between alphaA- and alphaB-crystallins, studied by measurement of fluorescence resonance energy transfer. Energy transfer was observed between Trp (donor, with emission maximum at 336 nm) of wild-type alphaA- or alphaB-crystallin and MIANS (acceptor, with absorption maximum at 313 nm) of labeled W9F when subunit exchange occurred. Time-dependent decrease of Trp and increase of MIANS fluorescence were recorded. The exchange was faster at 37 degrees C than at 25 degrees C. The energy transfer efficiency was greater between homogeneous subunits (alphaA-alphaA) than between heterogeneous subunits (alphaA-alphaB). A previous exchange study with isoelectric focusing indicated a complete but slow exchange between alphaA and alphaB subunits. The present study showed that the exchange was a fast process, and the different energy transfer efficiencies between alphaA-alphaA and alphaA-alphaB indicated that alphaA- and alphaB-crystallins were not necessarily structurally equivalent.
Collapse
Affiliation(s)
- T X Sun
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Tang D, Borchman D. Temperature induced structural changes of beta-crystallin and sphingomyelin binding. Exp Eye Res 1998; 67:113-8. [PMID: 9702184 DOI: 10.1006/exer.1998.0497] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of the binding of alpha-crystallin to membranes is potentially important for understanding the function of alpha-crystallin in the ocular lens and the formation of cataracts. Using fluorescence probes, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3 -phosphoethanolamine, triethylammonium salt (NBD-PE) and (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid, dipotassium salt (bis-ANS), the temperature dependence of the binding of alpha-crystallin to sphingomyelin liposomes, and the structural changes of alpha-crystallin and sphingomyelin induced by temperature were studied. The influence of the binding of alpha-crystallin on the mobility of the head group region of liposomes of sphingomyelin was dependent on the thermal history of alpha-crystallin. Binding of alpha-crystallin to sphingomyelin caused a decrease in the anisotropy of the fluorophore NBD-PE at or below 37 degrees C. However, when alpha-crystallin or the mixture of alpha-crystallin/sphingomyelin were preincubated near the secondary structure phase transition temperature of 60 degrees C, an increase of the anisotropy of NBD-PE (decrease of lipid head group mobility) was observed when measured at 22 degrees C or 37 degrees C. An inflection near 47 degrees C in the curve of fluorescence anisotropy of bis-ANS pre-incorporated into the alpha-crystallin corresponded to a 3 degrees or 4 degrees structural change of alpha-crystallin. alpha-Crystallin either increases or decreases the flexibility of the head group of sphingomyelin liposomes depending on its structure.
Collapse
Affiliation(s)
- D Tang
- Department of Ophthalmology and Visual Science, University of Louisville, KY 40202, USA
| | | |
Collapse
|
26
|
Liang JJ, Chakrabarti B. Intermolecular interaction of lens crystallins: from rotationally mobile to immobile states at high protein concentrations. Biochem Biophys Res Commun 1998; 246:441-5. [PMID: 9610380 DOI: 10.1006/bbrc.1998.8640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conformation of lens crystallins in vivo or in a highly concentrated solution is not well established. Most studies were carried out in dilute solutions in which protein-protein interaction is minimal. In order to see whether there is conformational change (tertiary and secondary structures) when crystallin solutions are brought to high concentrations, we have performed the following molecular spectroscopic measurements: circular dichroism (CD) and Fourier transform infrared (FTIR). Near-UV CD measurements showed a more than two-fold increase in CD intensity (molar ellipticity) for the total water-soluble (WS) protein from young calf lens nucleus in a highly concentrated solution (> 300 mg/ml in a 0.01-mm cell), when compared with a dilute solution (1000-fold dilution in a 10-mm cell). The individual crystallins in concentrated solutions also showed an increase in CD intensity, but of different magnitude: alpha-crystallin > beta-crystallin > gamma-crystallin. The increased CD indicates that lens crystallins are in a more compact structure in highly concentrated solutions; they likely undergo a transition from a mobile to an immobile state. Change in near-UV CD usually is caused by restricted mobility of aromatic side groups, particularly Trp. The transition involves not only a change in protein tertiary and/or quaternary structure, but also in protein backbone structure. The change of protein backbone structure was drawn from FTIR measurements. FTIR spectra, sensitive to the secondary structure in the amide I region, could be measured for a highly concentrated solution for which far-UV CD measurement is not feasible. The secondary structure that showed prominent change for alpha-crystallin in a highly concentrated solution was beta-conformation: increase in beta-turn with a concomitant decrease of alpha-helix structure.
Collapse
Affiliation(s)
- J J Liang
- Ophthalmic Research, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
27
|
Carver JA, Lindner RA. NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol 1998; 22:197-209. [PMID: 9650074 DOI: 10.1016/s0141-8130(98)00017-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The subunit molecular mass of alpha-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for alpha-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, alpha A- and alpha B-crystallin. These extensions are not involved in interactions with other proteins (e.g. beta- and gamma-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of alpha A-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic alpha-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the alpha A-crystallin subunit maintains its flexibility whereas the alpha B-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the 'substrate' protein. The conformation of 'substrate' proteins when they interact with alpha-crystallin has been probed by 1H NMR spectroscopy and it is concluded that alpha-crystallin interacts with 'substrate' proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of alpha-crystallin in the presence of increasing concentrations of urea, it is proposed that alpha-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of alpha-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with 'substrate' proteins during the chaperone action.
Collapse
Affiliation(s)
- J A Carver
- Department of Chemistry, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
28
|
Smulders RH, van Boekel MA, de Jong WW. Mutations and modifications support a 'pitted-flexiball' model for alpha-crystallin. Int J Biol Macromol 1998; 22:187-96. [PMID: 9650073 DOI: 10.1016/s0141-8130(98)00016-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
alpha-Crystallin is renown for resisting crystallization and electron microscopic image analysis. The spatial conformation thus remaining elusive, the authors explored the structure and chaperone functioning by analyzing the effects of site-directed mutagenesis, the properties of naturally occurring aberrant forms of alpha-crystallin and the influence of chemical modifications. The authors observed that the globular multimeric structure, as well as the chaperoning capacity are remarkably tolerant towards changes and modifications in the primary structure. The essential features of the quaternary structure--globular shape, flexibility, highly polar exterior and accessible hydrophobic surface pockets--support a 'pitted-flexiball' model, which combines tetrameric subunit building blocks in an open micelle-like arrangement.
Collapse
Affiliation(s)
- R H Smulders
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
29
|
Sharma KK, Kaur H, Kumar GS, Kester K. Interaction of 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid with alpha-crystallin. J Biol Chem 1998; 273:8965-70. [PMID: 9535881 DOI: 10.1074/jbc.273.15.8965] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrophobic sites in alpha-crystallin were evaluated using a fluorescent probe 1,1'-bi(4-anilino)naphthalenesulfonic acid (bis-ANS). Approximately one binding site/subunit of alpha-crystallin at 25 degrees C was estimated by equilibrium binding and Scatchard analysis (Kd = 1.1 microM). Based on fluorescence titration, the dissociation constant was 0.95 microM. The number of bis-ANS binding sites nearly doubled upon heat treatment of the protein at 60 degrees C. Likewise, the exposure of alpha-crystallin to 2-3 M urea resulted in increased binding of bis-ANS. Above 3 M urea there was a rapid loss in the fluorescence indicating the loss of interaction between bis-ANS and protein. The alpha-crystallin refolded from 6 M urea showed tryptophan fluorescence emission similar to the native alpha-crystallin. However, the refolded alpha-crystallin showed a 60% increase in bis-ANS binding, suggesting distinct changes on the protein surface resulting from exposure to urea similar to the changes occurring due to heat treatment. The fluorescence of tryptophan in native alpha-crystallin was quenched by the addition of bis-ANS. The quenching was inversely related to the amount of bis-ANS bound to alpha-crystallin. Additionally, the binding of bis-ANS reduced the chaperone-like activity of the protein. Photolysis of bis-ANS-alpha-crystallin complex resulted in incorporation of the probe to both A- and B-subunits, indicating that both subunits in native alpha-crystallin contribute to the surface hydrophobicity of the protein.
Collapse
Affiliation(s)
- K K Sharma
- Mason Eye Institute, Department of Ophthalmology, University of Missouri, Columbia, Missouri 65212, USA.
| | | | | | | |
Collapse
|
30
|
Sun TX, Liang JJ. Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J Biol Chem 1998; 273:286-90. [PMID: 9417077 DOI: 10.1074/jbc.273.1.286] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lens alpha-crystallin subunits alphaA and alphaB are differentially expressed and have a 3-to-1 ratio in most mammalian lenses by intermolecular exchange. The biological significance of this composition and the mechanism of exchange are not clear. Preparations of human recombinant alphaA- and alphaB-crystallins provide a good system in which to study this phenomenon. Both recombinant alphaA- and alphaB-crystallins are folded and aggregated to the size of the native alpha-crystallin. During incubation together, they undergo an intermolecular exchange as shown by native isoelectric focusing. Circular dichroism measurements indicate that the protein with a 3-to-1 ratio of alphaA- and alphaB-crystallins has the same secondary structure but somewhat different tertiary structures after exchange: the near-UV CD increases after exchange. The resulting hybrid aggregate is more stable than the individual homogeneous aggregates: at 62 degrees C, alphaB-crystallin is more susceptible to aggregation and displays a greater light scattering than alphaA-crystallin. This heat-induced aggregation of alphaB-crystallin, however, was suppressed by intermolecular exchange with alphaA-crystallin. These phenomena are also observed by fast performance liquid chromatography gel filtration patterns. The protein structure of alphaB-crystallin is stabilized by intermolecular exchange with alphaA-crystallin.
Collapse
Affiliation(s)
- T X Sun
- Center for Ophthalmic Research, Brigham and Women's Hospital, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
31
|
Blakytny R, Carver JA, Harding JJ, Kilby GW, Sheil MM. A spectroscopic study of glycated bovine alpha-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity and evidence for diglycation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:299-315. [PMID: 9434120 DOI: 10.1016/s0167-4838(97)00145-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of glycating the C-terminal extensions of alpha-crystallin on their flexibility was investigated. In the course of the study the reaction sites were identified and double glycation of single lysine residues was found. Alpha-crystallin was incubated until approximately one mole of the sugar had reacted per subunit of the crystallin. The reaction sites were investigated by mass spectrometry and H NMR spectroscopy, and were found to be principally in the short and flexible C-terminal extensions. The chaperone ability of alpha-crystallin was unaffected by this limited glycation. There was little effect on the flexibility of the C-terminal extensions. This result supports the view that the flexibility of the C-terminal extensions of alpha-crystallin is important for chaperone activity. As alpha-crystallin consists of a mixture of unmodified and phosphorylated subunits, a detailed investigation was undertaken of the reaction of galactose with peptides comprising the C-terminal extensions of alphaA- and alphaB-crystallin. The alphaA peptide was incubated with galactose until 0.79 mole of sugar was bound per mole of peptide and the alphaB peptide reacted until 2.2 moles of galactose had been incorporated. The purified glycated peptides were examined by NMR and mass spectrometry to identify glycation site(s), and the effect of glycation on the conformation of the peptides. For both peptides, it was found that extensive glycation of the constituent lysine residues occurred. The addition of two galactose molecules to some lysine residues of the peptides was also noted. This diglycation was confirmed in control experiments with N-acetyl-lysine.
Collapse
Affiliation(s)
- R Blakytny
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
32
|
Das BK, Liang JJ. Detection and characterization of alpha-crystallin intermediate with maximal chaperone-like activity. Biochem Biophys Res Commun 1997; 236:370-4. [PMID: 9240443 DOI: 10.1006/bbrc.1997.6950] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lens alpha-crystallin has been reported to act like a chaperone molecule, with the chaperone-like activity enhanced by partial unfolding. The nature of the partial unfolding, however, is not fully understood. In this project, the unfolding and refolding process of alpha-crystallin was studied with guanidine hydrochloride (GdnHCl). Trp fluorescence (tertiary structure) and far-ultraviolet circular dichroism (UVCD) (secondary structure) demonstrated the presence of an intermediate in the unfolding pathway. ANS (1-anilino-8-naphthalenesulfonate) fluorescence clearly indicated a two-step transition in the unfolding-refolding process and showed that maximum hydrophobicity of the alpha-crystallin occurred at 0.8-1.0 M GdnHCl. This alpha-crystallin intermediate appears to be in a molten globule state; conformational study by near- and far-UVCD measurements indicated that alpha-crystallin intermediate exhibited tertiary structure which was significantly altered from that of the native protein, but had nearly the same secondary structure. Quaternary structure (size of aggregate) of the intermediate also remained unchanged from that of the native protein, as shown by FPLC size exclusion chromatography. The maximal hydrophobicity of the alpha-crystallin intermediate in the unfolding-refolding pathway was accompanied by maximal protection of betaH-crystallin from aggregation. However, an adverse effect of partial unfolding is that the alpha-crystallin intermediate aggregates at high concentrations. Together, these results clearly demonstrated the biological significance of the alpha-crystallin intermediate: it is a more effective chaperone than native alpha-crystallin.
Collapse
Affiliation(s)
- B K Das
- Center for Ophthalmic Research, Brigham and Women's Hospital, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Smulders RH, de Jong WW. The hydrophobic probe 4,4'-bis(1-anilino-8-naphthalene sulfonic acid) is specifically photoincorporated into the N-terminal domain of alpha B-crystallin. FEBS Lett 1997; 409:101-4. [PMID: 9199512 DOI: 10.1016/s0014-5793(97)00498-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photoincorporation of the fluorescent probe 4,4'-bis(1-anilino-8-naphthalene sulfonic acid) (bis-ANS) can be used to locate solvent-exposed hydrophobic regions in proteins. We show that bis-ANS is specifically incorporated into the putative N-terminal domain of alpha B-crystallin. This incorporation diminishes the chaperone-like activity of alpha B-crystallin, suggesting that hydrophobic surfaces in the N-terminal domain are involved in the binding of unfolding proteins.
Collapse
Affiliation(s)
- R H Smulders
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Sun TX, Das BK, Liang JJ. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin. J Biol Chem 1997; 272:6220-5. [PMID: 9045637 DOI: 10.1074/jbc.272.10.6220] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human and other mammalian lens proteins are composed of three major crystallins: alpha-, beta-, and gamma-crystallin. alpha-Crystallin plays a prominent role in the supramolecular assembly required to maintain lens transparency. With age, the crystallins, especially alpha-crystallin, undergo posttranslational modifications that may disrupt the supramolecular assembly, and the lens becomes susceptible to other stresses resulting in cataract formation. Because these modifications occur even at a relatively young age, it is difficult to obtain pure, unmodified crystallins for in vitro experiments. alpha-Crystallin is composed of two subunits, alphaA and alphaB. Before the application of recombinant DNA technology, these two alpha-crystallin subunits were separated from calf lens in the denatured state and reconstituted by the removal of the denaturant, but they were not refolded properly. In the present studies, we applied the recombinant DNA technology to prepare native, unmodified alphaA- and alphaB-crystallins for conformational and functional studies. The expressed proteins from Escherichia coli are in the native state and can be studied directly. First, alphaA and alphaB cDNAs were isolated from a human lens epithelial cell cDNA library. The cDNAs were cloned into a pAED4 expression vector and then expressed in E. coli strain BL21(DE3). Pure recombinant alphaA- and alphaB-crystallins were obtained after purification by gel filtration and DEAE liquid chromatography. They were subjected to conformational studies involving various spectroscopic measurements and an assessment of chaperone-like activity. alphaA- and alphaB-crystallins have not only different secondary structure, but also tertiary structure. 1-Anilino-8-naphthalene sulfonate fluorescence indicates that alphaB-crystallin is more hydrophobic than alphaA-crystallin. The chaperone-like activity, as measured by the ability to protect insulin aggregation, is about 4 times greater for alphaB- than for alphaA-crystallin. The resulting data provide a base line for further studies of human lens alpha-crystallin.
Collapse
Affiliation(s)
- T X Sun
- Center for Ophthalmic Research, Brigham and Women's Hospital, and the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Stevens A, Augusteyn RC. Binding of 1-anilinonaphthalene-8-sulfonic acid to alpha-crystallin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:792-7. [PMID: 9057847 DOI: 10.1111/j.1432-1033.1997.00792.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-Crystallin was found to exhibit a time-dependent uptake of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), similar to that typically observed with lipid membranes. Analysis of the interaction of ANS with alpha-crystallin revealed two types of interactive processes, partitioning and binding. The predominant process involved partitioning, with a coefficient of 300 M-1. The binding component had the following characteristics: 1 binding site/24 subunits and a Kd of about 9 microM. The binding was unaffected by the number of subunits used in the assembly of the alpha-aggregate, since both the alpha m- and alpha c-forms had similar binding characteristics. No discernible differences were observed in the binding of ANS to homopolymers of alpha A and alpha B subunits, suggesting that the hydrophobic sites to which ANS bound were similar in both the A and B subunits. The majority of the fluorescence was lost when the protein was incubated in 3 M urea, a concentration of denaturant where the protein is still intact, suggesting that the ANS binding sites are located near the surface of the protein. The decrease was attributed to a decrease in the quantum yield of the bound dye.
Collapse
Affiliation(s)
- A Stevens
- National Vision Research Institute of Australia, Carlton, Victoria, Australia
| | | |
Collapse
|
36
|
Abstract
We simulated the structure of reversible protein aggregates as a function of protein surface characteristics, protein-protein interaction energies, and the entropic penalty accompanying the immobilization of protein in a solid phase. These simulations represent an extension of our previous work on kinetically irreversible protein aggregate structure and are based on an explicit accounting of the specific protein-protein interactions that occur within reversible aggregates and crystals. We considered protein monomers with a mixture of hydrophobic and hydrophilic surface regions suspended in a polar solvent; the energetic driving force for aggregation is provided by the burial of solvent-exposed hydrophobic surface area. We analyzed the physical properties of the generated aggregates, including density, protein-protein contact distributions, solvent accessible surface area, porosity, and order, and compared our results with the protein crystallization literature as well as with the kinetically irreversible case. The physical properties of reversible aggregates were consonant with those observed for the irreversible aggregates, although in general, reversible aggregates were more stable energetically and were more crystal-like in their order content than their irreversible counterparts. The reversible aggregates were less dense than the irreversible aggregates, indicating that the increased energetic stability is derived primarily from the optimality rather than the density of the packing in the solid phase. The extent of hydrophobic protein-protein contacts and solvent-exposed surface area within the aggregate phase depended on the aggregation pathway: reversible aggregates tended to have a greater proportion of hydrophobic-hydrophobic contacts and a smaller fraction of hydrophobic solvent-exposed surface area. Furthermore, the arrangement of hydrophobic patches on the protein surface played a major role in the distribution of protein contacts and solvent content. This was readily reflected in the order of the aggregates: the greater the contiguity of the hydrophobic patches on the monomer surface, the less ordered the aggregates became, despite the opportunities for rearrangement offered by a reversible pathway. These simulations have enhanced our understanding of the impact of protein structural motifs on aggregate properties and on the demarcation between aggregation and crystallization.
Collapse
Affiliation(s)
- S Y Patro
- Howard P. Isermann Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | |
Collapse
|
37
|
Le Breton ER, Carver JA. Solution conformation of bovine lens alpha- and betaB2-crystallin terminal extensions. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 47:9-19. [PMID: 8907494 DOI: 10.1111/j.1399-3011.1996.tb00804.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha- and betaB2-Crystallin are the major proteins in the mammalian lens. Each of these crystallins has short, flexible terminal extensions from its domain core; the two alpha-crystallin subunits have C-terminal extensions of eight and ten amino acids whilst betaB2-crystallin has N- and C-terminal extensions of 15 and 11 amino acids, respectively. The solution conformations of these chemically synthesised extensions have been examined by two-dimensional 1H NMR spectroscopy. The N-terminal extension of betaB2-crystallin and the C-terminal extensions of alpha-crystallin adopt little ordered structure. In the membrane-mimicking solvent trifluoroethanol, the alpha-crystallin extensions are also unstructured. In contrast, the C-terminal extension of betaB2-crystallin in water has a structural preference towards turn-like structures, creating a hydrophobic region involving G198, F200 and P202. In the lens, the C-terminal extension of betaB2-crystallin is the only one of these extensions that interacts to any large extent with other crystallins. The structural preference of the C-terminal extension of betaB2-crystallin may therefore have implications for the role of this extension in crystallin-crystallin interactions.
Collapse
Affiliation(s)
- E R Le Breton
- Australian Cataract Research Foundation, Department of Chemistry, The University of Wollongong, New South Wales, Australia
| | | |
Collapse
|
38
|
Andreasi Bassi F, Arcovito G, De Spirito M, Mordente A, Martorana GE. Self-similarity properties of alpha-crystallin supramolecular aggregates. Biophys J 1995; 69:2720-7. [PMID: 8599678 PMCID: PMC1236509 DOI: 10.1016/s0006-3495(95)80143-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The supramolecular aggregation of alpha-crystallin, the major protein of the eye lens, was investigated by means of static and dynamic light scattering. The aggregation was induced by generating heat-modified alpha-crystallin forms and by stabilizing the clusters with calcium ions. The kinetic pattern of the aggregation and the structural features of the clusters can be described according to the reaction limited cluster-cluster aggregation theory previously adopted for the study of colloidal particles aggregation systems. Accordingly, the average mass and the hydrodynamic radius of alpha-crystallin supramolecular aggregates grow exponentially in time. The structure factor of the clusters is typical of fractal aggregates. A fractal dimension df approximately 2.15 was determined, indicating a low probability of sticking together of the primitive aggregating particles. As a consequence, the slow-forming clusters assemble a rather compact structure. The basic units forming the fractal aggregates were found to have a radius about twice (approximately 17 nm) that of the native protein and 5.3 times its size, which is consistent with an intermediate molecular assembly corresponding to the already known high molecular weight forms of alpha-crystallin.
Collapse
Affiliation(s)
- F Andreasi Bassi
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | | |
Collapse
|
39
|
Carver JA, Guerreiro N, Nicholls KA, Truscott RJ. On the interaction of alpha-crystallin with unfolded proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:251-60. [PMID: 7578231 DOI: 10.1016/0167-4838(95)00146-l] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
alpha-Crystallin, a major protein component of the lens, has chaperone-like properties whereby it prevents destabilised proteins from precipitating out of solution. It does so by forming a soluble high-molecular-weight (HMW) complex. A spectroscopic investigation of the HMW complex formed between a variety of unfolded proteins and bovine alpha-crystallin is presented in this paper. As monitored by fluorescence spectroscopy, a large amount of the hydrophobic probe, 8-anilino-1-naphthalene sulfonate (ANS) binds to the HMW complex implying that the complexed proteins (alcohol dehydrogenase (ADH), gamma-crystallin and rhodanese) are bound in an unfolded, possibly molten-globule state. The interaction between the anionic surfactant, sodium dodecyl sulfate (SDS) and ADH at high temperatures gives rise to a similar large increase in ANS fluorescence to that for the complex between alpha-crystallin and ADH. SDS, like alpha-crystallin, therefore complexes to proteins in their unfolded state leaving a large hydrophobic surface exposed to solvent. Unlike other chaperones (e.g., GroEL, DnaK and SecB), alpha-crystallin does not interact with unfolded, hydrophobic but stable proteins (e.g., reduced and carboxymethylated alpha-lactalbumin and alpha-casein). It is concluded that alpha-crystallin will only complex with proteins that are about to precipitate out of solution, i.e., ones that are severely compromised. 1H-NMR spectroscopy of the HMW complex formed between alpha-crystallin and gamma-crystallin indicates that the short C-terminal extension of alpha B-crystallin, but not that of alpha A-crystallin, has lost its flexibility in the complex implying that the former is involved in interactions with the unfolded gamma-crystallin molecule, possibly electrostatically via its two C-terminal lysine residues.
Collapse
Affiliation(s)
- J A Carver
- Australian Cataract Research Foundation, Department of Chemistry, University of Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
40
|
Carver JA, Esposito G, Schwedersky G, Gaestel M. 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Lett 1995; 369:305-10. [PMID: 7649277 DOI: 10.1016/0014-5793(95)00770-a] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The small heat-shock proteins (Hsps) exist as large aggregates and function by interacting and stabilising non-native proteins in a chaperone-like manner. Two-dimensional 1H NMR spectroscopy of mouse Hsp25 reveals that the last 18 amino acids have great flexibility with motion that is essentially independent of the domain core of the protein. The lens protein, alpha-crystallin, is homologous to Hsp25 and its two subunits also have flexible C-terminal extensions. The flexible region in Hsp25 encompasses exactly that expected from sequence comparison with alpha-crystallin implying that both proteins have similar structures and that the C-terminal extensions could be of functional importance for both proteins.
Collapse
Affiliation(s)
- J A Carver
- Australian Cataract Research Foundation, Department of Chemistry, University of Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
41
|
Das KP, Surewicz WK. Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett 1995; 369:321-5. [PMID: 7649280 DOI: 10.1016/0014-5793(95)00775-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
alpha-Crystallin, the major protein of the ocular lens, is known to have extensive similarities to small heat shock proteins and to act as a molecular chaperone. The exposure of hydrophobic surfaces on alpha-crystallin was studied by fluorescence spectroscopy using the hydrophobic probe bis-ANS. Upon heating the protein undergoes a conformational transition which is associated with a marked increase in surface hydrophobicity. This transition, which occurs between approximately 38 and 50 degrees C, lacks reversibility. The increase in surface hydrophobicity correlates with the increased chaperone activity of the protein. These results indicate that hydrophobic interactions play a major role in the chaperone action of alpha-crystallin.
Collapse
Affiliation(s)
- K P Das
- Department of Ophtalmology, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
42
|
Groth-Vasselli B, Kumosinski TF, Farnsworth PN. Computer-generated model of the quaternary structure of alpha crystallin in the lens. Exp Eye Res 1995; 61:249-53. [PMID: 7556488 DOI: 10.1016/s0014-4835(05)80044-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
|
44
|
Kilby GW, Carver JA, Zhu JL, Sheil MM, Truscott RJ. Loss of the C-terminal serine residue from bovine beta B2-crystallin. Exp Eye Res 1995; 60:465-9. [PMID: 7615012 DOI: 10.1016/s0014-4835(05)80061-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrospray mass spectrometric (ES-MS) examination of bovine beta-crystallins showed a significant component corresponding in mass to beta B2-crystallin less one serine residue. Tryptic digestion, followed by isolation and characterisation of the C-terminal peptide, demonstrated that this new species has arisen by the loss of the C-terminal serine residue. This phenomenon appears to be age-related since no truncation was detected in beta B2-crystallin from foetal lenses and the proportion of the truncated form, as judged by ES-MS, was lower in beta-crystallin isolated from calf lenses than that from the lenses of 3-year-old animals. This process therefore is similar to a recently reported loss of the C-terminal serine from alpha A-crystallin, which we have confirmed using ES-MS. Loss of a C-terminal serine from both crystallins may indicate the presence of carboxypeptidase-A-like activity in bovine lenses. ES-MS data provided no evidence for a significant degree of phosphorylation of beta B2-crystallin.
Collapse
Affiliation(s)
- G W Kilby
- Australian Cataract Research Foundation, University of Wollongong, NSW
| | | | | | | | | |
Collapse
|
45
|
Stevens A, Wang SX, Caines GH, Schleich T. 13C-NMR off-resonance rotating frame spin-lattice relaxation studies of bovine lens gamma-crystallin self association: effect of 'macromolecular crowding'. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:82-90. [PMID: 7811735 DOI: 10.1016/0167-4838(94)00172-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NMR technique of 13C off-resonance rotating frame spin-lattice relaxation, which provides an accurate assessment of the effective rotational correlation time (tau 0, eff) for macromolecular rotational diffusion, was applied to the study of gamma-crystallin association as a function of protein concentration and temperature. Values of the effective rotational correlation time for gamma-crystallin rotational diffusion were obtained at moderate to high protein concentrations (80-350 mg/ml) and at temperatures above, and below, the cold cataract phase transition temperature. With increasing concentration gamma-crystallin was observed to increasingly associate as reflected by larger values of tau 0, eff Decreasing temperature in the range of 35 to 22 degrees C was found to result in no change in the temperature corrected value of tau 0, eff at a gamma-crystallin concentration of 80 mg/ml, whereas at temperatures of 18 degrees C or below, this parameter was approx. twofold larger, suggesting the occurrence of a well defined phase transition, which correlated well with the cold cataract phase transition temperature. At higher protein concentrations, by contrast, tau 0, eff (temperature corrected) was found to increase by approx. 1.6- to 2-times in the temperature interval 35 degrees C to 22 degrees C, a result consistent with the dependence of the cold cataract phase transition temperature on gamma-crystallin concentration. Analysis of intensity ratio dispersion curves, using an assumed model of isodesmic association, permitted the estimation of the association constant characterizing the aggregation under particular conditions of concentration and temperature. The significant increase in the value of the association constant with moderate increases in protein concentration was rationalized by invoking the effect of 'macromolecular crowding'. The results obtained in this study suggest that in the intact lens, where high protein concentrations prevail, gamma-crystallin is unlikely to be found in the monomeric state, but more likely, as a significantly aggregated species, representing a broad molecular weight distribution.
Collapse
Affiliation(s)
- A Stevens
- Department of Chemistry and Biochemistry, Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | | | | | |
Collapse
|
46
|
Prabhakaram M, Ortwerth BJ. The glycation and cross-linking of isolated lens crystallins by ascorbic acid. Exp Eye Res 1992; 55:451-9. [PMID: 1426076 DOI: 10.1016/0014-4835(92)90118-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Individual lens crystallins were isolated from calf lens extracts and incubated in the presence of ascorbic acid for 3 weeks under aerobic conditions. Both alpha-crystallin and beta H-crystallin rapidly cross-linked to form high molecular weight proteins, which did not enter the resolving gel on SDS-PAGE. Beta L-crystallin was somewhat less reactive, but gamma-crystallin showed little or no crosslinking. Gamma-crystallin, however, was almost equivalent to the other crystallins as a substrate for glycation. This was measured by: (a) the binding of protein to a boronate affinity column; (b) the incorporation of 3H from NaB3H4 into protein; (c) amino acid analysis of the modified proteins to estimate the extent of lysine modification; and (d) the incorporation of [1-14C]ASA into individual crystallins. When the separated crystallins were combined with [125I]gamma-crystallin and incubated with ascorbic acid, radioactivity was readily incorporated into the cross-linked products with other crystallins, but again not with gamma-crystallin itself. Gel filtration chromatography of a mixture of [125I]gamma-crystallin and alpha-crystallin showed the formation of a complex between gamma- and alpha-crystallins. These data suggest that all crystallins are glycated, but that cross-linking occurs preferentially between proteins, which are already bound together non-covalently.
Collapse
Affiliation(s)
- M Prabhakaram
- Mason Institute of Ophthalmology, University of Missouri, Columbia 65212
| | | |
Collapse
|
47
|
Abstract
The interaction of crystallins with lens membranes and liposomes was studied by fluorescence and circular dichroism (CD) measurements. Two extrinsic fluorescence probes ANS (1-anilino-naphthalene-8-sulfonic acid) and DPH (1,6-diphenyl, 1,3,5-hexatriene) were used to detect the binding and to explore the binding site. The ANS fluorescence intensity is greater in membranes than in liposomes, but is reverse for DPH. Among alpha, beta and gamma-crystallins, only alpha c-crystallin decreased the ANS fluorescence intensity in membranes, indicating a binding between membranes and alpha c-crystallin. The binding site appears to be at the polar-apolar interface in membrane protein (MIP26) and alpha c-crystallin. Fluorescence polarization measurements show that lipid bilayer becomes less mobile with alpha c-crystallin binding. The change in the near UV CD due to the binding also indicates a decreased freedom of rotation of aromatic amino acid residues either in MIP26 or in alpha-crystallin.
Collapse
Affiliation(s)
- J J Liang
- Howe Laboratory of Ophthalmology, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| | | |
Collapse
|