1
|
Kataoka M. Structural studies of bacteriorhodopsin in BC era. Biophys Physicobiol 2023; 20:e201006. [PMID: 38362329 PMCID: PMC10865857 DOI: 10.2142/biophysico.bppb-v20.s006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
It marked half a century since the discovery of bacteriorhodopsin two years ago. On this occasion, I have revisited historically important diffraction studies of this membrane protein, based on my recollections. X-ray diffraction and electron diffraction, and electron microscopy, described the low-resolution structure of bacteriorhodopsin within the purple membrane. Neutron diffraction was effective to assign the helical regions in the primary structure with 7 rods revealed by low-resolution structure as well as to describe the retinal position. Substantial conformational changes upon light illumination were clarified by the structures of various photointermediates. Early trials of time-resolved studies were also introduced. Models for the mechanism of light-driven proton pump based on the low-resolution structural studies are also described. Significantly, they are not far from the today's understanding. I believe that the spirit of the early research scientists in this field and the essence of their studies, which constitute the foundations of the field, still actively fertilizes current membrane protein research.
Collapse
Affiliation(s)
- Mikio Kataoka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0189, Japan
| |
Collapse
|
2
|
|
3
|
Balashov SP, Govindjee R, Ebrey TG. Redshift of the purple membrane absorption band and the deprotonation of tyrosine residues at high pH: Origin of the parallel photocycles of trans-bacteriorhodopsin. Biophys J 2010; 60:475-90. [PMID: 19431801 DOI: 10.1016/s0006-3495(91)82074-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
At high pH (> 8) the 570 nm absorption band of all-trans bacteriorhodopsin (bR) in purple membrane undergoes a small (1.5 nm) shift to longer wavelengths, which causes a maximal increase in absorption at 615 nm. The pK of the shift is 9.0 in the presence of 167 mM KCl, and its intrinsic pK is approximately 8.3. The red shift of the trans-bR absorption spectrum correlates with the appearance of the fast component in the light-induced L to M transition, and absorption increases at 238 and 297 nm which are apparently caused by the deprotonation of a tyrosine residue and red shift of the absorption of tryptophan residues. This suggests that the deprotonation of a tyrosine residue with an exceptionally low pK (pK(a) approximately 8.3) is responsible for the absorption shift of the chromophore band and fast M formation. The pH and salt dependent equilibrium between the two forms of bR, "neutral" and "alkaline," bR <--> bR(a), results in two parallel photocycles of trans-bR at high pH, differing in the rate of the L to M transition. In the pH range 10-11.8 deprotonation of two more tyrosine residues is observed with pK's approximately 10.3 and 11.3 (in 167 mM KCL). Two simple models discussing the role of the pH induced tyrosine deprotonation in the photocycle and proton pumping are presented.It is suggested that the shifts of the absorption bands at high pH are due to the appearance of a negatively charged group inside the protein (tyrosinate) which causes electrochromic shifts of the chromophore and protein absorption bands due to the interaction with the dipole moments in the ground and excited states of bR (Stark effect). This effect gives evidence for a significant change in the dipole moment of the chromophore of bR upon excitation.Under illumination alkaline bR forms, besides the usual photocycle intermediates, a long-lived species with absorption maximum at 500 nm (P500). P500 slowly converts into bR(a) in the dark. Upon illumination P500 is transformed into an intermediate having an absorption maximum at 380 nm (P380). P380 can be reconverted to P500 by blue light illumination or by incubation in the dark.
Collapse
Affiliation(s)
- S P Balashov
- Department of Physiology and Biophysics, University of Illinois, Urbana, Illinois 61801 USA
| | | | | |
Collapse
|
4
|
|
5
|
Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Biochemistry 2006; 45:10674-81. [PMID: 16939219 DOI: 10.1021/bi060958s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin (BR), a light-driven proton pump in Halobacterium salinarum, accommodates two resting forms of the retinylidene chromophore, the all-trans form (AT-BR) and the 13-cis,15-syn form (13C-BR). Both isomers are present in thermal equilibrium in the dark, but only the all-trans form has proton-pump activity. In this study, we applied low-temperature Fourier-transform infrared (FTIR) spectroscopy to 13C-BR at 77 K and compared the local structure around the chromophore before and after photoisomerization with that in AT-BR. Strong hydrogen-out-of-plane (HOOP) vibrations were observed at 964 and 958 cm(-)(1) for the K state of 13C-BR (13C-BR(K)) versus a vibration at 957 cm(-)(1) for the K state of AT-BR (AT-BR(K)). In AT-BR(K), but not in 13C-BR(K), the HOOP modes exhibit isotope shifts upon deuteration of the retinylidene at C15 and at the Schiff base nitrogen. Whereas the HOOP modes of AT-BR(K) were significantly affected by the mutation of Thr89, this was not the case for the HOOP modes of 13C-BR(K). These observations imply that, while the chromophore distortion is localized near the Schiff base in AT-BR(K), it is located elsewhere in 13C-BR(K). By use of [zeta-(15)N]lysine-labeled BR, we identified the N-D stretching vibrations of the 13C-BR Schiff base (in D(2)O) at 2173 and 2056 cm(-)(1), close in frequency to those of AT-BR. These frequencies indicate strong hydrogen bonding of the Schiff base in 13C-BR, presumably with a water molecule as in AT-BR. In contrast, the N-D stretching vibration appears at 2332 and 2276 cm(-)(1) in 13C-BR(K) versus values of 2495 and 2468 cm(-)(1) for AT-BR(K), suggesting that the rupture of the Schiff base hydrogen bond that occurs in AT-BR(K) does not occur in 13C-BR(K). Rotational motion of the Schiff base upon retinal isomerization is probably smaller in magnitude for 13C-BR than for AT-BR. These differences in the primary step are possibly related to the absence of light-driven proton pumping by 13C-BR.
Collapse
Affiliation(s)
- Noriko Mizuide
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Maeda A, Tomson FL, Gennis RB, Balashov SP, Ebrey TG. Water molecule rearrangements around Leu93 and Trp182 in the formation of the L intermediate in bacteriorhodopsin's photocycle. Biochemistry 2003; 42:2535-41. [PMID: 12614147 DOI: 10.1021/bi020532n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After the chromophore's isomerization in the initial photochemical event in bacteriorhodopsin, the primary photoproduct K makes a thermal transition to the L intermediate, which prepares the pigment for Schiff base deprotonation in the following step (L --> M). Substantial changes in the hydrogen bonding of internal water molecules take place upon L formation. Some of these mobile waters are probably involved in changing the pK of the Schiff base and perhaps that of the proton acceptor Asp85 to allow proton movement [Maeda, A. (2001) Biochemistry (Moscow) 66, 1555-1569]. Here we show that mutations of Leu93 and Trp182, residues close to the 13-methyl group of the chromophore, allow the formation of L at much lower temperatures than in the wild type (80 K instead of 140 K). Moreover, an intense band due to weakly bound water that is peculiar for L was already present in the initial (unphotolyzed) state of each mutant at 2632 cm(-1) (in D2O) but not in the wild type. This unique, intense water band is shifted compared to the L band at 2589 cm(-1) but coincides with the band seen in L', the all-trans photoproduct of wild-type L formed at 80 K. We propose that the L93M and W182F mutations induce changes in the hydrogen bonding of one or more water molecules in the unphotolyzed states of these pigments, which are similar to those H-bonding changes that take place upon formation of L in the wild type, and thus facilitate the formation of L even at 80 K. We infer that L formation involves perturbation of a site which includes retinal, Trp182, and Leu93, and this structure is temporarily stabilized by rearranged hydrogen bonds with water molecules.
Collapse
Affiliation(s)
- Akio Maeda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
7
|
Sasaki J, Yuzawa T, Kandori H, Maeda A, Hamaguchi H. Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle. Biophys J 1995; 68:2073-80. [PMID: 7612850 PMCID: PMC1282111 DOI: 10.1016/s0006-3495(95)80386-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The photochemical reaction process of bacteriorhodopsin in the nanosecond time range (-120-860 ns) was measured in the 1400-900 cm-1 region with an improved time resolved dispersive-type infrared spectrometer. The system is equipped with a newly developed detection unit whose instrumental response to a 5-ns laser pulse has a full width of the half-maximum of 60 ns. It provides highly accurate data that enabled us to extract a kinetic process one order of magnitude faster than the instrumental response. The spectral changes in the 1400-900 cm-1 region were analyzed by singular value decomposition and resolved into three components. These components were separated by fitting with 10- and 1000-ns exponential functions and a step function, which were convoluted with the instrumental response function. The components with decay time constants of 10 and 1000 ns are named K and KL, respectively, on the basis of previous visible spectroscopy. The spectral shapes of K and KL are distinguishable by their hydrogen-out-of-plane (HOOP) modes, at 958 and 984 cm-1, respectively. The former corresponds to the K intermediate recorded at 77 K and the latter to a K-like photoproduct at 135 K. On the basis of published data, these bands are assigned to the 15-HOOP mode, indicating that the K and KL differ in a twist around the C14-C15 bond.
Collapse
Affiliation(s)
- J Sasaki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
8
|
Schulenberg PJ, Rohr M, Gärtner W, Braslavsky SE. Photoinduced volume changes associated with the early transformations of bacteriorhodopsin: a laser-induced optoacoustic spectroscopy study. Biophys J 1994; 66:838-43. [PMID: 8011916 PMCID: PMC1275782 DOI: 10.1016/s0006-3495(94)80860-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Volume changes associated with the primary photochemistry of bacteriorhodopsin (BR) were measured by temperature-dependent laser-induced optoacoustic spectroscopy (LIOAS). Excitation was performed with 8-ns flashes establishing a photoequilibrium between the BR and the K states (BR<-->hvK). The concentration of K at the end of the laser pulse, which is an important parameter for the calculation of the volume change per molecule from the LIOAS data, was determined by flash photolysis with optical detection under the specific conditions (concentration, photon density) of the LIOAS experiment. Temperature-dependent measurements yielded a linear dependency of the ratio of the optoacoustic signals for BR and for a calorimetric reference (CoCl2) with the cubic thermal expansion coefficient beta of water. From the slope of this linear ratio a contraction of 11 cm3/mol was determined.
Collapse
Affiliation(s)
- P J Schulenberg
- Max-Planck-Institut für Strahlenchemie, Mülheim a.d. Ruhr, Germany
| | | | | | | |
Collapse
|
9
|
Balashov SP, Karneyeva NV, Litvin FF, Ebrey TG. BATHOPRODUCTS and CONFORMERS OF ALL-trans-AND 13-ds BACTERIORHODOPSIN AT 90 K. Photochem Photobiol 1991. [DOI: 10.1111/j.1751-1097.1991.tb02115.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Maeda A, Sasaki J, Pfefferlé JM, Shichida Y, Yoshizawa T. FOURIER TRANSFORM INFRARED SPECTRAL STUDIES ON THE SCHIFF BASE MODE OF ALL-trans BACTERIORHODOPSIN and ITS PHOTOINTERMEDIATES, K and L. Photochem Photobiol 1991. [DOI: 10.1111/j.1751-1097.1991.tb02111.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Light- and dark-adaptation of bacteriorhodopsin measured by a photoelectric method. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90188-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Vodyanoy V, Karvaly B, Lanyi JK. Photochemical behavior of bacteriorhodopsin immobilized in NaCl pellets. Photochem Photobiol 1985; 42:413-21. [PMID: 4089030 DOI: 10.1111/j.1751-1097.1985.tb01589.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Lanyi JK. Chapter 11 Bacteriorhodopsin and related light-energy converters. NEW COMPREHENSIVE BIOCHEMISTRY 1984. [DOI: 10.1016/s0167-7306(08)60321-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
|
15
|
Tokunaga F, Iwasa T. [18] The photoreaction cycle of bacteriorhodopsin: Low-temperature spectrophotometry. Methods Enzymol 1982. [DOI: 10.1016/0076-6879(82)88021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
|
17
|
Maeda A, Iwasa T, Yoshizawa T. PHOTOREACTION OF THE ACIDIFIED FORM OF BACTERIORHODOPSIN AND ITS 9-CIS DERIVATIVE IN PURPLE MEMBRANE AT LOW TEMPERATURES. Photochem Photobiol 1981. [DOI: 10.1111/j.1751-1097.1981.tb05459.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Iwasa T, Tokunaga F, Ebrey TG, Yoshizawa T. THE PHOTOREACTIONS AND PHOTOSENSITIVITY OF 3,4-DEHYDRO-BACTERIORHODOPSIN AT LOW TEMPERATURES. Photochem Photobiol 1981. [DOI: 10.1111/j.1751-1097.1981.tb05458.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Iwasa T, Tokunaga F, Yoshizawa T. PHOTOCHEMICAL REACTION OF 13-CIS-BACTERIORHODOPSIN STUDIED BY LOW TEMPERATURE SPECTROPHOTOMETRY. Photochem Photobiol 1981. [DOI: 10.1111/j.1751-1097.1981.tb05457.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
|
21
|
Mao B, Govindjee R, Ebrey TG, Arnaboldi M, Balogh-Nair V, Nakanishi K, Crouch R. Photochemical and functional properties of bacteriorhodopsins formed from 5,6-dihydro- and 5,6-dihydrodesmethylretinals. Biochemistry 1981; 20:428-35. [PMID: 7470492 DOI: 10.1021/bi00505a031] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
5,6-Dihydroretinal and 5,6-dihydro-1,1,5,9,13-desmethylretinal are synthesized, and their all-trans isomers are shown to form pigment analogues (lambda max at 475 and 460 nm, respectively) of bacteriorhodopsin (purple membrane protein). The shift of the absorption maximum od the pigment from that of the protonated Schiff base of the chromophore for 5,6-dihydrobacteriorhodopsin is small compared to that of the native pigment, suggesting that negative charges similar to those controlling the lambda max of visual pigment rhodopsin exist near the cyclohexyl ring. Both pigment analogues undergo reversible light-induced spectral shifts reflecting cyclic photoreactions of the pigments. These results indicate that the absence of the C-5--C-6 double bond and of the five methyl groups of retinal does not abolish the photochemistry of these pigment analogues and strongly suggest that these structural features are not directly required for the photoreactions of native bacteriorhodopsin. The apparent rates of the photochemical transformations of these artificial pigments are quite different from those of bacteriorhodopsin. A working hypothesis is proposed for the photocycle of the pigment analogues, which includes a slower light-induced cycling rate (for the light-adapted pigments) than that of native bacteriorhodopsin and an increased rate of dark adaptation. When incorporated into egg lecithin vesicles both pigment analogues show proton pumping ability, again indicating that the missing double bond and the methyl groups are not structurally required for the function of the pigments.
Collapse
|
22
|
Quantum-mechanical kinetic study of the primary reaction of the photochemical cycle of Halobacterium halobium. ACTA ACUST UNITED AC 1981. [DOI: 10.1007/bf00539178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Abstract
The primary photochemical event in the two light-transducing pigments whose chromophore is retinal, rhodopsin or bacteriorhodopsin, is a source of controversy. It was originally proposed that the primary photoevent in the bleaching of rhodopsin is the photoisomerization of the chromophore from 11-cis to all-trans retinal. Photochemical considerations suggested that a photoisomerization is the primary event in both rhodopsin and bacteriorhodopsin. However, this description of bacteriorhodopsin's photochemistry has been questioned. To elucidate this problem, we determined the isomeric conformation of retinal for two of the photolytic intermediates of bacteriorhodopsin, using a method that enables us to extract chromophores from the photocycle intermediates L and M at low temperatures (-74 degrees C), and have determined the isomeric conformation of the extracted retinals by HPLC. Here we provide direct evidence that isomerization of the chromophore has taken place in two of the early photocycle intermediates (L and M) of bacteriorhodopsin.
Collapse
|
24
|
Lazarev YA, Terpugov EL. Effect of water on the structure of bacteriorhodopsin and photochemical processes in purple membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 590:324-38. [PMID: 7378392 DOI: 10.1016/0005-2728(80)90203-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Visible and infrared spectra of bacteriorhodopsin films under different humidities at room and low temperatures are investigated. On dehydration of purple membranes at room temperatures an additional chromophore state with the absorption band at 506 nm is revealed. The photocycle of purple membranes in the dry state is devoid of the 550 nm intermediate and involves the long-lived intermediate at 412 nm. As water is removed, the 550 nm intermediate becomes undetectable. The analysis of the infrared spectra shows that dehydration does not affect the ordering of the main network of the interpeptide hydrogen bonds which stabilizes the alpha-helical conformation (slightly distorted in the intial humid dark- and light-adapted state); light adaptation (cis-trans isomerization) of bacteriorhodopsin results in an increase of sorbed water in purple membranes. Dehydration of purple membranes decreases the reaction rate of cis-trans isomerization.
Collapse
|
25
|
|
26
|
Tsuda M, Ebrey TG. Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin. Biophys J 1980; 30:149-57. [PMID: 7260262 PMCID: PMC1328719 DOI: 10.1016/s0006-3495(80)85083-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The effects of high pressure upon the absorption spectra and isomeric composition of the dark (bRD) and light adapted (bRL) forms of bacteriorhodopsin were examined. Pressure favors the 13-cis form of bacteriorhodopsin (bR13-cis). The equilibrium isomeric composition and absorption spectra of bacteriorhodopsin samples at a given pressure were the same starting from either light or dark adapted bacteriorhodopsin. From the effect of pressure on the equilibrium constant between bRall-trans in equilibrium bR13-cis in the dark, the molar volume change between bRall-trans and bR13-cis was found to be -7.8 +/- 3.2 ml/mol. This volume change suggests a difference in conformation between dark- and light-adapted bacteriorhodopsin, but the magnitude of the change is small, involving only a small number of the protein residues.
Collapse
|
27
|
Iwasa T, Tokunaga F, Yoshizawa T. A new pathway in the photoreaction cycle of trans-bacteriorhodopsin and the absorption spectra of its intermediates. ACTA ACUST UNITED AC 1980. [DOI: 10.1007/bf00538227] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Iwasa T, Tokunaga F, Yoshizawa T. Photoreaction of trans-bacteriorhodopsin at liquid helium temperature. FEBS Lett 1979; 101:121-4. [PMID: 446722 DOI: 10.1016/0014-5793(79)81308-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Stoeckenius W, Lozier RH, Bogomolni RA. Bacteriorhodopsin and the purple membrane of halobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 505:215-78. [PMID: 35226 DOI: 10.1016/0304-4173(79)90006-5] [Citation(s) in RCA: 781] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Aton B, Doukas AG, Callender RH, Becher B, Ebrey TG. Resonance Raman study of the dark-adapted form of the purple membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 576:424-8. [PMID: 427199 DOI: 10.1016/0005-2795(79)90417-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The resonance Raman spectrum of the dark-adapted form of the purple membrane protein (bacteriorhodopsin) has been obtained and is compared to the light-adapted pigment and model chromophore spectra. As in the light-adapted form, the chromophore-protein linkage is found to be a protonated Schiff base. Electron delocalization appears to play the dominant role in color regulation. The dark-adapted spectrum indicates a conformation closer to 13-cis than the light-adapted spectrum.
Collapse
|
31
|
|
32
|
Bayley ST, Morton RA. Recent developments in the molecular biology of extremely halophilic bacteria. CRC CRITICAL REVIEWS IN MICROBIOLOGY 1978; 6:151-205. [PMID: 365457 DOI: 10.3109/10408417809090622] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Gillbro T, Kriebel AN. Emission from secondary intermediates in the photocycle of bacteriorhodopsin at 77 degrees K. FEBS Lett 1977; 79:29-32. [PMID: 891930 DOI: 10.1016/0014-5793(77)80343-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Gillbro T, Kriebel AN, Wild UP. On the origin of the red emission of light adapted purple membrane of Halobacterium halobium. FEBS Lett 1977; 78:57-60. [PMID: 872939 DOI: 10.1016/0014-5793(77)80272-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|