1
|
Rodríguez-Valdez G, Martínez-Cerda ME, Mejía-Reyes JG, Tapia-Juárez M, Olmos-Orizaba E, Cortés-Rojo C, Cortés-García CJ, Contreras-Celedón CA, Solorio-Alvarado CR, Chacón-García L. A Metastable Semiquinone Molecular Switch Modulated by Ascorbate/O 2: A Study from a System Far-From-Equilibrium to Biological Assays in Mitochondria. Chembiochem 2024; 25:e202400401. [PMID: 38981854 DOI: 10.1002/cbic.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolyl quinone thiocyanate (PQ 9) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13 C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 9 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 9 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 9 reduced ROS production and catalase activity in yeast. The results suggest that PQ 9 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Valdez
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Marlen E Martínez-Cerda
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Jisell G Mejía-Reyes
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Melissa Tapia-Juárez
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Eridani Olmos-Orizaba
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Christian Cortés-Rojo
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Carlos J Cortés-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Claudia A Contreras-Celedón
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Cesar R Solorio-Alvarado
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, 36050, Guanajuato, Mexico
| | - Luis Chacón-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| |
Collapse
|
2
|
Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S, Cabrera-Orefice A. The mitochondrial respiratory chain from Rhodotorula mucilaginosa, an extremophile yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149035. [PMID: 38360260 DOI: 10.1016/j.bbabio.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Olmos-Orizaba BE, Arroyo-Peñaloza JS, Martínez-Alcántar L, Montoya-Pérez R, Flores-García A, Rodríguez-Orozco AR, Calderón-Cortés E, Saavedra-Molina A, Campos-García J, Cortés-Rojo C. Linolenic Acid Plus Ethanol Exacerbates Cell Death in Saccharomyces cerevisiae by Promoting Lipid Peroxidation, Cardiolipin Loss, and Necrosis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071052. [PMID: 35888140 PMCID: PMC9320082 DOI: 10.3390/life12071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Polyunsaturated fatty acids (PUFA) hypersensitize yeast to oxidative stress. Ethanol accumulation during fermentation is another factor that induces oxidative stress via mitochondrial dysfunction and ROS overproduction. Since this microorganism has raised growing interest as a PUFA factory, we have studied if the combination of PUFA plus ethanol enhances yeast death. Respiration, ROS generation, lipid peroxidation, mitochondrial cardiolipin content, and cell death were assessed in yeast grown in the presence of 10% ethanol (ETOH) or linolenic acid (C18:3), or ethanol plus C18:3 (ETOH+C18:3). Lipid peroxidation and cardiolipin loss were several-fold higher in cells with ETOH+C18:3 than with C18:3. On the contrary, ETOH tended to increase cardiolipin content without inducing changes in lipid peroxidation. This was consistent with a remarkable diminution of cell growth and an exacerbated propidium iodide staining in cells with only ETOH+C18:3. The respiration rate decreased with all the treatments to a similar degree, and this was paralleled with similar increments in ROS between all the treatments. These results indicate that PUFA plus ethanol hypersensitize yeast to necrotic cell death by exacerbating membrane damage and mitochondrial cardiolipin loss, independent of mitochondrial dysfunction and ROS generation. The implications of these observations for some biotechnological applications in yeast and its physiology are discussed.
Collapse
Affiliation(s)
- Berenice Eridani Olmos-Orizaba
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - José Santos Arroyo-Peñaloza
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Lorena Martínez-Alcántar
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Alberto Flores-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Mexico;
| | | | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
- Correspondence: ; Tel.: +52-44-3326-5790
| |
Collapse
|
4
|
The Novel Arylamidine T-2307 Selectively Disrupts Yeast Mitochondrial Function by Inhibiting Respiratory Chain Complexes. Antimicrob Agents Chemother 2019; 63:AAC.00374-19. [PMID: 31182539 PMCID: PMC6658782 DOI: 10.1128/aac.00374-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The mechanism by which T-2307 disrupts yeast mitochondrial function is poorly understood, and its elucidation may provide important information for developing novel antifungal agents. This study aimed to determine how T-2307 promotes yeast mitochondrial dysfunction and to investigate the selectivity of this mechanism between fungi and mammals. T-2307 inhibited the respiration of yeast whole cells and isolated yeast mitochondria in a dose-dependent manner. The similarity of the effects of T-2307 and respiratory chain inhibitors on mitochondrial respiration prompted us to investigate the effect of T-2307 on mitochondrial respiratory chain complexes. T-2307 particularly inhibited respiratory chain complexes III and IV not only in Saccharomyces cerevisiae but also in Candida albicans, indicating that T-2307 acts against pathogenic fungi in a manner similar to that of yeast. Conversely, T-2307 showed little effect on bovine respiratory chain complexes. Additionally, we demonstrated that the inhibition of respiratory chain complexes by T-2307 resulted in a decrease in the intracellular ATP levels in yeast cells. These results indicate that inhibition of respiratory chain complexes III and IV is a key factor for selective disruption of yeast mitochondrial function and antifungal activity.
Collapse
|
5
|
Uribe‐Alvarez C, Chiquete‐Félix N, Morales‐García L, Bohórquez‐Hernández A, Delgado‐Buenrostro NL, Vaca L, Peña A, Uribe‐Carvajal S. Wolbachia pipientis grows in Saccharomyces cerevisiae evoking early death of the host and deregulation of mitochondrial metabolism. Microbiologyopen 2019; 8:e00675. [PMID: 29897678 PMCID: PMC6460262 DOI: 10.1002/mbo3.675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Wolbachia sp. has colonized over 70% of insect species, successfully manipulating host fertility, protein expression, lifespan, and metabolism. Understanding and engineering the biochemistry and physiology of Wolbachia holds great promise for insect vector-borne disease eradication. Wolbachia is cultured in cell lines, which have long duplication times and are difficult to manipulate and study. The yeast strain Saccharomyces cerevisiae W303 was used successfully as an artificial host for Wolbachia wAlbB. As compared to controls, infected yeast lost viability early, probably as a result of an abnormally high mitochondrial oxidative phosphorylation activity observed at late stages of growth. No respiratory chain proteins from Wolbachia were detected, while several Wolbachia F1 F0 -ATPase subunits were revealed. After 5 days outside the cell, Wolbachia remained fully infective against insect cells.
Collapse
Affiliation(s)
- Cristina Uribe‐Alvarez
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Natalia Chiquete‐Félix
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Lilia Morales‐García
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Arlette Bohórquez‐Hernández
- Depto. de Biología Celular y del DesarrolloInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Laura Delgado‐Buenrostro
- Unidad de Biomedicina UBIMEDFacultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlanepantlaEdo. de MéxicoMéxico
| | - Luis Vaca
- Depto. de Biología Celular y del DesarrolloInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Antonio Peña
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Salvador Uribe‐Carvajal
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
6
|
Rosas-Lemus M, Uribe-Alvarez C, Chiquete-Félix N, Uribe-Carvajal S. In Saccharomyces cerevisiae fructose-1,6-bisphosphate contributes to the Crabtree effect through closure of the mitochondrial unspecific channel. Arch Biochem Biophys 2014; 555-556:66-70. [PMID: 24924491 DOI: 10.1016/j.abb.2014.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 01/15/2023]
Abstract
In Saccharomyces cerevisiae addition of glucose inhibits oxygen consumption, i.e. S. cerevisiae is Crabtree-positive. During active glycolysis hexoses-phosphate accumulate, and probably interact with mitochondria. In an effort to understand the mechanism underlying the Crabtree effect, the effect of two glycolysis-derived hexoses-phosphate was tested on the S. cerevisiae mitochondrial unspecific channel (ScMUC). Glucose-6-phosphate (G6P) promoted partial opening of ScMUC, which led to proton leakage and uncoupling which in turn resulted in, accelerated oxygen consumption. In contrast, fructose-1,6-bisphosphate (F1,6BP) closed ScMUC and thus inhibited the rate of oxygen consumption. When added together, F1,6BP reverted the mild G6P-induced effects. F1,6BP is proposed to be an important modulator of ScMUC, whose closure contributes to the "Crabtree effect".
Collapse
Affiliation(s)
- Mónica Rosas-Lemus
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Cristina Uribe-Alvarez
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
7
|
Luévano-Martínez LA, Appolinario P, Miyamoto S, Uribe-Carvajal S, Kowaltowski AJ. Deletion of the transcriptional regulator opi1p decreases cardiolipin content and disrupts mitochondrial metabolism in Saccharomyces cerevisiae. Fungal Genet Biol 2013; 60:150-8. [DOI: 10.1016/j.fgb.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/01/2013] [Accepted: 03/26/2013] [Indexed: 12/24/2022]
|
8
|
Cruz-Torres V, Vázquez-Acevedo M, García-Villegas R, Pérez-Martínez X, Mendoza-Hernández G, González-Halphen D. The cytosol-synthesized subunit II (Cox2) precursor with the point mutation W56R is correctly processed in yeast mitochondria to rescue cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2128-39. [PMID: 22985601 DOI: 10.1016/j.bbabio.2012.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.
Collapse
Affiliation(s)
- Valentín Cruz-Torres
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | | | | | |
Collapse
|
9
|
Sun LM, Zhang CL, Li P. Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6150-6. [PMID: 22640226 DOI: 10.1021/jf3010405] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpinen-4-ol, an active component of tea tree oil, exhibits broad-spectrum antimicrobial activity. However, the high volatilization of terpinen-4-ol and its nonwettability property have limited its application. Our objective was to synthesize novel nanocarriers to deliver and protect terpinen-4-ol. The polyethylene glycol (PEG)-stabilized lipid nanoparticles were prepared and characterized by scanning electron microscope, Zetasizer, and differential scanning calorimetry. These nanoparticles had an average diameter of 397 nm and a Ζ-potential of 10 mV after being modified by glycine. Results showed that homogeneous particle size, high drug loading, stability, and targeting were obtained by the nanoparticles. Liquid chromatography/mass spectrometry showed a sustained release trend from nanoparticles for terpinen-4-ol. Minimum inhibitory concentration and minimum biofilm eradication concentration were tested against Candida albicans ATCC 11231. Studies on isolated mitochondria showed the blockage of biofilm respiration and inhibition of enzyme activity. The effects can be ascribed to localization of terpinen-4-ol on the membrane of mitochondria.
Collapse
Affiliation(s)
- Li-ming Sun
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | | |
Collapse
|
10
|
A critical tyrosine residue determines the uncoupling protein-like activity of the yeast mitochondrial oxaloacetate carrier. Biochem J 2012; 443:317-25. [PMID: 22236206 DOI: 10.1042/bj20110992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mitochondrial Oac (oxaloacetate carrier) found in some fungi and plants catalyses the uptake of oxaloacetate, malonate and sulfate. Despite their sequence similarity, transport specificity varies considerably between Oacs. Indeed, whereas ScOac (Saccharomyces cerevisiae Oac) is a specific anion-proton symporter, the YlOac (Yarrowia lipolytica Oac) has the added ability to transport protons, behaving as a UCP (uncoupling protein). Significantly, we identified two amino acid changes at the matrix gate of YlOac and ScOac, tyrosine to phenylalanine and methionine to leucine. We studied the role of these amino acids by expressing both wild-type and specifically mutated Oacs in an Oac-null S. cerevisiae strain. No phenotype could be associated with the methionine to leucine substitution, whereas UCP-like activity was dependent on the presence of the tyrosine residue normally expressed in the YlOac, i.e. Tyr-ScOac mediated proton transport, whereas Phe-YlOac lost its protonophoric activity. These findings indicate that the UCP-like activity of YlOac is determined by the tyrosine residue at position 146.
Collapse
|
11
|
Guerrero-Castillo S, Cabrera-Orefice A, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S. During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:353-62. [PMID: 22138628 DOI: 10.1016/j.bbabio.2011.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/01/2022]
Abstract
In the branched mitochondrial respiratory chain from Yarrowia lipolytica there are two alternative oxido-reductases that do not pump protons, namely an external type II NADH dehydrogenase (NDH2e) and the alternative oxidase (AOX). Direct electron transfer between these proteins is not coupled to ATP synthesis and should be avoided in most physiological conditions. However, under low energy-requiring conditions an uncoupled high rate of oxygen consumption would be beneficial, as it would prevent overproduction of reactive oxygen species (ROS). In mitochondria from high energy-requiring, logarithmic-growth phase cells, most NDH2e was associated to cytochrome c oxidase and electrons from NADH were channeled to the cytochromic pathway. In contrast, in the low energy requiring, late stationary-growth phase, complex IV concentration decreased, the cells overexpressed NDH2e and thus a large fraction of this enzyme was found in a non-associated form. Also, the NDH2e-AOX uncoupled pathway was activated and the state IV external NADH-dependent production of ROS decreased. Association/dissociation of NDH2e to/from complex IV is proposed to be the switch that channels electrons from external NADH to the coupled cytochrome pathway or allows them to reach an uncoupled, alternative, ΔΨ-independent pathway.
Collapse
|
12
|
Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ. Structure of dimeric F1F0-ATP synthase. J Biol Chem 2010; 285:36447-55. [PMID: 20833715 DOI: 10.1074/jbc.m110.144907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356-12358). In the ATP synthase dimer, the two peripheral stalks are located near the F(1)-F(1) interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.
Collapse
Affiliation(s)
- Sergio J Couoh-Cardel
- Department of Biology, Chemistry Faculty, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
13
|
Cabrera-Orefice A, Guerrero-Castillo S, Luévano-Martínez LA, Peña A, Uribe-Carvajal S. Mitochondria from the salt-tolerant yeast Debaryomyces hansenii (halophilic organelles?). J Bioenerg Biomembr 2010; 42:11-9. [PMID: 20091106 DOI: 10.1007/s10863-009-9264-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
The yeast Debaryomyces hansenii is considered a marine organism. Sea water contains 0.6 M Na(+) and 10 mM K(+); these cations permeate into the cytoplasm of D. hansenii where proteins and organelles have to adapt to high salt concentrations. The effect of high concentrations of monovalent and divalent cations on isolated mitochondria from D. hansenii was explored. As in S. cerevisiae, these mitochondria underwent a phosphate-sensitive permeability transition (PT) which was inhibited by Ca(2+) or Mg(2+). However, D. hansenii mitochondria require higher phosphate concentrations to inhibit PT. In regard to K(+) and Na(+), and at variance with mitochondria from all other sources known, these monovalent cations promoted closure of the putative mitochondrial unspecific channel. This was evidenced by the K(+)/Na(+)-promoted increase in: respiratory control, transmembrane potential and synthesis of ATP. PT was equally sensitive to either Na(+) or K(+). In the presence of propyl-gallate PT was still observed while in the presence of cyanide the alternative pathway was not active enough to generate a Delta Psi due to a low AOX activity. In D. hansenii mitochondria K(+) and Na(+) optimize oxidative phosphorylation, providing an explanation for the higher growth efficiency in saline environments exhibited by this yeast.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Department of Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, México
| | | | | | | | | |
Collapse
|
14
|
In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:75-85. [PMID: 19038229 DOI: 10.1016/j.bbabio.2008.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 11/21/2022]
Abstract
In Yarrowia lipolytica, mitochondria contain a branched respiratory chain constituted by the classic complexes I, II, III and IV, plus an alternative external NADH dehydrogenase (NDH2e) and an alternative oxidase (AOX). The alternative enzymes are peripheral, single-subunit oxido-reductases that do not pump protons. Thus, the oxidation of NADH via NDH2e-ubiquinone-AOX would not contribute to the proton-motive force. The futile oxidation of NADH may be prevented if either NDH2e or AOX bind to the classic complexes, channelling electrons. By oxymetry, it was observed that the electrons from complex I reached both cytochrome oxidase and AOX. In contrast, NDH2e-derived electrons were specifically channelled/directed to the cytochrome complexes. In addition, the presence of respiratory supercomplexes plus the interaction of NDH2e with these complexes was evaluated using blue native PAGE, clear native PAGE, in-gel activities, immunoblotting, mass spectrometry, and N-terminal sequencing. NDH2e (but not the redirected matrix NDH2i from a mutant strain, Deltanubm) was detected in association with the cytochromic pathway; this interaction seems to be strong, as it was not disrupted by laurylmaltoside. The association of NDH2e to complex IV was also suggested when both enzymes coeluted from an ion exchange chromatography column. In Y. lipolytica mitochondria the cytochrome complexes probably associate into supercomplexes; those were assigned as follows: I-III(2), I-IV, I-III(2)-IV(4), III(2)-IV, III(2)-IV(2), IV(2) and V(2). The molecular masses of all the complexes and putative supercomplexes detected in Y. lipolytica were estimated by comparison with the bovine mitochondrial complexes. To our knowledge, this is the first evidence of supercomplex formation in Y. lipolytica mitochondria and also, the first description of a specific association between an alternative NADH dehydrogenase and the classic cytochrome pathway.
Collapse
|
15
|
Pérez-Vázquez V, Saavedra-Molina A, Uribe S. In Saccharomyces cerevisiae, cations control the fate of the energy derived from oxidative metabolism through the opening and closing of the yeast mitochondrial unselective channel. J Bioenerg Biomembr 2004; 35:231-41. [PMID: 13678274 DOI: 10.1023/a:1024659615022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The yeast mitochondrial unspecific channel (YMUC) sensitivity to inorganic (Ca2+ or Mg2+) or organic (hexyl or octyl-guanidine) cations was measured. The rate of oxygen consumption in State 3 and State 4, the transmembrane potential (deltapsi), mitochondrial swelling, and the polyethylene-glycol mediated recontraction were used to follow opening of the YMUC. Addition of 0.4 mM PO4 did not close the YMUC, although it did enhance the sensitivity to Ca2+ (I50 decreased from 50 to 0.3 mM) and Mg2+ (I50 decreased from 5 to 0.83 mM Mg2+). The Ca2+ concentration needed to close the YMUC was higher than the concentrations usually observed in the cell. Nonetheless, Mg2+, Ca2+, and PO4 exhibited additive effects. These cations did not inhibit contraction of preswollen mitochondria, suggesting that the YMUC/cation interaction was labile. Octyl-guanidine (OG-I50 7.5 microM) was the only cation which inhibited mitochondrial recontraction, probably as a result of membrane binding stabilization through its hydrophobic tail. The PO4-dependent, Ca(2+)/Mg(2+)-mediated closure of the YMUC may be a means to control the proportion of oxidative energy producing ATP or being lost as heat.
Collapse
|
16
|
Castrejón V, Peña A, Uribe S. Closure of the yeast mitochondria unspecific channel (YMUC) unmasks a Mg2+ and quinine sensitive K+ uptake pathway in Saccharomyces cerevisiae. J Bioenerg Biomembr 2002; 34:299-306. [PMID: 12392193 DOI: 10.1023/a:1020208619422] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The K+ uptake pathways in yeast mitochondria are still undefined. Nonetheless, the K+-mediated mitochondrial swelling observed in the absence of phosphate (PO4) and in the presence of a respiratory substrate has led to propose that large K+ movements occur in yeast mitochondria. Thus, the uptake of K+ by isolated yeast mitochondria was evaluated. Two parallel experiments were conducted to evaluate K+ transport; these were mitochondrial swelling and the uptake of the radioactive K+ analog 86Rb+. The opening of the yeast mitochondrial unspecific channel (YMUC) was regulated by different PO4 concentrations. The high protein concentrations used to measure 86Rb+ uptake resulted in a slight stabilization of the transmembrane potential at 0.4 mM PO4 but not at 0 or 4 mM PO4. At 4 mM PO4 swelling was inhibited while, in contrast, 86Rb+ uptake was still observed. The results suggest that an energy-dependent K+ uptake mechanism was unmasked when the YMUC was closed. To further analyze the properties of this K+ uptake system, the Mg2+ and quinine sensitivity of both swelling and 86Rb+ uptake were evaluated. Under the conditions where the unspecific pore was closed, K+ transport sensitivity to Mg2+ and quinine increased. In addition, when Zn2+ was added as an antiport inhibitor, uptake of 86Rb+ increased. It is suggested that in yeast mitochondria, the K+ concentration is highly regulated by the equilibrium of uptake and exit of this cation through two specific transporters.
Collapse
Affiliation(s)
- Vicente Castrejón
- Biochemistry Department, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | | | | |
Collapse
|
17
|
Cortés P, Castrejón V, Sampedro JG, Uribe S. Interactions of arsenate, sulfate and phosphate with yeast mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:67-76. [PMID: 10627296 DOI: 10.1016/s0005-2728(99)00109-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the presence of K(+), addition of ATP or ethanol to yeast mitochondria triggers the depletion of the transmembrane potential (DeltaPsi) and this is prevented by millimolar concentrations of phosphate (PO(4)). Different monovalent and polyvalent anions were tested for their protective effects on mitochondria from Saccharomyces cerevisiae. Only arsenate (AsO(4)) and sulfate (SO(4)) were as efficient as PO(4) to protect mitochondria against the K(+) mediated swelling, depletion of the DeltaPsi, and decrease in the ratio of uncoupled state to state 4 respiration rates. Protection by PO(4), SO(4) or AsO(4) was inhibited by mersalyl, suggesting that these anions interact with a site located in the matrix side. In addition, the effects of SO(4) and AsO(4) on the F(1)F(0)-ATPase were tested: both SO(4) and AsO(4) inhibited the synthesis of ATP following competitive kinetics against PO(4) and non-competitive kinetics against ADP. The mersalyl sensitive uptake of (32)PO(4) was not inhibited by SO(4) or AsO(4), suggesting that the synthesis of ATP was inhibited at the F(1)F(0)-ATPase. The hydrolysis of ATP was not inhibited, only a stimulation was observed when AsO(4) or sulfite (SO(3)) were added. It is suggested that the structure and charge similarities of PO(4), AsO(4) and SO(4) result in undiscriminated binding to at least two sites located in the mitochondrial matrix: at one site, occupation by any of these three anions results in protection against uncoupling by K(+); at the second site, in the F(1)F(0)-ATPase, AsO(4) and SO(4) compete for binding against PO(4) leading to inhibition of the synthesis of ATP.
Collapse
Affiliation(s)
- P Cortés
- Department of Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Apdo Postal 70-242, 04510, Mexico City, Mexico
| | | | | | | |
Collapse
|
18
|
Castrejón V, Parra C, Moreno R, Peña A, Uribe S. Potassium collapses the deltaP in yeast mitochondria while the rate of ATP synthesis is inhibited only partially: modulation by phosphate. Arch Biochem Biophys 1997; 346:37-44. [PMID: 9328282 DOI: 10.1006/abbi.1997.0273] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Addition of increasing concentrations of K+ to yeast mitochondria in the presence of 0 to 400 microM phosphate and 200 microM Mg2+ led to uncoupled respiration and decreased protonmotive force (deltaP):at 0 K+ deltaP = 213 mV, negative inside, where deltapsi = 180 mV and deltapH = 33 mV, while at 20 mM K+ deltaP = 28 mV, where deltapsi = 16 mV and deltapH = 12 mV. In contrast, the synthesis of ATP resulted in smaller values for the Km and the Vmax in 400 microM Pi and increasing ADP: in 0 K+, Km = 18.6 microM and Vmax = 75.4 nmol (min x mg protein)-1, while in 20 mM K+, Km = 5.2 microM and Vmax = 46.0 nmol (min x mg protein)-1, i.e., when K+ depleted most of the deltaP, and at ADP concentrations below the Km, the rate of ATP synthesis was essentially the same as in the absence of K+. At saturating ADP, the rate of ATP synthesis in the presence of K+ was about 60% of the rate observed without K+. The synthesis of ATP by yeast mitochondria was inhibited by oligomycin or uncouplers. K+ had no effects on rat liver mitochondria. Adenylate kinase activity was much smaller in yeast mitochondria than in rat liver mitochondria and thus did not account for the synthesis of ATP observed in the presence of K+. The effects of K+ on the deltaP of yeast mitochondria were prevented by increasing concentrations of phosphate (1 to 4 mM). At 4 mM phosphate, the deltaP was always above 200 mV and the kinetics of ATP synthesis were as follows: 0 K+ Km = 10.0 microM and Vmax = 88.3 nmol (min x mg protein)-1. At 20 mM K+, Km = 7.4 microM and Vmax = 133 nmol (min x mg protein)-1.
Collapse
Affiliation(s)
- V Castrejón
- Department of Biochemistry, Instituto de Fisiología Celular, UNAM, México DF
| | | | | | | | | |
Collapse
|
19
|
Cabrera N, Rangel P, Hernández-Muñoz R, Pérez-Montfort R. Purification of alcohol dehydrogenase from Entamoeba histolytica and Saccharomyces cerevisiae using zinc-affinity chromatography. Protein Expr Purif 1997; 10:340-4. [PMID: 9268681 DOI: 10.1006/prep.1997.0742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have developed a single-step method for the purification of NADP(+)-dependent alcohol dehydrogenase from Entamoeba histolytica and NAD(+)-dependent alcohol dehydrogenase from Saccharomyces cerevisiae. It is based on the affinity for zinc of both enzymes. The amebic enzyme was purified almost 800 times with a recovery of 54% and the yeast enzyme was purified 30 times with a recovery of 100%. The kinetic constants of the purified enzymes were similar to those reported for other purification methods. With mammalian alcohol dehydrogenase, we obtained a 40-kDa band suggestive of purified alcohol dehydrogenase, but we failed to retain enzymatic activity in this preparation. Our results suggest that the described method is more applicable to the purification of tetrameric alcohol dehydrogenases.
Collapse
Affiliation(s)
- N Cabrera
- Departamento de Microbiologia, Instituto de Fisiología Celular, U.N.A.M., México D.F., México
| | | | | | | |
Collapse
|
20
|
Uribe S, Rangel P, Pardo JP, Pereira-Da-Silva L. Interactions of calcium and magnesium with the mitochondrial inorganic pyrophosphatase from Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:657-60. [PMID: 8223607 DOI: 10.1111/j.1432-1033.1993.tb18289.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The activity of the mitochondrial inorganic pyrophosphatase from Saccharomyces cerevisiae was measured in the presence of increasing concentrations of magnesium and calcium. Calcium pyrophosphate (dissociation constant Kd = 1.9 microM) inhibited pyrophosphatase by competition with magnesium pyrophosphate (Kd = 50 microM). The small movements of calcium detected in mitochondria from yeast may be physiologically significant for the control of inorganic pyrophosphatase activity and the concentration of pyrophosphate in the matrix of yeast mitochondria.
Collapse
Affiliation(s)
- S Uribe
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|
21
|
Abstract
The interactions of Ca2+ with mitochondria from Saccharomyces cerevisiae were explored. Mitochondria were loaded with the metallochromic dye Fluo-3 to measure the concentration of free calcium in the matrix. Addition of EGTA or Ca2+ led to fluctuations in mitochondrial free calcium between 120 and 400 nM. Ca2+ variations were slower at 4 degrees C than at 25 degrees C or in the presence of phosphate instead of acetate. The net uptake of 45Ca2+ was higher with phosphate than with acetate. The optimum pH for Ca2+ uptake was 6.8. Ruthenium red did not affect the uptake of Ca2+. Addition of antimycin-A or uncouplers led to a small and transient release of Ca2+. Addition of EGTA or the monovalent cations Na+ or K+ resulted in higher release of Ca2+. Site I but not site II dependent O2 consumption was partially inhibited by EGTA. The effect of Ca2+ on NADH oxidation is similar to results reported with enzymes from mammalian sources which use NADH, such as the pyruvate, isocitrate and oxoglutarate dehydrogenases.
Collapse
Affiliation(s)
- S Uribe
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México
| | | | | |
Collapse
|
22
|
Uribe S, Rangel P, Espínola G, Aguirre G. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria. Appl Environ Microbiol 1990; 56:2114-9. [PMID: 2202257 PMCID: PMC184569 DOI: 10.1128/aem.56.7.2114-2119.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Little information on the effects of cyclohexane at the cellular or subcellular level is available. In Saccharomyces cerevisiae, cyclohexane inhibited respiration and diverse energy-dependent processes. In mitochondria isolated from S. cerevisiae, oxygen uptake and ATP synthesis were inhibited, although ATPase activity was not affected. Cyclohexane effects were similar to those reported for beta-pinene and limonene, suggesting that the cyclohexane ring in these monoterpenes may be a determinant for their biological activities.
Collapse
Affiliation(s)
- S Uribe
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F
| | | | | | | |
Collapse
|
23
|
Abstract
The effects of beta-pinene on yeast cells were studied. This terpene inhibited respiration with glucose or ethanol as the substrate. The inhibition depended on the ratio of the terpene to the amount of yeast cells; for a fixed concentration of pinene, inhibition decreased as the amount of yeast cells increased. Pinene also inhibited the pumping of protons and K+ transport, but this inhibition was more marked with with ethanol than with glucose as the substrate, indicating the mitochondrial localization of the inhibition. The studies on isolated mitochondria showed a series of effects, starting with the disappearance of the respiratory control and deenergization of the organelles and followed by an inhibition of respiration at higher concentrations of the terpene. The effect on respiration could be localized to the cytochrome b region of the electron transport chain. No effect could be detected on the activity of ATPase. The effects can be ascribed to a localization of pinene on membranes which was also accompanied by a decrease in the fluorescence polarization of diphenyl hexatriene, probably meaning an increase in the fluidity of the membrane, localized preferentially to the mitochondria.
Collapse
|
24
|
Theuvenet AP, Bindels RJ, van Amelsvoort JM, Borst-Pauwels GW, Stols AL. Interaction of ethidium bromide with yeast cells investigated by electron probe X-ray microanalysis. J Membr Biol 1983; 73:131-6. [PMID: 6345785 DOI: 10.1007/bf01870436] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Todd RD, Buck MA, Douglas MG. Localization of unassembled subunits of the mitochondrial ATPase in an assembly-defective yeast nuclear mutant. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)52504-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Abstract
Experiments were performed to obtain information on: (i) the specific properties of Ca2+ binding and transport in yeast; (ii) the relationship between both parameters; (iii) similarities to or differences from other biological systems as measured by the effects of inhibitors; and (iv) the effects of mono and divalent cations, in order to get some insight on the specificity and some characteristics of the mechanism of the transport system for divalent cations in yeast. The results obtained gave some kinetic parameters for a high affinity system involved in the transport of Ca2+ in yeast. These were obtained mainly by considering actual concentrations of Ca2+ in the medium after substracting the amounts bound to the cell. A km of 1.9 microM and a Vmax of 1.2 nmol (100 mg.3 min)-1 were calculated. The effects of some inhibitors and other cations on Ca2+ uptake allow one to postulate some independence between binding and transport for this divalent cation. Of the inhibitors tested, only lanthanum seems to be a potent inhibitor of Ca2+ uptake in yeast. The effects of Mg2+ on the uptake of Ca2+ agree with the existence of a single transport system for both divalent cations. The actions of Na+ and K+ on the transport of Ca2+ offer interesting possibilities to study further some of the mechanistic properties of this transport system for divalent cations.
Collapse
|
27
|
Peña A, Clemente SM, Borbolla M, Carrasco N, Uribe S. Multiple interactions of ethidium bromide with yeast cells. Arch Biochem Biophys 1980; 201:420-8. [PMID: 6994651 DOI: 10.1016/0003-9861(80)90530-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
|
29
|
|