1
|
Mitochondrial osmoregulation in evolution, cation transport and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148368. [PMID: 33422486 DOI: 10.1016/j.bbabio.2021.148368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
This review provides a retrospective on the role of osmotic regulation in the process of eukaryogenesis. Specifically, it focuses on the adjustments which must have been made by the original colonizing α-proteobacteria that led to the evolution of modern mitochondria. We focus on the cations that are fundamentally involved in volume determination and cellular metabolism and define the transporter landscape in relation to these ions in mitochondria as we know today. We provide analysis on how the cations interplay and together maintain osmotic balance that allows for effective ATP synthesis in the organelle.
Collapse
|
2
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
LETM1: Essential for Mitochondrial Biology and Cation Homeostasis? Trends Biochem Sci 2019; 44:648-658. [DOI: 10.1016/j.tibs.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
|
4
|
Silzer TK, Phillips NR. Etiology of type 2 diabetes and Alzheimer's disease: Exploring the mitochondria. Mitochondrion 2018; 43:16-24. [DOI: 10.1016/j.mito.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
|
5
|
Wang J, Yang C, Yuan Z, Yi J, Wu J. T-2 Toxin Exposure Induces Apoptosis in TM3 Cells by Inhibiting Mammalian Target of Rapamycin/Serine/Threonine Protein Kinase(mTORC2/AKT) to Promote Ca 2+Production. Int J Mol Sci 2018; 19:E3360. [PMID: 30373220 PMCID: PMC6274855 DOI: 10.3390/ijms19113360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023] Open
Abstract
Although mTOR (the mammalian target of rapamycin) can regulate intracellular free Ca2+concentration in normal cultured podocytes, it remains elusive as to how mTORC2/AKT-mediated Ca2+participates in the process of T-2 toxin-induced apoptosis. The potential signaling responsible for intracellular Ca2+ concentration changes was investigated using immunoblot assays in an in vitro model of TM3 cell injury induced by T-2 toxin. Changes in Ca2+ were assessed using the Ca2+-sensitive fluorescent indictor dye Fura 2-AM. The cytotoxicity of TM3 cells was assessed with an MTT bioassay, and apoptosis was measured using Annexin V-FITC staining. Following T-2 toxin treatment, the growth of cells, phospho-mTORSer2481, phospho-mTORSer2448, and phospho-AktSer473 were significantly decreased in a time-dependent manner, whereas Ca2+ and apoptosis were increased. T-2 toxin-induced apoptosis was prevented by BAPTA-AM (a Ca2+chelator) and MHY1485 (an mTOR activator), and the application of mTOR activator MHY1485 also prevented the increase of intracellular free Ca2+concentration in TM3 cells. Our results strongly suggest that T-2 toxin exposure induces apoptosis in TM3 cells by inhibiting mTORC2/AKT to promote Ca2+ production.
Collapse
Affiliation(s)
- Ji Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Chenglin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Austin S, Tavakoli M, Pfeiffer C, Seifert J, Mattarei A, De Stefani D, Zoratti M, Nowikovsky K. LETM1-Mediated K + and Na + Homeostasis Regulates Mitochondrial Ca 2+ Efflux. Front Physiol 2017; 8:839. [PMID: 29204122 PMCID: PMC5698270 DOI: 10.3389/fphys.2017.00839] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022] Open
Abstract
Ca2+ transport across the inner membrane of mitochondria (IMM) is of major importance for their functions in bioenergetics, cell death and signaling. It is therefore tightly regulated. It has been recently proposed that LETM1—an IMM protein with a crucial role in mitochondrial K+/H+ exchange and volume homeostasis—also acts as a Ca2+/H+ exchanger. Here we show for the first time that lowering LETM1 gene expression by shRNA hampers mitochondrial K+/H+ and Na+/H+ exchange. Decreased exchange activity resulted in matrix K+ accumulation in these mitochondria. Furthermore, LETM1 depletion selectively decreased Na+/Ca2+ exchange mediated by NCLX, as observed in the presence of ruthenium red, a blocker of the Mitochondrial Ca2+ Uniporter (MCU). These data confirm a key role of LETM1 in monovalent cation homeostasis, and suggest that the effects of its modulation on mitochondrial transmembrane Ca2+ fluxes may reflect those on Na+/H+ exchange activity.
Collapse
Affiliation(s)
- Shane Austin
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Mojtaba Tavakoli
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christina Pfeiffer
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Julia Seifert
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrea Mattarei
- Department of Chemical Sciences, Università di Padova, Padova, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, Università di Padova, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, Università di Padova, Padova, Italy.,Institute of Neuroscience (CNR), Padova, Italy
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Klein SD, Schweizer M, Richter C. Inhibition of the pyridine nucleotide-linked mitochondrial Ca2+release by 4-hydroxynonenal: the role of thiolate-disulfide conversion. Redox Rep 2016; 2:353-8. [DOI: 10.1080/13510002.1996.11747074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
9
|
Tight mitochondrial control of calcium and exocytotic signals in chromaffin cells at embryonic life. Pflugers Arch 2015; 467:2589-601. [PMID: 26254593 DOI: 10.1007/s00424-015-1724-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 01/11/2023]
Abstract
Calcium buffering by mitochondria plays a relevant physiological function in the regulation of Ca(2+) and exocytotic signals in mature chromaffin cells (CCs) from various adult mammals. Whether a similar or different role of mitochondrial Ca(2+) buffering is present in immature CCs at early life has not been explored. Here we present a comparative study in rat embryonic CCs and rat mother CCs, of various physiological parameters that are known to be affected by mitochondrial Ca(2+) buffering during cell activation. We found that the clearance of cytosolic Ca(2+) transients ([Ca(2+)]c) elicited by high K(+) was 7-fold faster in embryo CCs compared to mother CCs. This strongly suggests that at embryonic life, the mitochondria play a more significant role in the clearance of [Ca(2+)]c loads compared to adult life. Consistent with this view are the following results concerning the transient suppression of mitochondrial Ca(2+) buffering by protonophore FCCP, in embryonic CCs compared to mother CCs: (i) faster and greater inactivation of inward calcium currents, (ii) higher K(+)-elicited [Ca(2+)]c transients with 25-fold faster clearance, (iii) higher increase of basal catecholamine release and (iv) higher potentiation of K(+)-evoked secretion. These pronounced differences could be explained by two additional features (embryo versus mother CCs): (a) slower recovery of mitochondrial resting membrane potential after the application of a transient FCCP pulse and (b) greater relative density of the mitochondria in the cytosol. This tighter control by the mitochondria of Ca(2+) and exocytotic signals may be relevant to secure a healthy catecholamine secretory response at early life.
Collapse
|
10
|
Caricati-Neto A, Padín JF, Silva-Junior ED, Fernández-Morales JC, de Diego AMG, Jurkiewicz A, García AG. Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C. Physiol Rep 2013; 1:e00182. [PMID: 24744861 PMCID: PMC3970745 DOI: 10.1002/phy2.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/01/2013] [Indexed: 01/14/2023] Open
Abstract
From experiments performed at room temperature, we know that the buffering of Ca2+ by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca2+]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca2+ transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca2+ buffering to the shaping of [Ca2+]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca2+ uniporter (mCUP) with Ru360 or the mitochondrial Na+/Ca2+ exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca2+ cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX. Ru360 caused a pronounced delay of [Ca2+]c clearance and augmented secretion. In contrast, CGP37157 only caused a tiny delay of [Ca2+]c clearance and a mild decrease in secretion. The mCC resulting in continued Ca2+ uptake and its release back into the cytosol was interrupted by combined Ru360 + CGP37157 (Ru/CGP), the protonophore carbonyl cyanide‐p‐trifluoromethoxyphenylhydrazone, or combined oligomycin + rotenone (O/R); these three treatments caused a mild but sustained elevation of basal [Ca2+]c that, however, was not accompanied by a parallel increase in basal secretion. Nevertheless, all treatments caused a pronounced augmentation of ACh‐induced secretion, with minor changes of the ACh‐induced [Ca2+]c transients. Combined Ru/CGP did not alter the resting membrane potential in current‐clamped cells. Additionally, Ru/CGP did not increase basal [Ca2+]c near subplasmalemmal sites and caused a mild decrease in the size of the readily releasable vesicle pool. Our results provide new functional features in support of the view that in BCCs there are two subpopulations of mitochondria, M1 underneath the plasmalemma nearby exocytotic sites and M2 at the core cell nearby vesicle transport sites. While M1 serves to shape the ACh‐elicited exocytotic response through its efficient Ca2+ removal by the mCUP, M2 shapes the lower [Ca2+]c elevations required for new vesicle supply to the exocytotic machinery, from the large reserve vesicle pool at the cell core. The mCUP of the M1 pool seems to play a more prominent role in controlling the ACh responses, in comparison with the mNCX. Regulation by mitochondria of exocytosis at 37°C.
Collapse
Affiliation(s)
- Afonso Caricati-Neto
- Departamento de Farmacología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan-Fernando Padín
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| | - Edilson-Dantas Silva-Junior
- Departamento de Farmacología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José-Carlos Fernández-Morales
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| | - Antonio-Miguel G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| | - Aron Jurkiewicz
- Departamento de Farmacología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain ; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, C/Diego de León, 62, Madrid, 28006, Spain
| |
Collapse
|
11
|
|
12
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1983.tb16591.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Carafoli E. The interplay of mitochondria with calcium: an historical appraisal. Cell Calcium 2012; 52:1-8. [PMID: 22591641 DOI: 10.1016/j.ceca.2012.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022]
Abstract
Indirect findings in the 1950s had indicated that mitochondria could accumulate Ca(2+), but only in 1961 isolated mitochondria were directly shown to take it up in a process driven by the activity of the respiratory chain or by the hydrolysis of added ATP. The uptake of Ca(2+) could be accompanied by the simultaneous uptake of inorganic phosphate, leading to the precipitation of hydroxyapatite in the matrix and to the effective buffering of the free Ca(2+) concentration in it. The uptake of Ca(2+) occurred via an electrophoretic uniporter that has been molecularly identified only recently. Ca(2+) was then released through a Na(+)/Ca(2+) exchanger that has also been identified very recently (a H(+)/Ca(2+) antiporter has also been described in some mitochondrial types). In the matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated by Ca(2+), providing a rationale for the Ca(2+) cycling process. The affinity of the uptake uniporter was found to be too low to efficiently regulate Ca(2+) in the low to mid nM concentration in the cytosol. However, a number of findings showed that energy linked transport of Ca(2+) did nevertheless occur in mitochondria in situ. The enigma was solved in the 1990s, when it was found that perimitochondrial Ca(2+) pools are created by the discharge of Ca(2+) from vicinal endoplasmic reticulum stores in which the concentration of Ca(2+) is high enough to satisfy the poor affinity of the uniporter. Thus, mitochondria have now regained a key role in the regulation of cytosolic Ca(2+) (not only of their own internal Ca(2+)).
Collapse
Affiliation(s)
- Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Italy.
| |
Collapse
|
14
|
Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells. Cell Calcium 2012; 51:309-20. [DOI: 10.1016/j.ceca.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
|
15
|
Brustovetsky T, Brittain MK, Sheets PL, Cummins TR, Pinelis V, Brustovetsky N. KB-R7943, an inhibitor of the reverse Na+ /Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I. Br J Pharmacol 2011; 162:255-70. [PMID: 20883473 DOI: 10.1111/j.1476-5381.2010.01054.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE An isothiourea derivative (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methane sulfonate (KB-R7943), a widely used inhibitor of the reverse Na(+) /Ca(2+) exchanger (NCX(rev)), was instrumental in establishing the role of NCX(rev) in glutamate-induced Ca(2+) deregulation in neurons. Here, the effects of KB-R7943 on N-methyl-D-aspartate (NMDA) receptors and mitochondrial complex I were tested. EXPERIMENTAL APPROACH Fluorescence microscopy, electrophysiological patch-clamp techniques and cellular respirometry with Seahorse XF24 analyzer were used with cultured hippocampal neurons; membrane potential imaging, respirometry and Ca(2+) flux measurements were made in isolated rat brain mitochondria. KEY RESULTS KB-R7943 inhibited NCX(rev) with IC(50) = 5.7 ± 2.1 µM, blocked NMDAR-mediated ion currents, and inhibited NMDA-induced increase in cytosolic Ca(2+) with IC(50) = 13.4 ± 3.6 µM but accelerated calcium deregulation and mitochondrial depolarization in glutamate-treated neurons. KB-R7943 depolarized mitochondria in a Ca(2+) -independent manner. Stimulation of NMDA receptors caused NAD(P)H oxidation that was coupled or uncoupled from ATP synthesis depending on the presence of Ca(2+) in the bath solution. KB-R7943, or rotenone, increased NAD(P)H autofluorescence under resting conditions and suppressed NAD(P)H oxidation following glutamate application. KB-R7943 inhibited 2,4-dinitrophenol-stimulated respiration of cultured neurons with IC(50) = 11.4 ± 2.4 µM. With isolated brain mitochondria, KB-R7943 inhibited respiration, depolarized organelles and suppressed Ca(2+) uptake when mitochondria oxidized complex I substrates but was ineffective when mitochondria were supplied with succinate, a complex II substrate. CONCLUSIONS AND IMPLICATIONS KB-R7943, in addition to NCX(rev) , blocked NMDA receptors in cultured hippocampal neurons and inhibited complex I in the mitochondrial respiratory chain. These findings are critical for the correct interpretation of experimental results obtained with KB-R7943 and a better understanding of its neuroprotective action.
Collapse
Affiliation(s)
- Tatiana Brustovetsky
- Department of Pharmacology and Toxicology Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Carafoli E. The fateful encounter of mitochondria with calcium: how did it happen? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:595-606. [PMID: 20385096 DOI: 10.1016/j.bbabio.2010.03.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/09/2023]
Abstract
A number of findings in the 1950s had offered indirect indications that mitochondria could accumulate Ca2+. In 1961, the phenomenon was directly demonstrated using isolated mitochondria: the uptake process was driven by respiratory chain activity or by the hydrolysis of added ATP. It could be accompanied by the simultaneous uptake of inorganic phosphate, in which case precipitates of hydroxyapatite were formed in the matrix, buffering its free Ca2+ concentration. The properties of the uptake process were established in the 1960s and 1970s: the uptake of Ca2+ occurred electrophoretically on a carrier that has not yet been molecularly identified, and was released from mitochondria via a Na+/Ca2+ antiporter. A H+/Ca2+ release exchanger was also found to operate in some mitochondrial types. The permeability transition pore was later also found to mediate the efflux of Ca2+ from mitochondria. In the mitochondrial matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated in the matrix by the cycling of Ca2+ across the inner membrane. In conditions of cytoplasmic Ca2+ overload mitochondria could store for a time large amounts of precipitated Ca2+-phosphate, thus permitting cells to survive situations of Ca2+ emergency. The uptake process was found to have very low affinity for Ca2+: since the bulk concentration of Ca2+ in the cytoplasm is in the low to mid-nM range, it became increasingly difficult to postulate a role of mitochondria in the regulation of cytoplsmic Ca2+. A number of findings had nevertheless shown that energy linked Ca2+ transport occurred efficiently in mitochondria of various tissues in situ. The paradox was only solved in the 1990s, when it was found that the concentration of Ca2+ in the cytoplasm is not uniform: perimitochondrial micropools are created by the agonist-promoted discharge of Ca2+ from vicinal stores in which the concentration of Ca2+ is high enough to activate the low affinity mitochondrial uniporter. Mitochondria thus regained center stage as important regulators of cytoplasmic Ca2+ (not only of their own internal Ca2+). Their Ca2+ uptake systems was found to react very rapidly to cytoplasmic Ca2+ demands, even in the 150-200 msec time scale of processes like the contraction and relaxation of heart. An important recent development in the area of mitochondrial Ca2+ transport is its involvement in the disease process. Ca2+ signaling defects are now gaining increasing importance in the pathogenesis of diseases, e.g., neurodegenerative diseases. Since mitochondria have now regained a central role in the regulation of cytoplasmic Ca2+, dysfunctions of their Ca2+ controlling systems have expectedly been found to be involved in the pathogenesis of numerous disease processes.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry and Venetian Institute of Molecular Medicine, University of Padova, Italy.
| |
Collapse
|
17
|
Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1055-65. [PMID: 20153290 DOI: 10.1016/j.bbabio.2010.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/01/2010] [Accepted: 02/07/2010] [Indexed: 01/18/2023]
Abstract
Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (psim) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis is a phenotypic hallmark of C2C12 skeletal muscle cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFkappaB (cRel:p50) pathway, NFAT, CREB and C/EBPdelta. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFkappaB (cRel:p50), C/EBPdelta, CREB, and NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional coactivator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes.
Collapse
|
18
|
Fluorescence Imaging of Calcium Loading and Mitochondrial Depolarization in Cancer Cells Exposed to Heat Stress. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4419-1260-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
19
|
Steiner M, Rueda D, Sigel R. Calcium induziert die Bildung zweier Subpopulationen von Gruppe-II-Intron-Molekülen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Steiner M, Rueda D, Sigel RKO. Ca2+ induces the formation of two distinct subpopulations of group II intron molecules. Angew Chem Int Ed Engl 2009; 48:9739-42. [PMID: 19924747 PMCID: PMC2864518 DOI: 10.1002/anie.200903809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The folding pathway of the Sc .ai5γ derived group II intron ribozyme D135 is highly specific to the correct M2+ cofactor. Upon partial replacement of Mg2+ with Ca2+, the molecules split into two distinct static subpopulations that are not interchangeable. Type 2 molecules thereby form a compact but misfolded state.
Collapse
Affiliation(s)
- Miriam Steiner
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Fax: (+) 41 44 635 68 02, , Homepage: www.aci.uzh.ch/rna
| | - David Rueda
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA, Fax: (+) 1 313 577 8822, Homepage: www.chem.wayne.edu/ruedagroup
| | - Roland K. O. Sigel
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, Fax: (+) 41 44 635 68 02, , Homepage: www.aci.uzh.ch/rna
| |
Collapse
|
21
|
Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 2008; 13:1025-36. [DOI: 10.1007/s00775-008-0390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022]
|
22
|
Mironova GD, Belosludtsev KN, Belosludtseva NV, Gritsenko EN, Khodorov BI, Saris NEL. Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin a-insensitive pore. J Bioenerg Biomembr 2007; 39:167-74. [PMID: 17530392 DOI: 10.1007/s10863-007-9079-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca(2+) results in the brief loss of Deltapsi [Mironova et al., J Bioenerg Biomembr (2004), 36:171-178]. Now we report that Pal and Ca(2+), increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca(2+) and the swelling of mitochondria. Inhibitors of the Ca(2+) uniporter, ruthenium red and La(3+), as well as EGTA added in 10 min after the Pal/Ca(2+)-activated pore opening, prevent the release of Ca(2+) and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr(2+)], which leads to the activation of phospholipase A(2) and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca(2+) cycle, in which Ca(2+) uptake is mediated by the Ca(2+) uniporter and Ca(2+) efflux occurs via a short-living Pal/Ca(2+)-activated pore.
Collapse
Affiliation(s)
- Galina D Mironova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Calcium is the most universal carrier of signals to cells. Chosen by evolution because of its peculiar flexibility as a ligand, it now regulates all important aspects of cell activity, beginning with the creation of new life at fertilization and ending with the dramatic event of apoptotic suicide at the end of the life cycle. The process of signal transduction by Ca2+ displays a number of properties that make it unique among all other carriers of signals: for instance, the ability to perform both a first messenger and a second messenger function, or the frequent activation of autoregulatory mechanisms. The aspect that distinguishes the Ca2+ signaling function most dramatically is ambivalence. Cells have an absolute dependence on the messenger function of Ca2+ in order to function properly and must control its homeostasis with precision to maintain its free concentration in their interior at the appropriate low level. Catastrophy, however, invariably follows whenever protracted failures of the control mechanisms lead to sustained Ca2+ overload.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Venetian Institute of Molecular Medicine, Department of Biochemistry, University of Padova, Italy.
| |
Collapse
|
24
|
Saris NEL, Carafoli E. A historical review of cellular calcium handling, with emphasis on mitochondria. BIOCHEMISTRY (MOSCOW) 2005; 70:187-94. [PMID: 15807658 DOI: 10.1007/s10541-005-0100-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calcium ions are of central importance in cellular physiology, as they carry the signal activating cells to perform their programmed function. Ca(2+) is particularly suitable for this role because of its chemical properties and because its free concentration gradient between the extra-cellular and the cytosolic concentrations is very high, about four orders of magnitude. The cytosolic concentration of Ca(2+) is regulated by binding and chelation by various substances and by transport across plasma and intracellular membranes. Various channels, transport ATPases, uniporters, and antiporters in the plasma membrane, endoplasmic and sarcoplasmic reticulum, and mitochondria are responsible for the transport of Ca(2+). The regulation of these transport systems is the subject of an increasing number of studies. In this short review, we focus on the mitochondrial transporters, i.e. the calcium uniporter used for Ca(2+) uptake, and the antiporters used for the efflux, i.e. the Ca(2+)/Na(+) antiporter in mitochondria and the plasma membrane of excitable cells, and the Ca(2+)/nH(+) antiporter in liver and some other mitochondrial types. Mitochondria are of special interest in that Ca(2+) stimulates respiration and oxidative phosphorylation to meet the energy needs of activated cells. The studies on Ca(2+) and mitochondria began in the fifties, but interest in mitochondrial Ca(2+) handling faded in the late seventies since it had become apparent that mitochondria in resting cells contain very low Ca(2+). Interest increased again in the nineties also because it was discovered that mitochondria and Ca(2+) had a central role in apoptosis and necrosis. This is of special interest in calcium overload and oxidative stress conditions, when the opening of the mitochondrial permeability transition pore is stimulated.
Collapse
Affiliation(s)
- N-E L Saris
- Department of Applied Biochemistry and Microbiology, Viikki Biocenter 1, University of Helsinki, Helsinki, FIN-00014, Finland.
| | | |
Collapse
|
25
|
Traaseth N, Elfering S, Solien J, Haynes V, Giulivi C. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:64-71. [PMID: 15282176 DOI: 10.1016/j.bbabio.2004.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/21/2004] [Accepted: 04/26/2004] [Indexed: 11/30/2022]
Abstract
An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.
Collapse
Affiliation(s)
- Nathaniel Traaseth
- Department of Chemistry, University of Minnesota, 10 University Drive, Duluth, MN 55812, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|
27
|
Toninello A, Salvi M, Schweizer M, Richter C. Menadione induces a low conductance state of the mitochondrial inner membrane sensitive to bongkrekic acid. Free Radic Biol Med 2004; 37:1073-80. [PMID: 15336323 DOI: 10.1016/j.freeradbiomed.2004.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/17/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
When rat liver mitochondria are allowed to cycle Ca(2+) and are incubated in the presence of the pro-oxidant menadione, they undergo swelling, membrane potential (DeltaPsi) collapse, and ion release. These effects, which are inhibited by cyclosporin A (CsA), are fully consistent with the opening of the so-called permeability transition pore. However, when Ca(2+) cycling is abolished by EGTA, the mitochondria remain energized (DeltaPsi collapse and swelling are avoided), but Ca(2+) efflux, promoted by the chelating agent, is stimulated by menadione. This stimulation goes together with the release of Mg(2+), K(+), and adenine nucleotides (AdN) and is inhibited by bongkrekic acid (BKA). The effect of menadione is also characterized by biphasic NAD(P)H oxidation which becomes monophasic in the presence of BKA, CsA, or EGTA and by the oxidation of thiol groups not restrained by the above-mentioned inhibitors. These results suggest that BKA acts indirectly by preserving in the matrix a critical amount of AdN without modifying the monophasic oxidation of pyridine nucleotides by menadione. A critical number of thiol groups also seems to be involved in the phenomenon. Their oxidation most probably causes a conformational change on adenine nucleotide translocase with the opening of the "low-conductance state" of the mitochondrial permeability transition, resulting in ion permeability without DeltaPsi disruption and mitochondrial swelling.
Collapse
Affiliation(s)
- Antonio Toninello
- Dipartimento di Chimica Biologica, Università di Padova, Istituto di Neuroscienze del CNR, Unità per lo studio delle Biomembrane, Viale G. Colombo 3, 35121 Padūa, Italy.
| | | | | | | |
Collapse
|
28
|
Carafoli E. Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 2003; 28:175-81. [PMID: 12713900 DOI: 10.1016/s0968-0004(03)00053-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of Ca(2+) transport by mitochondria is conventionally credited to De Luca and Engstrom, and Vasington and Murphy, who showed in 1961-1962 that Ca(2+) was taken up by isolated mitochondria using respiratory or ATP energy. However, contributions had already appeared in the 1950s showing - albeit indirectly - that isolated mitochondria bound Ca(2+) actively. Somehow, however, these contributions failed to attract the attention that they undoubtedly deserved. The 1961-1962 findings started the ball rolling, initiating a topic that was to have a peculiar oscillatory history. It went from peaks of great enthusiasm to valleys of essential neglect, and from there to a final (hopefully permanent) robust revival.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
29
|
Lännergren J, Westerblad H, Bruton JD. Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions. J Muscle Res Cell Motil 2002; 22:265-75. [PMID: 11763199 DOI: 10.1023/a:1012227009544] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study investigated mitochondrial Ca2+ uptake and release in intact living skeletal muscle fibres subjected to bouts of repetitive activity. Confocal microscopy was used in conjunction with the Ca2+-sensitive dye Rhod-2 to monitor changes in mitochondrial Ca2+ in single Xenopus or mouse muscle fibres. A marked increase in the mitochondrial Ca2+ occurred in Xenopus fibres after 10 tetani applied at 4 s intervals. The mitochondrial Ca2+ continued to increase with increasing number of tetani. After the end of tetanic stimulation, mitochondrial Ca2+ declined to 50% of the maximal increase within 10 min and thereafter took up to 60 min to return to its original value. Depolarization of the mitochondria with FCCP greatly attenuated the rise in the mitochondrial Ca2+ evoked by repetitive tetanic stimulation. In addition, FCCP slowed the rate of decay of the tetanic Ca2+ transient which in turn led to an elevation of resting cytosolic Ca2+. Accumulation of Ca2+ in the mitochondria was accompanied by a modest mitochondrial depolarization. In contrast to the situation in Xenopus fibres, mitochondria in mouse toe muscle fibres did not show any change in the mitochondrial Ca2+ during repetitive stimulation and FCCP had no effect on the rate of decay of the tetanic Ca2+ transient. It is concluded that in Xenopus fibres, mitochondria play a role in the regulation of cytosolic Ca2+ and contribute to the relaxation of tetanic Ca2+ transients. In contrast to their important role in Xenopus fibres, mitochondria in mouse fast-twitch skeletal fibres play little role in Ca2+ homeostasis.
Collapse
Affiliation(s)
- J Lännergren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Abstract
An experiment performed in London nearly 120 years ago, which by today's standards would be considered unacceptably sloppy, marked the beginning of the calcium (Ca(2+)) signaling saga. Sidney Ringer [Ringer, S. (1883) J. Physiol. 4, 29-43] was studying the contraction of isolated rat hearts. In earlier experiments, Ringer had suspended them in a saline medium for which he admitted to having used London tap water, which is hard: The hearts contracted beautifully. When he proceeded to replace the tap water with distilled water, he made a startling finding: The beating of the hearts became progressively weaker, and stopped altogether after about 20 min. To maintain contraction, he found it necessary to add Ca(2+) salts to the suspension medium. Thus, Ringer had serendipitously discovered that Ca(2+), hitherto exclusively considered as a structural element, was active in a tissue that has nothing to do with bone or teeth, and performed there a completely novel function: It carried the signal that initiated heart contraction. It was a landmark observation, which should have immediately aroused wide interest. Unexpectedly, however, for decades it attracted no particular attention. Occasionally, farsighted pioneers argued forcefully for a messenger role of Ca(2+), offering compelling experimental evidence. Among them, one could quote L. V. Heilbrunn [Heilbrunn, L. V. (1940) Physiol. Zool. 13, 88-94], who contracted frog muscle fibers by applying Ca(2+) salts to their cut ends, but not to their surfaces. Heilbrunn correctly concluded that Ca(2+) had diffused from the cut ends to the internal contractile elements to elicit their contraction. One could also quote K. Bailey [Bailey, K. (1942) Biochem. J. 36, 121-139], who showed that the ATPase activity of myosin was strongly activated by Ca(2+) (but not by Mg(2+)), and concluded that the liberation of Ca(2+) in the neighborhood of the myosin controlled muscle contraction. Clearly, enough evidence was there, but only a handful of people had the vision to see it and to foresee its far-reaching implications. Perhaps no better example of clairvoyance can be offered than the quip by O. Loewy in 1959: "Ja Kalzium, das ist alles!"
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
31
|
Pozzan T, Rizzuto R. The renaissance of mitochondrial calcium transport. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5269-73. [PMID: 10951183 DOI: 10.1046/j.1432-1327.2000.01567.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the capacity of mitochondria for accumulating Ca2+ down the electrical gradient generated by the respiratory chain has been known for over three decades, the physiological significance of this phenomenon has been re-evaluated only recently. Indeed, it was long believed that the low affinity of the mitochondrial Ca2+ transporters would allow significant uptake only in conditions of cellular Ca2+ overload. Conversely, the direct measurement of [Ca2+] in the mitochondrial matrix revealed major [Ca2+] increases upon agonist stimulation. In this review, we will summarize: (a) the mechanisms that allow this large response, reconciling the biochemical properties of the transporters and the large amplitude of the mitochondrial [Ca2+] rises, and (b) the biological role of mitochondrial Ca2+ signalling, that encompasses the regulation of mitochondrial function and the modulation of the spatio-temporal pattern of cytosolic [Ca2+] increases.
Collapse
Affiliation(s)
- T Pozzan
- Department of Biomedical Sciences and CNR Center for the Study of Biomembranes, University of Padova, Italy.
| | | |
Collapse
|
32
|
Colegrove SL, Albrecht MA, Friel DD. Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+](i) elevations in sympathetic neurons. J Gen Physiol 2000; 115:351-70. [PMID: 10694263 PMCID: PMC2217215 DOI: 10.1085/jgp.115.3.351] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1999] [Accepted: 01/05/2000] [Indexed: 01/24/2023] Open
Abstract
We studied how mitochondrial Ca2+ transport influences [Ca2+](i) dynamics in sympathetic neurons. Cells were treated with thapsigargin to inhibit Ca2+ accumulation by SERCA pumps and depolarized to elevate [Ca2+(i); the recovery that followed repolarization was then examined. The total Ca2+ flux responsible for the [Ca2+](i) recovery was separated into mitochondrial and nonmitochondrial components based on sensitivity to the proton ionophore FCCP, a selective inhibitor of mitochondrial Ca2+ transport in these cells. The nonmitochondrial flux, representing net Ca2+ extrusion across the plasma membrane, has a simple dependence on [Ca2+](i), while the net mitochondrial flux (J(mito)) is biphasic, indicative of Ca+) accumulation during the initial phase of recovery when [Ca2+](i) is high, and net Ca2+ release during later phases of recovery. During each phase, mitochondrial Ca2+ transport has distinct effects on recovery kinetics. J(mito) was separated into components representing mitochondrial Ca2+ uptake and release based on sensitivity to the specific mitochondrial Na(+)/Ca2+ exchange inhibitor, CGP 37157 (CGP). The CGP-resistant (uptake) component of J(mito) increases steeply with [Ca2+](i), as expected for transport by the mitochondrial uniporter. The CGP-sensitive (release) component is inhibited by lowering the intracellular Na(+) concentration and depends on both intra- and extramitochondrial Ca2+ concentration, as expected for the Na(+)/Ca2+ exchanger. Above approximately 400 nM [Ca2+](i), net mitochondrial Ca2+ transport is dominated by uptake and is largely insensitive to CGP. When [Ca2+](i) is approximately 200-300 nM, the net mitochondrial flux is small but represents the sum of much larger uptake and release fluxes that largely cancel. Thus, mitochondrial Ca2+ transport occurs in situ at much lower concentrations than previously thought, and may provide a mechanism for quantitative control of ATP production after brief or low frequency stimuli that raise [Ca(2+)](i) to levels below approximately 500 nM.
Collapse
Affiliation(s)
- Stephen L. Colegrove
- Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio 44106
| | - Meredith A. Albrecht
- Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio 44106
| | - David D. Friel
- Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
33
|
Abstract
The present study expands the contemporary view of mitochondria as important participants in cellular Ca(2+) dynamics and provides evidence that mitochondria regulate the supply of release-competent secretory granules. Using pharmacological probes to inhibit mitochondrial Ca(2+) import, the ability of mitochondria to modulate secretory activity in single, patch-clamped bovine chromaffin cells was examined by simultaneously monitoring rapid changes in membrane surface area (DeltaC(m)) and cytosolic Ca(2+) levels ([Ca(2+)](c)). Repetitive step depolarizations or action potential waveforms were found to raise the [Ca(2+)](c) of chromaffin cells into the 1 microM to tens of micromolar range. Inhibiting mitochondria by treatment with carbonyl cyanide p-(trifuoro-methoxy)phenylhydrazone, antimycin-oligomycin, or ruthenium red revealed that mitochondria are a prominent component for the clearance of Ca(2+) that entered via voltage-activated Ca(2+) channels. Disruption of cellular Ca(2+) homeostasis by poisoning mitochondria enhanced the secretory responsiveness of chromaffin cells by increasing the amplitude of the transient rise and the time course of recovery to baseline of the evoked Delta[Ca(2+)](c). The enhancement of the secretory response was represented by significant deviation of the Ca(2+)-exocytosis relationship from a standard relationship that equates Ca(2+) influx and DeltaC(m). Thus, mitochondria would play a critical role in the control of secretory activity in chromaffin cells that undergo tonic or repetitive depolarizing activity, likely by limiting the Ca(2+)-dependent activation of specific proteins that recruit or prime secretory granules for exocytosis.
Collapse
|
34
|
Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci 1999. [PMID: 10414966 DOI: 10.1523/jneurosci.19-15-06372.1999] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several lines of evidence suggest that neuronal mitochondria accumulate calcium when the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) is elevated to levels approaching approximately 500 nM, but the spatial, temporal, and quantitative characteristics of net mitochondrial Ca uptake during stimulus-evoked [Ca(2+)](i) elevations are not well understood. Here, we report direct measurements of depolarization-induced changes in intramitochondrial total Ca concentration ([Ca](mito)) obtained by x-ray microanalysis of rapidly frozen neurons from frog sympathetic ganglia. Unstimulated control cells exhibited undetectably low [Ca](mito), but high K(+) depolarization (50 mM, 45 sec), which elevates [Ca(2+)](i) to approximately 600 nM, increased [Ca](mito) to 13.0 +/- 1.5 mmol/kg dry weight; this increase was abolished by carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP). The elevation of [Ca](mito) was a function of both depolarization strength and duration. After repolarization, [Ca](mito) recovered to prestimulation levels with a time course that paralleled the decline in [Ca(2+)](i). Depolarization-induced increases in [Ca](mito) were spatially heterogeneous. At the level of single mitochondria, [Ca](mito) elevations depended on proximity to the plasma membrane, consistent with predictions of a diffusion model that considers radial [Ca(2+)](i) gradients that exist early during depolarization. Within individual mitochondria, Ca was concentrated in small, discrete sites, possibly reflecting a high-capacity intramitochondrial Ca storage mechanism. These findings demonstrate that in situ Ca accumulation by mitochondria, now directly identified as the structural correlate of the "FCCP-sensitive store, " is robust, reversible, graded with stimulus strength and duration, and dependent on spatial location.
Collapse
|
35
|
Scotti AL, Chatton JY, Reuter H. Roles of Na(+)-Ca2+ exchange and of mitochondria in the regulation of presynaptic Ca2+ and spontaneous glutamate release. Philos Trans R Soc Lond B Biol Sci 1999; 354:357-64. [PMID: 10212484 PMCID: PMC1692498 DOI: 10.1098/rstb.1999.0387] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The release of neurotransmitter from presynaptic terminals depends on an increase in the intracellular Ca2+ concentration ([Ca2+]i). In addition to the opening of presynaptic Ca2+ channels during excitation, other Ca2+ transport systems may be involved in changes in [Ca2+]i. We have studied the regulation of [Ca2+]i in nerve terminals of hippocampal cells in culture by the Na(+)-Ca2+ exchanger and by mitochondria. In addition, we have measured changes in the frequency of spontaneous excitatory postsynaptic currents (sEPSC) before and after the inhibition of the exchanger and of mitochondrial metabolism. We found rather heterogeneous [Ca2+]i responses of individual presynaptic terminals after inhibition of Na(+)-Ca2+ exchange. The increase in [Ca2+]i became more uniform and much larger after additional treatment of the cells with mitochondrial inhibitors. Correspondingly, sEPSC frequencies changed very little when only Na(+)-Ca2+ exchange was inhibited, but increased dramatically after additional inhibition of mitochondria. Our results provide evidence for prominent roles of Na(+)-Ca2+ exchange and mitochondria in presynaptic Ca2+ regulation and spontaneous glutamate release.
Collapse
Affiliation(s)
- A L Scotti
- Department of Pharmacology, University of Bern, Switzerland
| | | | | |
Collapse
|
36
|
Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 1999; 18:522-33. [PMID: 9927412 PMCID: PMC1171145 DOI: 10.1093/emboj/18.3.522] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the mechanism of mitochondrial-nuclear crosstalk during cellular stress in mouse C2C12 myocytes. For this purpose, we used cells with reduced mitochondrial DNA (mtDNA) contents by ethidium bromide treatment or myocytes treated with known mitochondrial metabolic inhibitors, including carbonyl cyanide m-chlorophenylhydrazone (CCCP), antimycin, valinomycin and azide. Both genetic and metabolic stresses similarly affected mitochondrial membrane potential (Deltapsim) and electron transport-coupled ATP synthesis, which was also accompanied by an elevated steady-state cytosolic Ca2+ level ([Ca2+]i). The mitochondrial stress resulted in: (i) an enhanced expression of the sarcoplasmic reticular ryanodine receptor-1 (RyR-1), hence potentiating the Ca2+ release in response to its modulator, caffeine; (ii) enhanced levels of Ca2+-responsive factors calineurin, calcineurin-dependent NFATc (cytosolic counterpart of activated T-cell-specific nuclear factor) and c-Jun N-terminal kinase (JNK)-dependent ATF2 (activated transcription factor 2); (iii) reduced levels of transcription factor, NF-kappaB; and (iv) enhanced transcription of cytochrome oxidase Vb (COX Vb) subunit gene. These cellular changes, including the steady-state [Ca2+]i were normalized in genetically reverted cells which contain near-normal mtDNA levels. We propose that the mitochondria-to-nucleus stress signaling occurs through cytosolic [Ca2+]i changes, which are likely to be due to reduced ATP and Ca2+ efflux. Our results indicate that the mitochondrial stress signal affects a variety of cellular processes, in addition to mitochondrial membrane biogenesis.
Collapse
Affiliation(s)
- G Biswas
- Department of Animal Biology, and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tanaka T, Hakoda S, Takeyama N. Reoxygenation-induced mitochondrial damage is caused by the Ca2+-dependent mitochondrial inner membrane permeability transition. Free Radic Biol Med 1998; 25:26-32. [PMID: 9655518 DOI: 10.1016/s0891-5849(98)00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anoxia/reoxygenation injury of isolated rat liver mitochondria was investigated. During anoxia of up to 60 min, the membrane potential was largely preserved and mitochondrial swelling was not observed. Reoxygenation of anoxic mitochondria rapidly caused swelling, cyclosporin A-sensitive Ca2+ efflux, [14C]sucrose trapping, and loss of the membrane potential along with increased generation of reactive oxygen intermediates (ROI). Although pretreatment with catalase and superoxide dismutase completely abolished reoxygenation-induced generation of ROI, mitochondrial damage was not prevented, as indicated by swelling, loss of the membrane potential, a decrease of the ATP content, and cyclosporin A-sensitive Ca2+ efflux. However, addition of the immunosuppressant cyclosporin A or addition of ADP completely prevented the mitochondrial damage induced by reoxygenation. The same protective effect was noted when Ca2+ cycling was prevented, either by chelating Ca2+ with EGTA or by inhibiting Ca2+ reuptake with ruthenium red. These findings indicate that mitochondrial anoxia/reoxygenation injury is caused by the cyclosporin A-sensitive and Ca2+-dependent membrane permeability transition. In contrast, reoxygenation injury does not appear to be triggered by the enhanced production of ROI.
Collapse
Affiliation(s)
- T Tanaka
- Department of Emergency & Critical Care Medicine, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | |
Collapse
|
38
|
Abstract
Mitochondria, the metabolic powerhouses of the cell, can sequester and release large amounts of Ca2+. This import and export of Ca2+ helps to adjust energy production to cellular needs. Recent advances show that mitochondrial Ca2+ fluxes play a major role in normal Ca2+ signaling.
Collapse
Affiliation(s)
- D F Babcock
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195-7290, USA.
| | | |
Collapse
|
39
|
Murai Y, Ishibashi H, Koyama S, Akaike N. Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J Neurophysiol 1997; 78:2674-81. [PMID: 9356417 DOI: 10.1152/jn.1997.78.5.2674] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78: 2674-2681, 1997. The effects of metabolic inhibition on membrane currents and N-methyl--aspartic acid (NMDA)-induced currents were investigated in dissociated rat locus coeruleus (LC) neurons by using the nystatin perforated patch recording mode under voltage-clamp conditions. Changes in the intracellular Ca2+ concentration ([Ca2+]i) during the metabolic inhibition were also investigated by using the microfluometry with a fluorescent probe, Indo-1. Removal of both the oxygen and glucose (experimental ischemia), deprivation of glucose (hypoglycemia), and a blockade of electron transport by sodium cyanide (NaCN) or a reduction of the mitochondrial membrane potential with carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone(FCCP) as experimental anoxia all induced a slowly developing outward current (IOUT) at a holding potential of -40 mV. The application of 10(-4) M NMDA induced a rapid transient peak and a successive steady state inward current and a transient outward current immediately after washout. All treatments related to metabolic inhibition increased the NMDA-induced outward current(INMDA-OUT) and prolonged the one-half recovery time of INMDA-OUT. The reversal potentials of both IOUT and INMDA-OUT were close to the K+ equilibrium potential (EK) of -82 mV. Either charybdotoxin or tolbutamide inhibited the IOUT and INMDA-OUT, suggesting the contribution of Ca2+-activated and ATP-sensitive K+ channels, even though the inhibitory effect of tolbutamide gradually diminished with time. Under the metabolic inhibition, the basal level of [Ca2+]i was increased and the one-half recovery time of the NMDA-induced increase in [Ca2+]i was prolonged. The IOUT induced by NaCN was inhibited by a continuous treatment of thapsigargin but not by ryanodine, indicating the involvement of inositol 1,4, 5-trisphosphate (IP3)-induced Ca2+ release (IICR) store. These findings suggest that energy deficiency causes Ca2+ release from the IICR store and activates continuous Ca2+-activated K+ channels and transient ATP-sensitive K+ channels in acutely dissociated rat LC neurons.
Collapse
Affiliation(s)
- Y Murai
- Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka 812-82, Japan
| | | | | | | |
Collapse
|
40
|
Silva JP, Winterhalter KH, Richter C. t-Butylhydroperoxide and gliotoxin stimulate Ca2+ release from rat skeletal muscle mitochondria. Redox Rep 1997; 3:331-41. [PMID: 9754333 DOI: 10.1080/13510002.1997.11747131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca(2+)-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ ('Ca2+ cycling') is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability ('pore' formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.
Collapse
Affiliation(s)
- J P Silva
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Uedono Y, Takeyama N, Yamagami K, Tanaka T. Lipopolysaccharide-mediated hepatic glutathione depletion and progressive mitochondrial damage in mice: protective effect of glutathione monoethyl ester. J Surg Res 1997; 70:49-54. [PMID: 9228927 DOI: 10.1006/jsre.1997.5068] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overproduction of reactive oxygen intermediates (ROI) may have an important role in the pathophysiology of lipopolysaccharide-mediated liver-injury. This study examined the role of cytosolic and mitochondrial glutathione in protecting hepatocytes from oxidative stress during exposure to lipopolysaccharide. In addition, the possible participation of changes of inner mitochondrial membrane permeability in lipopolysaccharide-induced hepatotoxicity was investigated. The changes of hepatic glutathione content following lipopolysaccharide challenge (2 mg/kg) were measured in mice by reverse-phase high-performance liquid chromatography. Glutathione depletion and a glutathione-rich state were produced by intraperitoneal administration of a specific inhibitor of gamma-glutamyl cysteine synthetase, buthionine sulfoximine (3 mmol/kg), and by administration of glutathione monoethyl ester (10 mmol/kg), respectively. Intracellular ROI generation and the mitochondrial membrane potential were quantified by flow cytometry. Changes of inner mitochondrial membrane permeability in hepatocytes were assessed by radioactive sucrose entrapment. There was increased production of ROI along with depletion of cellular and mitochondrial glutathione in the liver after lipopolysaccharide administration. There was also a change of inner mitochondrial membrane permeability in hepatocytes, with the loss of coupled functions. Buthionine sulfoximine decreased the hepatic antioxidant capacity, worsened mitochondrial function, and reduced the survival rate of the mice. In contrast, glutathione monoethyl ester improved all of these parameters. Glutathione may have an important role in cellular defenses against lipopolysaccharide-induced liver damage in mice, and excessive oxidative stress may precipitate the mitochondrial membrane permeability transition in hepatocytes and lead to cell death.
Collapse
Affiliation(s)
- Y Uedono
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | | | | | | |
Collapse
|
42
|
Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 1997; 136:833-44. [PMID: 9049249 PMCID: PMC2132502 DOI: 10.1083/jcb.136.4.833] [Citation(s) in RCA: 447] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1996] [Revised: 12/02/1996] [Indexed: 02/03/2023] Open
Abstract
Calcium can activate mitochondrial metabolism, and the possibility that mitochondrial Ca2+ uptake and extrusion modulate free cytosolic [Ca2+] (Cac) now has renewed interest. We use whole-cell and perforated patch clamp methods together with rapid local perfusion to introduce probes and inhibitors to rat chromaffin cells, to evoke Ca2+ entry, and to monitor Ca2+-activated currents that report near-surface [Ca2+]. We show that rapid recovery from elevations of Cac requires both the mitochondrial Ca2+ uniporter and the mitochondrial energization that drives Ca2+ uptake through it. Applying imaging and single-cell photometric methods, we find that the probe rhod-2 selectively localizes to mitochondria and uses its responses to quantify mitochondrial free [Ca2+] (Cam). The indicated resting Cam of 100-200 nM is similar to the resting Cac reported by the probes indo-1 and Calcium Green, or its dextran conjugate in the cytoplasm. Simultaneous monitoring of Cam and Cac at high temporal resolution shows that, although Cam increases less than Cac, mitochondrial sequestration of Ca2+ is fast and has high capacity. We find that mitochondrial Ca2+ uptake limits the rise and underlies the rapid decay of Cac excursions produced by Ca2+ entry or by mobilization of reticular stores. We also find that subsequent export of Ca2+ from mitochondria, seen as declining Cam, prolongs complete Cac recovery and that suppressing export of Ca2+, by inhibition of the mitochondrial Na+/ Ca2+ exchanger, reversibly hastens final recovery of Cac. We conclude that mitochondria are active participants in cellular Ca2+ signaling, whose unique role is determined by their ability to rapidly accumulate and then release large quantities of Ca2+.
Collapse
Affiliation(s)
- D F Babcock
- Department of Physiology & Biophysics, University of Washington, Seattle 98195-7290, USA
| | | | | | | | | |
Collapse
|
43
|
Schweizer M, Richter C. Stimulation of Ca2+ release from rat liver mitochondria by the dithiol reagent alpha-lipoic acid. Biochem Pharmacol 1996; 52:1815-20. [PMID: 8951339 DOI: 10.1016/s0006-2952(96)00459-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rat liver mitochondria contain a Ca(2+)-specific release pathway stimulated by Ca(2+)-dependent hydrolysis of oxidized intramitochondrial pyridine nucleotides to ADP ribose and nicotinamide. We have previously shown that NAD+ hydrolysis and subsequent Ca2+ release are inhibited by cyclosporine A and that they are only possible when some critical thiols are cross-linked or oxidized, e.g. by phenylarsine oxide, gliotoxin, or peroxynitrite. We now report that the antioxidant alpha-lipoic acid stimulates Ca2+ release from intact mitochondria, i.e. with preservation of the mitochondrial membrane potential and without large-amplitude swelling. The release stimulated by alpha-lipoic acid is inhibited by cyclosporine A and is more effective when the pyridine nucleotides are oxidized. The results strongly suggest that alpha-lipoic acid stimulates the Ca(2+)-specific release pathway from intact mitochondria by oxidizing some vicinal thiols, thereby stimulating hydrolysis of oxidized pyridine nucleotides. These observations further corroborate that intact rat liver mitochondria contain a specific Ca2+ release pathway stimulated by modification of vicinal thiols. Prolonged stimulation of Ca2+ release by lipoic acid followed by its re-uptake (Ca2+ "cycling") may contribute to the detrimental, prooxidant-like effects seen with higher concentrations of lipoic acid.
Collapse
Affiliation(s)
- M Schweizer
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | |
Collapse
|
44
|
Roychoudhury S, Ghosh SK, Chakraborti T, Chakraborti S. Role of hydroxyl radical in the oxidant H2O2-mediated Ca2+ release from pulmonary smooth muscle mitochondria. Mol Cell Biochem 1996; 159:95-103. [PMID: 8858559 DOI: 10.1007/bf00420911] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We sought to investigate the mechanism(s) by which the oxidant H2O2 stimulates Ca2+ release from mitochondria of bovine pulmonary vascular smooth muscle tissue and to test the hypothesis that hydroxyl radical is involved in this phenomenon. Treatment of the smooth muscle tissue with 1 mM H2O2 dramatically stimulated hydroxyl radical generation as measured by methane (CH4) production by GLC using dimethylsulfoxide (DMSO) as the substrate. Pretreatment of the mitochondria with the hydroxyl radical scavanger dimethylthiourea (DMTU) prevented the increase in CH4 production caused by H2O2. In the absence of EGTA, H2O2 caused stimulation of Ca2+ release from mitochondria occurred with a lag time of about 4 min. Addition of EGTA to Ca2+ loaded mitochondria resulted an immediate loss of Ca2+ and that has been found to be augmented by H2O2. The release of Ca2+ by H2O2 did not appear to occur with concommitant increase in sucrose entry into, K+ release from, and swelling of mitochondria when the Ca2+ cycling was prevented by EGTA. These observations suggested that H2O2-mediated Ca2+ release from bovine pulmonary vascular smooth muscle tissue mitochondria occurred (i) through the involvement of hydroxyl radical; (ii) via specific pathway(s); and (iii) did not appear to happen primarily via nonspecific "pore' formation.
Collapse
Affiliation(s)
- S Roychoudhury
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal, India
| | | | | | | |
Collapse
|
45
|
Schweizer M, Richter C. Peroxynitrite stimulates the pyridine nucleotide-linked Ca2+ release from intact rat liver mitochondria. Biochemistry 1996; 35:4524-8. [PMID: 8605202 DOI: 10.1021/bi952708+] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rat liver mitochondria contain a specific Ca2+ release pathway which operates when oxidized mitochondrial pyridine nucleotides are hydrolyzed in a Ca2+-dependent manner to ADP-ribose and nicotinamide. We have previously shown that NAD+ hydrolysis is inhibited by cyclosporin A and is possible only when some vicinal thiols are cross-linked. Here we report that the thiol oxidant peroxynitrite (ONOO-), which can form from nitric oxide (nitrogen monoxide, NO.) and superoxide anion (O2-), at low concentrations stimulates the specific Ca2+ release pathway. Both peroxynitrite-induced pyridine nucleotide hydrolysis and Ca2+ release are inhibited by cyclosporin A, and peroxynitrite is ineffective when pyridine nucleotides are kept reduced. Ca2+ release induced by peroxynitrite occurs with maintenance of the mitochondrial membrane potential and is not accompanied by entry of sucrose into mitochondria. The results suggest that peroxynitrite stimulates the specific Ca2+ release from intact mitochondria by modifying critical mitochondrial thiols other than glutathione in such a way that hydrolysis of oxidized pyridine nucleotides is achieved. These findings provide further insight into the regulation of Ca2+ release from mitochondria by nitric oxide and its congeners.
Collapse
Affiliation(s)
- M Schweizer
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
46
|
Schweizer M, Richter C. Gliotoxin stimulates Ca2+ release from intact rat liver mitochondria. Biochemistry 1994; 33:13401-5. [PMID: 7524661 DOI: 10.1021/bi00249a028] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gliotoxin is an epidithiodioxopiperazine compound which can both react with sulfhydryl groups and form hydrogen peroxide. Rat liver mitochondria contain a prooxidant-regulated specific Ca2+ release pathway. Here we report that gliotoxin at low concentrations stimulates Ca2+ release via this pathway in isolated mitochondria. Ca2+ release is not promoted by gliotoxin exposed to disulfide-reducing reagents prior to addition to mitochondria or when its disulfide moiety is dimethylated. Gliotoxin is equally effective in glutathione-depleted and glutathione-adequate mitochondria. This and the unchanged mitochondrial oxygen consumption in the presence of gliotoxin suggest that the compound stimulates Ca2+ release by reacting with critical mitochondrial thiol compounds and not by increasing hydrogen peroxide formation in mitochondria. The gliotoxin-induced Ca2+ release is paralleled by hydrolysis of mitochondrial pyridine nucleotides, and both pyridine nucleotide hydrolysis and Ca2+ release are inhibited by cyclosporin A. These findings provide further insight into the regulation of Ca2+ release from intact mitochondria.
Collapse
Affiliation(s)
- M Schweizer
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zürich
| | | |
Collapse
|
47
|
Schweizer M, Durrer P, Richter C. Phenylarsine oxide stimulates pyridine nucleotide-linked Ca2+ release from rat liver mitochondria. Biochem Pharmacol 1994; 48:967-73. [PMID: 8093109 DOI: 10.1016/0006-2952(94)90367-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rat liver mitochondria contain a specific Ca2+ release pathway which operates when oxidized mitochondrial pyridine nucleotides are hydrolysed to ADPribose and nicotinamide. Here we report that the hydrophobic bifunctional thiol reagent phenylarsine oxide (PhAsO) at low concentrations stimulates this pathway by promoting a Ca(2+)-dependent hydrolysis of oxidized mitochondrial pyridine nucleotides. Ca2+ release is inhibited by cyclosporine A or m-iodobenzylguanidine, compounds known to prevent intramitochondrial pyridine nucleotide hydrolysis or protein mono(ADPribosyl)ation, respectively. At higher concentrations, PhAsO causes non-specific leakiness of mitochondria.
Collapse
Affiliation(s)
- M Schweizer
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|
48
|
Wallace DR, Dawson R. Regional differences in glutaminase activation by phosphate and calcium in rat brain: impairment in aged rats and implications for regional glutaminase isozymes. Neurochem Res 1993; 18:1271-9. [PMID: 8272193 DOI: 10.1007/bf00975047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regional regulation of glutaminase by phosphate and calcium was examined in the temporal cortex (TCX), striatum (STR) and hippocampus (HIPP) from adult and aged male F344 rats. Phosphate-dependent glutaminase activity in adult rats was significantly lower (35-43%) in the HIPP (100 and 150 mM) and STR (150 mM) compared to PAG activity in the TCX. Phosphate activation in aged rats was 50-60% lower in the HIPP at concentrations greater than 25 mM compared to the aged TCX or STR. PAG activity in the TCX and STR was unaffected by age, but was significantly reduced (30-50%) in the HIPP from aged rats at phosphate concentrations of 25 mM and greater when compared to adult rats. In adult rats at concentrations of CaCl2 above 1 mM, PAG activity was significantly lower (60-75%) in the STR and HIPP when compared to the TCX. In aged rats, PAG activity (1 mM CaCl2) in the HIPP was significantly less (50%) than STR PAG activity in aged rats. Diminished PAG activity was seen only in the TCX (2.5 mM; 32%), and the HIPP (0.5 mM; 25% and 1 mM; 38%) at higher calcium concentrations compared to adult. Phosphate-independent calcium activation of PAG occurred in the HIPP but not in either the TCX or the STR. Addition of phosphate resulted in a synergistic activation of PAG in the STR and TCX, but not in the HIPP. These findings suggest that PAG is regionally regulated by phosphate and calcium, and this regulation is impaired in aged rats. These data also support the hypothesis that isozymes of PAG exist with different regulatory properties.
Collapse
Affiliation(s)
- D R Wallace
- University of Kentucky, Department of Pharmacology MS305, Lexington 40536-0084
| | | |
Collapse
|
49
|
Takeyama N, Matsuo N, Tanaka T. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition. Biochem J 1993; 294 ( Pt 3):719-25. [PMID: 7691056 PMCID: PMC1134522 DOI: 10.1042/bj2940719] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of O2 metabolites derived from the xanthine-xanthine oxidase system to inhibit mitochondrial function was examined using freshly isolated rat liver mitochondria. Under 2,4-dinitrophenol-uncoupled conditions, mitochondria exposed to free radicals exhibited a significant decrease in O2 consumption supported by NAD(+)-linked substrates, but showed almost no change in O2 consumption in the presence of succinate and ascorbate. Oxidative stress caused the loss of intramitochondrial nicotinamide nucleotides, and addition of NAD+ fully prevented any fall in O2 consumption with NAD(+)-linked substrates. The activity of electron-transfer complex I (NADH oxidase and NADH-cytochrome c oxidoreductase) and the energy-dependent reduction of NAD+ by succinate were unaltered by oxidative stress. Exposure to free radicals also had an uncoupling effect at all three coupling sites. The degree of mitochondrial swelling was closely correlated with the inhibition of State-3 oxidation of site-I substrates and with the increase in State-4 oxidation of succinate. The immunosuppressive agent cyclosporin A completely prevented the mitochondrial damage induced by oxygen free radicals (swelling, Ca2+ release, sucrose trapping, uncoupling and selective inhibition of the mitochondrial respiration of site-I substrates). The same protective effect was found when Ca2+ cycling was prevented, either by chelating Ca2+ with EGTA or by inhibiting Ca2+ reuptake with Ruthenium Red. These findings suggest that the deleterious effect of free radicals on mitochondria in the present experimental system was triggered by the cyclosporin A-sensitive and Ca(2+)-dependent membrane transition, and not by direct impairment of the mitochondrial inner-membrane enzymes.
Collapse
Affiliation(s)
- N Takeyama
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | | | | |
Collapse
|
50
|
Schlegel J, Schweizer M, Richter C. 'Pore' formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria. Biochem J 1992; 285 ( Pt 1):65-9. [PMID: 1379041 PMCID: PMC1132745 DOI: 10.1042/bj2850065] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has recently been suggested by several investigators that the hydroperoxide- and phosphate-induced Ca2+ release from mitochondria occurs through a non-specific 'pore' formed in the mitochondrial inner membrane. The aim of the present study was to investigate whether 'pore' formation actually is required for Ca2+ release. We find that the t-butyl hydroperoxide (tbh)-induced release is not accompanied by stimulation of sucrose entry into, K+ release from, and swelling of mitochondria provided re-uptake of the released Ca2+ ('Ca2+ cycling') is prevented. We conclude that (i) the tbh-induced Ca2+ release from rat liver mitochondria does not require 'pore' formation in the mitochondrial inner membrane, (ii) this release occurs via a specific pathway from intact mitochondria, and (iii) a non-specific permeability transition ('pore' formation) is likely to be secondary to Ca2+ cycling by mitochondria.
Collapse
Affiliation(s)
- J Schlegel
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|