1
|
Freitag M, Schwertz H. A New Role of NAP1L1 in Megakaryocytes and Human Platelets. Int J Mol Sci 2022; 23:ijms232314694. [PMID: 36499021 PMCID: PMC9737020 DOI: 10.3390/ijms232314694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Platelets (PLTs) are anucleate and considered incapable of nuclear functions. Contrastingly, nuclear proteins were detected in human PLTs. For most of these proteins, it is unclear if nuclear or alternatively assigned functions are performed, a question we wanted to address for nuclear assembly protein 1like 1 (NAP1L1). Using a wide array of molecular methods, including RNAseq, co-IP, overexpression and functional assays, we explored expression pattern and functionality of NAP1L1 in PLTs, and CD34+-derived megakaryocytes (MKs). NAP1L1 is expressed in PLTs and MKs. Co-IP experiments revealed that dihydrolipolylysine-residue acetyltransferase (DLAT encoded protein PDC-E2, ODP2) dynamically interacts with NAP1L1. PDC-E2 is part of the mitochondrial pyruvate-dehydrogenase (PDH) multi-enzyme complex, playing a crucial role in maintaining cellular respiration, and promoting ATP-synthesis via the respiratory chain. Since altered mitochondrial function is a hallmark of infectious syndromes, we analyzed PDH activity in PLTs from septic patients demonstrating increased activity, paralleling NAP1L1 expression levels. MKs PDH activity decreased following an LPS-challenge. Furthermore, overexpression of NAP1L1 significantly altered the ability of MKs to form proplatelet extensions, diminishing thrombopoiesis. These results indicate that NAP1L1 performs in other than nucleosome-assembly functions in PTLs and MKs, binding a key mitochondrial protein as a potential chaperone, and gatekeeper, influencing PDH activity and thrombopoiesis.
Collapse
Affiliation(s)
- Martin Freitag
- Department of Cardiac Surgery, Heart Center Leipzig-University Hospital, 04289 Leipzig, Germany
| | - Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Occupational Medicine at Billings Clinic Bozeman, Bozeman, MT 59715, USA
- Correspondence: or
| |
Collapse
|
2
|
|
3
|
Jiang J, Baiesc FL, Hiromasa Y, Yu X, Hui WH, Dai X, Roche TE, Zhou ZH. Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex. Biochemistry 2018; 57:2325-2334. [PMID: 29608861 DOI: 10.1021/acs.biochem.8b00357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) is a large multienzyme complex that catalyzes the irreversible conversion of pyruvate to acetyl-coenzyme A with reduction of NAD+. Distinctive from PDCs in lower forms of life, in mammalian PDC, dihydrolipoyl acetyltransferase (E2; E2p in PDC) and dihydrolipoamide dehydrogenase binding protein (E3BP) combine to form a complex that plays a central role in the organization, regulation, and integration of catalytic reactions of PDC. However, the atomic structure and organization of the mammalian E2p/E3BP heterocomplex are unknown. Here, we report the structure of the recombinant dodecahedral core formed by the C-terminal inner-core/catalytic (IC) domain of human E2p determined at 3.1 Å resolution by cryo electron microscopy (cryoEM). The structure of the N-terminal fragment and four other surface areas of the human E2p IC domain exhibit significant differences from those of the other E2 crystal structures, which may have implications for the integration of E3BP in mammals. This structure also allowed us to obtain a homology model for the highly homologous IC domain of E3BP. Analysis of the interactions of human E2p or E3BP with their adjacent IC domains in the dodecahedron provides new insights into the organization of the E2p/E3BP heterocomplex and suggests a potential contribution by E3BP to catalysis in mammalian PDC.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Flavius L Baiesc
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yasuaki Hiromasa
- Faculty of Agriculture, Attached Promotive Center for International Education and Research of Agriculture , Kyushu University , Fukuoka 812-8581 , Japan.,Department of Biochemistry and Molecular Biophysics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wong Hoi Hui
- California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Thomas E Roche
- Department of Biochemistry and Molecular Biophysics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
4
|
Chueh FY, Leong KF, Cronk RJ, Venkitachalam S, Pabich S, Yu CL. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription. Cell Signal 2011; 23:1170-8. [PMID: 21397011 DOI: 10.1016/j.cellsig.2011.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2.
Collapse
Affiliation(s)
- Fu-Yu Chueh
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | |
Collapse
|
5
|
Cadiñanos J, Llorente JL, de la Rosa J, Villameytide JA, Illán R, Durán NS, Murias E, Cabanillas R. Novel germline SDHD deletion associated with an unusual sympathetic head and neck paraganglioma. Head Neck 2010; 33:1233-40. [DOI: 10.1002/hed.21384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2009] [Indexed: 12/17/2022] Open
|
6
|
Structures of the human pyruvate dehydrogenase complex cores: a highly conserved catalytic center with flexible N-terminal domains. Structure 2008; 16:104-14. [PMID: 18184588 DOI: 10.1016/j.str.2007.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 10/09/2007] [Accepted: 10/27/2007] [Indexed: 11/21/2022]
Abstract
Dihydrolipoyl acetyltransferase (E2) is the central component of pyruvate dehydrogenase complex (PDC), which converts pyruvate to acetyl-CoA. Structural comparison by cryo-electron microscopy (cryo-EM) of the human full-length and truncated E2 (tE2) cores revealed flexible linkers emanating from the edges of trimers of the internal catalytic domains. Using the secondary structure constraints revealed in our 8 A cryo-EM reconstruction and the prokaryotic tE2 atomic structure as a template, we derived a pseudo atomic model of human tE2. The active sites are conserved between prokaryotic tE2 and human tE2. However, marked structural differences are apparent in the hairpin domain and in the N-terminal helix connected to the flexible linker. These permutations away from the catalytic center likely impart structures needed to integrate a second component into the inner core and provide a sturdy base for the linker that holds the pyruvate dehydrogenase for access by the E2-bound regulatory kinase/phosphatase components in humans.
Collapse
|
7
|
Ciszak EM, Makal A, Hong YS, Vettaikkorumakankauv AK, Korotchkina LG, Patel MS. How Dihydrolipoamide Dehydrogenase-binding Protein Binds Dihydrolipoamide Dehydrogenase in the Human Pyruvate Dehydrogenase Complex. J Biol Chem 2006; 281:648-55. [PMID: 16263718 DOI: 10.1074/jbc.m507850200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dihydrolipoamide dehydrogenase-binding protein (E3BP) and the dihydrolipoamide acetyltransferase (E2) component enzyme form the structural core of the human pyruvate dehydrogenase complex by providing the binding sites for two other component proteins, dihydrolipoamide dehydrogenase (E3) and pyruvate dehydrogenase (E1), as well as pyruvate dehydrogenase kinases and phosphatases. Despite a high similarity between the primary structures of E3BP and E2, the E3-binding domain of human E3BP is highly specific to human E3, whereas the E1-binding domain of human E2 is highly specific to human E1. In this study, we characterized binding of human E3 to the E3-binding domain of E3BP by x-ray crystallography at 2.6-angstroms resolution, and we used this structural information to interpret the specificity for selective binding. Two subunits of E3 form a single recognition site for the E3-binding domain of E3BP through their hydrophobic interface. The hydrophobic residues Pro133, Pro154, and Ile157 in the E3-binding domain of E3BP insert themselves into the surface of both E3 polypeptide chains. Numerous ionic and hydrogen bonds between the residues of three interacting polypeptide chains adjacent to the central hydrophobic patch add to the stability of the subcomplex. The specificity of pairing for human E3BP with E3 is interpreted from its subcomplex structure to be most likely due to conformational rigidity of the binding fragment of the E3-binding domain of E3BP and its exquisite amino acid match with the E3 target interface.
Collapse
Affiliation(s)
- Ewa M Ciszak
- Laboratory for Structural Biology, National Space Science and Technology Center, University of Alabama in Huntsville, 35805, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Hiromasa Y, Fujisawa T, Aso Y, Roche TE. Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components. J Biol Chem 2003; 279:6921-33. [PMID: 14638692 DOI: 10.1074/jbc.m308172200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The subunits of the dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex can form a 60-mer via association of the C-terminal I domain of E2 at the vertices of a dodecahedron. Exterior to this inner core structure, E2 has a pyruvate dehydrogenase component (E1)-binding domain followed by two lipoyl domains, all connected by mobile linker regions. The assembled core structure of mammalian pyruvate dehydrogenase complex also includes the dihydrolipoyl dehydrogenase (E3)-binding protein (E3BP) that binds the I domain of E2 by its C-terminal I' domain. E3BP similarly has linker regions connecting an E3-binding domain and a lipoyl domain. The composition of E2.E3BP was thought to be 60 E2 plus approximately 12 E3BP. We have prepared homogenous human components. E2 and E2.E3BP have s(20,w) values of 36 S and 31.8 S, respectively. Equilibrium sedimentation and small angle x-ray scattering studies indicate that E2.E3BP has lower total mass than E2, and small angle x-ray scattering showed that E3 binds to E2.E3BP outside the central dodecahedron. In the presence of saturating levels of E1, E2 bound approximately 60 E1 and maximally sedimented 64.4 +/- 1.5 S faster than E2, whereas E1-saturated E2.E3BP maximally sedimented 49.5 +/- 1.4 S faster than E2.E3BP. Based on the impact on sedimentation rates by bound E1, we estimate fewer E1 (approximately 12) were bound by E2.E3BP than by E2. The findings of a smaller E2.E3BP mass and a lower capacity to bind E1 support the smaller E3BP substituting for E2 subunits rather than adding to the 60-mer. We describe a substitution model in which 12 I' domains of E3BP replace 12 I domains of E2 by forming 6 dimer edges that are symmetrically located in the dodecahedron structure. Twelve E3 dimers were bound per E248.E3BP12 mass, which is consistent with this model.
Collapse
Affiliation(s)
- Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
9
|
Hiromasa Y, Roche TE. Facilitated interaction between the pyruvate dehydrogenase kinase isoform 2 and the dihydrolipoyl acetyltransferase. J Biol Chem 2003; 278:33681-93. [PMID: 12816949 DOI: 10.1074/jbc.m212733200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dihydrolipoyl acetyltransferase (E2) has an enormous impact on pyruvate dehydrogenase kinase (PDK) phosphorylation of the pyruvate dehydrogenase (E1) component by acting as a mobile binding framework and in facilitating and mediating regulation of PDK activity. Analytical ultracentrifugation (AUC) studies established that the soluble PDK2 isoform is a stable dimer. The interaction of PDK2 with the lipoyl domains of E2 (L1, L2) and the E3-binding protein (L3) were characterized by AUC. PDK2 interacted very weakly with L2 (Kd approximately 175 microM for 2 L2/PDK2) but much tighter with dimeric glutathione S-transferase (GST)-L2 (Kd approximately 3 microM), supporting the importance of bifunctional binding. Reduction of lipoyl groups resulted in approximately 8-fold tighter binding of PDK2 to GST-L2red, which was approximately 300-fold tighter than binding of 2 L2red and also much tighter than binding by GST-L1red and GST-L3red. The E2 60-mer bound approximately 18 PDK2 dimers with a Kd similar to GST-L2. E2.E1 bound more PDK2 (approximately 27.6) than E2 with approximately 2-fold tighter affinity. Lipoate reduction fostered somewhat tighter binding at more sites by E2 and severalfold tighter binding at the majority of sites on E2.E1. ATP and ADP decreased the affinity of PDK2 for E2 by 3-5-fold and adenosine 5'-(beta,gamma-imino)triphosphate or phosphorylation of E1 similarly reduced PDK2 binding to E2.E1. Reversible bifunctional binding to L2 with the mandatory singly held transition fits the proposed "hand-over-hand" movement of a kinase dimer to access E1 without dissociating from the complex. The gain in binding interactions upon lipoate reduction likely aids reduction-engendered stimulation of PDK2 activity; loosening of binding as a result of adenine nucleotides and phosphorylation may instigate movement of lipoyl domain-held kinase to a new E1 substrate.
Collapse
Affiliation(s)
- Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
10
|
Harmych S, Arnette R, Komuniecki R. Role of dihydrolipoyl dehydrogenase (E3) and a novel E3-binding protein in the NADH sensitivity of the pyruvate dehydrogenase complex from anaerobic mitochondria of the parasitic nematode, Ascaris suum. Mol Biochem Parasitol 2002; 125:135-46. [PMID: 12467981 DOI: 10.1016/s0166-6851(02)00221-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) plays changing roles during the aerobic-anaerobic transition in the life cycle of the parasitic nematode, Ascaris suum. However, the dihydrolipoyl dehydrogenase (E3) subunit appears to be identical in all stages, despite the fact that the PDC is less sensitive to NADH inhibition in anaerobic muscle. Therefore, we have cloned cDNAs encoding E3 and a novel anaerobic-specific E3-binding protein (E3BP) that lacks the terminal lipoyl domain found in E3BPs from yeast and mammals, and functionally expressed E3 and E3 mutants designed to have decreased dimer stability on the assumption that the binding of E3 to an anaerobic-specific E3BP might stabilize the E3 dimer interface and decrease E3 sensitivity to NADH inhibition. As predicted, the mutants exhibited decreased thermal stability, increased sensitivity to NADH and the binding of E3(Y18F) to the E3-depleted core of the pig heart PDC increased E3 activity and decreased E3 sensitivity to NADH inhibition. However, although the free A. suum E3 was less sensitive to NADH inhibition than the pig heart E3, both E3s were significantly more sensitive to NADH inhibition when assayed with dihydrolipoamide than their corresponding PDCs assayed with pyruvate. More importantly, the binding of rE3 to its core complex had little effect on its apparent K(m) for NAD(+), K(i) for NADH inhibition, or the NADH/NAD(+) ratio yielding 50% inhibition. These data suggest that although binding to the core stabilizes the E3 dimer interface, it does not play a significant role in reducing the sensitivity of the A. suum PDC to NADH inhibition during anaerobiosis.
Collapse
Affiliation(s)
- Sally Harmych
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606-3390, USA
| | | | | |
Collapse
|
11
|
Turkan A, Gong X, Peng T, Roche TE. Structural requirements within the lipoyl domain for the Ca2+-dependent binding and activation of pyruvate dehydrogenase phosphatase isoform 1 or its catalytic subunit. J Biol Chem 2002; 277:14976-85. [PMID: 11842080 DOI: 10.1074/jbc.m108434200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2) 60-mer forms a Ca(2+)-dependent complex with the pyruvate dehydrogenase phosphatase 1 (PDP1) or its catalytic subunit, PDP1c, in facilitating large enhancements of the activities of PDP1 (10-fold) or PDP1c (6-fold). L2 binding to PDP1 or PDP1c requires the lipoyl-lysine prosthetic group and specificity residues that distinguish L2 from the other lipoyl domains (L1 in E2 and L3 in the E3-binding component). The L2-surface structure contributing to binding was mapped by comparing the capacities of well folded mutant or lipoyl analog-substituted L2 domains to interfere with E2 activation by competitively binding to PDP1 or PDP1c. Our results reveal the critical importance of a regional set of residues near the lipoyl group and of the octanoyl but not the dithiolane ring structure of the lipoyl group. At the other end of the lipoyl domain, substitution of Glu(182) by alanine or glutamine removed L2 binding to PDP1 or PDP1c, and these substitutions for the neighboring Glu(179) also greatly hindered complex formation (E179A > E179Q). Among 11 substitutions in L2 at sites of major surface residue differences between the L1 and L2 domains, only the conversion of Val-Gln(181) located between the critical Glu(179) and Glu(182) to the aligned Ser-Leu sequence of the L1 domain greatly reduced L2 binding. Certain modified L2 altered E2 activation of PDP1 differently than PDP1c, supporting significant impact of the regulatory PDP1r subunit on PDP1 binding to L2. Our results indicate hydrophobic binding via the extended aliphatic structure of the lipoyl group and required adjacent L2 structure anchor PDP1 by acting in concert with an acidic cluster at the other end of the domain.
Collapse
Affiliation(s)
- Ali Turkan
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
12
|
Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:33-75. [PMID: 11642366 DOI: 10.1016/s0079-6603(01)70013-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian pyruvate dehydrogenase complex (PDC) plays central and strategic roles in the control of the use of glucose-linked substrates as sources of oxidative energy or as precursors in the biosynthesis of fatty acids. The activity of this mitochondrial complex is regulated by the continuous operation of competing pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) reactions. The resulting interconversion cycle determines the fraction of active (nonphosphorylated) pyruvate dehydrogenase (E1) component. Tissue-specific and metabolic state-specific control is achieved by the selective expression and distinct regulatory properties of at least four PDK isozymes and two PDP isozymes. The PDK isoforms are members of a family of serine kinases that are not structurally related to cytoplasmic Ser/Thr/Tyr kinases. The catalytic subunits of the PDP isoforms are Mg2+-dependent members of the phosphatase 2C family that has binuclear metal-binding sites within the active site. The dihydrolipoyl acetyltransferase (E2) and the dihydrolipoyl dehydrogenase-binding protein (E3BP) are multidomain proteins that form the oligomeric core of the complex. One or more of their three lipoyl domains (two in E2) selectively bind each PDK and PDP1. These adaptive interactions predominantly influence the catalytic efficiencies and effector control of these regulatory enzymes. When fatty acids are the preferred source of acetyl-CoA and NADH, feedback inactivation of PDC is accomplished by the activity of certain kinase isoforms being stimulated upon preferentially binding a lipoyl domain containing a reductively acetylated lipoyl group. PDC activity is increased in Ca2+-sensitive tissues by elevating PDP1 activity via the Ca2+-dependent binding of PDP1 to a lipoyl domain of E2. During starvation, the irrecoverable loss of glucose carbons is restricted by minimizing PDC activity due to high kinase activity that results from the overexpression of specific kinase isoforms. Overexpression of the same PDK isoforms deleteriously hinders glucose consumption in unregulated diabetes.
Collapse
Affiliation(s)
- T E Roche
- Department of Biochemistry, Kansas State University, Manhattan 66506-3702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Plant cells are unique in that they contain four species of alpha-ketoacid dehydrogenase complex: plastidial pyruvate dehydrogenase, mitochondrial pyruvate dehydrogenase, alpha-ketoglutarate (2-oxoglutarate) dehydrogenase, and branched-chain alpha-ketoacid dehydrogenase. All complexes include multiple copies of three components: an alpha-ketoacid dehydrogenase/decarboxylase, a dihydrolipoyl acyltransferase, and a dihydrolipoyl dehydrogenase. The mitochondrial pyruvate dehydrogenase complex additionally includes intrinsic regulatory protein-kinase and -phosphatase enzymes. The acyltransferases form the intricate geometric core structures of the complexes. Substrate channeling plus active-site coupling combine to greatly enhance the catalytic efficiency of these complexes. These alpha-ketoacid dehydrogenase complexes occupy key positions in intermediary metabolism, and a basic understanding of their properties is critical to genetic and metabolic engineering. The current status of knowledge of the biochemical, regulatory, structural, genomic, and evolutionary aspects of these fascinating multienzyme complexes are reviewed.
Collapse
Affiliation(s)
- Brian P Mooney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
14
|
Potter KN, Thomson RK, Hamblin A, Richards SD, Lindsay JG, Stevenson FK. Immunogenetic analysis reveals that epitope shifting occurs during B-cell affinity maturation in primary biliary cirrhosis. J Mol Biol 2001; 306:37-46. [PMID: 11178892 DOI: 10.1006/jmbi.2000.4210] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary biliary cirrhosis (PBC) is a liver disease characterized by serum autoantibodies against the pyruvate dehydrogenase complex (PDC) located in the inner mitochondrial membrane. The predominant target in PDC has previously been localized to the inner lipoyl domain (ILD) of the E2 subunit. The etiology of PBC is unknown, although molecular mimicry with bacterial PDC has been proposed. Here, we have investigated the etiology of PBC and nature of the autoimmune response by analyzing the structure of a human monoclonal antibody with ILD specificity. Mutants of the monoclonal antibody, which was originally isolated from a patient with PBC, were expressed as Fab by phage display, and tested for reactivity against recombinant domains of the E2 subunit. Fab in which the V(H)-encoded portions were reverted to germline lost reactivity against the ILD alone, but recognized a different epitope in a didomain construct encompassing the ILD, hinge region and E1/E3 binding domain. The complete V(H) and V(L )germline revertant was unreactive with the human ILD and didomain, the Escherichia coli didomain, and whole PDC. We hypothesize that the IgM on the surface of the naïve B-cell first recognizes an as yet unidentified antigen, and that accumulation of somatic mutations results in an intermolecular epitope shift directed towards an epitope involving the E1/E3 binding domain. Further mutations result in the specificity being redirected to the ILD. These findings also suggest that bacterial molecular mimicry is not involved in initiating disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibody Specificity/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Complementarity Determining Regions/genetics
- Enzyme-Linked Immunosorbent Assay
- Epitopes/genetics
- Epitopes/immunology
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Genes, Immunoglobulin/genetics
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/immunology
- Lymphocyte Activation/genetics
- Molecular Sequence Data
- Mutation/genetics
- Protein Structure, Tertiary
- Protein Subunits
- Pyruvate Dehydrogenase Complex/chemistry
- Pyruvate Dehydrogenase Complex/immunology
- Sequence Alignment
Collapse
Affiliation(s)
- K N Potter
- Molecular Immunology Group, Southampton University Hospitals Trust, Tenovus Laboratory, Southampton, SO16 6YD, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Baker JC, Yan X, Peng T, Kasten S, Roche TE. Marked differences between two isoforms of human pyruvate dehydrogenase kinase. J Biol Chem 2000; 275:15773-81. [PMID: 10748134 DOI: 10.1074/jbc.m909488199] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) isoforms 2 and 3 were produced via co-expression with the chaperonins GroEL and GroES and purified with high specific activities in affinity tag-free forms. By using human components, we have evaluated how binding to the lipoyl domains of the dihydrolipoyl acetyltransferase (E2) produces the predominant changes in the rates of phosphorylation of the pyruvate dehydrogenase (E1) component by PDK2 and PDK3. E2 assembles as a 60-mer via its C-terminal domain and has mobile connections to an E1-binding domain and then two lipoyl domains, L2 and L1 at the N terminus. PDK3 was activated 17-fold by E2; the majority of this activation was facilitated by the free L2 domain (half-maximal activation at 3.3 microm L2). The direct activation of PDK3 by the L2 domain resulted in a 12.8-fold increase in k(cat) along with about a 2-fold decrease in the K(m) of PDK3 for E1. PDK3 was poorly inhibited by pyruvate or dichloroacetate (DCA). PDK3 activity was stimulated upon reductive acetylation of L1 and L2 when full activation of PDK3 by E2 was avoided (e.g. using free lipoyl domains or ADP-inhibited E2-activated PDK3). In marked contrast, PDK2 was not responsive to free lipoyl domains, but the E2-60-mer enhanced PDK2 activity by 10-fold. E2 activation of PDK2 resulted in a greatly enhanced sensitivity to inhibition by pyruvate or DCA; pyruvate was effective at significantly lower levels than DCA. E2-activated PDK2 activity was stimulated >/=3-fold by reductive acetylation of E2; stimulated PDK2 retained high sensitivity to inhibition by ADP and DCA. Thus, PDK3 is directly activated by the L2 domain, and fully activated PDK3 is relatively insensitive to feed-forward (pyruvate) and feed-back (acetylating) effectors. PDK2 was activated only by assembled E2, and this activated state beget high responsiveness to those effectors.
Collapse
Affiliation(s)
- J C Baker
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
16
|
Gong X, Peng T, Yakhnin A, Zolkiewski M, Quinn J, Yeaman SJ, Roche TE. Specificity determinants for the pyruvate dehydrogenase component reaction mapped with mutated and prosthetic group modified lipoyl domains. J Biol Chem 2000; 275:13645-53. [PMID: 10788482 DOI: 10.1074/jbc.275.18.13645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient catalysis in the second step of the pyruvate dehydrogenase (E1) component reaction requires a lipoyl group to be attached to a lipoyl domain that displays appropriately positioned specificity residues. As substrates, the human dihydrolipoyl acetyltransferase provides an N-terminal (L1) and an inner (L2) lipoyl domain. We evaluated the specificity requirements for the E1 reaction with 27 mutant L2 (including four substitutions for the lipoylated lysine, Lys(173)), with three analogs substituted for the lipoyl group on Lys(173), and with selected L1 mutants. Besides Lys(173) mutants, only E170Q mutation prevented lipoylation. Based on analysis of the structural stability of mutants by differential scanning calorimetry, alanine substitutions of residues with aromatic side chains in terminal regions outside the folded portion of the L2 domain significantly decreased the stability of mutant L2, suggesting specific interactions of these terminal regions with the folded domain. E1 reaction rates were markedly reduced by the following substitutions in the L2 domain (equivalent site-L1): L140A, S141A (S14A-L1), T143A, E162A, D172N, and E179A (E52A-L1). These mutants gave diverse changes in kinetic parameters. These residues are spread over >24 A on one side of the L2 structure, supporting extensive contact between E1 and L2 domain. Alignment of over 40 lipoyl domain sequences supports Ser(141), Thr(143), and Glu(179) serving as specificity residues for use by E1 from eukaryotic sources. Extensive interactions of the lipoyl-lysine prosthetic group within the active site are supported by the limited inhibition of E1 acetylation of native L2 by L2 domains altered either by mutation of Lys(173) or enzymatic addition of lipoate analogs to Lys(173). Thus, efficient use by mammalian E1 of cognate lipoyl domains derives from unique surface residues with critical interactions contributed by the universal lipoyl-lysine prosthetic group, key specificity residues, and some conserved residues, particularly Asp(172) adjacent to Lys(173).
Collapse
Affiliation(s)
- X Gong
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Knapp JE, Carroll D, Lawson JE, Ernst SR, Reed LJ, Hackert ML. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. Protein Sci 2000; 9:37-48. [PMID: 10739245 PMCID: PMC2144448 DOI: 10.1110/ps.9.1.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o.
Collapse
Affiliation(s)
- J E Knapp
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 78712, USA
| | | | | | | | | | | |
Collapse
|
18
|
Dubel L, Tanaka A, Leung PS, Van de Water J, Coppel R, Roche T, Johanet C, Motokawa Y, Ansari A, Gershwin ME. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis. Hepatology 1999; 29:1013-8. [PMID: 10094940 DOI: 10.1002/hep.510290403] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by the presence of antimitochondrial antibodies (AMA) directed primarily against the E2 subunits of the pyruvate dehydrogenase complex, the branched chain 2-oxo-acid dehydrogenase complex, the 2-oxoglutarate dehydrogenase complex, as well as the dihydrolipoamide dehydrogenase-binding protein (E3BP) of pyruvate dehydrogenase complex. The autoantibody response to each E2 subunit is directed to the lipoic acid binding domain. However, hitherto, the epitope recognized by autoantibodies to E3BP has not been mapped. In this study, we have taken advantage of the recently available full-length human E3BP complementary DNA (cDNA) to map this epitope. In addition, another lipoic binding protein, the H-protein of the glycine cleavage complex, was also studied as a potential autoantigen recognized by AMA. Firstly, the sequence corresponding to the lipoic domain of E3BP (E3BP-LD) was amplified by polymerase chain reaction and recombinant protein and then purified. Immunoreactivity of 45 PBC sera (and 52 control sera) against the purified recombinant E3BP-LD was analyzed by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Secondly, reactivity of PBC sera was similarly analyzed by immunoblotting against H-protein. It is interesting that preabsorption of patient sera with the lipoic acid binding domain of E3BP completely removed all reactivity with the entire protein by immunoblotting analysis, suggesting that autoantibodies to E3BP are directed solely to its lipoic acid binding domain. Fifty-three percent of PBC sera reacted with E3BP-LD, with the majority of the response being of the immunoglobulin G (IgG) isotype (95%). Surprisingly, there was little IgM response to the E3BP-LD suggesting that the immune response was secondary because of determinant spreading. In contrast, H-protein does not appear to possess (or expose) autoepitopes recognized by PBC sera. This observation is consistent with structural data on this moiety.
Collapse
Affiliation(s)
- L Dubel
- Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fujiwara K, Suzuki M, Okumachi Y, Okamura-Ikeda K, Fujiwara T, Takahashi E, Motokawa Y. Molecular cloning, structural characterization and chromosomal localization of human lipoyltransferase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:761-7. [PMID: 10103005 DOI: 10.1046/j.1432-1327.1999.00204.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipoyltransferase catalyzes the transfer of the lipoyl group from lipoyl-AMP to the lysine residue of the lipoate-dependent enzymes. We isolated human lipoyltransferase cDNA and genomic DNA. The cDNA insert contained a 1119-base pair open reading frame encoding a precursor peptide of 373 amino acids. Predicted amino acid sequence of the protein shares 88 and 31% identity with bovine lipoyltransferase and Escherichia coli lipoate-protein ligase A, respectively. Northern blot analyses of poly(A)+ RNA indicated a major species of about 1.5 kb. mRNA levels of lipoyltransferase were highest in skeletal muscle and heart, showing good correlation with those of dihydrolipoamide acyltransferase subunits of pyruvate, 2-oxoglutarate and branched-chain 2-oxo acid dehydrogenase complexes and H-protein of the glycine cleavage system which accept lipoic acid as a prosthetic group. The human lipoyltransferase gene is a single copy gene composed of four exons and three introns spanning approximately 8 kb of genomic DNA. Some alternatively spliced mRNA species were found by 5'-RACE analysis, and the most abundant species lacks the third exon. The human lipoyltransferase gene was localized to chromosome band 2q11.2 by fluorescence in situ hybridization.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Millar AH, Knorpp C, Leaver CJ, Hill SA. Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato. Biochem J 1998; 334 ( Pt 3):571-6. [PMID: 9729464 PMCID: PMC1219725 DOI: 10.1042/bj3340571] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands with apparent molecular masses of 78, 60, 58, 55, 43, 41 and 37 kDa. N-terminal sequencing revealed that the 78 kDa protein was dihydrolipoamide transacetylase (E2), the 58 kDa protein was dihydrolipoamide dehydrogenase (E3), the 43 and 41 kDa proteins were alpha subunits of pyruvate dehydrogenase, and the 37 kDa protein was the beta subunit of pyruvate dehydrogenase. N-terminal sequencing of the 55 kDa protein band yielded two protein sequences: one was another E3; the other was similar to the sequence of E2 from plant and yeast sources but was distinctly different from the sequence of the 78 kDa protein. Incubation of the mPDC with [2-14C]pyruvate resulted in the acetylation of both the 78 and 55 kDa proteins.
Collapse
Affiliation(s)
- A H Millar
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K.
| | | | | | | |
Collapse
|
21
|
Neveling U, Bringer-Meyer S, Sahm H. Gene and subunit organization of bacterial pyruvate dehydrogenase complexes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:367-72. [PMID: 9655937 DOI: 10.1016/s0167-4838(98)00080-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyruvate dehydrogenase complexes of bacterial origin are compared with respect to subunit composition, organization of the corresponding genes, and the number and location of lipoyl domains. Special attention is given to two unusual examples of pyruvate dehydrogenase complexes, formed by Zymomonas mobilis and Thiobacillus ferrooxidans.
Collapse
Affiliation(s)
- U Neveling
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | |
Collapse
|
22
|
Koike K, Ishibashi H, Koike M. Immunoreactivity of porcine heart dihydrolipoamide acetyl- and succinyl-transferases (PDC-E2, OGDC-E2) with primary biliary cirrhosis sera: characterization of the autoantigenic region and effects of enzymatic delipoylation and relipoylation. Hepatology 1998; 27:1467-74. [PMID: 9620315 DOI: 10.1002/hep.510270602] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Analysis of the primary structure of the lipoyl domain of the dihydrolipoamide acetyltransferase (PDC-E2) component of the porcine pyruvate dehydrogenase complex (PDC) reveals a high degree of homology with M2 antigen and human PDC-E2. The porcine PDC-E2 and the dihydrolipoamide succinyltransferase (OGDC-E2) component of the porcine 2-oxoglutarate dehydrogenase complex (OGDC) were identified as mitochondrial autoantigen with sera from patients with primary biliary cirrhosis (PBC). Immunodominant regions (autoepitopes) on the porcine-PDC-E2 component have been mapped to two regions around Lys-46 (outer lipoyl domain) and Lys-173 (inner lipoyl domain), which contained covalently bound lipoic acid prosthetic group. When these lipoyl domains were cleaved at Asp-45 or Asp-172 with endoproteinase Asp-N, the autoantigenicities of the two domains completely disappeared; this suggested the requirement of Asp-45 or Asp-172 residues for the immunoreaction with PBC sera. In addition, a single 14-amino acid epitope peptide histidine-substituted at Asp-172 did not exhibit competitive inhibition of autoantigen binding. Fragmentation of lipoyl domain of the porcine PDC-E2 by limited proteolysis and BrCN-cleavage after alkylation resulted in rapid loss of autoantigenicity. Enzymatic delipoylation and relipoylation of the complexed and free PDC-E2 and OGDC-E2 components did not influence immunoreactivity with PBC sera.
Collapse
Affiliation(s)
- K Koike
- Department of Pathological Biochemistry, Atomic Disease Institute, Nagasaki University School of Medicine, Japan
| | | | | |
Collapse
|
23
|
Chen QY, Mackay IR, Fida S, Myers MA, Rowley MJ. Natural and disease associated autoantibodies to the autoantigen, dihydrolipoamide acetyltransferase, recognise different epitopes. J Autoimmun 1998; 11:151-61. [PMID: 9650094 DOI: 10.1006/jaut.1998.0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally occurring autoantibodies are ubiquitous and may serve physiological functions. We examined the relationship of natural and disease-associated autoantibodies in the context of autoantibodies to dihydrolipoamide acetyltransferase, the 74 kDa E2 sub-unit of the mitochondrial pyruvate dehydrogenase complex (PDC-E2), characteristic of primary biliary cirrhosis (PBC). We tested for natural autoantibodies to PDC-E2 in normal sera, and compared epitopes recognised by natural and disease-associated autoantibodies. Methods included affinity purification of anti-PDC-E2 from normal and PBC sera, ELISA and immunoblotting, capacity of antibodies to inhibit the enzyme function of the pyruvate dehydrogenase complex (PDC), use of F(ab)2 fragments of anti-PDC-E2 in inhibition assays, and testing affinity purified anti-PDC-E2 on peptide fragments of PDC-E2. We found that natural auto-antibodies to PDC-E2 of IgG class were demonstrable in all healthy human sera (10/10). However, their reactivity differed from that of disease-associated autoantibodies, in that anti-PDC-E2 from normal serum failed to inhibit the catalytic activity of PDC; and F(ab)2 fragments from PBC sera potently blocked the binding of anti-PDC-E2 from PBC sera to PDC-E2, but not the binding of natural anti-PDC-E2 to PDC-E2. Immunoblotting on fragments of PDC-E2 using affinity-purified preparations from PBC sera and normal sera failed to provide evidence for gross differences in epitope reactivity. We conclude that normal human sera contain natural IgG autoantibodies to the immunodominant inner lipoyl domain of PDC-E2, as seen characteristically in PBC. However, there is evidence for differences in fine epitope recognition.
Collapse
Affiliation(s)
- Q Y Chen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
24
|
Neveling U, Klasen R, Bringer-Meyer S, Sahm H. Purification of the pyruvate dehydrogenase multienzyme complex of Zymomonas mobilis and identification and sequence analysis of the corresponding genes. J Bacteriol 1998; 180:1540-8. [PMID: 9515924 PMCID: PMC107055 DOI: 10.1128/jb.180.6.1540-1548.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1alpha (38 kDa) and E1beta (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAalpha (1,065 bp) and pdhAbeta (1,389 bp), encoding the E1alpha and E1beta subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAalpha, pdhAbeta, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1beta subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs.
Collapse
Affiliation(s)
- U Neveling
- Institut für Biotechnologie, Forschungszentrum Jülich, Germany
| | | | | | | |
Collapse
|
25
|
Aral B, Benelli C, Ait-Ghezala G, Amessou M, Fouque F, Maunoury C, Créau N, Kamoun P, Marsac C. Mutations in PDX1, the human lipoyl-containing component X of the pyruvate dehydrogenase-complex gene on chromosome 11p1, in congenital lactic acidosis. Am J Hum Genet 1997; 61:1318-26. [PMID: 9399911 PMCID: PMC1716072 DOI: 10.1086/301653] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified and sequenced a cDNA that encodes an apparent human orthologue of a yeast protein-X component (ScPDX1) of pyruvate dehydrogenase multienzyme complexes. The new human cDNA that has been referred to as "HsPDX1" cDNA was cloned by use of the "database cloning" strategy and had a 1,506-bp open reading frame. The amino acid sequence of the protein encoded by the cDNA was 20% identical with that encoded by the yeast PDX1 gene and 40% identical with that encoded by the lipoate acetyltransferase component of the pyruvate dehydrogenase and included a lipoyl-bearing domain that is conserved in some dehydrogenase enzyme complexes. Northern blot analysis demonstrated that the major HsPDX1 mRNA was 2.5 kb in length and was expressed mainly in human skeletal and cardiac muscles but was also present, at low levels, in other tissues. FISH analysis performed with a P1-derived artificial chromosome (PAC)-containing HsPDX1 gene sublocalized the gene to 11p1.3. Molecular investigation of PDX1 deficiency in four patients with neonatal lactic acidemias revealed mutations 78del85 and 965del59 in a homozygous state, and one other patient had no PDX1 mRNA expression.
Collapse
MESH Headings
- Acidosis, Lactic/congenital
- Acidosis, Lactic/genetics
- Amino Acid Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 11/genetics
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/genetics
- Female
- Genes
- Humans
- In Situ Hybridization, Fluorescence
- Infant, Newborn
- Male
- Molecular Sequence Data
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Organ Specificity
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/genetics
- Polymerase Chain Reaction
- Protein Structure, Secondary
- Pyruvate Dehydrogenase Complex/chemical synthesis
- Pyruvate Dehydrogenase Complex/chemistry
- Pyruvate Dehydrogenase Complex/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Sequence Alignment
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- B Aral
- Laboratoire de Biochimie Médicale B, CNRS, URA1335, Institut Necker, Hôpital des Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Harris RA, Bowker-Kinley MM, Wu P, Jeng J, Popov KM. Dihydrolipoamide dehydrogenase-binding protein of the human pyruvate dehydrogenase complex. DNA-derived amino acid sequence, expression, and reconstitution of the pyruvate dehydrogenase complex. J Biol Chem 1997; 272:19746-51. [PMID: 9242632 DOI: 10.1074/jbc.272.32.19746] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein X, recently renamed dihydrolipoamide dehydrogenase-binding protein (E3BP), is required for anchoring dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide transacetylase (E2) core of the pyruvate dehydrogenase complexes of eukaryotes. DNA and deduced protein sequences for E3BP of the human pyruvate dehydrogenase complex are reported here. With the exception of only a single lipoyl domain, the protein has a segmented multi-domain structure analogous to that of the E2 component of the complex. The protein has 46% amino acid sequence identity in its amino-terminal region with the second lipoyl domain of E2, 38% identity in its central region with the putative peripheral subunit-binding domain of E2, and 50% identity in its carboxyl-terminal region with the catalytic inner core domain of E2. The similarity in the latter domain stands in contrast to E3BP of Saccharomyces cerevisiae, which is quite different from its homologous transacetylase in this region. The putative catalytic site histidine residue present in the inner core domains of all dihydrolipoamide acyltransferases is replaced by a serine residue in human E3BP; thus, catalysis of coenzyme A acetylation by this protein is unlikely. Coexpression of cDNAs for E3BP and E2 resulted in the formation of an E2.E3BP subcomplex that spontaneously reconstituted the pyruvate dehydrogenase complex in the presence of native E3 and recombinant pyruvate decarboxylase (E1).
Collapse
Affiliation(s)
- R A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | |
Collapse
|
27
|
Yang D, Song J, Wagenknecht T, Roche TE. Assembly and full functionality of recombinantly expressed dihydrolipoyl acetyltransferase component of the human pyruvate dehydrogenase complex. J Biol Chem 1997; 272:6361-9. [PMID: 9045657 DOI: 10.1074/jbc.272.10.6361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex (PDC) consists of 60 COOH-terminal domains as an inner assemblage and sequentially via linker regions an exterior pyruvate dehydrogenase (E1) binding domain and two lipoyl domains. Mature human E2, expressed in a protease-deficient Escherichia coli strain at 27 degrees , was prepared in a highly purified form. Purified E2 had a high acetyltransferase activity, was well lipoylated based on its acetylation, and bound a large complement of bovine E1. Electron micrographs demonstrated that the inner core was assembled in the expected pentagonal dodecahedron shape with E1 binding around the inner core periphery. With saturating E1 and excess dihydrolipoyl dehydrogenase (E3) but no E3-binding protein (E3BP), the recombinant E2 supported the overall PDC reaction at 4% of the rate of bovine E2.E3BP subcomplex. The lipoates of assembled human E2 or its free bilipoyl domain region were reduced by E3 at rates proportional to the lipoyl domain concentration, but those of the E2.E3BP were rapidly used in a concentration-independent manner consistent with bound E3 rapidly using a set of lipoyl domains localized nearby. Given this restriction and the need for E3BP for high PDC activity, directed channeling of reducing equivalents to bound E3 must be very efficient in the complex. The recombinant E2 oligomer increased E1 kinase activity by up to 4-fold and, in a Ca2+-dependent process, increased phospho-E1 phosphatase activity more than 15-fold. Thus the E2 assemblage fully provides the molecular intervention whereby a single E2-bound kinase or phosphatase molecule rapidly phosphorylate or dephosphorylate, respectively, many E2-bound E1. Thus, we prepared properly assembled, fully functional human E2 that mediated enhanced regulatory enzyme activities but, lacking E3BP, supported low PDC activity.
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
28
|
Zhu PP, Peterkofsky A. Sequence and organization of genes encoding enzymes involved in pyruvate metabolism in Mycoplasma capricolum. Protein Sci 1996; 5:1719-36. [PMID: 8844861 PMCID: PMC2143489 DOI: 10.1002/pro.5560050825] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The region of the genome of Mycoplasma capricolum upstream of the portion encompassing the genes for Enzymes I and IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was cloned and sequenced. Examination of the sequence revealed open reading frames corresponding to numerous genes involved with the oxidation of pyruvate. The deduced gene organization is naox (encoding NADH oxidase)-lplA (encoding lipoate-protein ligase)-odpA (encoding pyruvate dehydrogenase EI alpha)-odpB (encoding pyruvate dehydrogenase EI beta)-odp2(encoding pyruvate dehydrogenase EII)-dldH (encoding dihydrolipoamide dehydrogenase)-pta (encoding phosphotransacetylase)-ack (encoding acetate kinase)-orfA (an unknown open reading frame)-kdtB-ptsI-crr. Analysis of the DNA sequence suggests that the naox and lplA genes are part of a single operon, odpA and odpB constitute an additional operon, odp2 and dldH a third operon, and pta and ack an additional transcription unit. Phylogenetic analyses of the protein products of the odpA and odpB genes indicate that they are most similar to the corresponding proteins from Mycoplasma genitalium, Acholeplasma laidlawii, and Gram-positive organisms. The product of the odp2 gene contains a single lipoyl domain, as is the case with the corresponding proteins from M. genitalium and numerous other organisms. An evolutionary tree places the M. capricolum odp2 gene product in close relationship to the corresponding proteins from A. laidlawii and M.genitalium. The dldH gene encodes an unusual form of dihydrolipoamide dehydrogenase that contains an aminoterminal extension corresponding to a lipoyl domain, a property shared by the corresponding proteins from Alcaligenes eutrophus and Clostridium magnum. Aside from that feature, the protein is related phylogenetically to the corresponding proteins from A. laidlawii and M. genitalium. The phosphotransacetylase from M. capricolum is related most closely to the corresponding protein from M. genitalium and is distinguished easily from the enzymes from Escherichia coli and Haemophilus influenzae by the absence of the characteristic amino-terminal extension. The acetate kinase from M. capricolum is related evolutionarily to the homologous enzyme from M. genitalium. Map position comparisons of genes encoding proteins involved with pyruvate metabolism show that, whereas all the genes are clustered in M. capricolum, they are scattered in M. genitalium.
Collapse
Affiliation(s)
- P P Zhu
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
29
|
Klingbeil MM, Walker DJ, Arnette R, Sidawy E, Hayton K, Komuniecki PR, Komuniecki R. Identification of a novel dihydrolipoyl dehydrogenase-binding protein in the pyruvate dehydrogenase complex of the anaerobic parasitic nematode, Ascaris suum. J Biol Chem 1996; 271:5451-7. [PMID: 8621401 DOI: 10.1074/jbc.271.10.5451] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel dihydrolipoyl dehydrogenase-binding protein (E3BP) which lacks an amino-terminal lipoyl domain, p45, has been identified in the pyruvate dehydrogenase complex (PDC) of the adult parasitic nematode, Ascaris suum. Sequence at the amino terminus of p45 exhibited significant similarity with internal E3-binding domains of dihydrolipoyl transacetylase (E2) and E3BP. Dissociation and resolution of a pyruvate dehydrogenase-depleted adult A. suum PDC in guanidine hydrochloride resulted in two E3-depleted E2 core preparations which were either enriched or substantially depleted of p45. Following reconstitution, the p45-enriched E2 core exhibited enhanced E3 binding, whereas, the p45-depleted E2 core exhibited dramatically reduced E3 binding. Reconstitution of either the bovine kidney or A. suum PDCs with the A. suum E3 suggested that the ascarid E3 was more sensitive to NADH inhibition when bound to the bovine kidney core. The expression of p45 was developmentally regulated and p45 was most abundant in anaerobic muscle. In contrast, E3s isolated from anaerobic muscle or aerobic second-stage larvae were identical. These results suggest that during the transition to anaerobic metabolism, E3 remains unchanged, but it appears that a novel E3BP, p45, is expressed which may help to maintain the activity of the PDC in the face of the elevated intramitochondrial NADH/NAD+ ratios associated with anaerobiosis.
Collapse
Affiliation(s)
- M M Klingbeil
- Department of Biology, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sanderson SJ, Miller C, Lindsay JG. Stoichiometry, organisation and catalytic function of protein X of the pyruvate dehydrogenase complex from bovine heart. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:68-77. [PMID: 8617288 DOI: 10.1111/j.1432-1033.1996.00068.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian pyruvate dehydrogenase complex (PDC) contains a subunit, protein X, which mediates high-affinity binding of dihydrolipoamide dehydrogenase (E3)to the dihydrolipoamide acetyltransferase (E2) core. Precise stoichiometric determinations on bovine heart PDC, by means of two approaches, indicate the presence of 12 mol protein X/mol PDC and 60 mol E2/mol PDC. Studies of the organisation of collagenase-modified PDC by means of covalent cross-linking of N,N'-1,2-phenylenedimaleimide to lipoamide thiols on protein X, reveal that the main cross-linked products have Mr values corresponding to homodimers of protein X. However, significant formation of higher-Mr aggregates indicates that lipoyl domains of protein X can form an interacting network independent of E2 lipoyl domains. These data suggest that either 12 interacting X monomers or 6 interacting X dimers are involved in the binding of six E3 homodimers to the E2/X core. The presence of 60 E2 subunits/complex also supports proposals for a non-integrated external position of protein X. Collagenase-treated PDC possesses residual activity (15 %), indicating that protein-X-linked lipoamide groups can substitute for the lipoyl domains of E2 in overall complex catalysis. Protein-X-mediated diacetylation of dihydrolipoamide moieties is also performed by the modified complex which raises the possibility of a unique catalytic function for protein X.
Collapse
Affiliation(s)
- S J Sanderson
- Institute of Biomedical and Life Sciences, University of Glasgow, Scotland
| | | | | |
Collapse
|
31
|
Diaz F, Komuniecki R. Pyruvate dehydrogenase complex from the primitive insect trypanosomatid, Crithidia fasciculata: dihydrolipoyl dehydrogenase-binding protein has multiple lipoyl domains. Mol Biochem Parasitol 1995; 75:87-97. [PMID: 8720178 DOI: 10.1016/0166-6851(95)02498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pyruvate dehydrogenase complex (PDC) has been purified to apparent homogeneity from the insect trypanosomatid, Crithidia fasciculata, a member of the most primitive eukaryotic group to contain mitochondria. Separation of the purified PDC by SDS-PAGE yielded five bands of 70 (p70), 60 (p60), 55, 46 and 36.5 kDa, which appeared to correspond to dihydrolipoyl dehydrogenase binding protein (E3BP), dihydrolipoyl transacetylase (E2), E3, E1 alpha and E1 beta, respectively. The purified complex did not exhibit endogenous PDHa kinase activity. p70 was much less abundant than p60. Polyclonal antisera raised against p70 did not cross-react with p60, and antisera raised against p60 did not cross-react with p70, suggesting that p60 did not arise from p70 by proteolysis. Both p70 and p60 contained similar amino terminal sequences. Both sequences contained the MPALSP motif similar to sequences present in both E3BP and E2 from other sources. Incubation of the purified PDC with [2-14C]pyruvate in the absence of CoA resulted in the acetylation of both p70 and p60, suggesting that both proteins contained lipoyl domains, but the specific incorporation of label into p70 was significantly greater than for p60. Limited proteolysis of the acetylated complex with trypsin yielded two major fragments derived from p60 of 35 and 30 kDa, corresponding to E2L and E2I, and one major acetylated fragment of 58 kDa derived from p70. Therefore, these results suggest that p70 is an E3BP and given its apparent M(r) and degree of acetylation, it contains multiple lipoyl domains.
Collapse
Affiliation(s)
- F Diaz
- Department of Biology, University of Toledo, OH 43606-3390, USA.
| | | |
Collapse
|
32
|
Pawelczyk T, Olson MS. Changes in the structure of pyruvate dehydrogenase complex induced by mono- and divalent ions. Int J Biochem Cell Biol 1995; 27:513-21. [PMID: 7641081 DOI: 10.1016/1357-2725(95)00006-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The activity of pyruvate dehydrogenase complex purified from pig kidney cortex was affected by various mono- and di-valent ions and changes in ionic strength. The fluorescence emission spectrum of PDC exposed to 0.04 M ionic strength and excited at 280 nm exhibited a maximum at 334 nm; the fluorescence intensity of PDC appeared to depend upon the ionic strength and the K+ and Na+ content of the incubation buffer. Alteration of ionic strength to which the enzyme complex was exposed produced a change in the absorption of the complex at 230 nm. The presence of HPO4(2-) ions prevented changes in the UV absorption spectrum of PDC induced by the variation in ionic strength. The K+ and Na+ ions alone had no effect on the UV spectrum of PDC. Upon increasing the ionic strength to which the enzyme complex was exposed, dramatic changes in the circular dichroism (CD) pattern were observed. At 0.04 M ionic strength PDC exhibited a CD spectrum with minima at 216, 218 and 222 nm and a cross-over point at 215 nm. At 0.15 M ionic strength the CD spectrum of PDC exhibited minima at 223, 226, 228 nm and a cross-over point at 221 nm. The presence of HPO4(2-) ions prevented alterations in the CD spectrum of PDC induced by variations in ionic strength. The K+ and Na+ ions had no effect on the CD spectrum of PDC.
Collapse
Affiliation(s)
- T Pawelczyk
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | |
Collapse
|
33
|
Guan Y, Rawsthorne S, Scofield G, Shaw P, Doonan J. Cloning and characterization of a dihydrolipoamide acetyltransferase (E2) subunit of the pyruvate dehydrogenase complex from Arabidopsis thaliana. J Biol Chem 1995; 270:5412-7. [PMID: 7890655 DOI: 10.1074/jbc.270.10.5412] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A cDNA encoding a dihydrolipoamide acetyltransferase (E2) subunit of the pyruvate dehydrogenase complex has been isolated from Arabidopsis thaliana. A cell culture cDNA expression library was screened with a monoclonal antibody (JIM 63) raised against nuclear matrix proteins, and four clones were isolated. One of these was 2175 base pairs in length, and it contained an open reading frame with an amino acid sequence and domain structure with strong similarity to the E2s of other eukaryotic and prokaryotic organisms. The organization and number of functional domains within the Arabidopsis protein are identical to those of the human E2, although the amino acid sequences within these domains are equally similar to those of the yeast and human proteins. The predicted amino acid sequence reveals the presence of a putative amino-terminal leader sequence with characteristics similar to those of other proteins, which are targeted to the plant mitochondrial matrix. The cross-reactivities of plant mitochondrial matrix proteins with JIM 63 and antibodies raised against the E2 and protein X components of eukaryotic pyruvate dehydrogenase complexes are consistent with the clone encoding a mitochondrial form of E2 and not the smaller protein X. The E2 mRNA of 2.2 kilobases was expressed in a range of Arabidopsis and Brassica napus tissues.
Collapse
Affiliation(s)
- Y Guan
- John Innes Center, Colney, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Liu S, Baker JC, Roche TE. Binding of the pyruvate dehydrogenase kinase to recombinant constructs containing the inner lipoyl domain of the dihydrolipoyl acetyltransferase component. J Biol Chem 1995; 270:793-800. [PMID: 7822313 DOI: 10.1074/jbc.270.2.793] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The dihydrolipoyl acetyltransferase (E2) component of the mammalian pyruvate dehydrogenase complex forms a 60-subunit core in which E2's inner domain forms a dodecahedron shaped structure surrounded by its globular outer domains that are connected to each other and the inner domain by 2-3-kDa mobile hinge regions. Two of the outer domains are approximately 10 kDa lipoyl domains, an NH2-terminal one, E2L1, and, after the first hinge region a second one, E2L2. The pyruvate dehydrogenase kinase binds tightly to the lipoyl domain region of the oligomeric E2 core and phosphorylates and inactivates the pyruvate dehydrogenase (E1) component. We wished to determine whether lipoyl domain constructs prepared by recombinant techniques from a cDNA for human E2 could bind the bovine E1 kinase and, that being the case, to pursue which lipoyl domain the kinase binds. We also wished to gain insights into how a molecule of kinase tightly bound to the E2 core can rapidly phosphorylate 20-30 molecules of the pyruvate dehydrogenase (E1) component which are also bound to an outer domain of the E2 core. We prepared recombinant constructs consisting of the entire lipoyl domain region or the individual lipoyl domains with or without the intervening hinge region. Constructs were made and used both as free lipoyl domains and fused to glutathione S-transferase (GST). Using GSH-Sepharose to selectively bind GST constructs, tightly bound kinase was shown to rapidly transfer in a highly preferential way from intact E2 core to GST constructs containing the E2L2 domain rather than to ones containing only the E2L1 domain. GST-E2L2-kinase complexes could be eluted from GSH-Sepharose with glutathione. Delipoylation of E2L2 by treatment with lipoamidase eliminated kinase binding supporting a direct role of the lipoyl prosthetic group in this association. Transfer to and selective binding of the kinase by E2L2 but not E2L1 was also demonstrated with free constructs using a sucrose gradient procedure to separate the large E2 core from the various lipoyl domain constructs. E2L2 but not E2L1 increased the activity of resolved kinase by up to 43%. We conclude that the kinase selectively binds to the inner lipoyl domain of E2 subunits and that this association involves its lipoyl prosthetic group. We further suggest that transfer of tightly bound kinase between E2L2 domains occurs by a direct interchange mechanism without formation of free kinase (model presented).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Liu
- Department of Biochemistry, Kansas State University, Manhattan 66506
| | | | | |
Collapse
|
35
|
Wexler ID, Du Y, Lisgaris MV, Mandal SK, Freytag SO, Yang BS, Liu TC, Kwon M, Patel MS, Kerr DS. Primary amino acid sequence and structure of human pyruvate carboxylase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1227:46-52. [PMID: 7918683 DOI: 10.1016/0925-4439(94)90105-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pyruvate carboxylase (PC) (pyruvate:carbon dioxide ligase (ADP-forming), EC 6.4.1.1.), a nuclear-encoded mitochondrial enzyme, catalyzes the conversion of pyruvate to oxaloacetate. We have isolated and characterized cDNAs spanning the entire coding region of human PC. The sequence of human PC has an open reading frame of 3537 nucleotides which encodes for a polypeptide with a length of 1178 amino acids. The identity of the cDNA as PC is confirmed by comparison to PC cDNAs of other species and sequenced peptide fragments of mammalian PC. The M(r) of the full length precursor protein is 129,576 and that of the mature apoprotein is 127,370. RNA blot analysis from a variety of human tissues demonstrates that the highest level of PC mRNA is found in liver corresponding to this tissue's high level of PC activity. Based on homology with other biotin-containing proteins, the ATP, pyruvate, and biotin-binding sites can be identified. One of two patients with documented PC deficiency was found to be missing PC mRNA, further confirming the identity of this cDNA.
Collapse
Affiliation(s)
- I D Wexler
- Department of Biochemistry, Case Western Reserve University School of Medicine, Rainbow Babies and Childrens Hospital, Cleveland, OH 44106
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Diaz F, Komuniecki RW. Pyruvate dehydrogenase complexes from the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum, helminths exhibiting anaerobic mitochondrial metabolism. Mol Biochem Parasitol 1994; 67:289-99. [PMID: 7870133 DOI: 10.1016/0166-6851(94)00134-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pyruvate dehydrogenase complex (PDC) has been purified to apparent homogeneity from 2 parasitic helminths exhibiting anaerobic mitochondrial metabolism, the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum. The P. equorum PDC yielded 7 major bands when separated by SDS-PAGE. The bands of 72, 55-53.5, 41 and 36 kDa corresponded to E2, E3, E1 alpha and E1 beta, respectively. The complex also contained additional unidentified proteins of 43 and 45 kDa. Incubation of the complex with [2-14C]pyruvate resulted in the acetylation of only E2. These results suggest that the P. equorum PDC lacks protein X and exhibits an altered subunit composition, as has been described previously for the PDC of the related nematode, Ascaris suum. In contrast, the D. caninum PDC yielded only four major bands after SDS-PAGE of 59, 58, 39 and 34 kDa, which corresponded to E3, E2, E1 alpha and E1 beta, respectively. Incubation of the D. caninum complex with [2-14C]pyruvate resulted in the acetylation of E2 and a second protein which comigrated with E3, suggesting that the D. caninum complex contained protein X and had a subunit composition similar to PDCs from other eukaryotic organisms. Both helminth complexes appeared less sensitive to inhibition by elevated NADH/NAD+ ratios than complexes isolated from aerobic organisms, as would be predicted for PDCs from organisms exploiting microaerobic habitats. These results suggest that although these helminths have similar anaerobic mitochondrial pathways, they contain significantly different PDCs.
Collapse
Affiliation(s)
- F Diaz
- Department of Biology, University of Toledo, OH 43606
| | | |
Collapse
|
37
|
Kishino A, Nakayama C, Nakanishi T, Watanabe M, Fukushima N, Irie T, Noguchi H. Monoclonal antibodies recognizing 2-oxo acid dehydrogenase components in granular structures in neurons. Hybridoma (Larchmt) 1994; 13:311-6. [PMID: 7806252 DOI: 10.1089/hyb.1994.13.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Monoclonal antibodies (MAbs) were raised against the hippocampal homogenate of young rats and classified into three types by immunohistochemical analysis: (1) MAbs specific for a granular structure observed within neurons, (2) MAbs specific for neuronal cell surface and cell body, and (3) MAbs specific for both neurons and astroglial cells. One MAb (2D11-7) specifically reacted with granular structures observed in neurons. A specific protein antigen was purified from rat homogenate by immunoadsorbent assay with MAb 2D11-7. Amino acid sequencing followed by lysyl endopeptidase digestion of the proteins in the eluate demonstrated that the antigens recognized by MAb 2D11-7 were E2 components of the 2-oxoglutarate dehydrogenase complex and pyruvate dehydrogenase complex. The cell specificity and age dependency of these proteins are also discussed.
Collapse
Affiliation(s)
- A Kishino
- Sumitomo Pharmaceuticals Co., Ltd., Research Center, Discovery Laboratories II, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Legastelois S, Thomas V, Quash G, Métais MP, Tebib J, Moreira A, Monier JC. Naturally occurring antibodies reacting with lipoic acid: screening method, characterization and biochemical interest. J Immunol Methods 1994; 171:111-9. [PMID: 8176232 DOI: 10.1016/0022-1759(94)90234-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of a covalent enzyme-linked immunoassay (CELIA) using lipoic acid covalently bound to modified polystyrene microplates has permitted the detection, in the sera of normal BALB/c mice, of natural antibodies reacting with lipoic acid (LA). Hybridomas producing monoclonal anti-LA antibodies were obtained from splenocytes of non-immune BALB/c mice. Two of them, of IgM isotype, recognized LA but failed to react with dihydrolipoic acid (DHLA, the reduced form of LA), suggesting that the integrity of the dithiolane ring was of importance for antibody recognition. They did not give positive reactions with other disulfide linked biological molecules such as oxidized glutathione or cystine. Anti-LA antibodies, coated on polystyrene microplates, were used for the detection of free LA in a competitive assay based on peroxidase-LA conjugate.
Collapse
Affiliation(s)
- S Legastelois
- Laboratoire d'Immunologie, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Nakano K, Matuda S, Sakamoto T, Takase C, Nakagawa S, Ohta S, Ariyama T, Inazawa J, Abe T, Miyata T. Human dihydrolipoamide succinyltransferase: cDNA cloning and localization on chromosome 14q24.2-q24.3. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:360-8. [PMID: 8268217 DOI: 10.1016/0167-4781(93)90002-u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We isolated cDNA for dihydrolipoamide succinyltransferase from a human fibroblast cDNA library in lambda gt11. The cDNA revealed that the human dihydrolipoamide succinyltransferase lacked a sequence motif of an E3 and/or E1 binding site. This suggests that the human dihydrolipoamide succinyltransferase possesses a unique structure consisting of two domains in contrast with the dihydrolipoamide acyltransferases of other alpha-keto acid dehydrogenase complexes. In addition, we found that the human dihydrolipoamide succinyltransferase gene is located on chromosome 14 at q24.2-q24.3 and that a sequence related to the dihydrolipoamide succinyltransferase gene is located on chromosome 1 at p31. Interestingly, the gene for the dihydrolipoamide acyltransferase of the branched chain alpha-keto acid dehydrogenase complex is also located on chromosome 1p31 (Zneimer et al. (1991) Genomics 10, 740-747).
Collapse
Affiliation(s)
- K Nakano
- Department of Biochemistry, Kagoshima Women's Junior College, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Toh H, Kondo H, Tanabe T. Molecular evolution of biotin-dependent carboxylases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:687-96. [PMID: 8102604 DOI: 10.1111/j.1432-1033.1993.tb18080.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amino-acid sequences of three functional units from various biotin-dependent carboxylases, biotin carboxylase, biotin-carboxyl-carrier protein and carboxyl transferase, were investigated by computer-assisted sequence comparison to obtain information about the structure, function, and molecular evolution of the enzymes. Biotin-dependent carboxylases, except transcarboxylase and oxaloacetate decarboxylase which lack biotin carboxylase, exert their catalytic activities through the three functional units. The three functional units correspond with functional domains or subunits of the enzymes, and the genetic information for the units is encoded in different ways from enzyme to enzyme. It is known that biotin carboxylase is homologous to carbamoyl-phosphate synthetase, and that the biotin-carboxyl-carrier protein is homologous to lipoic-acid-binding domain. The evolutionary relationships between the functional units and their homologues were described. A model for the evolutionary history of the enzymes was proposed by molecular phylogenetic analysis, which shows how a wide variety of domain and/or subunit structures for the enzymes may have been established. A repeated structure was found in biotin-carboxyl-carrier protein, and the secondary structure of the protein was predicted using the observed sequence similarity with a lipoic-acid-binding domain.
Collapse
Affiliation(s)
- H Toh
- Protein Engineering Research Institute, Osaka, Japan
| | | | | |
Collapse
|
41
|
Leung PS, Watanabe Y, Munoz S, Teuber SS, Patel MS, Korenberg JR, Hara P, Coppel R, Gershwin ME. Chromosome localization and RFLP analysis of PDC-E2: the major autoantigen of primary biliary cirrhosis. Autoimmunity 1993; 14:335-40. [PMID: 8102256 DOI: 10.3109/08916939309079237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Patients with primary biliary cirrhosis are well known for the presence of titer antibodies against dihydrolipoamide acetyltransferase, the E2 subunit of the pyruvate dehydrogenase complex. We have taken advantage of a cDNA probe for dihydrolipoamide acetyltransferase to explore the possibility of polymorphism of the E2 subunit by probing genomic DNA from 38 patients with primary biliary cirrhosis and 26 healthy controls. To detect restriction fragment length polymorphism, DNA was digested with ten specific restriction enzymes that often detect polymorphism, including Bam HI, Bgl II, Eco RI, Hind III, Hinf I, Msp I, Pst I, Pvu II, Rsa I and Taq I. A Taq I polymorphism was found in 19 of 38 patients with PBC and 6 of 26 normal controls. In addition, using fluorescence in situ hybridization, the gene for dihydrolipoamide acetyltransferase was mapped on human chromosome 11 band q23.1. Interestingly, this region of the long arm of chromosome 11 is often associated with cytogenetic abnormalities, including translocations.
Collapse
Affiliation(s)
- P S Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis 95616
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Quinn J, Diamond AG, Masters AK, Brookfield DE, Wallis NG, Yeaman SJ. Expression and lipoylation in Escherichia coli of the inner lipoyl domain of the E2 component of the human pyruvate dehydrogenase complex. Biochem J 1993; 289 ( Pt 1):81-5. [PMID: 8424775 PMCID: PMC1132133 DOI: 10.1042/bj2890081] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.
Collapse
Affiliation(s)
- J Quinn
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Li L, Radke GA, Ono K, Roche TE. Additional binding sites for the pyruvate dehydrogenase kinase but not for protein X in the assembled core of the mammalian pyruvate dehydrogenase complex: binding region for the kinase. Arch Biochem Biophys 1992; 296:497-504. [PMID: 1321586 DOI: 10.1016/0003-9861(92)90603-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A standard resolution of the bovine kidney pyruvate dehydrogenase complex yields a subcomplex composed of approximately 60 dihydrolipoyl transacetylase (E2) subunits, approximately 6 protein X subunits, and approximately 2 pyruvate dehydrogenase kinase heterodimers (KcKb). Using a preparation of resolved kinase in which Kc much greater than Kb, E2-X-KcKb subcomplex additionally bound at least 15 catalytic subunits of the kinase (Kc) and a much lower level of Kb. The binding of Kc to E2 greatly enhanced kinase activity even at high levels of bound kinase. Free protein X, functional in binding the E3 component, did not bind to E2-X-KcKb subcomplex. This pattern of binding Kc but not protein X was unchanged either with a preparation of E2 oligomer greatly reduced in protein X or with subcomplex from which the lipoyl domain of protein X was selectively removed. The bound inner domain of protein X associated with the latter subcomplex did not exchange with free protein X. These data support the conclusion that E2 subunits bind the Kc subunit of the kinase and suggest that the binding of the inner domain of protein X to the inner domain of the transacetylase occurs during the assembly of the oligomeric core. Selective release of a fragment of E2 subunits that contain the lipoyl domains (E2L fragment) releases the kinase (M. Rahmatullah et al., 1990, J. Biol. Chem. 265, 14,512-14,517). Sucrose gradient centrifugation yielded an E2L-kinase fraction with an increased ratio of the kinase to E2L fragment. A monoclonal antibody specific for E2L was attached to a gel matrix. Binding of E2L fragment also led to specific binding of the kinase. Extensive washing did not reduce the level of bound kinase. Thus, the kinase is tightly bound by the lipoyl domain region of E2.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry, Kansas State University, Manhattan 66502
| | | | | | | |
Collapse
|
44
|
Matuda S, Nakano K, Ohta S, Shimura M, Yamanaka T, Nakagawa S, Titani K, Miyata T. Molecular cloning of dihydrolipoamide acetyltransferase of the rat pyruvate dehydrogenase complex: sequence comparison and evolutionary relationship to other dihydrolipoamide acyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:114-8. [PMID: 1581353 DOI: 10.1016/0167-4781(92)90109-d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complementary DNA (cDNA) clone of dihydrolipoamide acetyltransferase (E2) of the rat pyruvate dehydrogenase complex (PDC) was isolated from a lambda gt11 rat heart cDNA library. The amino acid sequence of a full mature protein of rat PDC-E2 was predicted by combination of the cDNA nucleotide sequence and the N-terminal amino acid sequence determined chemically. The amino acid sequence of rat PDC-E2 was well consistent with those of the E2 components of other alpha-ketoacid dehydrogenase complexes. These E2 components possess the sequence G-X-G-X-X-G, which is the consensus sequence for nucleotide binding sites of nucleotide binding proteins, in the E3 and/or E1 binding domains. The E2 components of the three alpha-ketoacid dehydrogenase complexes are suggested to be classified into three clusters separated during evolution.
Collapse
Affiliation(s)
- S Matuda
- Department of Biology, Kanoya National Institute of Fitness and Sports, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mattevi A, Obmolova G, Schulze E, Kalk KH, Westphal AH, de Kok A, Hol WG. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 1992; 255:1544-50. [PMID: 1549782 DOI: 10.1126/science.1549782] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The highly symmetric pyruvate dehydrogenase multienzyme complexes have molecular masses ranging from 5 to 10 million daltons. They consist of numerous copies of three different enzymes: pyruvate dehydrogenase, dihydrolipoyl transacetylase, and lipoamide dehydrogenase. The three-dimensional crystal structure of the catalytic domain of Azotobacter vinelandii dihydrolipoyl transacetylase has been determined at 2.6 angstrom (A) resolution. Eight trimers assemble as a hollow truncated cube with an edge of 125 A, forming the core of the multienzyme complex. Coenzyme A must enter the 29 A long active site channel from the inside of the cube, and lipoamide must enter from the outside. The trimer of the catalytic domain of dihydrolipoyl transacetylase has a topology identical to chloramphenicol acetyl transferase. The atomic structure of the 24-subunit cube core provides a framework for understanding all pyruvate dehydrogenase and related multienzyme complexes.
Collapse
Affiliation(s)
- A Mattevi
- Department of Chemistry, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Wallbrandt P, Tegman V, Jonsson BH, Wieslander A. Identification and analysis of the genes coding for the putative pyruvate dehydrogenase enzyme complex in Acholeplasma laidlawii. J Bacteriol 1992; 174:1388-96. [PMID: 1735725 PMCID: PMC206436 DOI: 10.1128/jb.174.4.1388-1396.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A monospecific antibody recognizing two membrane proteins in Acholeplasma laidlawii identified a plasmid clone from a genomic library. The nucleotide sequence of the 4.6-kbp insert contained four sequential genes coding for proteins of 39 kDa (E1 alpha, N terminus not cloned), 36 kDa (E1 beta), 57 kDa (E2), and 36 kDa (E3; C terminus not cloned). The N termini of the cloned E2, E1 beta, and native A. laidlawii E2 proteins were verified by amino acid sequencing. Computer-aided searches showed that the translated DNA sequences were homologous to the four subenzymes of the pyruvate dehydrogenase complexes from gram-positive bacteria and humans. The plasmid-encoded 57-kDa (E2) protein was recognized by antibodies against the E2 subenzymes of the pyruvate and oxoglutarate dehydrogenase complexes from Bacillus subtilis. A substantial fraction of the E2 protein as well as part of the pyruvate dehydrogenase enzymatic activity was associated with the cytoplasmic membrane in A. laidlawii. In vivo complementation with three different Escherichia coli pyruvate dehydrogenase-defective mutants showed that the four plasmid-encoded proteins were able to restore pyruvate dehydrogenase enzyme activity in E. coli. Since A. laidlawii lacks oxoglutarate dehydrogenase and most likely branched-chain dehydrogenase enzyme complex activities, these results strongly suggest that the sequenced genes code for the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- P Wallbrandt
- Department of Biochemistry, University of Umeå, Sweden
| | | | | | | |
Collapse
|
47
|
Wagenknecht T, Grassucci R, Radke G, Roche T. Cryoelectron microscopy of mammalian pyruvate dehydrogenase complex. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54279-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Fujiwara K, Okamura-Ikeda K, Motokawa Y. Lipoylation of H-protein of the glycine cleavage system. The effect of site-directed mutagenesis of amino acid residues around the lipoyllysine residue on the lipoate attachment. FEBS Lett 1991; 293:115-8. [PMID: 1959641 DOI: 10.1016/0014-5793(91)81164-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
H-protein of the glycine cleavage system has lipoic acid on the Lys59 residue. Comparison of amino acid sequences around the lipoate attachment site of H-proteins from various sources and acyltransferases of alpha-keto acid dehydrogenase complexes indicated that Gly43, Glu56, Glu63 and Gly70 of bovine H-protein are highly conserved among these proteins. Modification of these conserved residues by site-directed mutagenesis indicated that Glu56 and Gly70 are important for the lipoylation of H-protein and suggested that the proper conformation around the lipoic acid attachment site is required for the association of H-protein to the enzyme responsible for the lipoylation.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | |
Collapse
|
49
|
Purification and molecular cloning of succinyltransferase of the rat alpha-ketoglutarate dehydrogenase complex. Absence of a sequence motif of the putative E3 and/or E1 binding site. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55164-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Moehario LH, Wang L, Devenish RJ, Mackay IR, Marzuki S. The human pyruvate dehydrogenase complex: a polymorphic region of the lipoate acetyl transferase (E2) subunit gene. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1097:128-32. [PMID: 1911885 DOI: 10.1016/0925-4439(91)90096-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A major issue in the study of the pathogenesis of primary biliary cirrhosis is whether the E2 subunit of the pyruvate dehydrogenase complex (PDH-E2), the major autoantigen in the disease, exists as a tissue-specific isoform. cDNA clones spanning a segment of the 3'-catalytic region of PDH-E2 (nt 1158-1361) have been isolated from human kidney, placenta and bile epithelium cells. Nucleotide sequence analysis of the clones showed differences consistent with the presence of normal variants of PDH-E2 in the human population. However, the existence of tissue-specific isoforms of PDH-E2 cannot yet be discounted.
Collapse
Affiliation(s)
- L H Moehario
- Department of Biochemistry, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|