1
|
Fritzler MJ, Brown RD, Zhang M. A Monoclonal Antibody to M-Phase Phosphoprotein 1/Kinesin-Like Protein KIF20B. Monoclon Antib Immunodiagn Immunother 2019; 38:162-170. [PMID: 31260385 PMCID: PMC6709729 DOI: 10.1089/mab.2019.0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kinesin-like protein KIF20B, originally named M-phase phosphoprotein 1 (MPP1), is a plus-end-directed kinesin-related protein that exhibits in vitro microtubule-binding and -bundling properties as well as microtubule-stimulated ATPase activity. It has been characterized as a slow molecular motor that moves toward the plus-end of microtubules. Human autoantibodies directed against KIF20B have been described in up to 25% of patients with idiopathic ataxia and less commonly in other neuropathies and autoinflammatory conditions. One of the limitations of research into the structure and function of KIF20B has been a reliable monoclonal antibody that can be used in a variety of applications. To establish a reference standard for anti-KIF20B immunoassays and facilitate studies on the role of KIF20B in developmental cell biology, we developed an IgG1 monoclonal antibody, 10C7, which reacts with the cognate KIF20B protein in Western immunoblots and in addressable laser bead immunoassays. In HEp2 cells, leptomeningeal pericytes, and transfected HEK293T cells, indirect immunofluorescence studies showed that reactivity was mainly localized to a proportion of interphase nuclei, but during metaphase, it was redistributed throughout the cytoplasm and perichromatin mass. Later in telophase/anaphase, KIF20B was localized to the stem body and midzone of the midbody. 10C7 also showed remarkable staining of a subset of cells in the cerebellum, ovary, and testis tissues. KIF20B was shown to have extensive coiled-coil domains. The monoclonal antibody, 10C7, will be of value to diagnostic laboratory scientists interested in having a reliable reference standard for anti-KIF20B immunoassays as well as cell, molecular, and developmental biology researchers.
Collapse
Affiliation(s)
- Marvin J Fritzler
- 1Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachael D Brown
- 2Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meifeng Zhang
- 1Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape. Biochim Biophys Acta Gen Subj 2015; 1850:2077-86. [PMID: 25766872 DOI: 10.1016/j.bbagen.2015.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. SCOPE OF REVIEW We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. MAJOR CONCLUSIONS The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. GENERAL SIGNIFICANCE As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
3
|
Wu CF, Wang R, Liang Q, Liang J, Li W, Jung SY, Qin J, Lin SH, Kuang J. Dissecting the M phase-specific phosphorylation of serine-proline or threonine-proline motifs. Mol Biol Cell 2010; 21:1470-81. [PMID: 20219976 PMCID: PMC2861607 DOI: 10.1091/mbc.e09-06-0486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
M phase induction in eukaryotic cell cycles is associated with a burst of protein phosphorylation, primarily at serine or threonine followed by proline (S/TP motif). The mitotic phosphoprotein antibody MPM-2 recognizes a significant subset of mitotically phosphorylated S/TP motifs; however, the required surrounding sequences of and the key kinases that phosphorylate these S/TP motifs remain to be determined. By mapping the mitotic MPM-2 epitopes in Xenopus Cdc25C and characterizing the mitotic MPM-2 epitope kinases in Xenopus oocytes and egg extracts, we have determined that phosphorylation of TP motifs that are surrounded by hydrophobic residues at both -1 and +1 positions plays a dominant role in M phase-associated burst of MPM-2 reactivity. Although mitotic Cdk and MAPK may phosphorylate subsets of these motifs that have a basic residue at the +2 position and a proline residue at the -2 position, respectively, the majority of these motifs that are preferentially phosphorylated in mitosis do not have these features. The M phase-associated burst of MPM-2 reactivity can be induced in Xenopus oocytes and egg extracts in the absence of MAPK or Cdc2 activity. These findings indicate that the M phase-associated burst of MPM-2 reactivity represents a novel type of protein phosphorylation in mitotic regulation.
Collapse
Affiliation(s)
- Chuan Fen Wu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zahedi RP, Begonja AJ, Gambaryan S, Sickmann A. Phosphoproteomics of human platelets: A quest for novel activation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1963-76. [PMID: 17049321 DOI: 10.1016/j.bbapap.2006.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/28/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
Besides their role in hemostasis, platelets are also highly involved in the pathogenesis and progression of cardiovascular diseases. Since important and initial steps of platelet activation and aggregation are regulated by phosphorylation events, a comprehensive study aimed at the characterization of phosphorylation-driven signaling cascades might lead to the identification of new target proteins for clinical research. However, it becomes increasingly evident that only a comprehensive phosphoproteomic approach may help to characterize functional protein networks and their dynamic alteration during physiological and pathophysiological processes in platelets. In this review, we discuss current methodologies in phosphoproteome research including their potentials as well as limitations, from sample preparation to classical approaches like radiolabeling and state-of-the-art mass spectrometry techniques.
Collapse
Affiliation(s)
- René P Zahedi
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | | | | | | |
Collapse
|
5
|
Tapia C, Kutzner H, Mentzel T, Savic S, Baumhoer D, Glatz K. Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28), allow rapid and precise determination of mitotic activity. Am J Surg Pathol 2006; 30:83-9. [PMID: 16330946 DOI: 10.1097/01.pas.0000183572.94140.43] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitotic figure (MF) counting is important in the evaluation of many tumor types. Inadequate fixation, crush artefacts, the presence of many apoptoses, or the rarity of MFs in a given lesion can make the determination of the mitotic index a very time-consuming or even impossible task, especially for novices. We evaluated the potential of the two commercially available mitotic markers MPM-2 and Phospho-Histone H3 Ser28 (PHH3) for improving mitotic counting. Formalin-fixed tissue of 1 lymphoma, 19 epithelial, 25 mesenchymal, and 10 melanocytic tumors was immunohistochemically stained with both antibodies. Mitotic counts of each tumor sample were determined by a pathologist and three residents in the hematoxylin and eosin and in both immunohistochemical stainings. Because of the higher sensitivity of the immunohistochemical stainings for MFs, average mitotic counts per 10 HPF were higher with MPM-2 (11.0) and PHH3 (10.1) than with hematoxylin and eosin (5.9) staining. The precise distinction of MFs from apoptoses and the visualization of the distribution of MFs uncovering mitotic hotspots, even at low magnification, turned out to be major advantages of both mitotic markers. In addition, the average time needed to establish the mitotic count was reduced by 40.3% with MPM-2 and by 50.4% with PHH3. MPM-2 and PHH3 were subjectively rated by all pathologists involved in this study to be very helpful in mitotic counting, especially in melanocytic and mesenchymal lesions but less so in epithelial tumors. Both markers have hence been successfully introduced in our laboratory for the routine assessment of MFs in melanocytic and mesenchymal tumors.
Collapse
Affiliation(s)
- Coya Tapia
- Institute for Pathology, University Hospital, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
de Boer AR, Letzel T, Lingeman H, Irth H. Systematic development of an enzymatic phosphorylation assay compatible with mass spectrometric detection. Anal Bioanal Chem 2005; 381:647-55. [PMID: 15703914 DOI: 10.1007/s00216-005-3070-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/22/2004] [Accepted: 01/10/2005] [Indexed: 11/26/2022]
Abstract
The enzymatic peptide phosphorylation by cAMP-dependent protein kinase A (PKA) was optimized and monitored by means of electrospray ionization mass spectrometry (ESI-MS). The direct detection of phosphorylated peptides by MS renders labeling unnecessary, reduces time and labor, due to less initial sample pretreatment. In this study the phosphorylation of the peptide malantide by PKA was performed in batch and reaction compounds were detected by ESI-MS after the incubation time. The subsequent product quantitation was accomplished by using one-point normalization. Applying this set-up, optimum solvent conditions (such as salt and modifier content), concentrations of essential reaction compounds (such as cAMP, Mg2+ and ATP), and the influence of reaction properties (such as pH and reaction time) were determined. The reaction milieu has to be suitable for both, the enzymatic reaction and the mass spectrometric detection. We found that the modifier content and the pH value had to be changed after the enzymatic reaction occurred. Through the addition of methanol and acetic acid, the reaction stopped immediately and a more sensitive mass spectrometric detection could be obtained simultaneously. Furthermore, an inhibitor study was performed, testing the inhibition potency of three protein kinase A inhibitors (PKIs). IC50 values were determined and used to calculate the Ki values, that were 7.4, 19.0 and 340.0 nmol/L for PKI(6-22)amide, PKI(5-24)amide, and PKI(14-24)amide, respectively. These data vary between factor 4.4 (for PKI(6-22)amide) and 8.3 (for PKI(5-24)amide) compared to the Ki values described in literature. However, the Ki values are in good agreement with the data mainly obtained by fluorescence- or radioactivity-based methods. Nevertheless, our results indicate that ESI-MS is a realistic alternative to radioactivity and fluorescence detection in determining enzymatic activity. Furthermore we were able to illustrate its high potential as a quantitative detection method.
Collapse
Affiliation(s)
- A R de Boer
- Section of Analytical Chemistry and Applied Spectroscopy, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV , Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
7
|
Albert AL, Lavoie SB, Vincent M. Multisite phosphorylation of Pin1-associated mitotic phosphoproteins revealed by monoclonal antibodies MPM-2 and CC-3. BMC Cell Biol 2004; 5:22. [PMID: 15171797 PMCID: PMC420459 DOI: 10.1186/1471-2121-5-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 06/01/2004] [Indexed: 12/31/2022] Open
Abstract
Background The peptidyl-prolyl isomerase Pin1 recently revealed itself as a new player in the regulation of protein function by phosphorylation. Pin1 isomerizes the peptide bond of specific phosphorylated serine or threonine residues preceding proline in several proteins involved in various cellular events including mitosis, transcription, differentiation and DNA damage response. Many Pin1 substrates are antigens of the phosphodependent monoclonal antibody MPM-2, which reacts with a subset of proteins phosphorylated at the G2/M transition. Results As MPM-2 is not a general marker of mitotic phosphoproteins, and as most mitotic substrates are phosphorylated more than once, we used a different phosphodependent antibody, mAb CC-3, to identify additional mitotic phosphoproteins and eventual Pin1 substrates by combining affinity purification, MALDI-TOF mass spectrometry and immunoblotting. Most CC-3-reactive phosphoproteins appeared to be known or novel MPM-2 antigens and included the RNA-binding protein p54nrb/nmt55, the spliceosomal protein SAP155, the Ki-67 antigen, MAP-1B, DNA topoisomerases II α and β, the elongation factor hSpt5 and the largest subunit of RNA polymerase II. The CC-3 mitotic antigens were also shown to be Pin1 targets. The fine CC-3- and MPM-2-epitope mapping of the RNA polymerase II carboxy-terminal domain confirmed that the epitopes were different and could be generated in vitro by distinct kinases. Finally, the post-mitotic dephosphorylation of both CC-3 and MPM-2 antigens was prevented when cellular Pin1 activity was blocked by the selective inhibitor juglone. Conclusion These observations indicate that the mitotic phosphoproteins associated with Pin1 are phosphorylated on multiple sites, suggesting combinatorial regulation of substrate recognition and isomerization.
Collapse
Affiliation(s)
- Alexandra L Albert
- CREFSIP et Département de médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Qc, Canada, G1K 7P4
| | - Sébastien B Lavoie
- CREFSIP et Département de médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Qc, Canada, G1K 7P4
| | - Michel Vincent
- CREFSIP et Département de médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Qc, Canada, G1K 7P4
| |
Collapse
|
8
|
Zhou W, Merrick BA, Khaledi MG, Tomer KB. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2000; 11:273-282. [PMID: 10757163 DOI: 10.1016/s1044-0305(00)00100-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Consecutive enzymatic reactions of analytes which are affinity bound to immobilized metal ion beads with subsequent direct analysis of the products by matrix-assisted laser desorption/ionization mass spectrometry have been used for detecting phosphorylation sites. The usefulness of this method was demonstrated by analyzing two commercially available phosphoproteins, beta-casein and alpha-casein, as well as one phosphopeptide from a kinase reaction mixture. Agarose loaded with either Fe3+ or Ga3+ was used to isolate phosphopeptides from the protein digest. Results from using either metal ion were complementary. Less overall suppression effect was achieved when Ga3+-loaded agarose was used to isolate phosphopeptides. The selectivity for monophosphorylated peptides, however, was better with Fe3+-loaded agarose. This technique is easy to use and has the ability to analyze extremely complicated phosphopeptide mixtures. Moreover, it eliminates the need for prior high-performance liquid chromatography separation or radiolabeling, thus greatly simplifying the sample preparation.
Collapse
Affiliation(s)
- W Zhou
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
9
|
Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 1998; 808:23-41. [PMID: 9652109 DOI: 10.1016/s0021-9673(98)00115-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein phosphorylation plays a central role in many biological and biomedical phenomena. In this review, while a brief overview of the occurrence and function of protein phosphorylation is given, the primary focus is on studies related to the detection and analysis of phosphorylation both in vivo and in vitro. We focus on phosphorylation of serine, threonine and tyrosine, the most commonly phosphorylated amino acids in eukaryotes. Technologies such as radiolabelling, antibody recognition, chromatographic methods (HPLC, TLC), electrophoresis, Edman sequencing and mass spectrometry are reviewed. We consider the speed, simplicity and sensitivity of tools for detection and identification of protein phosphorylation, as well as quantitation and site characterisation. The limitations of currently available methods are summarised.
Collapse
Affiliation(s)
- J X Yan
- Macquarie University Centre for Analytical Biotechnology, School of Biological Sciences, Macquarie University, Sydney NSW, Australia
| | | | | | | |
Collapse
|
10
|
Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM. Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 1996; 7:1455-69. [PMID: 8885239 PMCID: PMC275994 DOI: 10.1091/mbc.7.9.1455] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using an expression cloning technique, we isolated cDNAs for eight M phase phosphoproteins (MPPs 4-11). We then used affinity-purified antibodies to fusion proteins to characterize the intracellular localization and some biochemical properties of these proteins and two others that we identified previously (MPPs 1-2). Each antibody immunoprecipitated one or two protein species of a characteristic size ranging from 17,000 to 220,000 Da. Each MPP, when immunoprecipitated from lysates of M phase cells, was reactive with MPM2, a monoclonal antibody that recognizes a group of related M phase phosphorylation sites, including F-phosphoT-P-L-Q. This reactivity indicated that all the MPPS encoded genuine M phase phosphoproteins. When antibodies to the MPPS were used for immunofluorescence microscopy, each anti-MPP gave a characteristic pattern of localization. In interphase, several of the MPPs were nuclear proteins, whereas others were cytoplasmic or distributed throughout the cell. Three MPPS were strikingly localized to interphase structures: MPP7 to centers of DNA replication, MPP9 to the Golgi complex, and MPP10 to nucleoli. In mitosis, most of the MPPs were distributed throughout the cells. Further studies of the 10 MPPs, most of which are previously undescribed, are expected to provide new understandings of the process of cell division.
Collapse
Affiliation(s)
- N Matsumoto-Taniura
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
11
|
Taagepera S, Dent P, Her JH, Sturgill TW, Gorbsky GJ. The MPM-2 antibody inhibits mitogen-activated protein kinase activity by binding to an epitope containing phosphothreonine-183. Mol Biol Cell 1994; 5:1243-51. [PMID: 7532473 PMCID: PMC301149 DOI: 10.1091/mbc.5.11.1243] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases implicated in the control of cell proliferation and differentiation. We have found that activated p42mapk is a target for the phosphoepitope antibody MPM-2, a monoclonal antibody that recognizes a cell cycle-regulated phosphoepitope. We have determined that the MPM-2 antibody recognizes the regulatory region of p42mapk. Binding of the MPM-2 antibody to active p42mapk in vitro results in a decrease in p42mapk enzymatic activity. The MPM-2 phosphoepitope can be generated in vitro on bacterially expressed p42mapk by phosphorylation with either isoform of MAP kinase kinase (MKK), MKK1, or MKK2. Analysis of p42mapk proteins mutated in their regulatory sites shows that phosphorylated Thr-183 is essential for the binding of the MPM-2 antibody. MPM-2 binding to Thr-183 is affected by the amino acid present in the other regulatory site, Tyr-185. Substitution of Tyr-185 with phenylalanine results in strong binding of the MPM-2 antibody, whereas substitution with glutamic acid substantially diminishes MPM-2 antibody binding. The MPM-2 phosphoepitope antibody recognizes an amino acid domain incorporating the regulatory phosphothreonine on activated p42mapk in eggs during meiosis and in mammalian cultured cells during the G0 to G1 transition.
Collapse
Affiliation(s)
- S Taagepera
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | | | |
Collapse
|
12
|
Kuang J, Ashorn CL. At least two kinases phosphorylate the MPM-2 epitope during Xenopus oocyte maturation. J Cell Biol 1993; 123:859-68. [PMID: 7693720 PMCID: PMC2200152 DOI: 10.1083/jcb.123.4.859] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes (the MPM-2 epitope), are associated with various mitotically important structures. The central mitotic regulator cdc2 kinase has been proposed to induce M-phase by phosphorylating many proteins which might include the MPM-2 antigens. To clarify the relationship of cdc2 kinase and the MPM-2 antigens, we developed an in vitro assay that enabled us to specifically detect the kinases that phosphorylate the MPM-2 epitope (ME kinases) in crude cell extracts. Two different ME kinase activities were identified in unfertilized Xenopus eggs, neither of which was cdc2 kinase, but both appeared to be activated by the introduction of cdc2 kinase into oocytes or oocyte extract. The two ME kinases differed in molecular size, substrate specificity, peptide components, and MPM-2 reactivity. The larger one, ME kinase-H, phosphorylated several MPM-2 antigens, while the smaller one, ME kinase-L, phosphorylated mainly one. We purified ME kinase-L to near homogeneity by sequential chromatography and showed that it has the characteristics of the 42-kD microtubule-associated protein (MAP) kinase. Our results support the previous finding that MAP kinase is activated during Xenopus oocyte maturation and suggest that MAP kinase may contribute to oocyte maturation induction by phosphorylating one subtype of MPM-2 epitope.
Collapse
Affiliation(s)
- J Kuang
- Department of Clinical Investigations, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
13
|
Tombes RM, Peloquin JG, Borisy GG. Specific association of an M-phase kinase with isolated mitotic spindles and identification of two of its substrates as MAP4 and MAP1B. CELL REGULATION 1991; 2:861-74. [PMID: 1667090 PMCID: PMC361885 DOI: 10.1091/mbc.2.11.861] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isolated mammalian (Chinese hamster ovary [CHO]) metaphase spindles were found to be enriched in a histone H1 kinase whose activity was mitotic-cycle dependent. Two substrates for the kinase were identified as MAP1B and MAP4. Partially purified spindle kinase retained activity for the spindle microtubule-associated proteins (MAPs) as well as brain and other tissue culture MAPs; on phosphorylation, spindle MAPs exhibited increased immunoreactivity with MPM-2, a monoclonal antibody specific for a subset of mitotic phosphoproteins. Immunofluorescence using an anti-thiophosphoprotein antibody localized in vitro phosphorylated spindle proteins to microtubule fibers, centrosomes, kinetochores, and midbodies. The fractionated spindle kinase was reactive with anti-human p34cdc2 antibodies and with an anti-human cyclin B but not an anti-human cyclin A antibody. We conclude that spindle MAPs undergo mitotic cycle-dependent phosphorylations in vivo and associate with a kinase that remains active on spindle isolation and may be related to p34cdc2.
Collapse
Affiliation(s)
- R M Tombes
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
14
|
Kuang J, Penkala JE, Wright DA, Saunders GF, Rao PN. A novel M phase-specific H1 kinase recognized by the mitosis-specific monoclonal antibody MPM-2. Dev Biol 1991; 144:54-64. [PMID: 1995402 DOI: 10.1016/0012-1606(91)90478-l] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
At the onset of mitosis, eukaryotic cells display an abrupt increase in a Ca2(+)- and cyclic nucleotide-independent histone H1 kinase activity, referred to as growth-associated or M phase-specific H1 kinase. The molecular basis for this activity is generally attributed to a kinase complex that consists of the p34cdc2 protein and cyclin, and exhibits maturation-promoting factor (MPF) activity. In the present study, we show that more than one kinase contributes to M phase-specific H1 kinase activity. When mature Xenopus oocyte extract prepared with ATP gamma S and NaF was fractionated by gel filtration, two prominent peaks of H1 kinase activity were detected, with apparent molecular masses of 600 and 150 kDa. The 150-kDa kinase copurified with the p34cdc2 protein and was immobilized by the suc 1 gene product p13 and anti-cyclin B2, which are specific for the cdc2 kinase complex. However, the 600-kDa kinase did not satisfy any of these criteria, thus identifying it as a novel M phase-specific H1 kinase. Only the 600-kDa kinase was recognized by the mitosis-specific monoclonal antibody, MPM-2, which inhibits Xenopus oocyte maturation and immunodepletes MPF activity. Furthermore, not only did the full activation of this kinase (MPM-2 kinase) coincide with the activation of MPF during the cell cycle, but also MPM-2 kinase-positive fractions obtained by gel filtration accelerated progesterone-induced oocyte maturation. It is, therefore, likely that MPM-2 kinase is a positive regulator in the M phase induction pathway.
Collapse
Affiliation(s)
- J Kuang
- Department of Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|
15
|
Abstract
Metaphase chromosomes are dynamically modified in interphase. This review focuses on how these structures can be modified, and explores the functional mechanisms and significance of these changes. Current analyses of genes often focus on relatively short stretches of DNA and consider chromatin conformations that incorporate only a few kilobases of DNA. In interphase nuclei, however, orderly transcription and replication can involve highly folded chromosomal domains containing hundreds of kilobases of DNA. Specific "junk" DNA sequences within selected chromosome domains may participate in more complex levels of chromosome folding, and may index different genetic compartments for orderly transcription and replication. Three-dimensional chromosome positions within the nucleus may also contribute to phenotypic expression. Entire chromosomes are maintained as discrete, reasonably compact entities in the nucleus, and heterochromatic coiled domains of several thousand kilobases can acquire unique three-dimensional positions in differentiated cell types. Some aspects of neoplasia may relate to alterations in chromosome structure at several higher levels of organization.
Collapse
|