1
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
2
|
Rojo-Ruiz J, Navas-Navarro P, Nuñez L, García-Sancho J, Alonso MT. Imaging of Endoplasmic Reticulum Ca 2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca 2+ Indicator. Front Endocrinol (Lausanne) 2020; 11:615777. [PMID: 33664709 PMCID: PMC7921146 DOI: 10.3389/fendo.2020.615777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
Collapse
|
3
|
A computational model for gonadotropin releasing cells in the teleost fish medaka. PLoS Comput Biol 2019; 15:e1006662. [PMID: 31437161 PMCID: PMC6726249 DOI: 10.1371/journal.pcbi.1006662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/04/2019] [Accepted: 08/01/2019] [Indexed: 01/16/2023] Open
Abstract
Pituitary endocrine cells fire action potentials (APs) to regulate their cytosolic Ca2+ concentration and hormone secretion rate. Depending on animal species, cell type, and biological conditions, pituitary APs are generated either by TTX-sensitive Na+ currents (INa), high-voltage activated Ca2+ currents (ICa), or by a combination of the two. Previous computational models of pituitary cells have mainly been based on data from rats, where INa is largely inactivated at the resting potential, and spontaneous APs are predominantly mediated by ICa. Unlike in rats, spontaneous INa-mediated APs are consistently seen in pituitary cells of several other animal species, including several species of fish. In the current work we develop a computational model of gonadotropin releasing cells in the teleost fish medaka (Oryzias latipes). The model stands out from previous modeling efforts by being (1) the first model of a pituitary cell in teleosts, (2) the first pituitary cell model that fires sponateous APs that are predominantly mediated by INa, and (3) the first pituitary cell model where the kinetics of the depolarizing currents, INa and ICa, are directly fitted to voltage-clamp data. We explore the firing properties of the model, and compare it to the properties of previous models that fire ICa-based APs. We put a particular focus on how the big conductance K+ current (IBK) modulates the AP shape. Interestingly, we find that IBK can prolong AP duration in models that fire ICa-based APs, while it consistently shortens the duration of the predominantly INa-mediated APs in the medaka gonadotroph model. Although the model is constrained to experimental data from gonadotroph cells in medaka, it may likely provide insights also into other pituitary cell types that fire INa-mediated APs. Excitable cells elicit electrical pulses called action potentials (APs), which are generated and shaped by a combination of ion channels in the cell membrane. Since one type of ion channels is permeable to Ca2+ ions, there is typically an influx of Ca2+ during an AP. Pituitary cells therefore use AP firing to regulate their cytosolic Ca2+ concentration, which in turn controls their hormone secretion rate. The amount of Ca2+ that enters during an AP depends strongly on how long it lasts, and it is therefore important to understand the mechanisms that control this. Pituitary APs are generally mediated by a combination of Ca2+ channels and Na+ channels, and the relative contributions of from the two vary between cell types, animal species and biological conditions. Previous computer models have predominantly been adapted to data from pituitary cells which tend to fire Ca2+-based APs. Here we develop a new model, adapted to data from pituitary cells in the fish medaka, which APs that are predominantly Na+-based, and compare its dynamical properties to the previous models that fire Ca2+-based APs.
Collapse
|
4
|
Fletcher PA, Sherman A, Stojilkovic SS. Common and diverse elements of ion channels and receptors underlying electrical activity in endocrine pituitary cells. Mol Cell Endocrinol 2018; 463:23-36. [PMID: 28652171 PMCID: PMC5742314 DOI: 10.1016/j.mce.2017.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
The pituitary gland contains six types of endocrine cells defined by hormones they secrete: corticotrophs, melanotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. All these cell types are electrically excitable, and voltage-gated calcium influx is the major trigger for their hormone secretion. Along with hormone intracellular content, G-protein-coupled receptor and ion channel expression can also be considered as defining cell type identity. While many aspects of the developmental and activity dependent regulation of hormone and G-protein-coupled receptor expression have been elucidated, much less is known about the regulation of the ion channels needed for excitation-secretion coupling in these cells. We compare the spontaneous and receptor-controlled patterns of electrical signaling among endocrine pituitary cell types, including insights gained from mathematical modeling. We argue that a common set of ionic currents unites these cells, while differential expression of another subset of ionic currents could underlie cell type-specific patterns. We demonstrate these ideas using a generic mathematical model, showing that it reproduces many observed features of pituitary electrical signaling. Mapping these observations to the developmental lineage suggests possible modes of regulation that may give rise to mature pituitary cell types.
Collapse
Affiliation(s)
- Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Shipston MJ. Control of anterior pituitary cell excitability by calcium-activated potassium channels. Mol Cell Endocrinol 2018; 463:37-48. [PMID: 28596131 DOI: 10.1016/j.mce.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
In anterior pituitary endocrine cells, large (BK), small (SK) and intermediate (IK) conductance calcium activated potassium channels are key determinants in shaping cellular excitability in a cell type- and context-specific manner. Indeed, these channels are targeted by multiple signaling pathways that stimulate or inhibit cellular excitability. BK channels can, paradoxically, both promote electrical bursting as well as terminate bursting and spiking dependent upon intrinsic BK channel properties and proximity to voltage gated calcium channels in somatotrophs, lactotrophs and corticotrophs. In contrast, SK channels are predominantly activated by calcium released from intracellular IP3-sensitive calcium stores and mediate membrane hyperpolarization in cells including gonadotrophs and corticotrophs. IK channels are predominantly expressed in corticotrophs where they limit membrane excitability. A major challenge for the future is to determine the cell-type specific molecular composition of calcium-activated potassium channels and how they control anterior pituitary hormone secretion as well as other calcium-dependent processes.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH89XD, UK.
| |
Collapse
|
6
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Stojilkovic SS, Bjelobaba I, Zemkova H. Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion. Front Endocrinol (Lausanne) 2017; 8:126. [PMID: 28649232 PMCID: PMC5465261 DOI: 10.3389/fendo.2017.00126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs) spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM). These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA), acetylcholine (ACh), and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH) and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| | - Ivana Bjelobaba
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
8
|
Tomić M, Bargi-Souza P, Leiva-Salcedo E, Nunes MT, Stojilkovic SS. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells. Cell Calcium 2015; 58:598-605. [PMID: 26453278 DOI: 10.1016/j.ceca.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/20/2015] [Indexed: 01/14/2023]
Abstract
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.
Collapse
Affiliation(s)
- Melanija Tomić
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States
| | - Paula Bargi-Souza
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States; Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Elias Leiva-Salcedo
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States.
| |
Collapse
|
9
|
Hodne K, Strandabø RAU, von Krogh K, Nourizadeh-Lillabadi R, Sand O, Weltzien FA, Haug TM. Electrophysiological differences between fshb- and lhb-expressing gonadotropes in primary culture. Endocrinology 2013; 154:3319-30. [PMID: 23836032 DOI: 10.1210/en.2013-1164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthesis and release of FSH and LH are differentially regulated by GnRH, but the mechanisms by which this regulation is achieved are not well understood. Teleost fish are powerful models for studying this differential regulation because they have distinct pituitary cells producing either FSH or LH. By using pituitary cultures from Atlantic cod (Gadus morhua), we were able to investigate and compare the electrophysiological properties of fshb- and lhb-expressing cells, identified by single-cell quantitative PCR after recording. Both cell types fired action potentials spontaneously. The relative number of excitable cells was dependent on reproductive season but varied in opposing directions according to season in the 2 cell types. Excitable and quiescent gonadotropes displayed different ion channel repertoires. The dynamics of outward currents and GnRH-induced membrane responses differed between fshb- and lhb-expressing cells, whereas GnRH-induced cytosolic Ca²⁺ responses were similar. Expression of Ca²⁺-activated K⁺ channels also differed with cell type and showed seasonal variation when measured in whole pituitary. The differential presence of these channels corresponds to the differences observed in membrane response to GnRH. We speculate that differences in ion channel expression levels may be involved in seasonal regulation of hormone secretion as well as the differential response to GnRH in LH- and FSH-producing gonadotropes, through differences in excitability and Ca²⁺ influx.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, N-0033 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
10
|
Zemkova H, Kucka M, Bjelobaba I, Tomic M, Stojilkovic SS. Multiple cholinergic signaling pathways in pituitary gonadotrophs. Endocrinology 2013; 154:421-33. [PMID: 23161872 PMCID: PMC3529387 DOI: 10.1210/en.2012-1554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (ACh) has been established as a paracrine factor in the anterior pituitary gland, but the receptors mediating ACh action and the cell types bearing these receptors have not been identified. Our results showed that the expression of the nicotinic subunits mRNAs followed the order β2 > β1 = α9 > α4 in cultured rat pituitary cells. The expression of the subunits in immortalized LβT2 mouse gonadotrophs followed the order β2 > α4 = α1. M4 > M3 muscarinic receptor mRNA were also identified in pituitary and LβT2 cells. The treatment of cultured pituitary cells with GnRH down-regulated the expression of α9 and α4 mRNAs, without affecting the expression of M3 and M4 receptor mRNAs, and ACh did not alter the expression of GnRH receptor mRNA. We also performed double immunostaining to show the expression of β2-subunit and M4 receptor proteins in gonadotrophs. Functional nicotinic channels capable of generating an inward current, facilitation of electrical activity, and Ca(2+) influx were identified in single gonadotrophs and LβT2 cells. In both cell types, the M3 receptor-mediated, phospholipase C-dependent Ca(2+) mobilization activated an outward apamin-sensitive K(+) current and caused hyperpolarization. The activation of M4 receptors by ACh inhibited cAMP production and GnRH-induced LH release in a pertussis toxin-sensitive manner. We concluded that multiple cholinergic receptors are expressed in gonadotrophs and that the main secretory action of ACh is inhibitory through M4 receptor-mediated down-regulation of cAMP production. The expression of nicotinic receptors in vitro compensates for the lack of regular GnRH stimulation of gonadotrophs.
Collapse
Affiliation(s)
- Hana Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
Molecular mechanisms of pituitary endocrine cell calcium handling. Cell Calcium 2011; 51:212-21. [PMID: 22138111 DOI: 10.1016/j.ceca.2011.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.
Collapse
|
12
|
Kretschmannova K, Kucka M, Gonzalez-Iglesias AE, Stojilkovic SS. The expression and role of hyperpolarization-activated and cyclic nucleotide-gated channels in endocrine anterior pituitary cells. Mol Endocrinol 2011; 26:153-64. [PMID: 22135067 DOI: 10.1210/me.2011-1207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pituitary cells fire action potentials independently of external stimuli, and such spontaneous electrical activity is modulated by a large variety of hypothalamic and intrapituitary agonists. Here, we focused on the potential role of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in electrical activity of cultured rat anterior pituitary cells. Quantitative RT-PCR analysis showed higher level of expression of mRNA transcripts for HCN2 and HCN3 subunits and lower expression of HCN1 and HCN4 subunits in these cells. Western immunoblot analysis of lysates from normal and GH(3) immortalized pituitary cells showed bands with appropriate molecular weights for HCN2, HCN3, and HCN4. Electrophysiological experiments showed the presence of a slowly developing hyperpolarization-activated inward current, which was blocked by Cs(+) and ZD7288, in gonadotrophs, thyrotrophs, somatotrophs, and a fraction of lactotrophs, as well as in other unidentified pituitary cell types. Stimulation of adenylyl cyclase and addition of 8-Br-cAMP enhanced this current and depolarized the cell membrane, whereas 8-Br-cGMP did not alter the current and hyperpolarized the cell membrane. Both inhibition of basal adenylyl cyclase activity and stimulation of phospholipase C signaling pathway inhibited this current. Inhibition of HCN channels affected the frequency of firing but did not abolish spontaneous electrical activity. These experiments indicate that cAMP and cGMP have opposite effects on the excitability of endocrine pituitary cells, that basal cAMP production in cultured cells is sufficient to integrate the majority of HCN channels in electrical activity, and that depletion of phosphatidylinositol 4,5-bisphosphate caused by activation of phospholipase C silences them.
Collapse
Affiliation(s)
- Karla Kretschmannova
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
14
|
Waring DW, Turgeon JL. Ca2+-activated K+ channels in gonadotropin-releasing hormone-stimulated mouse gonadotrophs. Endocrinology 2009; 150:2264-72. [PMID: 19106218 PMCID: PMC2671892 DOI: 10.1210/en.2008-1442] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GnRH receptor activation elicits release of intracellular Ca(2+), which leads to secretion and also activates Ca(2+)-activated ion channels underlying membrane voltage changes. The predominant Ca(2+)-activated ion channels in rat and mouse gonadotrophs are Ca(2+)-activated K(+) channels. To establish the temporal relationship between GnRH-induced changes in intracellular [Ca(2+)] ([Ca(2+)](i)) and membrane current (I(m)), and to identify specific Ca(2+)-activated K(+) channels linking GnRH-induced increase in [Ca(2+)](i) to changes in plasma membrane electrical activity, we used single female mouse gonadotrophs in the perforated patch configuration of the patch-clamp technique, which preserves signaling pathways. Simultaneous measurement of [Ca(2+)](i) and I(m) in voltage-clamped gonadotrophs revealed that GnRH stimulates an increase in [Ca(2+)](i) that precedes outward I(m), and that activates two kinetically distinct currents identified, using specific toxin inhibitors, as small conductance Ca(2+)-activated K(+) (SK) current (I(SK)) and large (big) conductance voltage- and Ca(2+)-activated K(+) (BK) current (I(BK)). We show that the apamin-sensitive current has an IC(50) of 69 pM, consistent with the SK2 channel subtype and confirmed by immunocytochemistry. The magnitude of the SK current response to GnRH was attenuated by 17beta-estradiol (E(2)) pretreatment. Iberiotoxin, an inhibitor of BK channels, completely blocked the residual apamin-insensitive outward I(m), substantiating that I(BK) is a component of the GnRH-induced outward I(m). In contrast to its suppression of I(SK), E(2) pretreatment augmented peak I(BK). SK or BK channel inhibition modulated GnRH-stimulated LH secretion, implicating a role for these channels in gonadotroph function. In summary, in mouse gonadotrophs the GnRH-stimulated increase in [Ca(2+)](i) activates I(SK) and I(BK), which are differentially regulated by E(2) and which may be targets for E(2) positive feedback in LH secretion.
Collapse
Affiliation(s)
- Dennis W Waring
- Division of Endocrinology, Department of Internal Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | |
Collapse
|
15
|
Stojilkovic SS, Murano T, Gonzalez-Iglesias AE, Andric SA, Popovic MA, Van Goor F, Tomić M. Multiple roles of Gi/o protein-coupled receptors in control of action potential secretion coupling in pituitary lactotrophs. Ann N Y Acad Sci 2009; 1152:174-86. [PMID: 19161388 DOI: 10.1111/j.1749-6632.2008.03994.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
G(i/o) protein-coupled receptors, signaling through G protein-dependent and protein-independent pathways, have prominent effects on secretion by modulating calcium signaling and regulating the size of the releasable secretory pool, the rates of exocytosis and endocytosis, and de novo synthesis. Pituitary cells fire action potentials spontaneously, and the associated calcium influx is sufficient to maintain prolactin (PRL) release but not gonadotropin release at high and steady levels for many hours. Such secretion, termed intrinsic, spontaneous, or basal, reflects fusion of secretory vesicles triggered by the cell type-specific pattern of action potentials. In lactotrophs, activation of endothelin ET(A) and dopamine D(2) receptors causes inhibition of spontaneous electrical activity and basal adenylyl cyclase activity accompanied with inhibition of basal PRL release. Agonist-induced inhibition of cAMP production and firing of action potentials is abolished in cells with blocked pertussis toxin (PTX)-sensitive G(i/o) signaling pathway. However, agonist-induced inhibition of PRL release is only partially relieved in such treated cells, indicating that both receptors also inhibit exocytosis downstream of cAMP/calcium signaling. The PTX-insensitive step in agonist-induced inhibition of PRL release is not affected by inhibition of phosphoinositide 3-kinase and glycogen synthase kinase-3 but is partially rescued by downregulation of the G(z)alpha expression. Thus, ET(A) and D(2) receptors inhibit basal PRL release not only by blocking electrical activity but also by desensitizing calcium-secretion coupling.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zemkova HW, Bjelobaba I, Tomic M, Zemkova H, Stojilkovic SS. Molecular, pharmacological and functional properties of GABA(A) receptors in anterior pituitary cells. J Physiol 2008; 586:3097-111. [PMID: 18450776 PMCID: PMC2538769 DOI: 10.1113/jphysiol.2008.153148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/28/2008] [Indexed: 11/08/2022] Open
Abstract
Anterior pituitary cells express gamma-aminobutyric acid (GABA)-A receptor-channels, but their structure, distribution within the secretory cell types, and nature of action have not been clarified. Here we addressed these questions using cultured anterior pituitary cells from postpubertal female rats and immortalized alphaT3-1 and GH(3) cells. Our results show that mRNAs for all GABA(A) receptor subunits are expressed in pituitary cells and that alpha1/beta1 subunit proteins are present in all secretory cells. In voltage-clamped gramicidin-perforated cells, GABA induced dose-dependent increases in current amplitude that were inhibited by bicuculline and picrotoxin and facilitated by diazepam and zolpidem in a concentration-dependent manner. In intact cells, GABA and the GABA(A) receptor agonist muscimol caused a rapid and transient increase in intracellular calcium, whereas the GABA(B) receptor agonist baclofen was ineffective, suggesting that chloride-mediated depolarization activates voltage-gated calcium channels. Consistent with this finding, RT-PCR analysis indicated high expression of NKCC1, but not KCC2 cation/chloride transporter mRNAs in pituitary cells. Furthermore, the GABA(A) channel reversal potential for chloride ions was positive to the baseline membrane potential in most cells and the activation of ion channels by GABA resulted in depolarization of cells and modulation of spontaneous electrical activity. These results indicate that secretory pituitary cells express functional GABA(A) receptor-channels that are depolarizing.
Collapse
Affiliation(s)
- Hana W Zemkova
- Section on Cellular Signalling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
17
|
Kretschmannova K, Gonzalez-Iglesias AE, Tomić M, Stojilkovic SS. Dependence of hyperpolarisation-activated cyclic nucleotide-gated channel activity on basal cyclic adenosine monophosphate production in spontaneously firing GH3 cells. J Neuroendocrinol 2006; 18:484-93. [PMID: 16774497 DOI: 10.1111/j.1365-2826.2006.01438.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels play a distinct role in the control of membrane excitability in spontaneously active cardiac and neuronal cells. Here, we studied the expression and role of HCN channels in pacemaking activity, Ca(2+) signalling, and prolactin secretion in GH(3) immortalised pituitary cells. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of mRNA transcripts for HCN2, HCN3 and HCN4 subunits in these cells. A hyperpolarisation of the membrane potential below - 60 mV elicited a slowly activating voltage-dependent inward current (I(h)) in the majority of tested cells, with a half-maximal activation voltage of -89.9 +/- 4.2 mV and with a time constant of 1.4 +/- 0.2 s at -120 mV. The bath application of 1 mM Cs(+), a commonly used inorganic blocker of I(h), and 100 microM ZD7288, a specific organic blocker of I(h), inhibited I(h) by 90 +/- 4.1% and 84.3 +/- 1.8%, respectively. Receptor- and nonreceptor-mediated activation of adenylyl and soluble guanylyl cyclase and the addition of a membrane permeable cyclic adenosine monophosphate (cAMP) analogue, 8-Br-cAMP, did not affect I(h). Inhibition of basal adenylyl cyclase activity, but not basal soluble guanylyl cyclase activity, led to a reduction in the peak amplitude and a leftward shift in the activation curve of I(h) by 23.7 mV. The inhibition of the current was reversed by stimulation of adenylyl cyclase with forskolin and by the addition of 8-Br-cAMP, but not 8-Br-cGMP. Application of Cs(+) had no significant effect on the resting membrane potential or electrical activity, whereas ZD7288 exhibited complex and I(h)-independent effects on spontaneous electrical activity, Ca(2+) signalling, and prolactin release. These results indicate that HCN channels in GH(3) cells are under tonic activation by basal level of cAMP and are not critical for spontaneous firing of action potentials.
Collapse
Affiliation(s)
- K Kretschmannova
- Section on Cellular Signalling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | | | |
Collapse
|
18
|
Zemkova H, Balik A, Jiang Y, Kretschmannova K, Stojilkovic SS. Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs. Mol Endocrinol 2006; 20:1423-36. [PMID: 16543406 DOI: 10.1210/me.2005-0508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Anterior pituitary cells release ATP and express several subtypes of purinergic P2 receptors, but their biophysical properties and roles in spontaneous and receptor-controlled electrical activity have not been characterized. Here we focused on extracellular ATP actions in gonadotrophs from embryonic, neonatal, and adult rats. In cells from all three age groups, the Ca2+-mobilizing agonist GnRH induced oscillatory, hyperpolarizing, nondesensitizing, and slow deactivating currents. In contrast, ATP induced nonoscillatory, depolarizing, slowly desensitizing, and rapidly deactivating current, indicating that these cells express cation-conducting P2X channels but not Ca2+-mobilizing P2Y receptors. The amplitudes of P2X current response and the rates of receptor desensitization were dependent on ATP concentration. The biophysical and pharmacological properties of P2X currents were consistent with the expression of P2X2 subtype of channels in these cells. ATP-induced rapid depolarization of gonadotrophs lead to initiation of firing in quiescent cells, an increase in the frequency of action potentials in spontaneously active cells, and a transient stimulation of LH release. ATP also influenced GnRH-induced current and membrane potential oscillations and LH release in an extracellular Ca2+-dependent manner. These inositol 1,4,5-triphosphate-dependent oscillations were facilitated, slowed, or stopped, depending of ATP concentration, the time of its application, and the level of Ca2+ content in intracellular stores. These results indicate that, in gonadotrophs, P2X receptors could operate as pacemaking channels and modulators of GnRH-controlled electrical activity and secretion.
Collapse
Affiliation(s)
- Hana Zemkova
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | |
Collapse
|
19
|
Stojilkovic SS, Zemkova H, Van Goor F. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol Metab 2005; 16:152-9. [PMID: 15860411 DOI: 10.1016/j.tem.2005.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All secretory pituitary cells exhibit spontaneous and extracellular Ca2+-dependent electrical activity. Somatotrophs and lactotrophs fire plateau-bursting action potentials, which generate Ca2+ signals of sufficient amplitude to trigger hormone release. Gonadotrophs also fire action potentials spontaneously, but as single, high-amplitude spikes with limited ability to promote Ca2+ influx and secretion. However, Ca2+ mobilization in gonadotrophs transforms single spiking into plateau-bursting-type electrical activity and triggers secretion. Patch clamp analysis revealed that somatotrophs and lactotrophs, but not gonadotrophs, express BK (big)-type Ca2+-controlled K+ channels, activation of which is closely associated with voltage-gated Ca2+ influx. Conversely, pituitary gonadotrophs express SK (small)-type Ca2+-activated K+ channels that are colocalized with intracellular Ca2+ release sites. Activation of both channels is crucial for plateau-bursting-type rhythmic electrical activity and secretion.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, MD 20892-4510, USA.
| | | | | |
Collapse
|
20
|
Zemkova H, Balik A, Kretschmannova K, Mazna P, Stojilkovic SS. Recovery of Ins(1,4,5)-trisphosphate-dependent calcium signaling in neonatal gonadotrophs. Cell Calcium 2004; 36:89-97. [PMID: 15193857 DOI: 10.1016/j.ceca.2003.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 12/16/2003] [Accepted: 12/17/2003] [Indexed: 11/21/2022]
Abstract
Pituitary gonadotrophs express non-desensitizing gonadotropin-releasing hormone (GnRH) receptors and their activations leads to inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ mobilization. When added in physiological concentration range GnRH induces baseline Ca2+ oscillations, whereas in higher concentrations it induces a prolonged spike response accompanied with non-oscillatory or oscillatory plateau response. Here, we studied the recovery of calcium signaling during repetitive stimulation with short (10-30 s) GnRH pulses and variable interpulse intervals in neonatal gonadotrophs perfused with Ca2+/Na+ -containing, Ca2+ -deficient/Na+ -containing, and Ca2+ -containing/Na+ -deficient media. In Ca2+/Na+ -containing medium, baseline Ca2+ oscillations recovered without refractory period and with a time constant of approximately 20 s, whereas the recovery of spike response occurred after 25-35 s refractory period and with a time constant of approximately 30 s. During repetitive GnRH stimulation, removal of Ca2+ had only a minor effect on baseline oscillations but abolished spike response, whereas removal of Na+ slightly extended duration of baseline oscillations and considerably prolonged spike response. These results indicate that two calcium handling mechanisms are operative in gonadotrophs: redistribution of calcium within InsP3-sensitive and -insensitive pools and a sodium-dependent calcium efflux followed by calcium influx. Redistribution of Ca2+ within the cell leads to rapid recovery of InsP3-dependent pool, whereas the Na+ -dependent Ca2+ efflux pathway is activated by spike response and limits the time of exposure to elevated cytosolic Ca2+ concentrations.
Collapse
Affiliation(s)
- Hana Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4.
| | | | | | | | | |
Collapse
|
21
|
Wong CJ, Kwong P, Johnson JD, Yunker WK, Chang JP. Modulation of gonadotropin II release by K+ channel blockers in goldfish gonadotropes: a novel stimulatory action of 4-aminopyridine. J Neuroendocrinol 2001; 13:951-8. [PMID: 11737553 DOI: 10.1046/j.1365-2826.2001.00710.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of K+ channel blockers on basal gonadotropin II (GTH-II) release were examined in cultured goldfish gonadotropes. Tetraethylammonium (TEA) inhibited basal GTH-II release, whereas 4-aminopyridine (4-AP) increased basal release, although both K+ channel blockers generated increases in [Ca2+]i. Other K+ channel blockers had no significant effect on GTH-II release. We examined whether Ca2+ entry that arises from blockade of K+ channels by 4-AP mediates the secretory response. Secretion evoked by 4-AP was slightly reduced by TEA but was unaffected by reducing Ca2+ entry using either an inhibitor of Ca2+ channels, verapamil, or nominally Ca2+-free medium. In contrast, the Ca2+ signal evoked by 4-AP was largely blocked by Ca2+-free medium, as predicted by its inhibitory action on K+ channels. Together, these data suggest that the hormone release response to 4-AP is independent of entry of extracellular Ca2+. Finally, the mechanism of hormone release evoked by 4-AP appeared to be independent of mechanism(s) evoked by caffeine since 4-AP did not affect caffeine-evoked release and caffeine did not affect 4-AP evoked release. That both 4-AP and TEA generated Ca2+ signals but affected hormone release in either an extracellular Ca2+ independent (4-AP) or inhibitory (TEA) manner suggests that Ca2+ entry is linked to GTH-II secretion in a highly nonlinear fashion.
Collapse
Affiliation(s)
- C J Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
22
|
Zemkova H, Vanecek J. Dual effect of melatonin on gonadotropin-releasing-hormone-induced Ca(2+) signaling in neonatal rat gonadotropes. Neuroendocrinology 2001; 74:262-9. [PMID: 11598382 DOI: 10.1159/000054693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In neonatal rat gonadotropes, melatonin inhibits gonadotropin-releasing-hormone (GnRH)-stimulated increase in intracellular Ca(2+) concentration ([Ca(2+)](i)); in cells transfected with the Mel1a melatonin receptor, however, melatonin has been shown to potentiate agonist-stimulated [Ca(2+)](i) increase. To elucidate this discrepancy, we investigated the effects of melatonin in neonatal gonadotropes over a wide range of melatonin concentrations. Nystatin perforated patch recording of Ca(2+)-dependent potassium currents was used to monitor GnRH-induced [Ca(2+)](i) changes. In 32% of cells, increasing melatonin concentrations in the range of 1 pM to 100 nM prolonged the latency of, and inhibited GnRH (10 nM)-stimulated [Ca(2+)](i) increases in a concentration-dependent manner. In the remaining 68% of cells, the Ca(2+) increase elicited by exposure to 10 nM GnRH was also inhibited by picomolar concentrations of melatonin, but at nanomolar concentrations the inhibitory effect disappeared and melatonin was only able to prolong the latency of the response. This dual effect of melatonin however was not observed in cells stimulated with lower (2 nM) GnRH concentrations; in that case, melatonin was inhibitory at all concentrations tested with an IC(50) of about 30 pM. In contrast, application of nanomolar concentrations of melatonin resulted in potentiation of the GnRH-induced Ca(2+) increase in a small population of gonadotropes which did not respond by inhibition or prolonged latency. These results indicate that in neonatal gonadotropes, melatonin has both inhibitory and potentiating effects on GnRH-stimulated [Ca(2+)](i) increases. Ranges of concentrations needed to produce either effect suggest that two distinct G proteins may be involved, as already observed in transfected cells.
Collapse
Affiliation(s)
- H Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnská 1083, SZ-142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
23
|
Van Goor F, Zivadinovic D, Martinez-Fuentes AJ, Stojilkovic SS. Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. J Biol Chem 2001; 276:33840-6. [PMID: 11457854 DOI: 10.1074/jbc.m105386200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In excitable cells, voltage-gated calcium influx provides an effective mechanism for the activation of exocytosis. In this study, we demonstrate that although rat anterior pituitary lactotrophs, somatotrophs, and gonadotrophs exhibited spontaneous and extracellular calcium-dependent electrical activity, voltage-gated calcium influx triggered secretion only in lactotrophs and somatotrophs. The lack of action potential-driven secretion in gonadotrophs was not due to the proportion of spontaneously firing cells or spike frequency. Gonadotrophs exhibited calcium signals during prolonged depolarization comparable with signals observed in somatotrophs and lactotrophs. The secretory vesicles in all three cell types also had a similar sensitivity to voltage-gated calcium influx. However, the pattern of action potential calcium influx differed among three cell types. Spontaneous activity in gonadotrophs was characterized by high amplitude, sharp spikes that had a limited capacity to promote calcium influx, whereas lactotrophs and somatotrophs fired plateau-bursting action potentials that generated high amplitude calcium signals. Furthermore, a shift in the pattern of firing from sharp spikes to plateau-like spikes in gonadotrophs triggered luteinizing hormone secretion. These results indicate that the cell type-specific action potential secretion coupling in pituitary cells is determined by the capacity of their plasma membrane oscillator to generate threshold calcium signals.
Collapse
Affiliation(s)
- F Van Goor
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
24
|
Benison G, Keizer J, Chalupa LM, Robinson DW. Modeling temporal behavior of postnatal cat retinal ganglion cells. J Theor Biol 2001; 210:187-99. [PMID: 11371174 DOI: 10.1006/jtbi.2000.2289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During development, mammalian retinal ganglion cells (RGCs) go through marked ontogenetic changes with respect to their excitable membrane properties. Voltage-clamp studies conducted in our laboratory have shown that the amplitude, voltage-dependence and kinetics of activation and inactivation (where present) of Na(+), K(+) and Ca(2+) conductances all exhibit developmental changes during a time when the firing patterns of mammalian ganglion cells shift from being transient to being predominantly sustained in nature. In order to better understand the contribution of each conductance to the generation of spikes and spiking patterns, we have developed a model based on our experimental data. For simplicity, we have initially used experimental data obtained from postnatal ganglion cells. At this age the ontogenetic changes observed in the characteristics of the various ionic currents are complete. Utilizing the methods adopted by Hodgkin and Huxley for the giant squid axon, we have determined rate equations for the activation and inactivation properties of the I(A), I(K dr), I(Na), I(Ca L), I(Ca N), and I(leak) currents in postnatal cat RGCs. Combining these with a simplified model of the calcium-activated potassium current (I(KCa)), we have solved and analysed the resulting differential equations. While spikes and spiking patterns resembling experimental data could be obtained from a model in which [Ca(2+)i] was averaged across the whole cell, more accurate simulations were obtained when the diffusion of intracellular Ca(2+) was modeled spatially. The resulting spatial calcium gradients were more effective in gating I(KCa), and our simulations more accurately matched the recorded amplitude and shape of individual spikes as well as the frequency of maintained discharges observed in mammalian postnatal RGCs.
Collapse
Affiliation(s)
- G Benison
- Institute of Theoretical Dynamics, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
25
|
Van Goor F, Zivadinovic D, Stojilkovic SS. Differential expression of ionic channels in rat anterior pituitary cells. Mol Endocrinol 2001; 15:1222-36. [PMID: 11435620 DOI: 10.1210/mend.15.7.0668] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Secretory anterior pituitary cells are of the same origin, but exhibit cell type-specific patterns of spontaneous intracellular Ca2+ signaling and basal hormone secretion. To understand the underlying ionic mechanisms mediating these differences, we compared the ionic channels expressed in somatotrophs, lactotrophs, and gonadotrophs from randomly cycling female rats under identical cell culture and recording conditions. Our results indicate that a similar group of ionic channels are expressed in each cell type, including transient and sustained voltage-gated Ca2+ channels, tetrodotoxin-sensitive Na+ channels, transient and delayed rectifying K+ channels, and multiple Ca2+ -sensitive K+ channel subtypes. However, there were marked differences in the expression levels of some of the ionic channels. Specifically, lactotrophs and somatotrophs exhibited low expression levels of tetrodotoxin-sensitive Na+ channels and high expression levels of the large-conductance, Ca2+ -activated K+ channel compared with those observed in gonadotrophs. In addition, functional expression of the transient K+ channel was much higher in lactotrophs and gonadotrophs than in somatotrophs. Finally, the expression of the transient voltage-gated Ca2+ channels was higher in somatotrophs than in lactotrophs and gonadotrophs. These results indicate that there are cell type-specific patterns of ionic channel expression, which may be of physiological significance for the control of Ca2+ homeostasis and secretion in unstimulated and receptor-stimulated anterior pituitary cells.
Collapse
Affiliation(s)
- F Van Goor
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
26
|
Tse FW, Tse A. Stimulation of Ca(2+)-independent exocytosis in rat pituitary gonadotrophs by G-protein. J Physiol 2000; 526 Pt 1:99-108. [PMID: 10878103 PMCID: PMC2269986 DOI: 10.1111/j.1469-7793.2000.00099.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We employed the whole-cell recording technique in conjunction with fluorometry to measure cytosolic Ca(2+) concentration ([Ca(2+)](i)) and exocytosis (capacitance measurement) in single, identified rat gonadotrophs. Direct activation of G-protein (via intracellular dialysis of non-hydrolysable analogues of GTP, but not of GDP) triggered a slow rise in capacitance even in the presence of a fast intracellular Ca(2+) chelator. The broad-spectrum kinase inhibitors H7 and staurosporine did not prevent this Ca(2+)-independent exocytosis, ruling out the involvement of the cAMP and PKC pathways. AlF(4)(-), a potent stimulator of heterotrimeric G-proteins, failed to stimulate any exocytosis when the intracellular Ca(2+) store was depleted, implicating the involvement of AlF(4)(-)-insensitive G-protein(s). Maximal stimulation of Ca(2+)-independent exocytosis by GTP analogues did not reduce the number of readily releasable granules that were available subsequently for Ca(2+)-dependent release. The last finding raises the possibility that the G-protein-stimulated Ca(2+)-independent exocytosis may regulate a pool of granules that is distinct from the Ca(2+)-dependent pool.
Collapse
Affiliation(s)
- F W Tse
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
27
|
Cowley MA, Chen C, Clarke IJ. Estrogen transiently increases delayed rectifier, voltage-dependent potassium currents in ovine gonadotropes. Neuroendocrinology 1999; 69:254-60. [PMID: 10207277 DOI: 10.1159/000054426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatment of gonadotropes with estrogen (E) changes the electrophysiological response to gonadotropin-releasing hormone (GnRH) such that the cells are hyperpolarised immediately after stimulation with GnRH and then generate action potentials more frequently than non-E-treated cells. We investigated the role of K+ current in this altered response to GnRH using cultures of ewe pituitary cells enriched for gonadotropes. K+ current density was measured using nystatin-perforated whole-cell recordings in the voltage clamp mode. Treatment of cells with E for 16-20 h significantly (p < 0.01) increased the unit K+ current to 180% of that in vehicle-treated cells. Outward current in these cells flows predominantly through voltage-dependent, delayed rectifier K+ channels (IK), and E alters the magnitude of this current. The effect of E to increase the K+ current was dose- and time-dependent and was maximal after 16-20 h. The unit K+ current values returned to pre-treatment levels after 36 h of E treatment. Several cells were studied both before and after E treatment and the average effect of E on these cells was to increase the unit K+ current by 90%. The time-course of the effect of E on K+ current density is the same as the effect of E to increase LH release in vitro and in vivo. We conclude that the increase in K+ current may be an important part of the mechanism whereby E acts on gonadotropes to facilitate the LH surge which triggers ovulation.
Collapse
Affiliation(s)
- M A Cowley
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Clayton, Vic., Australia
| | | | | |
Collapse
|
28
|
Van Goor F, Krsmanovic LZ, Catt KJ, Stojilkovic SS. Coordinate regulation of gonadotropin-releasing hormone neuronal firing patterns by cytosolic calcium and store depletion. Proc Natl Acad Sci U S A 1999; 96:4101-6. [PMID: 10097170 PMCID: PMC22427 DOI: 10.1073/pnas.96.7.4101] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in excitable cells often acts as a negative feedback signal on firing of action potentials and the associated voltage-gated Ca2+ influx. Increased [Ca2+]i stimulates Ca2+-sensitive K+ channels (IK-Ca), and this, in turn, hyperpolarizes the cell and inhibits Ca2+ influx. However, in some cells expressing IK-Ca the elevation in [Ca2+]i by depletion of intracellular stores facilitates voltage-gated Ca2+ influx. This phenomenon was studied in hypothalamic GT1 neuronal cells during store depletion caused by activation of gonadotropin-releasing hormone (GnRH) receptors and inhibition of endoplasmic reticulum (Ca2+)ATPase with thapsigargin. GnRH induced a rapid spike increase in [Ca2+]i accompanied by transient hyperpolarization, followed by a sustained [Ca2+]i plateau during which the depolarized cells fired with higher frequency. The transient hyperpolarization was caused by the initial spike in [Ca2+]i and was mediated by apamin-sensitive IK-Ca channels, which also were operative during the subsequent depolarization phase. Agonist-induced depolarization and increased firing were independent of [Ca2+]i and were not mediated by inhibition of K+ current, but by facilitation of a voltage-insensitive, Ca2+-conducting inward current. Store depletion by thapsigargin also activated this inward depolarizing current and increased the firing frequency. Thus, the pattern of firing in GT1 neurons is regulated coordinately by apamin-sensitive SK current and store depletion-activated Ca2+ current. This dual control of pacemaker activity facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process may also provide a general mechanism for the integration of voltage-gated Ca2+ influx into receptor-controlled Ca2+ mobilization.
Collapse
Affiliation(s)
- F Van Goor
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | |
Collapse
|
29
|
Anderson BB, Ewing AG. Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. J Pharm Biomed Anal 1999; 19:15-32. [PMID: 10698565 DOI: 10.1016/s0731-7085(98)00088-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identified dopamine cell of Planorbis corneus is described as a model system to study neurotransmitter storage and dynamics. Techniques developed with this model system include capillary electrophoresis with electrochemical detection and microelectrochemistry at single cells. These techniques provide a powerful combination to examine single cell neurochemistry. Whole cell and cytoplasmic dopamine concentrations have been quantified with capillary electrophoresis. Additionally, this technique has been used to profile amino acids and to quantify two compartments of neurotransmitter in a single cell. Individual exocytosis events have been monitored at the cell body of the dopamine cell of P. corneus with microelectrodes. In this case, two different types of vesicles have been identified based on the amount of transmitter released. The psychostimulant, amphetamine, has been shown to selectively affect the amount of dopamine in these vesicles with lower to higher doses affecting the larger to smaller vesicle types, respectively. Microelectrochemistry at single nerve cells has also been used to demonstrate reverse transport of dopamine across the cell membrane and to suggest a role of this process in the molecular mechanism of amphetamine.
Collapse
Affiliation(s)
- B B Anderson
- Pennsylvania State University, Department of Chemistry, University Park 16802, USA
| | | |
Collapse
|
30
|
Stojilkovic SS. Calcium Signaling Systems. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Abstract
The pineal hormone melatonin is involved in photic regulations of various kinds, including adaptation to light intensity, daily changes of light and darkness, and seasonal changes of photoperiod lengths. The melatonin effects are mediated by the specific high-affinity receptors localized on plasma membrane and coupled to GTP-binding protein. Two different G proteins coupled to the melatonin receptors have been described, one sensitive to pertussis toxin and the other sensitive to cholera toxin. On the basis of the molecular structure, three subtypes of the melatonin receptors have been described: Mel1A, Mel1B, and Mel1C. The first two subtypes are found in mammals and may be distinguished pharmacologically using selective antagonists. Melatonin receptor regulates several second messengers: cAMP, cGMP, diacylglycerol, inositol trisphosphate, arachidonic acid, and intracellular Ca2+ concentration ([Ca2+]i). In many cases, its effect is inhibitory and requires previous activation of the cell by a stimulatory agent. Melatonin inhibits cAMP accumulation in most of the cells examined, but the indole effects on other messengers have been often observed only in one type of the cells or tissue, until now. Melatonin also regulates the transcription factors, namely, phosphorylation of cAMP-responsive element binding protein and expression of c-Fos. Molecular mechanisms of the melatonin effects are not clear but may involve at least two parallel transduction pathways, one inhibiting adenylyl cyclase and the other regulating phospholipide metabolism and [Ca2+]i.
Collapse
Affiliation(s)
- J Vanecek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
| |
Collapse
|
32
|
Lachowicz A, Van Goor F, Katzur AC, Bonhomme G, Stojilkovic SS. Uncoupling of calcium mobilization and entry pathways in endothelin-stimulated pituitary lactotrophs. J Biol Chem 1997; 272:28308-14. [PMID: 9353286 DOI: 10.1074/jbc.272.45.28308] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In cells expressing Ca2+-mobilizing receptors, InsP3-induced Ca2+ release from intracellular stores is commonly associated with extracellular Ca2+ influx. Operation of these two Ca2+ signaling pathways mediates thyrotropin-releasing hormone (TRH) and angiotensin II (AII)-induced prolactin secretion from rat pituitary lactotrophs. After an initial hyperpolarization induced by Ca2+ mobilization from the endoplasmic reticulum (ER), these agonists generated an increase in the steady-state firing of action potentials, further facilitating extracellular Ca2+ influx and prolactin release. Like TRH and AII, endothelin-1 (ET-1) also induced a rapid release of Ca2+ from the ER and a concomitant spike prolactin secretion during the first 3-5 min of stimulation. However, unlike TRH and AII actions, Ca2+ mobilization was not coupled to Ca2+ influx during sustained ET-1 stimulation, as ET-1 induced a long-lasting abolition of action potential firing. This lead to a depletion of the ER Ca2+ pool, a prolonged decrease in [Ca2+]i, and sustained inhibition of prolactin release. ET-1-induced inhibition and TRH/AII-induced stimulation of Ca2+ influx and hormone secretion were reduced in the presence of the L-type Ca2+ channel blocker, nifedipine. Basal [Ca2+]i and prolactin release were also reduced in the presence of nifedipine. Furthermore, TRH-induced Ca2+ influx and secretion were abolished by ET-1, as TRH was unable to reactivate Ca2+ influx and prolactin release in ET-1-stimulated cells. Depolarization of the cells during sustained inhibitory action of ET-1, however, increased [Ca2+]i and prolactin release. These results indicate that L-type Ca2+ channel represents a common Ca2+ influx pathway that controls basal [Ca2+]i and secretion and is regulated by TRH/AII and ET-1 in an opposite manner. Thus, the receptor-mediated uncoupling of Ca2+ entry from Ca2+ mobilization provides an effective control mechanism in terminating the stimulatory action of ET-1. Moreover, it makes electrically active lactotrophs quiescent and unresponsive to other calcium-mobilizing agonists.
Collapse
Affiliation(s)
- A Lachowicz
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization leads to depletion of the endoplasmic reticulum (ER) and an increase in Ca2+ entry. We show here for the gonadotroph, an excitable endocrine cell, that sensing of ER Ca2+ content can occur without the Ca2+ release-activated Ca2+ current (Icrac), but rather through the coupling of IP3-induced Ca2+ oscillations to plasma membrane voltage spikes that gate Ca2+ entry. Thus we demonstrate that capacitative Ca2+ entry is accomplished through Ca(2+)-controlled Ca2+ entry. We develop a comprehensive model, with parameter values constrained by available experimental data, to simulate the spatiotemporal behavior of agonist-induced Ca2+ signals in both the cytosol and ER lumen of gonadotrophs. The model combines two previously developed models, one for ER-mediated Ca2+ oscillations and another for plasma membrane potential-driven Ca2+ oscillations. Simulations show agreement with existing experimental records of store content, cytosolic Ca2+ concentration ([Ca2+]i), and electrical activity, and make a variety of new, experimentally testable predictions. In particular, computations with the model suggest that [Ca2+]i in the vicinity of the plasma membrane acts as a messenger for ER content via Ca(2+)-activated K+ channels and Ca2+ pumps in the plasma membrane. We conclude that, in excitable cells that do not express Icrac, [Ca2+]i profiles provide a sensitive mechanism for regulating net calcium flux through the plasma membrane during both store depletion and refilling.
Collapse
Affiliation(s)
- Y X Li
- Mathematical Research Branch, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
34
|
Kukuljan M, Vergara L, Stojilkovic SS. Modulation of the kinetics of inositol 1,4,5-trisphosphate-induced [Ca2+]i oscillations by calcium entry in pituitary gonadotrophs. Biophys J 1997; 72:698-707. [PMID: 9017197 PMCID: PMC1185595 DOI: 10.1016/s0006-3495(97)78706-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP3) binds to its receptor channels and causes liberation of Ca2+ from intracellular stores, frequently in an oscillatory manner. In addition to InsP3, the activation and inactivation properties of these intracellular channels are controlled by Ca2+. We studied the influence of Ca2+ entry on the kinetics of InsP3-triggered oscillations in cytosolic calcium ([Ca2+]i) in gonadotrophs stimulated with gonadotropin-releasing hormone, an agonist that activates InsP3 production. The natural expression of voltage-gated Ca2+ channels (VGCC) in these cells was employed to manipulate Ca2+ entry by voltage clamping the cells at different membrane potentials (Vm). Under physiological conditions, the frequency of the GnRH-induced oscillations increased with time, while the amplitude decreased, until both reached stable values. However, in cells with Vm held at -50 mV or lower, both parameters progressively decreased until the signal was abolished. These effects were reverted by a depolarization of the membrane positive to -45 mV in both agonist- and InsP3-stimulated gonadotrophs. Depolarization also led to an increase in the fraction of time during which the [Ca2+]i remained elevated; this effect originated from both an increase in the mean duration of spikes and a decrease in the interval between spikes. The frequency and amplitude of spiking depended on the activity of VGCC, but displayed different temporal courses and voltage relationships. The depolarization-driven recovery of the frequency was instantaneous, whereas the recovery of the amplitude of spiking was more gradual. The midpoints of the Vm sensitivity curve for amplitude and duration of spiking (-15 mV) were close to the value observed for L-type Ca2+ current and for depolarization-induced increase in [Ca2+]i, whereas this parameter was much lower (-35 mV) for interval between spikes and frequency of oscillations. These observations are compatible with at least two distinct effects of Ca2+ entry on the sustained [Ca2+]i oscillations. Calcium influx facilitates its liberation from intracellular stores by a direct and instantaneous action on the release mechanism. It also magnifies the Ca2+ signal and decreases the frequency because of its gradual effect on the reloading of intracellular stores.
Collapse
Affiliation(s)
- M Kukuljan
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile
| | | | | |
Collapse
|
35
|
Abstract
The rat pituitary gonadotroph is a well-studied cell model for investigation of the oscillatory nature of calcium signaling in agonist-stimulated excitable cells. Cytosolic calcium levels ([Ca(2+)](i)) in gonadotrophs are controlled by two distinct oscillators, a plasma membrane oscillator that generates extracellular calcium-dependent low-amplitude [Ca(2+)](i) spiking in unstimulated cells and an endoplasmic reticulum oscillator that is activated by calcium-mobilizing receptors for GnRH, endothelin, and pituitary adenylate cyclase-activating polypeptide. In this review, the characteristics of the spontaneous and agonist-induced calcium oscillations in gonadotrophs and the coordinate actions of the two oscillators during GnRH action discussed.
Collapse
Affiliation(s)
- S S Stojilkovic
- Stanko S. Stojilkovic and Melanija Tomić are at the Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
36
|
Rawlings SR. Pituitary adenylate cyclase-activating polypeptide regulates [Ca(2+)](i) and electrical activity in pituitary cells through cell type-specific mechanisms. Trends Endocrinol Metab 1996; 7:374-8. [PMID: 18406775 DOI: 10.1016/s1043-2760(96)00187-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a recently identified hypothalamic factor that acts on a variety of anterior pituitary cell types. It is clear, however, that its actions are not mediated by the same intracellular signaling mechanisms in each cell type. The signaling pathways by which PACAP regulates changes in [Ca(2+)], and electrical activity in rat somatotrophs and gonadotrophs is described in the present article. Finally, the possibility that the differences in PACAP-regulated signaling in anterior pituitary cells is due to the differential expression and coupling of PACAP receptor subtypes is discussed.
Collapse
Affiliation(s)
- S R Rawlings
- Stephen R. Rawlings is at the Fondation pour Recherches Médicales, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
37
|
Affiliation(s)
- S S Stojilkovic
- Dr. Stanko S. Stojilkovic is at the Endocrinology and Reproduction Research Branch, NICHD, Bethesda, MD 20892-4510, USA
| |
Collapse
|
38
|
Abstract
Agents previously implicated in control of the hypothalamo-pituitary-gonadal axis were screened for their ability to regulate male rat gonadotropes directly. GnRH-evoked gonadotropin release is accompanied by oscillations of intracellular Ca2+ concentration ([Ca2+]i) and of an outward K+ current that is activated by Ca2+. Substances that caused current responses similar to those with GnRH were hypothesized to evoke secretion. Endothelin-1, oxytocin, neurotensin, pituitary adenylate cyclase-activating polypeptide, and serotonin raised [Ca2+]i and evoked LH release as assayed by the reverse hemolytic plaque assay. These agents affected only subpopulations of gonadotropes establishing functional heterogeneity of pituitary gonadotropes. One neuromodulator (ATP) evoked ionic current in all gonadotropes but the current was different than that evoked by GnRH. Many other substances, including galanin and neuropeptide Y, caused no changes in currents and were considered not to affect [Ca2+]i and not to be secretagogues for gonadotropes.
Collapse
Affiliation(s)
- J Billiard
- Department of Physiology and Biophysics, University of Washington, Seattle 98195-7290, USA.
| |
Collapse
|
39
|
Abstract
Burst firing of dopaminergic neurons of the substantia nigra pars compacta can be induced in vitro by the glutamate agonist N-methyl-D-aspartate. It has been suggested that the interburst hyperpolarization is due to Na+ extrusion by a ouabain-sensitive pump [Johnson et al. (1992) Science 258, 665-667]. We formulate and explore a theoretical model, with a minimal number of currents, for this novel mechanism of burst generation. This minimal model is further developed into a more elaborate model based on observations of additional currents and hypotheses about their spatial distribution in dopaminergic neurons [Hounsgaard (1992) Neuroscience 50, 513-518; Llinás et al. (1984) Brain Res. 294, 127-132]. Using the minimal model, we confirm that interaction between the regenerative, inward N-methyl-D-aspartate-mediated current and the outward Na(+)-pump current is sufficient to generate the slow oscillation (approximately 0.5 Hz) underlying the burst. The negative-slope region of the N-methyl-D-aspartate channel's current-voltage relation is indispensable for this slow rhythm generation. The time-scale of Na(+)-handling determines the burst's slow frequency. Moreover, we show that, given the constraints of sodium handling, such bursting is best explained mechanistically by using at least two spatial, cable-like compartments: a soma where action potentials are produced and a dendritic compartment where the slow rhythm is generated. Our result is consistent with recent experimental evidence that burst generation originates in distal dendrites [Seutin et al. (1994) Neuroscience 58, 201-206]. Responses of the model to a number of electrophysiological and pharmacological stimuli are consistent with known responses observed under similar conditions. These include the persistence of the slow rhythm when the tetrodotoxin-sensitive Na+ channel is blocked and when the soma is voltage-clamped at -60 mV. Using our more elaborate model, we account for details of the observed frequency adaptation in N-methyl-D-aspartate-induced bursting, the origin of multiple spiking and bursting mechanisms, and the interaction between two different bursting mechanisms. Besides reproducing several well established firing patterns, this model also suggests that new firing modes, not yet recorded, might also occur in dopaminergic neurons. This model provides mechanistic insights and explanations into the origin of a variety of experimentally observed membrane potential firing patterns in dopaminergic neurons, including N-methyl-D-aspartate-induced bursting and its dendritic origin. Such a model, capable of reproducing a number of realistic behaviors of dopaminergic neurons, could be useful in further studies of the basal ganglia-thalamocortical motor circuit. It may also shed light on bursting that involves N-methyl-D-aspartate channel activity in other neuron types.
Collapse
Affiliation(s)
- Y X Li
- Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
Vergara LA, Stojilkovic SS, Rojas E. GnRH-induced cytosolic calcium oscillations in pituitary gonadotrophs: phase resetting by membrane depolarization. Biophys J 1995; 69:1606-14. [PMID: 8534831 PMCID: PMC1236391 DOI: 10.1016/s0006-3495(95)80033-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cultured rat pituitary gonadotrophs under whole-cell voltage clamp conditions respond to the hypothalamic hormone GnRH with synchronized oscillatory changes in both cytosolic Ca2+ concentration ([Ca2+]i) and [Ca2+]i-activated, apamin-sensitive K+ current (IK(Ca)). We found, and report here for the first time, that in GnRH-stimulated cells a brief depolarizing pulse can elicit a transient [Ca2+]i rise similar to the endogenous cycle. Furthermore, Ca2+ entry during a single depolarizing pulse was found to shift the phase of subsequent endogenous [Ca2+]i oscillations, which thereafter continue to occur at their previous frequency before the pulse. Application of two consecutive depolarizing pulses showed that the size of the [Ca2+]i rise evoked by the second pulse depended on the time lapsed between two consecutive pulses, indicating that each endogenous or evoked [Ca2+]i rise cycle leaves the Ca2+ release mechanism of the gonadotroph in a refractory state. Recovery from this condition can be described by an exponential function of the time lapsed between the pulses (time constant of ca. 1 s). We propose that the underlying mechanism in both refractoriness after endogenous cycles and phase resetting by a brief pulse of Ca2+ entry involves the InsP3 receptor-channel molecule presumed to be located on the cytosolic aspect of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- L A Vergara
- Laboratory of Cell Biology and Genetics, NIDDK, National Institutes of Health Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
41
|
Stojilkovic SS, Catt KJ. Novel aspects of GnRH-induced intracellular signaling and secretion in pituitary gonadotrophs. J Neuroendocrinol 1995; 7:739-57. [PMID: 8563717 DOI: 10.1111/j.1365-2826.1995.tb00711.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S S Stojilkovic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Li YX, Rinzel J, Vergara L, Stojilković SS. Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys J 1995; 69:785-95. [PMID: 8519979 PMCID: PMC1236308 DOI: 10.1016/s0006-3495(95)79952-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Single pituitary cells often fire spontaneous action potentials (APs), which are believed to underlie spiking fluctuations in cytosolic calcium concentration ([Ca2+]i). To address how these basal [Ca2+]i fluctuations depend on changes in plasma membrane voltage (V), simultaneous measurements of V and [Ca2+]i were performed in rat pituitary gonadotrophs. The data show that each [Ca2+]i spike is produced by the Ca2+ entry during a single AP. Using these and previously obtained patch-clamp data, we develop a quantitative mathematical model of this plasma membrane oscillator and the accompanying spatiotemporal [Ca2+]i oscillations. The model demonstrates that AP-induced [Ca2+]i spiking is prominent only in a thin shell layer neighboring the cell surface. This localized [Ca2+]i spike transiently activates the Ca2(+)- dependent K+ current resulting in a sharp afterhyperpolarization following each voltage spike. In accord with experimental observations, the model shows that the frequency and amplitude of the voltage spikes are highly sensitive to current injection and to the blocking of the Ca(2+)-sensitive current. Computations also predict that leaving the membrane channels intact, the firing rate can be modified by changing the Ca2+ handling parameters: the Ca2+ diffusion rate, the Ca2+ buffering capacity, and the plasma membrane Ca2+ pump rate. Finally, the model suggests reasons that spontaneous APs were seen in some gonadotrophs but not in others. This model provides a basis for further exploring how plasma membrane electrical activity is involved in the control of cytosolic calcium level in unstimulated as well as agonist-stimulated gonadotrophs.
Collapse
Affiliation(s)
- Y X Li
- Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
43
|
Tse A, Tse FW, Hille B. Modulation of Ca2+ oscillation and apamin-sensitive, Ca2+-activated K+ current in rat gonadotropes. Pflugers Arch 1995; 430:645-52. [PMID: 7478915 DOI: 10.1007/bf00386158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In rat pituitary gonadotropes, gonadotropin-releasing hormone (GnRH) stimulates rhythmic release of Ca2+ from stores sensitive to inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which in turn induces an oscillatory activation of apamin-sensitive Ca2+-activated K+ current, IK(Ca). Since GnRH also activates protein kinase C (PKC), we investigate the action of PKC while simultaneously measuring intracellular Ca2+ concentration ([Ca2+]i) and IK(Ca). Stimulation of PKC by application of phorbol 12-myristate 13-acetate (PMA) did not affect basal [Ca2+]i. However, PMA or phorbol 12,13-dibutyrate (PdBu), but not the inactive 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), reduced the frequency of GnRH-induced [Ca2+]i oscillation and augmented the IK(Ca) induced by any given level of [Ca2+]i. The slowing of oscillations and the enhancement of IK(Ca) were mimicked by synthetic diacylglycerol (1,2-dioctanoyl-sn-glycerol) and could be induced during ongoing oscillations that had been initiated irreversibly in cells loaded with guanosine 5'-O-(3-thiotriphosphate) (GTP-[gammaS]). In contrast, when oscillations were initiated by loading cells with Ins(1,4,5)P3, phorbol esters enhanced IK(Ca) without affecting the frequency of oscillation. The protein kinase inhibitor, staurosporine, reduced IK(Ca) without affecting [Ca2+]i and partially reversed the phorbol-ester-induced slowing of oscillation. Therefore, activation of PKC has two rapid effects on gonadotropes. It slows [Ca2+]i oscillations probably by actions on phospholipase C, and it enhances IK(Ca) probably by a direct action on the channels.
Collapse
Affiliation(s)
- A Tse
- Department of Pharmacology, 9-70 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
44
|
Hille B, Tse A, Tse FW, Bosma MM. Signaling mechanisms during the response of pituitary gonadotropes to GnRH. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:75-95. [PMID: 7740186 DOI: 10.1016/b978-0-12-571150-0.50008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- B Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
45
|
Stojilkovic SS, Catt KJ. Expression and signal transduction pathways of gonadotropin-releasing hormone receptors. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:161-205. [PMID: 7740156 DOI: 10.1016/b978-0-12-571150-0.50012-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S S Stojilkovic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Tse FW, Tse A, Hille B. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc Natl Acad Sci U S A 1994; 91:9750-4. [PMID: 7937885 PMCID: PMC44894 DOI: 10.1073/pnas.91.21.9750] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gonadotropin-releasing hormone induces oscillatory release of Ca2+ from inositol trisphosphate-sensitive stores of gonadotropes. Simultaneously with electrophysiological measures of cytoplasmic [Ca2+], corresponding changes in [Ca2+] within intracellular stores were monitored with a fluorescent dye, mag-indo-1. Each cycle of oscillation released only 10% of the detectable stored Ca2+. Some Ca2+ was recovered by the stores using a mechanism sensitive to inhibitors of intracellular Ca2+ ATPases, and much of the remainder was temporarily and rapidly pumped into other intracellular compartments or out of the cell. The dynamics of Ca2+ oscillations are thus more complex than a repeated emptying and refilling of a single compartment. The free concentrations measured show that intracellular Ca2+ store compartments contain strong Ca2+ buffers.
Collapse
Affiliation(s)
- F W Tse
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | |
Collapse
|
47
|
Abstract
1. Whole-cell voltage clamp was used in conjunction with the fluorescent Ca2+ indicator indo-1 to measure extracellular Ca2+ entry and intracellular Ca2+ concentrations ([Ca2+]i) in rat gonadotrophs identified with the reverse haemolytic plaque assay. 2. Depolarizations to potentials more positive than -40 mV elicited inward Ca2+ current (ICa) and transient elevations of [Ca2+]i. 3. The relationship between [Ca2+]i elevations and Ca2+ entry with different Ca2+ buffer concentrations in the pipette showed that endogenous Ca2+ buffers normally bind approximately 99% of the Ca2+ entering the cell. 4. With [Ca2+]i elevations less than 500 nM, decay of [Ca2+]i could be approximated by an exponential whose time constant increased with the concentration of exogenous Ca2+ buffers. 5. Inhibitors of intracellular Ca(2+)-ATPases, thapsigargin, cyclopiazonic acid (CPA) and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ), caused [Ca2+]i to rise. Application of BHQ during [Ca2+]i oscillations induced by gonadotrophin-releasing hormone (GnRH) terminated the oscillation in a slowly decaying elevation. BHQ slowed the decay of depolarization-induced [Ca2+]i elevations about 3-fold. 6. Taking into account the Ca2+ buffering properties of the cytoplasm permitted estimation of the fluxes and rate constants for Ca2+ movements in gonadotrophs. The intracellular store is a major determinant of Ca2+ homeostasis in gonadotrophs.
Collapse
Affiliation(s)
- A Tse
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | |
Collapse
|
48
|
Hille B, Tse A, Tse FW, Almers W. Calcium oscillations and exocytosis in pituitary gonadotropes. Ann N Y Acad Sci 1994; 710:261-70. [PMID: 8154754 DOI: 10.1111/j.1749-6632.1994.tb26634.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195
| | | | | | | |
Collapse
|
49
|
Rawlings S, Demaurex N, Schlegel W. Pituitary adenylate cyclase-activating polypeptide increases [Ca2]i in rat gonadotrophs through an inositol trisphosphate-dependent mechanism. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37514-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Kukuljan M, Rojas E, Catt K, Stojilkovic S. Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37623-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|