1
|
Hawkins P, McEnery T, Gabillard-Lefort C, Bergin DA, Alfawaz B, Shutchaidat V, Meleady P, Henry M, Coleman O, Murphy M, McElvaney NG, Reeves EP. In vitro and in vivo modulation of NADPH oxidase activity and reactive oxygen species production in human neutrophils by α 1-antitrypsin. ERJ Open Res 2021; 7:00234-2021. [PMID: 34881324 PMCID: PMC8645872 DOI: 10.1183/23120541.00234-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress from innate immune cells is a driving mechanism that underlies COPD pathogenesis. Individuals with α-1 antitrypsin (AAT) deficiency (AATD) have a dramatically increased risk of developing COPD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil NADPH oxidase activation, due to the specific lack of plasma AAT. Experiments were performed using circulating neutrophils isolated from healthy controls and individuals with AATD. Superoxide anion (O2−) production was determined from the rate of reduction of cytochrome c. Quantification of membrane NADPH oxidase subunits was performed by mass spectrometry and Western blot analysis. The clinical significance of our in vitro findings was assessed in patients with AATD and severe COPD receiving intravenous AAT replacement therapy. In vitro, AAT significantly inhibited O2− production by stimulated neutrophils and suppressed receptor stimulation of cyclic adenosine monophosphate and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. In addition, AAT reduced plasma membrane translocation of cytosolic phox components of the NADPH oxidase. Ex vivo, AATD neutrophils demonstrated increased plasma membrane-associated p67phox and p47phox and significantly increased O2− production. The described variance in phox protein membrane assembly was resolved post-AAT augmentation therapy in vivo, the effects of which significantly reduced AATD neutrophil O2− production to that of healthy control cells. These results expand our knowledge on the mechanism of neutrophil-driven airways disease associated with AATD. Therapeutic AAT augmentation modified neutrophil NADPH oxidase assembly and reactive oxygen species production, with implications for clinical use in conditions in which oxidative stress plays a pathogenic role. Circulating neutrophils in COPD due to α1-antitrypsin deficiency illustrate increased NADPH oxidase assembly and reactive oxygen species production, a defect corrected by α1-antitrypsin augmentation therapyhttps://bit.ly/38NNTzM
Collapse
Affiliation(s)
- Padraig Hawkins
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Thomas McEnery
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David A Bergin
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bader Alfawaz
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Vipatsorn Shutchaidat
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Orla Coleman
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,These authors contributed equally
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,These authors contributed equally
| |
Collapse
|
2
|
Cilibrizzi A, Crocetti L, Giovannoni MP, Graziano A, Vergelli C, Bartolucci G, Soldani G, Quinn MT, Schepetkin IA, Faggi C. Synthesis, HPLC enantioresolution, and X-ray analysis of a new series of C5-methyl pyridazines as N-formyl peptide receptor (FPR) agonists. Chirality 2013; 25:400-8. [PMID: 23744588 DOI: 10.1002/chir.22162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/11/2013] [Indexed: 11/07/2022]
Abstract
The synthesis of three racemates and the corresponding non-chiral analogues of a C5-methyl pyridazine series is described here, as well as the isolation of pure enantiomers and their absolute configuration assignment. In order to obtain optically active compounds, direct chromatographic methods of separation by HPLC-UV were investigated using four chiral stationary phases (CSPs: Lux Amylose-2, Lux Cellulose-1, Lux Cellulose-2 and Lux Cellulose-3). The best resolution was achieved using amylose tris(5-chloro-2-methylphenylcarbamate) (Lux Amylose-2), and single enantiomers were isolated on a semipreparative scale with high enantiomeric excess, suitable for biological assays. The absolute configuration of optically active compounds was unequivocally established by X-ray crystallographic analysis and comparative chiral HPLC-UV profile. All compounds of the series were tested for formyl peptide receptor (FPR) agonist activity, and four were found to be active, with EC50 values in the micromolar range.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- Università degli Studi di Firenze, Dipartimento di Scienze Farmaceutiche, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Firenze, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Crocetti L, Vergelli C, Cilibrizzi A, Graziano A, Khlebnikov AI, Kirpotina LN, Schepetkin IA, Quinn MT, Giovannoni MP. Synthesis and Pharmacological Evaluation of New Pyridazin-Based Thioderivatives as Formyl Peptide Receptor (FPR) Agonists. Drug Dev Res 2013. [DOI: 10.1002/ddr.21076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Letizia Crocetti
- Dipartimento di Scienze Farmaceutiche; Sesto Fiorentino; 50019; Firenze; Italy
| | - Claudia Vergelli
- Dipartimento di Scienze Farmaceutiche; Sesto Fiorentino; 50019; Firenze; Italy
| | - Agostino Cilibrizzi
- Dipartimento di Scienze Farmaceutiche; Sesto Fiorentino; 50019; Firenze; Italy
| | - Alessia Graziano
- Dipartimento di Scienze Farmaceutiche; Sesto Fiorentino; 50019; Firenze; Italy
| | | | - Liliya N. Kirpotina
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman; Montana; 59717; USA
| | - Igor A. Schepetkin
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman; Montana; 59717; USA
| | - Mark T. Quinn
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman; Montana; 59717; USA
| | | |
Collapse
|
4
|
Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61:119-61. [PMID: 19498085 DOI: 10.1124/pr.109.001578] [Citation(s) in RCA: 600] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.
Collapse
Affiliation(s)
- Richard D Ye
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, M/C 868, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yang D, Chen Q, Gertz B, He R, Phulsuksombati M, Ye RD, Oppenheim JJ. Human dendritic cells express functional formyl peptide receptor‐like‐2 (FPRL2) throughout maturation. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- De Yang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Qian Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Barry Gertz
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Rong He
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago
| | - Michele Phulsuksombati
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Richard D. Ye
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| |
Collapse
|
6
|
Lala A, Gwinn M, De Nardin E. Human formyl peptide receptor function role of conserved and nonconserved charged residues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:495-9. [PMID: 10491096 DOI: 10.1046/j.1432-1327.1999.00647.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we investigated the role of charged residues in ligand binding interactions of f-Met-Leu-Phe receptors (FPR). Charged residues of FPR, both conserved and nonconserved, which are located close to the membrane interface were mutated to alanine to determine their role in ligand binding. The mutated residues belonged to specific domains of FPR which have previously been implicated in FPR ligand binding interactions. We demonstrate that nonconserved charged residues such as Arg84, Lys85, Arg205 and Asp284 and conserved charge residue Arg163 seem to play a role in ligand binding. However, alteration of nonconserved charged residue Asp106 did not have any effect. In conclusion, specific charged residues of FPR, both conserved nonconserved, may contribute to FPR function either directly or indirectly.
Collapse
Affiliation(s)
- A Lala
- Department of Oral Biology, State University of New York at Buffalo, USA
| | | | | |
Collapse
|
7
|
Prossnitz ER, Ye RD. The N-formyl peptide receptor: a model for the study of chemoattractant receptor structure and function. Pharmacol Ther 1997; 74:73-102. [PMID: 9336017 DOI: 10.1016/s0163-7258(96)00203-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-formyl peptides, such as fMet-Leu-Phe, are one of the most potent chemoattractants for phagocytic leukocytes. The interaction of N-formyl peptides with their specific cell surface receptors has been studied extensively and used as a model system for the characterization of G-protein-coupled signal transduction in phagocytes. The cloning of the N-formyl peptide receptor cDNA from several species and the identification of homologous genes have allowed detailed studies of structural and functional aspects of the receptor. Recent findings that the receptor is expressed in nonhematopoietic cells and that nonformylated peptides can activate the receptor suggest potentially novel functions and the existence of additional ligands for this receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chemotactic Factors/metabolism
- Humans
- Models, Biological
- Molecular Sequence Data
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Formyl Peptide
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
Collapse
Affiliation(s)
- E R Prossnitz
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
8
|
Gosling J, Monteclaro FS, Atchison RE, Arai H, Tsou CL, Goldsmith MA, Charo IF. Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity. Proc Natl Acad Sci U S A 1997; 94:5061-6. [PMID: 9144190 PMCID: PMC24631 DOI: 10.1073/pnas.94.10.5061] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1997] [Accepted: 03/13/1997] [Indexed: 02/04/2023] Open
Abstract
The C-C chemokine receptor 5 (CCR5) plays a crucial role in facilitating the entry of macrophage-tropic strains of the HIV-1 into cells, but the mechanism of this phenomenon is completely unknown. To explore the role of CCR5-derived signal transduction in viral entry, we introduced mutations into two cytoplasmic domains of CCR5 involved in receptor-mediated function. Truncation of the terminal carboxyl-tail to eight amino acids or mutation of the highly conserved aspartate-arginine-tyrosine, or DRY, sequence in the second cytoplasmic loop of CCR5 effectively blocked chemokine-dependent activation of classic second messengers, intracellular calcium fluxes, and the cellular response of chemotaxis. In contrast, none of the mutations altered the ability of CCR5 to act as an HIV-1 coreceptor. We conclude that the initiation of signal transduction, the prototypic function of G protein coupled receptors, is not required for CCR5 to act as a coreceptor for HIV-1 entry into cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Calcium
- Cell Line
- Chemokine CCL4
- Chemokine CCL5/metabolism
- Chemokine CCL5/pharmacology
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Cloning, Molecular
- HIV-1/physiology
- Humans
- Kidney
- Kinetics
- Macrophage Inflammatory Proteins/metabolism
- Macrophage Inflammatory Proteins/pharmacology
- Models, Structural
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Secondary
- Receptors, CCR5
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/physiology
- Receptors, HIV/biosynthesis
- Receptors, HIV/chemistry
- Receptors, HIV/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Second Messenger Systems
- Sequence Deletion
- Signal Transduction
Collapse
Affiliation(s)
- J Gosling
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Tsu RC, Lai HW, Allen RA, Wong YH. Differential coupling of the formyl peptide receptor to adenylate cyclase and phospholipase C by the pertussis toxin-insensitive Gz protein. Biochem J 1995; 309 ( Pt 1):331-9. [PMID: 7619076 PMCID: PMC1135838 DOI: 10.1042/bj3090331] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In neutrophils, activation of receptors for the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) leads to changes in intracellular events such as phosphoinositide turnover and Ca2+ mobilization. Studies have shown that activation of the cloned fMLP receptor can also lead to inhibition of cyclic AMP (cAMP) accumulation [Lang, Boulay, Li and Wollheim (1993) EMBO J. 12, 2671-2679; Uhing, Gettys, Tomhave, Snyderman and Didsbury (1992) Biochem. Biophys. Res. Commun. 183, 1033-1039]. These responses are apparently mediated through pertussis toxin-sensitive Gi proteins. Since other chemotactic factor receptors can couple to multiple G proteins, we examined the ability of the fMLP receptor to utilize a pertussis toxin-insensitive G protein, Gz, in its signal transduction pathways. The human fMLP receptor was transiently expressed in 293 and Ltk- cells, and subsequently assayed for receptor-mediated inhibition of cAMP accumulation and stimulation of phosphoinositide-specific phospholipase C. In transfected 293 cells, fMLP inhibited choriogonadotropin-stimulated cAMP accumulation by 50% and the response could be abolished by pertussis toxin. Co-expression of the fMLP receptor with the alpha subunit of Gz rendered the fMLP response pertussis toxin-insensitive, indicating that the endogenous Gi proteins can be substituted efficiently by Gz. In contrast, Ltk- cells expressing the fMLP receptor were able to respond to fMLP with an increase in the production of inositol phosphates, but this response was completely abolished by pertussis toxin even in cells co-expressing the alpha subunit of Gz. Thus, although both signalling pathways appeared to utilize Gi-like proteins, Gz can only replace Gi in mediating inhibition of cAMP accumulation, and not in the stimulation of phospholipase C. Differential interaction with Gz might represent a novel mechanism by which fMLP receptors regulate intracellular events.
Collapse
Affiliation(s)
- R C Tsu
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon
| | | | | | | |
Collapse
|
10
|
Gao JL, Becker EL, Freer RJ, Muthukumaraswamy N, Murphy PM. A high potency nonformylated peptide agonist for the phagocyte N-formylpeptide chemotactic receptor. J Exp Med 1994; 180:2191-7. [PMID: 7964494 PMCID: PMC2191766 DOI: 10.1084/jem.180.6.2191] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of synthetic tri- and tetrapeptides has previously indicated that N-formylation is required for high biological activity when they react with the phagocyte N-formylpeptide receptor, suggesting that the natural ligand for the receptor is from bacterial and/or mitochondrial sources. To explore this requirement further, we synthesized the pentapeptide methionyl-norleucyl-leucyl-phenylalanyl-phenylalanine (MNleLFF) and studied the effects of different NH2-terminal modifications on its activity. N-formyl-MNleLFF induced transient alterations of [Ca2+]i and superoxide production in human neutrophils with 10- and 100-fold greater potency, respectively, than the proto-type N-formylpeptide, N-formylmethionyl-leucyl-phenylalanine (fMLF). Surprisingly, N-acetyl-MNleLFF was a potent as N-formyl-MNleLFF. Moreover, the unacylated counterpart H-MNleLFF was also highly active, having an EC50 for calcium mobilization of 10 nM, and for respiratory burst activation of 100 nM. All three pentapeptides could completely desensitize calcium transients elicited by stimulation of neutrophils with fMLF, whereas the neutrophil chemoattractants C5a and interleukin 8 only weakly affected fMLF-induced transients, suggesting that they activate neutrophils via the same receptor as fMLF. Finally, all three pentapeptides activated the recombinant human N-formylpeptide receptor expressed in frog oocytes, but did not effectively activate related phagocyte receptors. These data broaden the potential sources of natural ligands for the N-formyl-peptide receptor from N-formylated bacterial and mitochondrial products to other nonformylated endogenous peptides.
Collapse
Affiliation(s)
- J L Gao
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
11
|
Wennogle LP, Conder L, Winter C, Braunwalder A, Vlattas S, Kramer R, Cioffi C, Hu SI. Stabilization of C5a receptor--G-protein interactions through ligand binding. J Cell Biochem 1994; 55:380-8. [PMID: 7962171 DOI: 10.1002/jcb.240550316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Binding of biotin-C5a to the C5a receptor in membrane fragments followed by detergent solubilization and purification with streptavidin-agarose affinity chromatography resulted in the isolation of a receptor complex with associated G-proteins. In contrast, when receptor was detergent-solubilized in the absence of C5a and purified by affinity chromatography with Affigel-C5a, G-proteins did not copurify. Since the results indicate that receptor ligation stabilized the receptor--G-protein interaction to allow purification of the complex, the findings emphasize the dynamic nature of the C5a receptor-effector interactions. When biotin-C5a-ligated receptor was purified from a mouse cell line overexpressing recombinant human receptor, both Gialpha2 and Gialpha3 subunits copurified, confirming that multiple transducing systems are linked to the C5a receptor. The method of stabilization of receptor-transducer complexes offers the opportunity to further elaborate the interactions of the C5a receptor with diverse transducing elements and second messenger systems.
Collapse
Affiliation(s)
- L P Wennogle
- Research Department, CIBA-GEIGY Pharmaceuticals Division, Summit, New Jersey 07901
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Klos A, Mätje C, Rheinheimer C, Bautsch W, Köhl J, Martin U, Burg M. Amino acids 327-350 of the human C5a-receptor are not essential for [125I]C5a binding in COS cells and signal transduction in Xenopus oocytes. FEBS Lett 1994; 344:79-82. [PMID: 8181569 DOI: 10.1016/0014-5793(94)00350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The anaphylatoxic peptide C5a is an important inflammatory mediator of the complement system. We have generated human C5a-receptor (hC5aR) mutants with truncation of its cytosolic carboxyl-terminus (C-terminus). Both mutants were analysed for C5a-binding in transiently expressing COS cells, and one mutant additionally for GTP-binding regulatory protein (G-protein) coupling in cRNA-injected Xenopus oocytes. Our data suggest that (a) amino acids (aa) 314 to 326 as part of the C-terminus are necessary for proper receptor folding or expression and (b) the receptor C-terminus distal from position 327 is not critical for receptor expression, folding, binding and G-protein coupling.
Collapse
Affiliation(s)
- A Klos
- Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Gao JL, Murphy PM. Species and subtype variants of the N-formyl peptide chemotactic receptor reveal multiple important functional domains. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74405-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Differences in phosphorylation of formylpeptide and C5a chemoattractant receptors correlate with differences in desensitization. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80517-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Quehenberger O, Prossnitz E, Cavanagh S, Cochrane C, Ye R. Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46825-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Buhl AM, Eisfelder BJ, Worthen GS, Johnson GL, Russell M. Selective coupling of the human anaphylatoxin C5a receptor and alpha 16 in human kidney 293 cells. FEBS Lett 1993; 323:132-4. [PMID: 8388335 DOI: 10.1016/0014-5793(93)81464-b] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The peptide C5a which is generated during the complement cascade is an important chemotactic factor involved in the inflammatory response. The C5a receptor (C5aR) primary sequence suggests that it has a serpentine structure of seven transmembrane domains which is typical of classical G-protein-coupled receptors. To investigate the signal transduction mechanism of C5a we transiently expressed the C5aR in combination with different G-protein alpha subunits in human kidney 293 cells and measured the PLC activity induced upon C5a stimulation. Cotransfection of C5aR and alpha 16 stimulated PLC while cotransfection of C5aR with either alpha q or alpha i2 did not.
Collapse
Affiliation(s)
- A M Buhl
- Department of Biostructural Chemistry, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|