1
|
Syngkli S, Das B. Purification and characterization of human glycerol 3-phosphate dehydrogenases (mitochondrial and cytosolic) by NAD +/NADH redox method. Biochimie 2023; 214:199-215. [PMID: 37481063 DOI: 10.1016/j.biochi.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Glycerol 3-phosphate (G3P) shuttle is composed of mGPDH and cGPDH and serves as the interface between carbohydrate- and lipid-metabolism. Recently, these metabolic enzymes have been implicated in type II diabetes mellitus but the detailed kinetic parameters and crystal structure of human mGPDH is unknown, though fewer studies on cGPDH are available. To characterize these enzymes, the human mGPDH and cGPDH genes were optimized and cloned into the pET-SUMO vector and pET-24a(+) vector, respectively, and over-expressed in Escherichia coli BL21 (DE3). However, SUMO-mGPDH was expressed as inclusion bodies. Hence, various culture parameters, solubilizing agents and expression vectors were used to solubilize the protein but they did not produce functional SUMO-mGPDH. Over-expression of SUMO-mGPDH along with molecular chaperone (pG-KJE8) produced a functional SUMO-mGPDH. The functional SUMO-mGPDH was purified and characterized using NAD+/NADH redox method. cGPDH was also over-expressed and purified for its characterization. DLS analysis and CD spectra of the purified proteins were performed. The mGPDH was a monomeric enzyme with MW of ∼74 kDa and displayed optimal activity in the Tris-HCl buffer (pH 7.4); while, cGPDH was a homodimer with a monomeric MW of ∼37 kDa and showed optimal activity in imidazole buffer (pH 8.0). The Kmapp was 0.475 mM for G3P, and 0.734 mM for DHAP. These methods may be used to characterize these enzymes to understand their role in metabolic disorders.
Collapse
Affiliation(s)
- Superior Syngkli
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bidyadhar Das
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
2
|
Chen SL, Liu TS, Zhang WG, Xu JZ. Cofactor Engineering for Efficient Production of α-Farnesene by Rational Modification of NADPH and ATP Regeneration Pathway in Pichia pastoris. Int J Mol Sci 2023; 24:1767. [PMID: 36675279 PMCID: PMC9860691 DOI: 10.3390/ijms24021767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023] Open
Abstract
α-Farnesene, an acyclic volatile sesquiterpene, plays important roles in aircraft fuel, food flavoring, agriculture, pharmaceutical and chemical industries. Here, by re-creating the NADPH and ATP biosynthetic pathways in Pichia pastoris, we increased the production of α-farnesene. First, the native oxiPPP was recreated by overexpressing its essential enzymes or by inactivating glucose-6-phosphate isomerase (PGI). This revealed that the combined over-expression of ZWF1 and SOL3 increases α-farnesene production by improving NADPH supply, whereas inactivating PGI did not do so because it caused a reduction in cell growth. The next step was to introduce heterologous cPOS5 at various expression levels into P. pastoris. It was discovered that a low intensity expression of cPOS5 aided in the production of α-farnesene. Finally, ATP was increased by the overexpression of APRT and inactivation of GPD1. The resultant strain P. pastoris X33-38 produced 3.09 ± 0.37 g/L of α-farnesene in shake flask fermentation, which was 41.7% higher than that of the parent strain. These findings open a new avenue for the development of an industrial-strength α-farnesene producer by rationally modifying the NADPH and ATP regeneration pathways in P. pastoris.
Collapse
Affiliation(s)
| | | | | | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| |
Collapse
|
3
|
Pallapati AR, Prasad S, Roy I. Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119238. [PMID: 35150808 DOI: 10.1016/j.bbamcr.2022.119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The aim of this work was to identify elements of adaptive regulatory mechanism for basal level of yeast histone deacetylase Sir2. Heat shock response (HSR) was altered in the absence of the NAD-dependent glycerol 3-phosphate dehydrogenase (Gpd1). Increase in HSR was lower in ΔGpd1 cells than wild-type cells. An inverse correlation existed between Gpd1 and Sir2; Sir2-deleted cells showed higher expression of Gpd1 while deletion of Gpd1 led to higher expression of Sir2. In the absence of Gpd1, basal activity of Sir2 promoter was higher and was increased further upon heat shock, suggesting higher Sir2 levels. No interaction between Gpd1 and Sir2 was detected without or with heat shock using immunoprecipitation. The results show that Gpd1 regulates HSR in yeast cells and likely blocks its uncontrolled activation. As uncontrolled stress adversely affects the cellular adaptive response, Gpd1 may be a component of the cell's catalogue to ensure a balanced response to unmitigated thermal stress.
Collapse
Affiliation(s)
- Anusha Rani Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
4
|
Dekker WJC, Jürgens H, Ortiz-Merino RA, Mooiman C, van den Berg R, Kaljouw A, Mans R, Pronk JT. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6523363. [PMID: 35137036 PMCID: PMC8862043 DOI: 10.1093/femsyr/foac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.
Collapse
Affiliation(s)
- Wijbrand J C Dekker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Hannes Jürgens
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Remon van den Berg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Astrid Kaljouw
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Corresponding author: Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands. Tel: +31 15 2783214; E-mail:
| |
Collapse
|
5
|
Urso SJ, Lamitina T. The C. elegans Hypertonic Stress Response: Big Insights from Shrinking Worms. Cell Physiol Biochem 2021; 55:89-105. [PMID: 33626269 DOI: 10.33594/000000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cell volume is one of the most aggressively defended physiological set points in biology. Changes in intracellular ion and water concentrations, which are induced by changes in metabolism or environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular assemblies. To counter these challenges, cells and organisms have evolved multifaceted, evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced damage. However, many unanswered questions remain regarding the nature of cell volume 'sensing' as well as the molecular signaling pathways involved in activating physiological response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing new and unexpected insights into these questions, particularly questions relating to the hypertonic stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans is that it is under strong negative regulation by proteins involved in protein homeostasis and the extracellular matrix (ECM). The role of the ECM in particular highlights the importance of studying the HTSR in the context of a live organism where native ECM-tissue associations are preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at the post-transcriptional level. The goal of this review is to describe these discoveries, to provide context for their implications, and to raise outstanding questions to guide future research.
Collapse
Affiliation(s)
- Sarel J Urso
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA.,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| | - Todd Lamitina
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA, .,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Yun EJ, Yu S, Kim S, Kim KH. Metabolomic response of a marine bacterium to 3,6-anhydro- l -galactose, the rare sugar from red macroalgae, as the sole carbon source. J Biotechnol 2018; 270:12-20. [DOI: 10.1016/j.jbiotec.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
7
|
Lama S, Seol E, Park S. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose. BIORESOURCE TECHNOLOGY 2017; 245:1542-1550. [PMID: 28549809 DOI: 10.1016/j.biortech.2017.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The production of 1,3-propanediol (1,3-PDO) from glucose was investigated using Klebsiella pneumoniae J2B, which converts glycerol to 1,3-PDO and synthesize an essential coenzyme B12. In order to connect the glycolytic pathway with the pathway of 1,3-PDO synthesis from glycerol, i.e., to directly produce diol from glucose, glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase from Saccharomyces cerevisiae were overexpressed. Additionally, the effect of expression levels and the use of isoforms of these two enzymes on glycerol and 1,3-PDO production were studied. Furthermore, to prevent loss of produced glycerol, the glycerol oxidation pathways were disrupted. Finally, the conversion rate of glycerol to 1,3-PDO was increased via homologous overexpression of glycerol dehydratase and 1,3-PDO oxidoreductase. The resultant strain successfully produced 1,3-PDO from glucose at a yield of 0.27mol/mol along with glycerol at 0.52mol/mol. Improvement of the engineered K. pneumoniae J2B to further increase conversion of glycerol to 1,3-PDO is discussed.
Collapse
Affiliation(s)
- Suman Lama
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, Republic of Korea
| | - Eunhee Seol
- School of Energy and Chemical Engineering, UNIST, Ulsan, Republic of Korea
| | - Sunghoon Park
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, Republic of Korea; School of Energy and Chemical Engineering, UNIST, Ulsan, Republic of Korea.
| |
Collapse
|
8
|
Zong H, Liu X, Chen W, Zhuge B, Sun J. Construction of glycerol synthesis pathway in Klebsiella pneumoniae for bioconversion of glucose into 1,3-propanediol. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0375-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Synthetic Biology of Polyhydroxyalkanoates (PHA). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 162:147-174. [DOI: 10.1007/10_2017_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Ruberto AA, Childers CL, Storey KB. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:48-55. [DOI: 10.1016/j.cbpb.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
11
|
Yang H, Chen H, Hao G, Mei T, Zhang H, Chen W, Chen YQ. Increased fatty acid accumulation following overexpression of glycerol‐3‐phosphate dehydrogenase and suppression of β‐oxidation in oleaginous fungus
Mortierella alpina. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Guangfei Hao
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Tiantian Mei
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
12
|
Wang J, Xu R, Wang R, Haque ME, Liu A. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates. Biosci Biotechnol Biochem 2016; 80:1214-22. [PMID: 26865376 DOI: 10.1080/09168451.2015.1136883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.
Collapse
Affiliation(s)
- Jiancai Wang
- a Key Laboratory of Tropical Plant Resources and Sustainable Use , Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Kunming , China.,b School of Life Sciences , University of Science and Technology of China , Hefei , China
| | - Ronghua Xu
- c College of Life Sciences , Anhui Science and Technology University , Fengyang , China
| | - Ruling Wang
- a Key Laboratory of Tropical Plant Resources and Sustainable Use , Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Kunming , China
| | - Mohammad Enamul Haque
- d Key Laboratory for Economic Plants and Biotechnology , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , China
| | - Aizhong Liu
- a Key Laboratory of Tropical Plant Resources and Sustainable Use , Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Kunming , China.,d Key Laboratory for Economic Plants and Biotechnology , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
13
|
Kim JW, Kim J, Seo SO, Kim KH, Jin YS, Seo JH. Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:265. [PMID: 27990176 PMCID: PMC5148919 DOI: 10.1186/s13068-016-0677-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/01/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BD) is a promising compound for various applications in chemical, cosmetic, and agricultural industries. Pyruvate decarboxylase (Pdc)-deficient Saccharomyces cerevisiae is an attractive host strain for producing 2,3-BD because a large amount of pyruvate could be shunted to 2,3-BD production instead of ethanol synthesis. However, 2,3-BD yield, productivity, and titer by engineered yeast were inferior to native bacterial producers because of the following metabolic limitations. First, the Pdc-deficient yeast showed growth defect due to a shortage of C2-compounds. Second, redox imbalance during the 2,3-BD production led to glycerol formation that lowered the yield. RESULTS To overcome these problems, the expression levels of Pdc from a Crabtree-negative yeast were optimized in S. cerevisiae. Specifically, Candida tropicalis PDC1 (CtPDC1) was used to minimize the production of ethanol but maximize cell growth and 2,3-BD productivity. As a result, productivity of the BD5_G1CtPDC1 strain expressing an optimal level of Pdc was 2.3 folds higher than that of the control strain in flask cultivation. Through a fed-batch fermentation, 121.8 g/L 2,3-BD was produced in 80 h. NADH oxidase from Lactococcus lactis (noxE) was additionally expressed in the engineered yeast with an optimal activity of Pdc. The fed-batch fermentation with the optimized 2-stage aeration control led to production of 154.3 g/L 2,3-BD in 78 h. The overall yield of 2,3-BD was 0.404 g 2,3-BD/g glucose which corresponds to 80.7% of theoretical yield. CONCLUSIONS A massive metabolic shift in the engineered S. cerevisiae (BD5_G1CtPDC1_nox) expressing NADH oxidase was observed, suggesting that redox imbalance was a major bottleneck for efficient production of 2,3-BD by engineered yeast. Maximum 2,3-BD titer in this study was close to the highest among the reported microbial production studies. The results demonstrate that resolving both C2-compound limitation and redox imbalance is critical to increase 2,3-BD production in the Pdc-deficient S. cerevisiae. Our strategy to express fine-tuned PDC and noxE could be applicable not only to 2,3-BD production, but also other chemical production systems using Pdc-deficient S. cerevisiae.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921 Republic of Korea
| | - Jungyeon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-713 Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Human Nutrition, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kyoung Heon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-713 Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921 Republic of Korea
| |
Collapse
|
14
|
Kesten D, Kummer U, Sahle S, Hübner K. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse. Biophys Chem 2015; 206:40-57. [DOI: 10.1016/j.bpc.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
15
|
Gpd1 Regulates the Activity of Tcp-1 and Heat Shock Response in Yeast Cells: Effect on Aggregation of Mutant Huntingtin. Mol Neurobiol 2015; 53:3900-3913. [PMID: 26164272 DOI: 10.1007/s12035-015-9329-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/26/2015] [Indexed: 01/27/2023]
Abstract
A significant correlation has been observed between the length of the polyglutamine tract in huntingtin, its aggregation and the progression of Huntington's disease (HD). The chaperonin TRiC is a potent antagonist of aggregation of mutant huntingtin. Using the well-validated Saccharomyces cerevisiae model of HD, we have investigated the role of age-related post-translational modifications of this heterooligomeric chaperonin on its ability to inhibit aggregation of the mutant protein. We show that the glycerol synthetic enzyme Gpd1 is involved in the post-translational modification of Tcp-1 (subunit of TRiC) by acetylation and glycation through the NAD(+)/NADH shuttle and the triose phosphate intermediate dihydroxyacetone phosphate, respectively. The extent of modification of Tcp-1 shows a negative correlation with the solubility of mutant huntingtin. The absence of Gpd1 also induces heat shock response in yeast cells, further inhibiting aggregation of the mutant protein. Thus, Gpd1 acts as a major regulator of the protein folding machinery in the yeast model of HD. Modification and inactivation of cellular chaperonin are accelerated in an aging cell, which has further deleterious effects for a cell harbouring misfolded/aggregated protein(s).
Collapse
|
16
|
Birkenmeier M, Mack M, Röder T. Erratum to: A coupled thermodynamic and metabolic control analysis methodology and its evaluation on glycerol biosynthesis in Saccharomyces cerevisiae. Biotechnol Lett 2015; 37:317-26. [PMID: 25351807 DOI: 10.1007/s10529-014-1696-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coupled in silico thermodynamic and probabilistic metabolic control analysis methodology was verified by applying it to the glycerol biosynthetic pathway in Saccharomyces cerevisiae. The methodology allows predictions even when detailed knowledge of the enzyme kinetics is lacking. In a metabolic steady state, we found that glycerol-3-phosphate dehydrogenase operates far from thermodynamic equilibrium ([Formula: see text] -15.9 to -47.5 kJ mol(-1), where [Formula: see text] is the transformed Gibbs energy of the reaction). Glycerol-3-phosphatase operates in modes near the thermodynamic equilibrium, far from the thermodynamic equilibrium or in between ([Formula: see text] ≈ 0 to -23.7 kJ mol(-1)). From the calculated distribution of the scaled flux control coefficients (median = 0.81), we inferred that the pathway flux is primarily controlled by glycerol-3-phosphate dehydrogenase. This prediction is consistent with previous findings, verifying the efficacy of the proposed methodology.
Collapse
Affiliation(s)
- Markus Birkenmeier
- Institute for Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany,
| | | | | |
Collapse
|
17
|
Birkenmeier M, Mack M, Röder T. A coupled thermodynamic and metabolic control analysis methodology and its evaluation on glycerol biosynthesis in Saccharomyces cerevisiae. Biotechnol Lett 2014; 37:307-16. [DOI: 10.1007/s10529-014-1675-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023]
|
18
|
He W, Ye S, Xue T, Xu S, Li W, Lu J, Cao L, Ye B, Chen Y. Silencing the glycerol-3-phosphate dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol being produced and less glycerol. Biotechnol Lett 2013; 36:523-9. [PMID: 24150518 DOI: 10.1007/s10529-013-1375-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Transcription of the gene coding for glycerol-3-phosphate dehydrogenase (GPD1) was repressed in an industrial strain of Saccharomyces cerevisiae using a silencing vector. A fusion fragment containing GPD1 and Kan MX genes was generated by overlap extension PCR, then, the vector, pYES2.0 GPD1/Kan MX, was constructed by inserting the fusion fragment into the S. cerevisiae plasmid, pYES2.0. pYES2.0 GPD1/Kan MX, was linearized by KpnI, transformed into S. cerevisiae using the PEG/LiAc/ssDNA method, and integrated into the S. cerevisiae chromosome. GPD1 silencing gave 20 % less glycerol-3-phosphate dehydrogenase activity, 19 % lower glycerol production, and 9.7 % higher ethanol production compared with the original strain. These findings further the development of industrial S. cerevisiae strains with improved ethanol production and reduced glycerol content for the efficient production of bio-ethanol.
Collapse
Affiliation(s)
- Wenjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, 350108, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ask M, Bettiga M, Mapelli V, Olsson L. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:22. [PMID: 23409974 PMCID: PMC3598934 DOI: 10.1186/1754-6834-6-22] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/12/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pretreatment of biomass for lignocellulosic ethanol production generates compounds that can inhibit microbial metabolism. The furan aldehydes hydroxymethylfurfural (HMF) and furfural have received increasing attention recently. In the present study, the effects of HMF and furfural on redox metabolism, energy metabolism and gene expression were investigated in anaerobic chemostats where the inhibitors were added to the feed-medium. RESULTS By cultivating the xylose-utilizing Saccharomyces cerevisiae strain VTT C-10883 in the presence of HMF and furfural, it was found that the intracellular concentrations of the redox co-factors and the catabolic and anabolic reduction charges were significantly lower in the presence of furan aldehydes than in cultivations without inhibitors. The catabolic reduction charge decreased from 0.13(±0.005) to 0.08(±0.002) and the anabolic reduction charge decreased from 0.46(±0.11) to 0.27(±0.02) when HMF and furfural were present. The intracellular ATP concentration was lower when inhibitors were added, but resulted only in a modest decrease in the energy charge from 0.87(±0.002) to 0.85(±0.004) compared to the control. Transcriptome profiling followed by MIPS functional enrichment analysis of up-regulated genes revealed that the functional group "Cell rescue, defense and virulence" was over-represented when inhibitors were present compared to control cultivations. Among these, the ATP-binding efflux pumps PDR5 and YOR1 were identified as important for inhibitor efflux and possibly a reason for the lower intracellular ATP concentration in stressed cells. It was also found that genes involved in pseudohyphal growth were among the most up-regulated when inhibitors were present in the feed-medium suggesting nitrogen starvation. Genes involved in amino acid metabolism, glyoxylate cycle, electron transport and amino acid transport were enriched in the down-regulated gene set in response to HMF and furfural. It was hypothesized that the HMF and furfural-induced NADPH drainage could influence ammonia assimilation and thereby give rise to the nitrogen starvation response in the form of pseudohyphal growth and down-regulation of amino acid synthesis. CONCLUSIONS The redox metabolism was severely affected by HMF and furfural while the effects on energy metabolism were less evident, suggesting that engineering of the redox system represents a possible strategy to develop more robust strains for bioethanol production.
Collapse
Affiliation(s)
- Magnus Ask
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Maurizio Bettiga
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Valeria Mapelli
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
20
|
Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol 2012; 32:4705-17. [PMID: 22988299 DOI: 10.1128/mcb.00897-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells have evolved mechanisms for ensuring growth and survival in the face of stress caused by a fluctuating environment. Saccharomyces cerevisiae has two homologous glycerol-3-phosphate dehydrogenases, Gpd1 and Gpd2, that are required to endure various stresses, including hyperosmotic shock and hypoxia. These enzymes are only partially redundant, and their unique functions were attributed previously to differential transcriptional regulation and localization. We find that Gpd1 and Gpd2 are negatively regulated through phosphorylation by distinct kinases under reciprocal conditions. Gpd2 is phosphorylated by the AMP-activated protein kinase Snf1 to curtail glycerol production when nutrients are limiting. Gpd1, in contrast, is a target of TORC2-dependent kinases Ypk1 and Ypk2. Inactivation of Ypk1 by hyperosmotic shock results in dephosphorylation and activation of Gpd1, accelerating recovery through increased glycerol production. Gpd1 dephosphorylation acts synergistically with its transcriptional upregulation, enabling long-term growth at high osmolarity. Phosphorylation of Gpd1 and Gpd2 by distinct kinases thereby enables rapid adaptation to specific stress conditions. Introduction of phosphorylation motifs targeted by distinct kinases provides a general mechanism for functional specialization of duplicated genes during evolution.
Collapse
|
21
|
Styger G, Jacobson D, Bauer FF. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 2011; 91:713-30. [DOI: 10.1007/s00253-011-3237-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
22
|
Global metabolite profiling of agarose degradation by Saccharophagus degradans 2-40. N Biotechnol 2010; 27:156-68. [PMID: 20215059 DOI: 10.1016/j.nbt.2010.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 02/18/2010] [Accepted: 02/28/2010] [Indexed: 11/22/2022]
Abstract
Saccharophagus degradans is a potent degrader of marine and plant cell wall polysaccharides. In particular, it is capable of degrading and metabolizing agarose that is the main component of marine red algae. To understand its degradation and metabolism of agarose along with the agarase expression profile, S. degradans was grown using different carbon sources including galactose, agarose, glucose and cellulose. The metabolite profiling was conducted by using GC-TOF MS and in-house programmed database, BinBase. When the metabolite profiles of cells on galactose and agarose were compared, principal component analysis of 133 identified metabolites revealed clear separations between the groups on galactose and agarose. S. degradans grown on agarose was found to use different carbon catabolic pathways from that grown on other carbon sources. The metabolite profile of cells grown using galactose had increased abundances of glycerol, glycerol derivatives and fatty acids. The use of polysaccharides such as agarose or cellulose led to the increased abundances of amino acids and intermediates of nucleotide biosynthesis.
Collapse
|
23
|
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2009; 76:190-5. [PMID: 19915031 DOI: 10.1128/aem.01772-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).
Collapse
|
24
|
Lee DH, Kim MD, Ryu YW, Seo JH. Cloning and characterization ofCmGPD1, theCandida magnoliaehomologue of glycerol-3-phosphate dehydrogenase. FEMS Yeast Res 2008; 8:1324-33. [DOI: 10.1111/j.1567-1364.2008.00446.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Watanabe Y, Nagayama K, Tamai Y. Expression of glycerol 3-phosphate dehydrogenase gene (CvGPD1) in salt-tolerant yeastCandida versatilis is stimulated by high concentrations of NaCl. Yeast 2008; 25:107-16. [PMID: 17914749 DOI: 10.1002/yea.1550] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We cloned the glycerol 3-phosphate dehydrogenase (GPDH) gene (CvGPD1) from salt-tolerant yeast Candida versatilis. When CvGPD1 was expressed in glycerol synthesis-deficient Saccharomyces cerevisiae cells, the salt tolerance of the recombinant strain was enhanced, and NADP(+)-dependent GPDH (EC 1.1.1.94), Cvgpd1p synthesis and recovery of glycerol synthesis were confirmed. The transcription of CvGPD1 in C. versatilis cells was stimulated by high concentrations of NaCl. The relationship between expression of CvGPD1 and growth of C. versatilis cells in the mash of Japanese seasonings (miso- and shoyu-moromi) is also discussed.
Collapse
Affiliation(s)
- Yasuo Watanabe
- Department of Biological Resources, National University Corporation Ehime University, Matsuyama, Ehime, Japan.
| | | | | |
Collapse
|
26
|
Cordier H, Mendes F, Vasconcelos I, François JM. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng 2007; 9:364-78. [PMID: 17500021 DOI: 10.1016/j.ymben.2007.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/15/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1delta mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADH1 and overexpression of ALD3, encoding, respectively, the major NAD+-dependent alcohol dehydrogenase and a cytosolic NAD+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose)(-1) at a maximal rate of 3.1 mmol (g dry mass)(-1) h(-1) in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD+/NADP+ binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.
Collapse
Affiliation(s)
- Hélène Cordier
- Laboratoire de Biotechnologie et Bioprocédés, UMR-CNRS 5504 & INRA 792, Toulouse, France
| | | | | | | |
Collapse
|
27
|
Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:431-41. [PMID: 17430545 DOI: 10.1111/j.1467-7652.2007.00252.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Previous attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase (gpd1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged. This was accompanied by a decrease in the glycolytic intermediate dihydroxyacetone phosphate, the direct precursor of glycerol-3-phosphate dehydrogenase. The levels of sucrose and various metabolites in the pathway from sucrose to fatty acids remained unaltered. The results show that glycerol-3-phosphate supply co-limits oil accumulation in developing seeds. This has important implications for strategies that aim to increase the overall level of oil in commercial oil-seed crops for use as a renewable alternative to petrol.
Collapse
Affiliation(s)
- Helene Vigeolas
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | |
Collapse
|
28
|
Geertman JMA, van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 2007; 6:1193-203. [PMID: 17156016 DOI: 10.1111/j.1567-1364.2006.00124.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h(-1)) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high k(M) for formate at low intracellular NAD(+) concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol(-1) glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes.
Collapse
|
29
|
Meynial Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P. Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 2007; 9:152-9. [PMID: 17113805 DOI: 10.1016/j.ymben.2006.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/22/2022]
Abstract
The Saccharomyces cerevisiae glycerol pathway (GPD1 and GPP2) was evolved in vivo in Escherichia coli. The central metabolism of E. coli was engineered to link glucose consumption and glycerol production. The engineered strain was evolved in a chemostat culture and a high glycerol producer was rapidly obtained. The evolution of the strain was associated to a deletion between GPD1 and GPP2, resulting in the production of a fusion protein with both glycerol-3-P dehydrogenase and glycerol-3-P phosphatase activities. The higher efficiency of the fusion protein was due to partial glycerol-3-P channeling between the two active sites. The evolved strain produces glycerol from glucose at high yield, concentration and productivity.
Collapse
Affiliation(s)
- Isabelle Meynial Salles
- Laboratoire de Biotechnologie-Bioprocédés, UMR-INSA/CNRS 5504, UMR INSA/INRA 792, 135 avenue de Rangueil, 31077 Toulouse cedex 4, France
| | | | | | | | | |
Collapse
|
30
|
Rigoulet M, Aguilaniu H, Avéret N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 2004; 256-257:73-81. [PMID: 14977171 DOI: 10.1023/b:mcbi.0000009888.79484.fd] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Keeping a cytosolic redox balance is a prerequisite for living cells in order to maintain a metabolic activity and enable growth. During growth of Saccharomyces cerevisiae, an excess of NADH is generated in the cytosol. Aerobically, it has been shown that the external NADH dehydrogenase, Nde1p and Nde2p, as well as the glycerol-3-phosphate dehydrogenase shuttle, comprising the cytoplasmic glycerol-3-phosphate dehydrogenase, Gpdlp, and the mitochondrial glycerol-3-phosphate dehydrogenase, Gut2p, are the most important mechanisms for mitochondrial oxidation of cytosolic NADH. In this review we summarize the recent results showing (i) the contribution of each of the mechanisms involved in mitochondrial oxidation of the cytosolic NADH, under different physiological situations; (ii) the kinetic and structural properties of these metabolic pathways in order to channel NADH from cytosolic dehydrogenases to the inner mitochondrial membrane and (iii) the organization in supramolecular complexes and, the peculiar ensuing kinetic regulation of some of the enzymes (i.e. Gut2p inhibition by external NADH dehydrogenase activity) leading to a highly integrated functioning of enzymes having a similar physiological function. The cell physiological consequences of such an organized and regulated network are discussed.
Collapse
Affiliation(s)
- Michel Rigoulet
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen-CNRS, Bordeaux cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Silva-Graça M, Neves L, Lucas C. Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype? FEMS Yeast Res 2003; 3:347-62. [PMID: 12748048 DOI: 10.1016/s1567-1356(02)00200-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Candida versatilis (halophila) CBS4019 was chosen to study the physiological reactions of long-term exposure to extremely high salt concentrations. In general, our results show a significant increase in enzyme expression during growth under stress conditions. Although glycerol and mannitol pathways are not under glucose repression, they were found to be metabolically regulated. Glycerol-3P-dehydrogenase used either of its cofactors NADPH or NADH, being in favor of NADPH during growth with high salt concentrations. This ability of interchanging cofactors, an increased fermentation rate, and the observed mannitol pathway activity are suggested to contribute to the yeasts' redox stability. Enzymes per se were not salt-tolerant in vitro. Consistently, intracellular sodium was low and intracellular potassium, a requirement for growth, was high. The concept of halophily and its applicability to yeasts is discussed.
Collapse
Affiliation(s)
- Magda Silva-Graça
- Department of Biology/Environmental Sciences Research Centre (CCA/B), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | |
Collapse
|
32
|
Cronwright GR, Rohwer JM, Prior BA. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 2002; 68:4448-56. [PMID: 12200299 PMCID: PMC124078 DOI: 10.1128/aem.68.9.4448-4456.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
Glycerol, a major by-product of ethanol fermentation by Saccharomyces cerevisiae, is of significant importance to the wine, beer, and ethanol production industries. To gain a clearer understanding of and to quantify the extent to which parameters of the pathway affect glycerol flux in S. cerevisiae, a kinetic model of the glycerol synthesis pathway has been constructed. Kinetic parameters were collected from published values. Maximal enzyme activities and intracellular effector concentrations were determined experimentally. The model was validated by comparing experimental results on the rate of glycerol production to the rate calculated by the model. Values calculated by the model agreed well with those measured in independent experiments. The model also mimics the changes in the rate of glycerol synthesis at different phases of growth. Metabolic control analysis values calculated by the model indicate that the NAD(+)-dependent glycerol 3-phosphate dehydrogenase-catalyzed reaction has a flux control coefficient (C(J)v1) of approximately 0.85 and exercises the majority of the control of flux through the pathway. Response coefficients of parameter metabolites indicate that flux through the pathway is most responsive to dihydroxyacetone phosphate concentration (R(J)DHAP= 0.48 to 0.69), followed by ATP concentration (R(J)ATP = -0.21 to -0.50). Interestingly, the pathway responds weakly to NADH concentration (R(J)NADH = 0.03 to 0.08). The model indicates that the best strategy to increase flux through the pathway is not to increase enzyme activity, substrate concentration, or coenzyme concentration alone but to increase all of these parameters in conjunction with each other.
Collapse
Affiliation(s)
- Garth R Cronwright
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa.
| | | | | |
Collapse
|
33
|
Overkamp KM, Bakker BM, Kötter P, Luttik MAH, Van Dijken JP, Pronk JT. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 2002; 68:2814-21. [PMID: 12039737 PMCID: PMC123913 DOI: 10.1128/aem.68.6.2814-2821.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 04/01/2002] [Indexed: 11/20/2022] Open
Abstract
Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.
Collapse
Affiliation(s)
- Karin M Overkamp
- Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft, Amsterdam
| | | | | | | | | | | |
Collapse
|
34
|
Berrada W, Naya A, Iddar A, Bourhim N. Purification and characterization of cytosolic glycerol-3-phosphate dehydrogenase from skeletal muscle of jerboa (Jaculus orientalis). Mol Cell Biochem 2002; 231:117-27. [PMID: 11952153 DOI: 10.1023/a:1014464831573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytosolic glycerol-3-phosphate dehydrogenase was purified from jerboa (Jaculus orientalis) skeletal muscle and its physical and kinetic properties investigated. The purification method consisted of a multi-step procedure and this procedure is presented. The specific activity of the purified enzyme is 53.6 U/mg of protein, representing a 77-fold increase in specific activity. The apparent Michaelis constant (Km) for dihydroxyacetone is 137.39 (+/- 25.56) microM whereas the Km for glycerol-3-phosphate is 468.66 (+/- 27.59) microM. The kinetic mechanism of purified enzyme is 'ordered Bi-Bi' and this result is confirmed by the product inhibition pattern. Under the conditions of assay, the pH optimum occurs at pH 7.7 for the reduction of dihydroxyacetone phosphate and at pH 9.0 for glycerol-3-phosphate oxidation. In the direction of dihydroxyacetone phosphate, the optimal temperature is 35 degrees C. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 33,000 (+/- 1000), whereas non-denaturing polyacrylamide gel yields a molecular weight of 72,000 (+/- 2000), suggesting that the enzyme may exist as a dimer. A polyclonal antiserum raised against the purified enzyme was used to localize the enzyme in different jerboa tissues by Western blot method. The purified enzyme is sensitive to N-ethylmaleimide, and incubation of the enzyme with 20 mM N-ethylmaleimide resulted in a complete loss of catalytic activity. The purified enzyme is inhibited by several metal ions including Zn2+ and by 2,4-dichlorophenoxyacetic acid.
Collapse
Affiliation(s)
- W Berrada
- Département de Biologie, Faculté des Sciences, Université Hassan II-Ain Chock, Maârif, Casablanca, Morocco
| | | | | | | |
Collapse
|
35
|
Abstract
We present a powerful, general method of fitting a model of a biochemical pathway to experimental substrate concentrations and dynamical properties measured at a stationary state, when the mechanism is largely known but kinetic parameters are lacking. Rate constants and maximum velocities are calculated from the experimental data by simple algebra without integration of kinetic equations. Using this direct approach, we fit a comprehensive model of glycolysis and glycolytic oscillations in intact yeast cells to data measured on a suspension of living cells of Saccharomyces cerevisiae near a Hopf bifurcation, and to a large set of stationary concentrations and other data estimated from comparable batch experiments. The resulting model agrees with almost all experimentally known stationary concentrations and metabolic fluxes, with the frequency of oscillation and with the majority of other experimentally known kinetic and dynamical variables. The functional forms of the rate equations have not been optimized.
Collapse
Affiliation(s)
- F Hynne
- Department of Chemistry and CATS, H.C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
36
|
Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 2001; 3:301-12. [PMID: 11676566 DOI: 10.1006/mben.2001.0197] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycerol, one of the most important by-products of alcoholic fermentation, has positive effects on the sensory properties of fermented beverages. It was recently shown that the most direct approach for increasing glycerol formation is to overexpress GPD1, which encodes the glycerol-3-phosphate dehydrogenase (GPDH) isoform Gpd1p. We aimed to identify other steps in glycerol synthesis or transport that limit glycerol flux during glucose fermentation. We showed that the overexpression of GPD2, encoding the other isoform of glycerol-3-phosphate dehydrogenase (Gpd2p), is equally as effective as the overexpression of GPD1 in increasing glycerol production (3.3-fold increase compared to the wild-type strain) and has similar effects on yeast metabolism. In contrast, overexpression of GPP1, encoding glycerol 3-phosphatase (Gpp1p), did not enhance glycerol production. Strains that simultaneously overexpress GPD1 and GPP1 did not produce higher amounts of glycerol than a GPD1-overexpressing strain. These results demonstrate that GPDH, but not the glycerol 3-phosphatase, is rate-limiting for glycerol production. The channel protein Fps1p mediates glycerol export. It has recently been shown that mutants lacking a region in the N-terminal domain of Fps1p constitutively release glycerol. We showed that cells producing truncated Fps1p constructs during glucose fermentation compensate for glycerol loss by increasing glycerol production. Interestingly, the strain with a deregulated Fps1 glycerol channel had a different phenotype to the strain overexpressing GPD genes and showed poor growth during fermentation. Overexpression of GPD1 in this strain increased the amount of glycerol produced but led to a pronounced growth defect.
Collapse
Affiliation(s)
- F Remize
- UMR Sciences pour l'Oenologie, Microbiologie et Technologie des Fermentations, INRA, 2 Place Viala, F-34060 Montpellier Cedex 1, France
| | | | | |
Collapse
|
37
|
Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci U S A 2001; 98:5625-30. [PMID: 11344302 PMCID: PMC33263 DOI: 10.1073/pnas.091610798] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rck2, a yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, requires phosphorylation for activation. We provide evidence that in budding yeast, this step can be executed by the osmostress-activated mitogen-activated protein kinase Hog1. Rck2 phosphorylation was transiently increased during osmostress or in mutants with a hyperactive high osmolarity glycerol (HOG) pathway. This modification depended on catalytically active Hog1 kinase and two putative mitogen-activated protein kinase phosphorylation sites in Rck2. Immunokinase assays showed that Hog1 can directly phosphorylate Rck2 to stimulate its enzymatic activity toward translation elongation factor 2. We demonstrate that Hog1 and Rck2 are necessary for attenuation of protein synthesis in response to osmotic challenge and show that modification of elongation factor 2 induced by osmostress depends on Rck2 and Hog1 in vivo. Therefore, we propose that the transient down-regulation of protein synthesis after osmotic shock is a response not to damage but to an extracellular signal mediated by Hog1 and Rck2.
Collapse
Affiliation(s)
- M Teige
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
38
|
Påhlman IL, Gustafsson L, Rigoulet M, Larsson C. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Yeast 2001; 18:611-20. [PMID: 11329172 DOI: 10.1002/yea.709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytosolic redox balance has to be maintained in order to allow an enduring cellular metabolism. In other words, NADH generated in the cytosol has to be re-oxidized back to NAD(+). Aerobically this can be done by respiratory oxidation of cytosolic NADH. However, NADH is unable to cross the mitochondrial inner membrane and mechanisms are required for conveying cytosolic NADH to the mitochondrial electron transport chain. At least two such systems have proved to be functional in S. cerevisiae, the external NADH dehydrogenase (Luttik et al., 1998; Small and McAlister-Henn, 1998) and the G3P shuttle (Larsson et al., 1998). The aim of this investigation was to study the regulation and performance of these two systems in a wild-type strain of S. cerevisiae using aerobic glucose- and nitrogen-limited chemostat cultures. The rate of cytosolic NADH formation was calculated and as expected there was a continuous increase with increasing dilution rate. However, measurements of enzyme activities and respiratory activity on isolated mitochondria revealed a diminishing capacity at elevated dilution rates for both the external NADH dehydrogenase and the G3P shuttle. This suggests that adjustment of in vivo activities of these systems to proper levels is not achieved by changes in amount of protein but rather by, for example, activation/inhibition of existing enzymes. Adenine nucleotides are well-known allosteric regulators and both the external NADH and the G3P shuttle were sensitive to inhibition by ATP. The most severe inhibition was probably on the G3P shuttle, since one of its member proteins, Gpdp, turned out to be exceptionally sensitive to ATP. The external NADH dehydrogenase is suggested as the main system employed for oxidation of cytosolic NADH. The G3P shuttle is proposed to be of some importance at low growth rates and perhaps its real significance is only expressed during starvation conditions.
Collapse
Affiliation(s)
- I L Påhlman
- Department of Cell and Molecular Biology, Göteborg University, Box 462, S-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
39
|
Sharma N, Phutela A, Malhotra SP, Singh R. Purification and characterization of dihydroxyacetone phosphate reductase from immature seeds of Brassica campestris L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:603-610. [PMID: 11448735 DOI: 10.1016/s0168-9452(00)00421-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dihydroxyacetone phosphate reductase (DHAP reductase) was purified to apparent electrophoretic homogeneity with about 24% recovery from immature seeds of Brassica campestris using (NH(4))(2)SO(4) fractionation, affinity chromatography, gel filtration and adsorption chromatography. The purified enzyme with molecular mass of about 62 kDa was a dimer with subunit molecular mass of 32 kDa. The enzyme exhibited maximum activity at pH 7.5 and was highly specific for NADH and DHAP. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 3.3 and 26.6 &mgr;M for NADH and DHAP, respectively. The enzyme did not require any metal ion for its activity. Rather, the activity was inhibited by Na(+), K(+), Mn(2+), Mg(2+,) and Ca(2+). ATP and fructose-1,6-P(2) inhibited the enzyme non-competitively with respect to DHAP with K(i) values of 0.96 and 1.3 mM, respectively. Substrate interaction kinetics and product inhibition studies were consistent with compulsory-ordered bi-bi reaction mechanism with NADH being the first substrate to bind and NAD being the last product to dissociate. Based on the properties discussed here, it appears that the enzyme probably functions for the production of glycerol-3-P from DHAP.
Collapse
Affiliation(s)
- N Sharma
- Department of Biochemistry, Plant Biochemistry and Molecular Biology Laboratory, CCS, Haryana Agricultural University, 125 004, Hisar, India
| | | | | | | |
Collapse
|
40
|
Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5313-29. [PMID: 10951190 DOI: 10.1046/j.1432-1327.2000.01527.x] [Citation(s) in RCA: 464] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper examines whether the in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes. In nongrowing, anaerobic, compressed Saccharomyces cerevisiae the values of the kinetic parameters of most glycolytic enzymes were determined. For the other enzymes appropriate literature values were collected. By inserting these values into a kinetic model for glycolysis, fluxes and metabolites were calculated. Under the same conditions fluxes and metabolite levels were measured. In our first model, branch reactions were ignored. This model failed to reach the stable steady state that was observed in the experimental flux measurements. Introduction of branches towards trehalose, glycogen, glycerol and succinate did allow such a steady state. The predictions of this branched model were compared with the empirical behavior. Half of the enzymes matched their predicted flux in vivo within a factor of 2. For the other enzymes it was calculated what deviation between in vivo and in vitro kinetic characteristics could explain the discrepancy between in vitro rate and in vivo flux.
Collapse
Affiliation(s)
- B Teusink
- E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Michnick S, Roustan JL, Remize F, Barre P, Dequin S. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 1997; 13:783-93. [PMID: 9234667 DOI: 10.1002/(sici)1097-0061(199707)13:9<783::aid-yea128>3.0.co;2-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.
Collapse
Affiliation(s)
- S Michnick
- Laboratoire de Microbiologie et Technologie des Fermentations, INRA-IPV, Montpellier, France
| | | | | | | | | |
Collapse
|
42
|
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997; 16:2179-87. [PMID: 9171333 PMCID: PMC1169820 DOI: 10.1093/emboj/16.9.2179] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The two homologous genes GPD1 and GPD2 encode the isoenzymes of NAD-dependent glycerol 3-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae. Previous studies showed that GPD1 plays a role in osmoadaptation since its expression is induced by osmotic stress and gpd1 delta mutants are osmosensitive. Here we report that GPD2 has an entirely different physiological role. Expression of GPD2 is not affected by changes in external osmolarity, but is stimulated by anoxic conditions. Mutants lacking GPD2 show poor growth under anaerobic conditions. Mutants deleted for both GPD1 and GPD2 do not produce detectable glycerol, are highly osmosensitive and fail to grow under anoxic conditions. This growth inhibition, which is accompanied by a strong intracellular accumulation of NADH, is relieved by external addition of acetaldehyde, an effective oxidizer of NADH. Thus, glycerol formation is strictly required as a redox sink for excess cytosolic NADH during anaerobic metabolism. The anaerobic induction of GPD2 is independent of the HOG pathway which controls the osmotic induction of GPD1. Expression of GPD2 is also unaffected by ROX1 and ROX3, encoding putative regulators of hypoxic and stress-controlled gene expression. In addition, GPD2 is induced under aerobic conditions by the addition of bisulfite which causes NADH accumulation by inhibiting the final, reductive step in ethanol fermentation and this induction is reversed by addition of acetaldehyde. We conclude that expression of GPD2 is controlled by a novel, oxygen-independent, signalling pathway which is required to regulate metabolism under anoxic conditions.
Collapse
Affiliation(s)
- R Ansell
- Department of General and Marine Microbiology, Gothenburg University, Sweden
| | | | | | | | | |
Collapse
|
43
|
Cai J, Pietzsch M, Theobald U, Rizzi M. Fast purification and kinetic studies of the glycerol-3-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae. J Biotechnol 1996; 49:19-27. [PMID: 8879163 DOI: 10.1016/0168-1656(96)01509-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glycerol-3-phosphate dehydrogenase has been purified from Saccharomyces cerevisiae 140-fold to electrophoretic homogeneity by a simple procedure involving affinity and ion exchange chromatography. The purified enzyme was most active at pH 6.8 and 51 degrees C. Its molecular mass was determined to be 45000 +/- 2000 Da by SDS-polyacrylamide gel electrophoresis. At physiological pH values the thermodynamic equilibrium constant was determined to be 3.5 x 10(-3) (M-1). Product inhibition as well as competitive inhibition patterns were found which clearly indicate that the kinetic mechanism of the glycerol-3-phosphate dehydrogenase is random bi-bi with the formation of dead-end complexes. In vivo concentrations of selected metabolites and kinetic expression for G3P-DH were used to explain regulatory properties of this enzyme under conditions of short-term glucose effect in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Cai
- Institut für Bioverfahrenstechnik, Universität Stuttgart, Germany
| | | | | | | |
Collapse
|
44
|
GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 1994. [PMID: 8196651 DOI: 10.1128/mcb.14.6.4135] [Citation(s) in RCA: 437] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.
Collapse
|
45
|
Albertyn J, Hohmann S, Thevelein JM, Prior BA. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 1994; 14:4135-44. [PMID: 8196651 PMCID: PMC358779 DOI: 10.1128/mcb.14.6.4135-4144.1994] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.
Collapse
Affiliation(s)
- J Albertyn
- Department of Microbiology and Biochemistry, Faculty of Science, University of the Orange Free State, Bloemfontein, South Africa
| | | | | | | |
Collapse
|
46
|
Larsson K, Ansell R, Eriksson P, Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 1993; 10:1101-11. [PMID: 7934860 DOI: 10.1111/j.1365-2958.1993.tb00980.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osmoregulatory mutants of Saccharomyces cerevisiae with a defect in their capacity to readjust the cell volume/buoyant density after osmotically induced dehydration were enriched by density gradient centrifugation. Colonies derived from cells that remained dense after dehydration were screened for sensitivity to high concentrations of NaCl and defects in their osmotically induced production and intracellular accumulation of glycerol. The isolated osg (osmosensitive glycerol defective) mutants were recessive in heterozygous diploids and fell into four complementation groups (osg1-osg4). The osg1-1 mutant, described in this work, is unable to grow at low water potential and shows a decreased capacity for glycerol production and a strongly reduced activity of NAD(+)-dependent sn-glycerol 3-phosphate dehydrogenase (GPD), an enzyme in the glycerol-producing pathway. Complementation of the osg1-1 salt sensitivity defect with a low copy yeast genomic library led to the cloning of GPD1, encoding an S. cerevisiae GPD consisting of 391 amino acids and sharing 47-50% identity with GPD from other sources. Micro-sequencing of the N-terminus of purified S. cerevisiae GPD revealed a 20-amino-acid sequence that was identical to a nucleotide-deduced amino acid sequence in GPD1, but indicated that the enzyme is produced with an N-terminal extension that is removed from the functional enzyme. Subcellular fractionation does not indicate, however, that the putative pre-sequence targets GPD to any organelle; the enzyme appears to be located in the cytoplasm. Chromoblot and tetrad analysis were used to position the GPD1 gene to chromosome IV, with a distance of about 18 cM from trp1.
Collapse
Affiliation(s)
- K Larsson
- Department of General and Marine Microbiology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|