1
|
Yang B, Wang SQ, Yang HQ. β-adrenergic regulation of Ca 2+ signaling in heart cells. BIOPHYSICS REPORTS 2024; 10:274-282. [PMID: 39539286 PMCID: PMC11554573 DOI: 10.52601/bpr.2024.240906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024] Open
Abstract
β-adrenergic receptors (βARs) play significant roles in regulating Ca2+ signaling in cardiac myocytes, thus holding a key function in modulating heart performance. βARs regulate the influx of extracellular Ca2+ and the release and uptake of Ca2+ from the sarcoplasmic reticulum (SR) by activating key components such as L-type calcium channels (LTCCs), ryanodine receptors (RyRs) and phospholamban (PLN), mediated by the phosphorylation actions by protein kinase A (PKA). In cardiac myocytes, the presence of β2AR provides a protective mechanism against potential overstimulation of β1AR, which may aid in the restoration of cardiac dysfunctions. Understanding the Ca2+ regulatory signaling pathways of βARs in cardiac myocytes and the differences among various βAR subtypes are crucial in cardiology and hold great potential for developing treatments for heart diseases.
Collapse
Affiliation(s)
- Bo Yang
- Cyrus Tang Medical Institute, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shi-Qiang Wang
- State Key Lab of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Loh KWZ, Liu C, Soong TW, Hu Z. β subunits of voltage-gated calcium channels in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1119729. [PMID: 36818347 PMCID: PMC9931737 DOI: 10.3389/fcvm.2023.1119729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Calcium signaling is required in bodily functions essential for survival, such as muscle contractions and neuronal communications. Of note, the voltage-gated calcium channels (VGCCs) expressed on muscle and neuronal cells, as well as some endocrine cells, are transmembrane protein complexes that allow for the selective entry of calcium ions into the cells. The α1 subunit constitutes the main pore-forming subunit that opens in response to membrane depolarization, and its biophysical functions are regulated by various auxiliary subunits-β, α2δ, and γ subunits. Within the cardiovascular system, the γ-subunit is not expressed and is therefore not discussed in this review. Because the α1 subunit is the pore-forming subunit, it is a prominent druggable target and the focus of many studies investigating potential therapeutic interventions for cardiovascular diseases. While this may be true, it should be noted that the direct inhibition of the α1 subunit may result in limited long-term cardiovascular benefits coupled with undesirable side effects, and that its expression and biophysical properties may depend largely on its auxiliary subunits. Indeed, the α2δ subunit has been reported to be essential for the membrane trafficking and expression of the α1 subunit. Furthermore, the β subunit not only prevents proteasomal degradation of the α1 subunit, but also directly modulates the biophysical properties of the α1 subunit, such as its voltage-dependent activities and open probabilities. More importantly, various isoforms of the β subunit have been found to differentially modulate the α1 subunit, and post-translational modifications of the β subunits further add to this complexity. These data suggest the possibility of the β subunit as a therapeutic target in cardiovascular diseases. However, emerging studies have reported the presence of cardiomyocyte membrane α1 subunit trafficking and expression in a β subunit-independent manner, which would undermine the efficacy of β subunit-targeting drugs. Nevertheless, a better understanding of the auxiliary β subunit would provide a more holistic approach when targeting the calcium channel complexes in treating cardiovascular diseases. Therefore, this review focuses on the post-translational modifications of the β subunit, as well as its role as an auxiliary subunit in modulating the calcium channel complexes.
Collapse
Affiliation(s)
- Kelvin Wei Zhern Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cong Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Tuck Wah Soong,
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Zhenyu Hu,
| |
Collapse
|
3
|
Murakami M, Xu F, Ohba T, Kobayashi T, Inoue Y, Murakami AM, Miyoshi I, Ono K, Tohse N. Requirement of the Ca 2+ channel β 2 subunit for sympathetic PKA phosphorylation. J Pharmacol Sci 2021; 145:253-261. [PMID: 33602505 DOI: 10.1016/j.jphs.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Facilitation of cardiac function in response to signals from the sympathetic nervous system is initiated by the phosphorylation of L-type voltage-dependent Ca2+ channels (VDCCs) by protein kinase A (PKA), which in turn is activated by β-adrenoceptors. Among the five subunits (α1, β, α2/δ, and γ) of VDCCs, the α1 subunit and the family of β subunits are substrates for PKA-catalyzed phosphorylation; however, the subunit responsible for β-adrenergic augmentation of Ca2+ channel function has yet to be specifically identified. Here we show that the VDCC β2 subunit is required for PKA phosphorylation upon sympathetic acceleration. In mice with β2 subunit-null mutations, cardiac muscle contraction in response to isoproterenol was reduced and there was no significant increase in Ca2+ channel currents upon PKA-dependent phosphorylation. These findings indicate that within the sympathetic nervous system the β2 subunit of VDCCs is required for physiological PKA-dependent channel phosphorylation.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Aomori, 036-8562, Japan.
| | - Feng Xu
- Department of Pharmacology, Akita University, Graduate School of Medicine, Akita, 010-8543, Japan
| | - Takayoshi Ohba
- Department of Cell Physiology, Akita University, Graduate School of Medicine, Akita, 010-8543, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Yoshiro Inoue
- Division of Tumor Animals Institute for Experimental Animals, Institute of Development, Aging and Cancer, Tohoku University School of Medicine, Sendai, Japan
| | - Agnieszka M Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Aomori, 036-8562, Japan
| | - Ichiro Miyoshi
- Animal Care Center, Tohoku University School of Medicine, Sendai, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University, Graduate School of Medicine, Akita, 010-8543, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| |
Collapse
|
4
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
5
|
Kumari N, Gaur H, Bhargava A. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling. Life Sci 2017; 194:139-149. [PMID: 29288765 DOI: 10.1016/j.lfs.2017.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated.
Collapse
Affiliation(s)
- Neema Kumari
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Himanshu Gaur
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Anamika Bhargava
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
6
|
Minobe E, Maeda S, Xu J, Hao L, Kameyama A, Kameyama M. A new phosphorylation site in cardiac L-type Ca2+ channels (Cav1.2) responsible for its cAMP-mediated modulation. Am J Physiol Cell Physiol 2014; 307:C999-C1009. [PMID: 25209265 DOI: 10.1152/ajpcell.00267.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiac L-type Ca(2+) channels are modulated by phosphorylation by protein kinase A (PKA). To explore the PKA-targeted phosphorylation site(s), five potential phosphorylation sites in the carboxyl (COOH) terminal region of the α1C-subunit of the guinea pig Cav1.2 Ca(2+) channel were mutated by replacing serine (S) or threonine (T) residues with alanine (A): S1574A (C1 site), S1626A (C2), S1699A (C3), T1908A, (C4), S1927A (C5), and their various combinations. The wild-type Ca(2+) channel activity was enhanced three- to fourfold by the adenylyl cyclase activator forskolin (Fsk, 5 μM), and that of mutants at C3, C4, C5, and combination of these sites was also significantly increased by Fsk. However, Fsk did not modulate the activity of the C1 and C2 mutants and mutants of combined sites involving the C1 site. Three peptides of the COOH-terminal tail of α1C, termed CT1 [corresponding to amino acids (aa) 1509-1789, containing sites C1-3], CT2 (aa 1778-2003, containing sites C4 and C5), and CT3 (aa 1942-2169), were constructed, and their phosphorylation by PKA was examined. CT1 and CT2, but not CT3, were phosphorylated in vitro by PKA. Three CT1 mutants at two sites of C1-C3 were also phosphorylated by PKA, but the mutant at all three sites was not. The CT2 mutant at the C4 site was phosphorylated by PKA, but the mutant at C5 sites was not. These results suggest that Ser(1574) (C1 site) may be a potential site for the channel modulation mediated by PKA.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachiko Maeda
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| | - Asako Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan;
| |
Collapse
|
7
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
8
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
9
|
Harvey RD, Hell JW. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 2012; 58:143-52. [PMID: 23266596 DOI: 10.1016/j.yjmcc.2012.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
L-type Ca(2+) channels (LTCCs) are essential for generation of the electrical and mechanical properties of cardiac muscle. Furthermore, regulation of LTCC activity plays a central role in mediating the effects of sympathetic stimulation on the heart. The primary mechanism responsible for this regulation involves β-adrenergic receptor (βAR) stimulation of cAMP production and subsequent activation of protein kinase A (PKA). Although it is well established that PKA-dependent phosphorylation regulates LTCC function, there is still much we do not understand. However, it has recently become clear that the interaction of the various signaling proteins involved is not left to completely stochastic events due to random diffusion. The primary LTCC expressed in cardiac muscle, CaV1.2, forms a supramolecular signaling complex that includes the β2AR, G proteins, adenylyl cyclases, phosphodiesterases, PKA, and protein phosphatases. In some cases, the protein interactions with CaV1.2 appear to be direct, in other cases they involve scaffolding proteins such as A kinase anchoring proteins and caveolin-3. Functional evidence also suggests that the targeting of these signaling proteins to specific membrane domains plays a critical role in maintaining the fidelity of receptor mediated LTCC regulation. This information helps explain the phenomenon of compartmentation, whereby different receptors, all linked to the production of a common diffusible second messenger, can vary in their ability to regulate LTCC activity. The purpose of this review is to examine our current understanding of the signaling complexes involved in cardiac LTCC regulation.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
10
|
Dhalla NS, Müller AL. Protein Kinases as Drug Development Targets for Heart Disease Therapy. Pharmaceuticals (Basel) 2010; 3:2111-2145. [PMID: 27713345 PMCID: PMC4036665 DOI: 10.3390/ph3072111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA), Ca²⁺-calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
11
|
Rossier MF, Python M, Maturana AD. Contribution of mineralocorticoid and glucocorticoid receptors to the chronotropic and hypertrophic actions of aldosterone in neonatal rat ventricular myocytes. Endocrinology 2010; 151:2777-87. [PMID: 20392829 DOI: 10.1210/en.2009-1375] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mineralocorticoids and glucocorticoids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy. We previously observed, using isolated neonate rat ventricular cardiomyocytes, that both aldosterone (Aldo) and corticosterone induced in vitro a marked acceleration of the spontaneous contractions of these cells, a phenomenon dependent on the expression of the low threshold T-type calcium channels. Because both mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mediated the chronotropic response to corticosteroids, we characterized the role of each receptor using spironolactone and mifepristone (RU-486) as specific antagonists. We first observed that GR antagonism, but not MR antagonism, completely disrupted the significant correlation existing between the level of T channel mRNA and the beating frequency; this difference could not be explained by a specific regulation of channel expression or activity by one of the receptors. Moreover, the chronotropic action of Aldo was additive to that of forskolin, a direct activator of the cAMP pathway. This additive response was selectively abolished upon GR inhibition. Finally, myocyte hypertrophy induced in vitro by Aldo was completely prevented by GR antagonism, whereas spironolactone had only a marginal effect. These results suggest that, in isolated rat ventricular cardiomyocytes, the activation of both MR and GR is necessary for a complete electrical remodeling and a maximal chronotropic response to corticosteroids. However, GR alone appears involved in the sensitization of the cells to the chronotropic regulation through the cAMP pathway and in the hypertrophic response to steroids. These observations have therapeutic implications given the fact that MR becomes a major target of pharmacological drugs in the clinical practice for preventing cardiac function decompensation and evolution toward heart failure and lethal arrhythmias.
Collapse
Affiliation(s)
- Michel F Rossier
- Service of Endocrinology and Diabetology, University Hospital of Geneva, 4 Rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland.
| | | | | |
Collapse
|
12
|
Wang G, Zhu X, Xie W, Han P, Li K, Sun Z, Wang Y, Chen C, Song R, Cao C, Zhang J, Wu C, Liu J, Cheng H. Rad As a Novel Regulator of Excitation–Contraction Coupling and β-Adrenergic Signaling in Heart. Circ Res 2010; 106:317-27. [DOI: 10.1161/circresaha.109.208272] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rationale
:
Rad (Ras associated with diabetes) GTPase, a monomeric small G protein, binds to Ca
v
β subunit of the L-type Ca
2+
channel (LCC) and thereby regulates LCC trafficking and activity. Emerging evidence suggests that Rad is an important player in cardiac arrhythmogenesis and hypertrophic remodeling. However, whether and how Rad involves in the regulation of excitation–contraction (EC) coupling is unknown.
Objective
:
This study aimed to investigate possible role of Rad in cardiac EC coupling and β-adrenergic receptor (βAR) inotropic mechanism.
Methods and Results
:
Adenoviral overexpression of Rad by 3-fold in rat cardiomyocytes suppressed LCC current (
I
Ca
), [Ca
2+
]
i
transients, and contractility by 60%, 42%, and 38%, respectively, whereas the “gain” function of EC coupling was significantly increased, due perhaps to reduced “redundancy” of LCC in triggering sarcoplasmic reticulum release. Conversely, ≈70% Rad knockdown by RNA interference increased
I
Ca
(50%), [Ca
2+
]
i
transients (52%) and contractility (58%) without altering EC coupling efficiency; and the dominant negative mutant RadS105N exerted a similar effect on
I
Ca
. Rad upregulation caused depolarizing shift of LCC activation and hastened time-dependent LCC inactivation; Rad downregulation, however, failed to alter these attributes. The Na
+
/Ca
2+
exchange activity, sarcoplasmic reticulum Ca
2+
content, properties of Ca
2+
sparks and propensity for Ca
2+
waves all remained unperturbed regardless of Rad manipulation. Rad overexpression, but not knockdown, negated βAR effects on
I
Ca
and Ca
2+
transients.
Conclusion
:
These results establish Rad as a novel endogenous regulator of cardiac EC coupling and βAR signaling and support a parsimonious model in which Rad buffers Ca
v
β to modulate LCC activity, EC coupling, and βAR responsiveness.
Collapse
Affiliation(s)
- Gang Wang
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Xiaojun Zhu
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Wenjun Xie
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Peidong Han
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Kaitao Li
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Zhongcui Sun
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Yanru Wang
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Chunlei Chen
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Ruisheng Song
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Chunmei Cao
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Jifeng Zhang
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Caihong Wu
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Jie Liu
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| | - Heping Cheng
- From the Institute of Molecular Medicine (G.W., X.Z., W.X., P.H., K.L., Z.S., Y.W., C. Chen, R.S., C. Cao, C.W., J.L., H.C.) and State Key Laboratory of Biomembrane and Membrane Biotechnology (G.W., C.W.) of College of Life Science, Peking University, Beijing, China; Cardiovascular Center (J.Z.), University of Michigan, Ann Arbor, Mich; and Department of Pathophysiology (J.L.), Medical School of Shenzhen University, China
| |
Collapse
|
13
|
Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009; 89:411-52. [PMID: 19342611 DOI: 10.1152/physrev.00029.2007] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
14
|
Role of Ca
V
β Subunits, and Lack of Functional Reserve, in Protein Kinase A Modulation of Cardiac Ca
V
1.2 Channels. Circ Res 2008; 102:e54-64. [DOI: 10.1161/circresaha.108.171736] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein kinase A (PKA)-mediated enhancement of L-type calcium currents (
I
Ca,L
) is essential for sympathetic regulation of the heartbeat and is the classic example of channel regulation by phosphorylation, and its loss is a common hallmark of heart failure. Mechanistic understanding of how distinct Ca
V
channel subunits contribute to PKA modulation of
I
Ca,L
has been intensely pursued yet remains elusive. Moreover, critical features of this regulation such as its functional reserve (the surplus capacity available for modulation) in the heart are unknown. Here, we use an overexpression paradigm in heart cells to simultaneously identify the impact of auxiliary Ca
V
βs on PKA modulation of
I
Ca,L
and to gauge the functional reserve of this regulation in the heart. Ca
V
1.2 channels containing wild-type β
2a
or a phosphorylation-deficient mutant (β
2a,AAA
) were equally upregulated by PKA, discounting a necessary role for β phosphorylation. Nevertheless, channels reconstituted with β
2a
displayed a significantly diminished PKA response compared with other β isoforms, an effect explainable by a uniquely higher basal
P
o
of β
2a
channels. Overexpression of all βs increased basal current density, accompanied by a concomitant decrease in the magnitude of PKA regulation. Scatter plots of fold increase in current against basal current density revealed an inverse relationship that was conserved across species and conformed to a model in which a large fraction of channels remained unmodified after PKA activation. These results redefine the role of β subunits in PKA modulation of Ca
V
1.2 channels and uncover a new design principle of this phenomenon in the heart, vis à vis a limited functional reserve.
Collapse
|
15
|
Chen G, Zhou X, Nicolaou P, Rodriguez P, Song G, Mitton B, Pathak A, Zachariah A, Fan GC, Dorn GW, Kranias EG. A human polymorphism of protein phosphatase-1 inhibitor-1 is associated with attenuated contractile response of cardiomyocytes to beta-adrenergic stimulation. FASEB J 2008; 22:1790-6. [PMID: 18192322 DOI: 10.1096/fj.07-097428] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aberrant beta-adrenergic signaling and depressed calcium homeostasis, associated with an imbalance of protein kinase A and phosphatase-1 activities, are hallmarks of heart failure. Phosphatase-1 is restrained by its endogenous inhibitor, protein phosphatase inhibitor-1 (PPI-1). We assessed 352 normal subjects, along with 959 patients with heart failure and identified a polymorphism in PPI-1 (G147D) exclusively in black subjects. To determine whether the G147D variant could affect cardiac function, we infected adult cardiomyocytes with adenoviruses expressing D147 or wild-type (G147) PPI-1. Under basal conditions, there were no significant differences in fractional shortening or contraction or relaxation rates. However, the enhancement of contractile parameters after isoproterenol stimulation was significantly blunted in D147 compared with G147 and control myocytes. Similar findings were observed in calcium kinetics. The attenuated beta-agonist response was associated with decreased (50%) phosphorylation of phospholamban (PLN) at serine 16, whereas phosphorylation of troponin I and ryanodine receptor was unaltered. These findings suggest that the human G147D PPI-1 can attenuate responses of cardiomyocytes to beta-adrenergic agonists by decreasing PLN phosphorylation and therefore may contribute to deteriorated function in heart failure.
Collapse
Affiliation(s)
- Guoli Chen
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
17
|
Haase H, Alvarez J, Petzhold D, Doller A, Behlke J, Erdmann J, Hetzer R, Regitz-Zagrosek V, Vassort G, Morano I. Ahnak is critical for cardiac Ca(v)1.2 calcium channel function and its β‐adrenergic regulation. FASEB J 2005; 19:1969-77. [PMID: 16319140 DOI: 10.1096/fj.05-3997com] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Defective L-type Ca2+ channel (I(CaL)) regulation is one major cause for contractile dysfunction in the heart. The I(CaL) is enhanced by sympathetic nervous stimulation: via the activation of beta-adrenergic receptors, PKA phosphorylates the alpha1C(Ca(V)1.2)- and beta2-channel subunits and ahnak, an associated 5643-amino acid (aa) protein. In this study, we examined the role of a naturally occurring, genetic variant Ile5236Thr-ahnak on I(CaL). Binding experiments with ahnak fragments (wild-type, Ile5236Thr mutated) and patch clamp recordings revealed that Ile5236Thr-ahnak critically affected both beta2 subunit interaction and I(CaL) regulation. Binding affinity between ahnak-C1 (aa 4646-5288) and beta2 subunit decreased by approximately 50% after PKA phosphorylation or in the presence of Ile5236Thr-ahnak peptide. On native cardiomyocytes, intracellular application of this mutated ahnak peptide mimicked the PKA-effects on I(CaL) increasing the amplitude by approximately 60% and slowing its inactivation together with a leftward shift of its voltage dependency. Both mutated Ile5236Thr-peptide and Ile5236Thr-fragment (aa 5215-5288) prevented specifically the further up-regulation of I(CaL) by isoprenaline. Hence, we suggest the ahnak-C1 domain serves as physiological brake on I(CaL). Relief from this inhibition is proposed as common pathway used by sympathetic signaling and Ile5236Thr-ahnak fragments to increase I(CaL). This genetic ahnak variant might cause individual differences in I(CaL) regulation upon physiological challenges or therapeutic interventions.
Collapse
MESH Headings
- Animals
- Calcium/chemistry
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Cardiomyopathy, Hypertrophic/genetics
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Electrophysiology
- Female
- Gene Expression Regulation
- Genetic Variation
- Glutathione Transferase/metabolism
- Heterozygote
- Humans
- Isoleucine/chemistry
- Male
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Models, Biological
- Models, Genetic
- Mutation
- Mutation, Missense
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Peptides/chemistry
- Phosphorylation
- Polymorphism, Genetic
- Polymorphism, Single-Stranded Conformational
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/metabolism
- Recombinant Proteins/chemistry
- Software
- Temperature
- Threonine/chemistry
- Ultracentrifugation
- Up-Regulation
Collapse
Affiliation(s)
- Hannelore Haase
- Max Delbrück Center for Molecular Medicine (MDC), D-13092 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sperelakis N, Sunagawa M, Yokoshiki H, Seki T, Nakamura M. Regulation of ion channels in myocardial cells and protection of ischemic myocardium. Heart Fail Rev 2005; 5:139-66. [PMID: 16228141 DOI: 10.1023/a:1009832804103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- N Sperelakis
- Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | | | |
Collapse
|
19
|
Brette F, Leroy J, Le Guennec JY, Sallé L. Ca2+ currents in cardiac myocytes: Old story, new insights. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:1-82. [PMID: 16503439 DOI: 10.1016/j.pbiomolbio.2005.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium is a ubiquitous second messenger which plays key roles in numerous physiological functions. In cardiac myocytes, Ca2+ crosses the plasma membrane via specialized voltage-gated Ca2+ channels which have two main functions: (i) carrying depolarizing current by allowing positively charged Ca2+ ions to move into the cell; (ii) triggering Ca2+ release from the sarcoplasmic reticulum. Recently, it has been suggested than Ca2+ channels also participate in excitation-transcription coupling. The purpose of this review is to discuss the physiological roles of Ca2+ currents in cardiac myocytes. Next, we describe local regulation of Ca2+ channels by cyclic nucleotides. We also provide an overview of recent studies investigating the structure-function relationship of Ca2+ channels in cardiac myocytes using heterologous system expression and transgenic mice, with descriptions of the recently discovered Ca2+ channels alpha(1D) and alpha(1E). We finally discuss the potential involvement of Ca2+ currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac remodeling.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Worsley Building Leeds, LS2 9NQ, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
There is increasing evidence that subcellular targeting of signaling molecules is an important means of regulating the protein kinase A (PKA) pathway. Subcellular organization of the signaling molecules in the PKA pathway insures that a signal initiated at the receptor level is transferred efficiently to a PKA substrate eliciting some cellular response. This subcellular targeting appears to regulate the function of a highly specialized cell such as the cardiac myocyte. This review focuses on A-kinase anchoring proteins (AKAPs) which are expressed in the heart. It has been determined that, of the approximately 13 different AKAPs expressed in cardiac tissue, several of these are expressed in cardiac myocytes. These AKAPs bind several PKA substrates and some appear to regulate PKA-dependent phosphorylation of these substrates. AKAP tethering of PKA may be essential for efficient regulation of cardiac muscle contraction. The ability of an AKAP to anchor PKA may be altered in the failing heart, thus compromising the ability of the myocyte to respond to stimuli which elicit the PKA pathway.
Collapse
Affiliation(s)
- Mary L Ruehr
- Department of Cardiovascular Medicine, FF10 Cleveland Clinic Foundation, 9500 Euclid avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
21
|
Takahashi E, Fukuda K, Miyoshi S, Murata M, Kato T, Ita M, Tanabe T, Ogawa S. Leukemia Inhibitory Factor Activates Cardiac L-Type Ca
2+
Channels via Phosphorylation of Serine 1829 in the Rabbit Ca
v
1.2 Subunit. Circ Res 2004; 94:1242-8. [PMID: 15044319 DOI: 10.1161/01.res.0000126405.38858.bc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously reported that leukemia inhibitory factor (LIF) gradually increased cardiac L-type Ca
2+
channel current (
I
CaL
), which peaked at 15 minutes in both adult and neonatal rat cardiomyocytes, and this increase was blocked by the mitogen-activated protein kinase kinase inhibitor PD98059. This study investigated the molecular basis of LIF-induced augmentation of
I
CaL
in rodent cardiomyocytes. LIF induced phosphorylation of a serine residue in the α
1c
subunit (Ca
v
1.2) of L-type Ca
2+
channels in cultured rat cardiomyocytes, and this phosphorylation was inhibited by PD98059. When constructs encoding either a wild-type or a carboxyl-terminal–truncated rabbit Ca
v
1.2 subunit were transfected into HEK293 cells, LIF induced phosphorylation of the resultant wild-type protein but not the mutant protein. Cotransfection of constitutively active mitogen-activated protein kinase kinase also resulted in phosphorylation of the Ca
v
1.2 subunit in the absence of LIF stimulation. In in-gel kinase assays, extracellular signal–regulated kinase phosphorylated a glutathione
S
-transferase fusion protein of the carboxyl-terminal region of Ca
v
1.2 (residues 1700 through 1923), which contains the consensus sequence Pro-Leu-Ser-Pro. A point mutation within this consensus sequence, which results in a substitution of alanine for serine at residue 1829 (S1829A), was sufficient to abolish the LIF-induced phosphorylation. LIF increased
I
CaL
in HEK cells transfected with wild-type Ca
v
1.2 but not with the mutated version. These results provide direct evidence that LIF phosphorylates the serine residue at position 1829 of the Ca
v
1.2 subunit via the actions of extracellular signal–regulated kinase and that this phosphorylation increases
I
CaL
in cardiomyocytes.
Collapse
MESH Headings
- Amino Acid Substitution
- Angiotensin II/pharmacology
- Animals
- Animals, Newborn
- Aorta
- Calcium/metabolism
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Line
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Consensus Sequence
- Flavonoids/pharmacology
- Humans
- Interleukin-6/pharmacology
- Interleukin-6/physiology
- Kidney
- Leukemia Inhibitory Factor
- MAP Kinase Kinase 1
- Mitogen-Activated Protein Kinase Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Patch-Clamp Techniques
- Phosphorylation/drug effects
- Phosphoserine/analysis
- Protein Processing, Post-Translational/drug effects
- Protein Structure, Tertiary
- Rabbits
- Rats
- Rats, Wistar
- Recombinant Proteins/pharmacology
- Sequence Deletion
- Species Specificity
- Transfection
Collapse
Affiliation(s)
- Eiichi Takahashi
- Institute for Advanced Cardiac Therapeutics, Shinanomachi Research Park, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Foell JD, Balijepalli RC, Delisle BP, Yunker AMR, Robia SL, Walker JW, McEnery MW, January CT, Kamp TJ. Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 2004; 17:183-200. [PMID: 14762176 DOI: 10.1152/physiolgenomics.00207.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple Ca2+ channel beta-subunit (Ca(v)beta) isoforms are known to differentially regulate the functional properties and membrane trafficking of high-voltage-activated Ca2+ channels, but the precise isoform expression pattern of Ca(v)beta subunits in ventricular muscle has not been fully characterized. Using sequence data from the Human Genome Project to define the intron/exon structure of the four known Ca(v)beta genes, we designed a systematic RT-PCR strategy to screen human and canine left ventricular myocardial samples for all known Ca(v)beta isoforms. A total of 18 different Ca(v)beta isoforms were detected in both canine and human ventricles including splice variants from all four Ca(v)beta genes. Six of these isoforms have not previously been described. Western blots of ventricular membrane fractions and immunocytochemistry demonstrated that all four Ca(v)beta subunit genes are expressed at the protein level, and the Ca(v)beta subunits show differential subcellular localization with Ca(v)beta1b, Ca(v)beta2, and Ca(v)beta3 predominantly localized to the T-tubule sarcolemma, whereas Ca(v)beta1a and Ca(v)beta4 are more prevalent in the surface sarcolemma. Coexpression of the novel Ca(v)beta2c subunits (Ca(v)beta(2cN1), Ca(v)beta(2cN2), Ca(v)beta(2cN4)) with the pore-forming alpha1C (Ca(v)1.2) and Ca(v)alpha2delta subunits in HEK 293 cells resulted in a marked increase in ionic current and Ca(v)beta2c isoform-specific modulation of voltage-dependent activation. These results demonstrate a previously unappreciated heterogeneity of Ca(v)beta subunit isoforms in ventricular myocytes and suggest the presence of different subcellular populations of Ca2+ channels with distinct functional properties.
Collapse
Affiliation(s)
- Jason D Foell
- Department of Medicine, University of Wisconsin, Madison 53792, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alvarez J, Hamplova J, Hohaus A, Morano I, Haase H, Vassort G. Calcium Current in Rat Cardiomyocytes Is Modulated by the Carboxyl-terminal Ahnak Domain. J Biol Chem 2004; 279:12456-61. [PMID: 14722071 DOI: 10.1074/jbc.m312177200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ahnak, a protein of 5643 amino acids, interacts with the regulatory beta-subunit of cardiac calcium channels and with F-actin. Recently, we defined the binding sites among the protein partners in the carboxyl-terminal domain of ahnak. Here we further narrowed down the beta(2)-interaction sites to the carboxyl-terminal 188 amino acids of ahnak by the recombinant ahnak protein fragments P3 (amino acids 5456-5556) and P4 (amino acids 5556-5643). The effects of these P3 and P4 fragments on the calcium current were investigated under whole-cell patch clamp conditions on rat ventricular cardiomyocytes. P4 but not P3 increased significantly the current amplitude by 22.7 +/- 5% without affecting its voltage dependence. The slow component of calcium current inactivation was slowed down by both P3 and P4, whereas only P3 slowed significantly the fast one. The composite recombinant protein fragment P3-P4 induced similar modifications to the ones induced by each of the ahnak fragments. In the presence of carboxyl-terminal ahnak protein fragments, isoprenaline induced a similar relative increase in current amplitude and shift in current kinetics. The actin-stabilizing agents, phalloidin and jasplakinolide, did not modify the effects of these ahnak protein fragments on calcium current in control conditions nor in the presence of isoprenaline. Hence, our results suggest that the functional effects of P3, P4, and P3-P4 on calcium current are mediated by targeting the ahnak-beta(2)-subunit interaction rather than by targeting the ahnak-F-actin interaction. More specifically they suggest that binding of the beta(2)-subunit to the endogenous subsarcolemmal giant ahnak protein re-primes the alpha(1C)/beta(2)-subunit interaction and that the ahnak-derived proteins relieve the beta(2)-subunit from this inhibition.
Collapse
Affiliation(s)
- Julio Alvarez
- Physiopathologie Cardiovasculaire, INSERM U-390, CHU Arnaud de Villeneuve, F-34295 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
24
|
Wang J, Liu X, Sentex E, Takeda N, Dhalla NS. Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 2003; 284:H2277-87. [PMID: 12742831 DOI: 10.1152/ajpheart.00142.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activities of cardiac protein kinase C (PKC) were examined in hemodynamically assessed rats subsequent to myocardial infarction (MI). Both Ca(2+)-dependent and Ca(2+)-independent PKC activities increased significantly in left ventricular (LV) and right ventricular (RV) homogenates at 1, 2, 4, and 8 wk after MI was induced. PKC activities were also increased in both LV and RV cytosolic and particulate fractions from 8-wk infarcted rats. The relative protein contents of PKC-alpha, -beta, -epsilon, and -zeta isozymes were significantly increased in LV homogenate, cytosolic (except PKC-alpha), and particulate fractions from the failing rats. On the other hand, the protein contents of PKC-alpha, -beta, and -epsilon isozymes, unlike the PKC-zeta isozyme, were increased in RV homogenate and cytosolic fractions, whereas the RV particulate fraction showed an increase in the PKC-alpha isozyme only. These changes in the LV and RV PKC activities and protein contents in the 8-wk infarcted animals were partially corrected by treatment with the angiotensin-converting enzyme inhibitor imidapril. No changes in protein kinase A activity and its protein content were seen in the 8-wk infarcted hearts. The results suggest that the increased PKC activity in cardiac dysfunction due to MI may be associated with an increase in the expression of PKC-alpha, -beta, and -epsilon isozymes, and the improvement of heart function in the infarcted animals by imidapril may be due to partial prevention of changes in PKC activity and isozyme contents.
Collapse
Affiliation(s)
- Jingwei Wang
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | | | | | | | | |
Collapse
|
25
|
Bosch RF, Scherer CR, Rüb N, Wöhrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V. Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca,L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol 2003; 41:858-69. [PMID: 12628735 DOI: 10.1016/s0735-1097(02)02922-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The purpose of the study was to characterize the ionic and molecular mechanisms in the very early phases of electrical remodeling in a rabbit model of rapid atrial pacing (RAP). BACKGROUND Long-term atrial fibrillation reduces L-type Ca(2+) (I(Ca,L)) and transient outward K(+) (I(to)) currents by transcriptional downregulation of the underlying ionic channels. However, electrical remodeling starts early after the onset of rapid atrial rates. The time course of ion current and channel modulation in these early phases of remodeling is currently unknown. METHODS Rapid (600 beats/min) right atrial pacing was performed in rabbits. Animals were divided into five groups with pacing durations between 0 and 96 h. Ionic currents were measured by patch clamp techniques; messenger ribonucleic acid (mRNA) and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot, respectively. RESULTS L-type calcium current started to be reduced (by 47%) after 12 h of RAP and continued to decline as pacing continued. Current changes were preceded or paralleled by decreased mRNA expression of the Ca(2+) channel beta subunits CaB2a, CaB2b, and CaB3, whereas significant reductions in the alpha(1) subunit mRNA and protein expression began 24 h after pacing onset. Transient outward potassium current densities were not altered within the first 12 h, but after 24 h, currents were reduced by 48%. Longer pacing periods did not further decrease I(to). Current changes were paralleled by reduced Kv4.3 mRNA expression. Kv4.2, Kv1.4, and the auxiliary subunit KChIP2 were not affected. CONCLUSIONS L-type calcium current and I(to) are reduced in early phases of electrical remodeling. A major mechanism appears to be transcriptional downregulation of underlying ion channels, which partially preceded ion current changes.
Collapse
Affiliation(s)
- Ralph F Bosch
- Department of Cardiology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H. The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J 2002; 16:1205-16. [PMID: 12153988 DOI: 10.1096/fj.01-0855com] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ahnak is a ubiquitously expressed giant protein of 5643 amino acids implicated in cell differentiation and signal transduction. In a recent study, we demonstrated the association of ahnak with the regulatory beta2 subunit of the cardiac L-type Ca2+ channel. Here we identify the most carboxyl-terminal ahnak region (aa 5262-5643) to interact with recombinant beta2a as well as with beta2 and beta1a isoforms of native muscle Ca2+ channels using a panel of GST fusion proteins. Equilibrium sedimentation analysis revealed Kd values of 55 +/- 11 nM and 328 +/- 24 nM for carboxyl-terminal (aa 195-606) and amino-terminal (aa 1-200) truncates of the beta2a subunit, respectively. The same carboxyl-terminal ahnak region (aa 5262-5643) bound to G-actin and cosedimented with F-actin. Confocal microscopy of human left ventricular tissue localized the carboxyl-terminal ahnak portion to the sarcolemma including the T-tubular system and the intercalated disks of cardiomyocytes. These results suggest that ahnak provides a structural basis for the subsarcolemmal cytoarchitecture and confers the regulatory role of the actin-based cytoskeleton to the L-type Ca2+ channel.
Collapse
Affiliation(s)
- Annette Hohaus
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ. Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol 2002; 538:343-55. [PMID: 11790804 PMCID: PMC2290082 DOI: 10.1113/jphysiol.2001.012839] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Molecular cloning of low-voltage activated (LVA) T-type calcium channels has enabled the study of their regulation in heterologous expression systems. Here we investigate the regulation of Ca(v)3.2 alpha(1)-subunits (alpha1H) by calcium- and/or calmodulin-dependent protein kinase II (CaMKII). 293 cells stably expressing alpha1H were transiently transfected with CaMKIIgamma(C). Using the whole-cell recording configuration, we observed that elevation of pipette free Ca(2+) (1 microM) in the presence of CaM (2 microM) increases T-type channel activity selectively at negative potentials, evoking an 11 mV hyperpolarizing shift in the half-maximal potential (V(1/2)) for activation. The V(1/2) of channel inactivation is not altered by Ca(2+)/CaM. These effects reproduced modulation observed in adrenal zona glomerulosa cells. The potentiation by Ca(2+)/CaM was dependent on the co-expression of CaMKIIgamma(C) and required Ca(2+)/CaM-dependent kinase activity. Peptide (AIP) and lipophilic (KN-62) protein kinase inhibitors prevented the Ca(2+)/CaM-induced changes in channel gating without altering basal Ca(v)3.2 channel activity (27 nM free Ca(2+)) as did replacing pipette ATP with adenylyl imidodiphosphate (AMP-PNP), a non-hydrolysable analogue. CaMKII-dependent potentiation of channel opening resulted in significant increases in apparent steady-state open probability (P(o)) and sustained channel current at negative voltages. Under identical conditions, CaMKII activation did not regulate the activity of Ca(v)3.1 channels, the first cloned member (alpha1G) of the T-type Ca(2+) channel family. Our results provide the first evidence for the differential regulation of two members of the Ca(v)3 family by protein kinase activation and the first report reconstituting CaMKII-dependent regulation of any cloned Ca(2+) channel.
Collapse
Affiliation(s)
- Joshua T Wolfe
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Disruption of any one of a large number of balanced systems that maintain cardiomyocyte structure and function can cause myocardial dysfunction. Such disruption can occur either in response to acute stresses such as cardiac surgery with cardiopulmonary bypass and cross-clamping of the aorta or because of more chronic stresses resulting from factors such as genetic abnormalities, infection, or chronic ischemia. Several currently available therapies such as beta-adrenergic receptor agonists and antagonists, phosphodiesterase inhibitors, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and other agents affect cardiomyocytes in ways that are more far reaching than initially appreciated when these agents were first introduced into clinical practice. As our knowledge and understanding of myocardial dysfunction increases, particularly in the neonatal and pediatric patient, we will be able to further target interventions to highly specific perturbations of cellular function and individual genetic variability.
Collapse
Affiliation(s)
- S M Schwartz
- Division of Cardiology, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | | | | | |
Collapse
|
29
|
Patel JR, Fitzsimons DP, Buck SH, Muthuchamy M, Wieczorek DF, Moss RL. PKA accelerates rate of force development in murine skinned myocardium expressing alpha- or beta-tropomyosin. Am J Physiol Heart Circ Physiol 2001; 280:H2732-9. [PMID: 11356630 DOI: 10.1152/ajpheart.2001.280.6.h2732] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In myocardium, protein kinase A (PKA) is known to phosphorylate troponin I (TnI) and myosin-binding protein-C (MyBP-C). Here, we used skinned myocardial preparations from nontransgenic (NTG) mouse hearts expressing 100% alpha-tropomyosin (alpha-Tm) to examine the effects of phosphorylated TnI and MyBP-C on Ca2+ sensitivity of force and the rate constant of force redevelopment (k(tr)). Experiments were also done using transgenic (TG) myocardium expressing approximately 60% beta-Tm to test the idea that the alpha-Tm isoform is required to observe the mechanical effects of PKA phosphorylation. Compared with NTG myocardium, TG myocardium exhibited greater Ca2+ sensitivity of force and developed submaximal forces at faster rates. Treatment with PKA reduced Ca2+ sensitivity of force in NTG and TG myocardium, had no effect on maximum k(tr) in either NTG or TG myocardium, and increased the rates of submaximal force development in both kinds of myocardium. These results show that PKA-mediated phosphorylation of myofibrillar proteins significantly alters the static and dynamic mechanical properties of myocardium, and these effects occur regardless of the type of Tm expressed.
Collapse
Affiliation(s)
- J R Patel
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecular details of regulation of L-type Ca(2+) channels by protein kinase A (PKA) and protein kinase C (PKC) pathways. Multiple G protein-coupled receptors act through cAMP/PKA pathways to regulate L-type channels. ss-Adrenergic receptor stimulation results in a marked increase in I:(Ca), which is mediated by a cAMP/PKA pathway. Growing evidence points to an important role of localized signaling complexes involved in the PKA-mediated regulation of I:(Ca), including A-kinase anchor proteins and binding of phosphatase PP2a to the carboxyl terminus of the alpha(1C) (Ca(v)1.2) subunit. Both alpha(1C) and ss(2a) subunits of the channel are substrates for PKA in vivo. The regulation of L-type Ca(2+) channels by Gq-linked receptors and associated PKC activation is complex, with both stimulation and inhibition of I:(Ca) being observed. The amino terminus of the alpha(1C) subunit is critically involved in PKC regulation. Crosstalk between PKA and PKC pathways occurs in the modulation of I:(Ca). Ultimately, precise regulation of I:(Ca) is needed for normal cardiac function, and alterations in these regulatory pathways may prove important in heart disease.
Collapse
Affiliation(s)
- T J Kamp
- Department of Medicine, University of Wisconsin, Madison, WI 53792-3248, USA.
| | | |
Collapse
|
31
|
Haase H, Pfitzmaier B, McEnery MW, Morano I. Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 2000; 76:695-703. [PMID: 10653988 DOI: 10.1002/(sici)1097-4644(20000315)76:4<695::aid-jcb17>3.0.co;2-q] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Functional cardiac L-type calcium channels are composed of the pore-forming alpha(1C) subunit and the regulatory beta(2) and alpha(2)/delta subunits. To investigate possible developmental changes in calcium channel composition, we examined the temporal expression pattern of alpha(1C) and beta(2) subunits during cardiac ontogeny in mice and rats, using sequence-specific antibodies. Fetal and neonatal hearts showed two size forms of alpha(1C) with 250 and 220 kDa. Quantitative immunoblotting revealed that the rat cardiac 250-kDa alpha(1C) subunit increased about 10-fold from fetal days 12-20 and declined during postnatal maturation, while the 220-kDa alpha(1C) decreased to undetectable levels. The expression profile of the 85-kDa beta(2) subunit was completely different: beta(2) was not detected at fetal day 12, rose in the neonatal stage, and persisted during maturation. Additional beta(2)-stained bands of 100 and 90 kDa were detected in fetal and newborn hearts, suggesting the transient expression of beta(2) subunit variants. Furthermore, two fetal proteins with beta(4) immunoreactivity were identified in rat hearts that declined during prenatal development. In the fetal rat heart, beta(4) gene expression was confirmed by RT-PCR. Cardiac and brain beta(4) mRNA shared the 3 prime region, predicting identical primary sequences between amino acid residues 62-519, diverging however, at the 5 prime portion. The data indicate differential developmental changes in the expression of Ca(2+) channel subunits and suggest a role of fetal alpha(1C) and beta isoforms in the assembly of Ca(2+) channels in immature cardiomyocytes.
Collapse
Affiliation(s)
- H Haase
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Kimura M, Osanai T, Okumura K, Suga S, Kanno T, Kamimura N, Horiba N, Wakui M. Involvement of phosphorylation of beta-subunit in cAMP-dependent activation of L-type Ca2+ channel in aortic smooth muscle-derived A7r5 cells. Cell Signal 2000; 12:63-70. [PMID: 10676849 DOI: 10.1016/s0898-6568(99)00068-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the effect of intracellular cAMP on the gating kinetics of L-type Ca2+ channel in an A7r5 smooth muscle-derived cell line using the whole-cell patch-clamp technique. Application of dibutyryl cyclic AMP (db-cAMP) to the cell increased the magnitude of Ca2+ currents through L-type Ca2+ channels (I(Ca)), and shifted the current-voltage relationship (I-V curve) for I(Ca) to the left. The magnitudes of maximum I(Ca) were 14.1 +/- 0.7 before and 16.0 +/- 1.1 pA/pF after application of 1 mM db-cAMP (P < 0.05). The values of the half-activation potential (V(1/2)) of I(Ca), estimated from activation curves, were -7.0 +/- 0.8 mV before and -10.8 +/- 1.0 mV after application of db-cAMP (P < 0.05). In cells pretreated with 10 microM Rp-cAMPS (a specific inhibitor of PKA), db-cAMP affected neither the I-V curve nor the activation curve for I(Ca). In cells pretreated with the antisense oligonucleotide for the beta-subunit of L-type Ca2+ channel, db-cAMP failed to enhance I(Ca) or alter the activation curve. On the other hand, in the cells pretreated with the nonsense oligonucleotide, application of db-cAMP caused an increase in magnitude of I(Ca) and shifted the activation curve to the left. Western blot analysis revealed that the pretreatment of cells with antisense oligonucleotide but nonsense oligonucleotide reduced the expression of the beta-subunit of the L-type Ca2+ channel. We conclude that the cAMP-dependent phosphorylation of the beta-subunit potentiates the voltage dependency of the activation kinetics of the L-type Ca2+ channel in A7r5 cells.
Collapse
Affiliation(s)
- M Kimura
- The Second Department of Internal Medicine, Hirosaki University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Haase H, Podzuweit T, Lutsch G, Hohaus A, Kostka S, Lindschau C, Kott M, Kraft R, Morano I. Signaling from beta-adrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J 1999; 13:2161-72. [PMID: 10593863 DOI: 10.1096/fasebj.13.15.2161] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel calcium channel-associated protein of approximately 700 kDa has been identified in mammalian cardiomyocytes that undergoes substantial cAMP-dependent protein kinase (PKA) phosphorylation. It was therefore designated as phosphoprotein 700 (pp700). The pp700 interacts specifically with the beta(2) subunit of cardiac L-type calcium channels as revealed by coprecipitation experiments using affinity-purified antibodies against different calcium channel subunits. It is surprising that amino acid sequence analysis of pig pp700 revealed homology to AHNAK-encoded protein, which was originally identified in human cell lines of neural crest origin as 700-kDa phosphoprotein. Cardiac AHNAK expression was assessed on mRNA level by reverse transcriptase-polymerase chain reaction. Sequence-directed antibodies raised against human AHNAK recognized pp700 in immunoblotting and immunoprecipitation experiments, confirming the homology between both proteins. Anti-AHNAK antibodies labeled preferentially the plasma membrane of cardiomyocytes in cryosections of rat cardiac tissue and isolated cardiomyocytes. Sarcolemmal pp700/AHNAK localization was not influenced by stimulation of either the PKA or the protein kinase C pathway. In back-phosphorylation studies with cardiac biopsies, we identified distinct pp700 pools. The membrane-associated fraction of pp700 underwent substantial in vivo phosphorylation on beta-adrenergic receptor stimulation by isoproterenol, whereas the cytoplasmic fraction of pp700 was not accessible to endogenous PKA. It is important that in vivo phosphorylation occurred in that pp700 fraction which coprecipitated with the calcium channel beta subunit. We hypothesize that both phosphorylation of pp700 and its coupling to the beta subunit play a physiological role in cardiac beta-adrenergic signal transduction. Haase, H., Podzuweit, T., Lutsch, G., Hohaus, A., Kostka, S., Lindschau, C., Kott, M., Kraft, R., Morano, I. Signaling from beta-adrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target that has similarities to AHNAK.
Collapse
Affiliation(s)
- H Haase
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Franz-Volhard Clinic at the Max-Delbrück Center for Molecular Medicine, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bünemann M, Gerhardstein BL, Gao T, Hosey MM. Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J Biol Chem 1999; 274:33851-4. [PMID: 10567342 DOI: 10.1074/jbc.274.48.33851] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein kinase A (PKA) through the beta-adrenergic receptor pathway is crucial for the positive regulation of cardiac L-type currents; however it is still unclear which phosphorylation events cause the robust regulation of channel function. In order to study whether or not the recently identified PKA phosphorylation sites on the beta(2) subunit are of functional significance, we coexpressed wild-type (WT) or mutant beta(2) subunits in tsA-201 cells together with an alpha(1C) subunit, alpha(1C)Delta1905, that lacked the C-terminal 265 amino acids, including the only identified PKA site at Ser-1928. This truncated alpha(1C) subunit was similar to the truncated alpha(1C) subunit isolated from cardiac tissue not only in size ( approximately 190 kDa), but also with respect to its failure to serve as a PKA substrate. In cells transfected with the WT beta(2) subunit, voltage-activated Ba(2+) currents were significantly increased when purified PKA was included in the patch pipette. Furthermore, mutations of Ser-478 and Ser-479 to Ala, but not Ser-459 to Ala, on the beta(2) subunit, completely abolished the PKA-induced increase of currents. The data indicate that the PKA-mediated stimulation of cardiac L-type Ca(2+) currents may be at least partially caused by phosphorylation of the beta(2) subunit at Ser-478 and Ser-479.
Collapse
Affiliation(s)
- M Bünemann
- Department of Molecular Pharmacology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
35
|
Currie S, Smith GL. Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts. FEBS Lett 1999; 459:244-8. [PMID: 10518028 DOI: 10.1016/s0014-5793(99)01254-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A protein kinase activity intrinsic to the sarcoplasmic reticulum was studied in normal and hypertrophied rabbit hearts. The relationship between this kinase activity and phospholamban phosphorylation was examined. Calmodulin-dependent kinase II activity was found to be increased in sarcoplasmic reticulum preparations from hypertrophied hearts compared with normal. This was evident by measuring the phosphotransferase activity of the kinase and also by examining phospholamban phosphorylation by electrophoretic band shift analysis. Increased phospholamban phosphorylation by Calmodulin-dependent protein kinase II was dependent on prior phosphorylation by cAMP-dependent protein kinase, indicating potential crosstalk. Specific immunoblot analysis of the rabbit sarcoplasmic reticulum identified the presence of the delta form of calmodulin dependent protein kinase II and showed it to be up-regulated in hypertrophied hearts.
Collapse
Affiliation(s)
- S Currie
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
36
|
Hofmann F, Lacinová L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 1999; 139:33-87. [PMID: 10453692 DOI: 10.1007/bfb0033648] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | | | | |
Collapse
|
37
|
Gerhardstein BL, Puri TS, Chien AJ, Hosey MM. Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the beta 2 subunit of L-type voltage-dependent calcium channels. Biochemistry 1999; 38:10361-70. [PMID: 10441130 DOI: 10.1021/bi990896o] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-dependent L-type calcium (Ca) channels are heteromultimeric proteins that are regulated through phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrated that the beta 2 subunit was a substrate for PKA in intact cardiac myocytes through back-phosphorylation experiments. In addition, a heterologously expressed rat beta 2a subunit was phosphorylated at two sites in vitro by purified PKA. This beta 2a subunit contains two potential consensus sites for PKA-mediated phosphorylation at Thr164 and Ser591. However, upon mutation of both of these residues to alanines, the beta 2a subunit remained a good substrate for PKA. The actual sites of phosphorylation on the beta 2a subunit were identified by phosphopeptide mapping and microsequencing. Phosphopeptide maps of a bacterially expressed beta 2a subunit demonstrated that this subunit was phosphorylated similarly to the beta 2 subunit isolated from heart tissue and that the phosphorylation sites were contained in the unique C-terminal region. Microsequencing identified three serine residues, each of which conformed to loose consensus sites for PKA-mediated phosphorylation. Mutation of these residues to alanines resulted in the loss of the PKA-mediated phosphorylation of the beta 2a subunit. The results suggest that phosphorylation of the beta 2a subunit by PKA occurs at three loose consensus sites for PKA in the C-terminus and not at either of the two strong consensus sites for PKA. The results also highlight the danger of assuming that consensus sites represent actual sites of phosphorylation. The actual sites of PKA-mediated phosphorylation are conserved in most beta 2 subunit isoforms and thus represent potential sites for regulation of channel activity. The sites phosphorylated by PKA are not substrates for protein kinase C (PKC), as the mutated beta 2 subunits lacking PKA sites remained good substrates for PKC.
Collapse
Affiliation(s)
- B L Gerhardstein
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
38
|
Clusin WT, Anderson ME. Calcium channel blockers: current controversies and basic mechanisms of action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 46:253-96. [PMID: 10332505 DOI: 10.1016/s1054-3589(08)60473-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- W T Clusin
- Cardiology Division, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
39
|
Dolphin AC. L-type calcium channel modulation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:153-77. [PMID: 10218118 DOI: 10.1016/s1040-7952(99)80009-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- A C Dolphin
- Department of Pharmacology, University College of London, England
| |
Collapse
|
40
|
Rossie S. Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:23-48. [PMID: 10218113 DOI: 10.1016/s1040-7952(99)80004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- S Rossie
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
41
|
Chien AJ, Hosey MM. Post-translational modifications of beta subunits of voltage-dependent calcium channels. J Bioenerg Biomembr 1998; 30:377-86. [PMID: 9758333 DOI: 10.1023/a:1021941706726] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Different post-translational modifications of Ca channel beta subunits have been identified. Recent studies have characterized the palmitoylation of the Ca channel beta2a subunit, as well as one effect of this modification on channel function. The potential importance of palmitoylation on other channel properties is discussed. Other studies have addressed the role of phosphorylation of beta subunits in the regulation of voltage-dependent Ca channels. Phosphorylation of beta subunits by second messenger-activated protein kinases, as well as by unidentified protein kinases, may affect interactions between channel subunits and other aspects of channel function. The differential modification of Ca channel beta subunit isoforms by post-translational events likely results in diversely regulated channels with unique properties.
Collapse
Affiliation(s)
- A J Chien
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
42
|
Mikala G, Klöckner U, Varadi M, Eisfeld J, Schwartz A, Varadi G. cAMP-dependent phosphorylation sites and macroscopic activity of recombinant cardiac L-type calcium channels. Mol Cell Biochem 1998; 185:95-109. [PMID: 9746216 DOI: 10.1023/a:1006878106672] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The involvement of cAMP-dependent phosphorylation sites in establishing the basal activity of cardiac L-type Ca2+ channels was studied in HEK 293 cells transiently cotransfected with mutants of the human cardiac alpha1 and accessory subunits. Systematic individual or combined elimination of high consensus protein kinase A (PKA) sites, by serine to alanine substitutions at the amino and carboxyl termini of the alpha1 subunit, resulted in Ca2+ channel currents indistinguishable from those of wild type channels. Dihydropyridine (DHP)-binding characteristics were also unaltered. To explore the possible involvement of nonconsensus sites, deletion mutants were used. Carboxyl-terminal truncations of the alpha1 subunit distal to residue 1597 resulted in increased channel expression and current amplitudes. Modulation of PKA activity in cells transfected with the wild type channel or any of the mutants did not alter Ca2+ channel functions suggesting that cardiac Ca2+ channels expressed in these cells behave, in terms of lack of PKA control, like Ca2+ channels of smooth muscle cells.
Collapse
Affiliation(s)
- G Mikala
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati, College of Medicine, OH 45267-0828, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wetzel U, Lutsch G, Haase H, Ganten U, Morano I. Expression of smooth muscle myosin heavy chain B in cardiac vessels of normotensive and hypertensive rats. Circ Res 1998; 83:204-9. [PMID: 9686760 DOI: 10.1161/01.res.83.2.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated expression of the 5'-spliced isoform of smooth muscle myosin heavy chain (SM-MHC-B) in smooth muscle cells of cardiac vessels of the left ventricle of normotensive (Wistar-Kyoto) and spontaneously hypertensive rats of the stroke-prone strain by immunofluorescence microscopy. In parallel, liver and bladder were studied for characterization of the nature of vessels expressing SM-MHC-B and for semiquantitative evaluation of its abundance. Smooth muscle cells were detected by staining with a monoclonal antibody specific for alpha-smooth muscle actin. Abundance of the SM-MHC-B isoform in these cells was evaluated by using an antibody raised against the seven-amino acid insert at the 25K/50K junction of the myosin head (a25K/50K) that specifically recognized SM-MHC-B. In the ventricle, a25K/50K immunoreactivity was observed in smooth muscle cells of precapillary arterioles but not in larger vessels or aorta. The a25K/50K immunoresponse of those vessels with the highest expression level of SM-MHC-B closely resembled the signal observed in the smooth muscle layer of urinary bladder known to preferentially express SM-MHC-B. Interestingly, in left ventricles of stroke-prone spontaneously hypertensive rats, there was a significantly reduced fraction of a25K/50K-positive precapillary arterioles compared with normotensive control rats.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Arterioles/metabolism
- Arterioles/pathology
- Blotting, Western
- Cerebrovascular Disorders/genetics
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Susceptibility
- Gene Expression Regulation
- Heart Ventricles
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Liver/metabolism
- Male
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myosin Heavy Chains/biosynthesis
- Myosin Heavy Chains/genetics
- Organ Specificity
- RNA Splicing
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Urinary Bladder/metabolism
Collapse
Affiliation(s)
- U Wetzel
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
44
|
Vance CL, Begg CM, Lee WL, Haase H, Copeland TD, McEnery MW. Differential expression and association of calcium channel alpha1B and beta subunits during rat brain ontogeny. J Biol Chem 1998; 273:14495-502. [PMID: 9603963 DOI: 10.1074/jbc.273.23.14495] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium functions as an essential second messenger during neuronal development and synapse acquisition. Voltage-dependent calcium channels (VDCC), which are critical to these processes, are heteromultimeric complexes composed of alpha1, alpha2/delta, and beta subunits. beta subunits function to direct the VDCC complex to the plasma membrane as well as regulate its channel properties. The importance of beta to neuronal functioning was recently underscored by the identification of a truncated beta4 isoform in the epileptic mouse lethargic (lh) (Burgess, D. L., Jones, J. M., Meisler, M. H., and Noebels, J. L. (1997) Cell 88, 385-392). The goal of our study was to investigate the role of individual beta isoforms (beta1b, beta2, beta3, and beta4) in the assembly of N-type VDCC during rat brain development. By using quantitative Western blot analysis with anti-alpha1B-directed antibodies and [125I-Tyr22]omega-conotoxin GVIA (125I-CTX) radioligand binding assays, we observed that only a small fraction of the total alpha1B protein present in embryonic and early postnatal brain expressed high affinity 125I-CTX-binding sites. These results suggested that subsequent maturation of alpha1B or its assembly with auxiliary subunits was required to exhibit high affinity 125I-CTX binding. The temporal pattern of expression of beta subunits and their assembly with alpha1B indicated a developmental pattern of expression of beta isoforms: beta1b increased 3-fold from P0 to adult, beta4 increased 10-fold, and both beta2 and beta3 expression remained unchanged. As the beta component of N-type VDCC changed during postnatal development, we were able to identify both immature and mature forms of N-type VDCC. At P2, the relative contribution of beta is beta1b > beta3 >> beta2, whereas at P14 and adult the distribution is beta3 > beta1b = beta4. Although we observed no beta4 associated with the alpha1B at P2, beta4 accounted for 14 and 25% of total alpha1B/beta subunit complexes in P14 and adult, respectively. Thus, of the beta isoforms analyzed, only the beta4 was assembled with the rat alpha1B to form N-type VDCC with a time course that paralleled its level of expression during rat brain development. These results suggest a role for the beta4 isoform in the assembly and maturation of the N-type VDCC.
Collapse
Affiliation(s)
- C L Vance
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Protein phosphorylation acts a pivotal mechanism in regulating the contractile state of the heart by modulating particular levels of autonomic control on cardiac force/length relationships. Early studies of changes in cardiac protein phosphorylation focused on key components of the excitation-coupling process, namely phospholamban of the sarcoplasmic reticulum and myofibrillar troponin I. In more recent years the emphasis has shifted towards the identification of other phosphoproteins, and more importantly, the delineation of the mechanistic and signaling pathways regulating the various known phosphoproteins. In addition to cAMP- and Ca(2+)-calmodulin-dependent kinase processes, these have included regulation by protein kinase C and the ever-emerging family of growth factor-related kinases such as the tyrosine-, mitogen- and stress-activated protein kinases. Similarly, the role of protein dephosphorylation by protein phosphatases has been recognized as integral in modulating normal cardiac cellular function. Recent studies involving a variety of cardiovascular pathologies have demonstrated that changes in the phosphorylation states of key cardiac regulatory proteins may underlie cardiac dysfunction in disease states. The emphasis of this comprehensive review will be on discussing the role of cardiac phosphoproteins in regulating myocardial function and pathophysiology based not only on in vitro data, but more importantly, from ex vivo experiments with corroborative physiological and biochemical evidence.
Collapse
Affiliation(s)
- S T Rapundalo
- Department of Biochemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert, Ann Arbor, MI 48105, USA.
| |
Collapse
|
46
|
Gollasch M, Haase H, Ried C, Lindschau C, Morano I, Luft FC, Haller H. L-type calcium channel expression depends on the differentiated state of vascular smooth muscle cells. FASEB J 1998; 12:593-601. [PMID: 9576486 DOI: 10.1096/fasebj.12.7.593] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite intensive interest in understanding the differentiation of vascular smooth muscle cells (VSMC), no information is available about differential regulation of ion channels in these cells. Since expression of the L-type Ca2+ channel can be influenced by differentiation in other cell types, we tested the hypothesis that the L-type (C class) channel is a specific differentiation marker of VSMC and that expression of these channels depends on the state of cell differentiation. We used rat aortic (A7r5) VSMC, which express functional L-type Ca2+ channels, and induced dedifferentiation by cell culture in different media. Treatment with retinoic acid was used to redifferentiate the VSMC. We characterized the differentiated state of the cells by using immunohistochemistry and Western blot analysis for smooth muscle (SM) alpha-actin and SM-myosin heavy chain (MHC). The number of functional Ca2+ channels was significantly decreased in dedifferentiated VSMC and increased upon differentiation with retinoic acid. Ca2+ channel function was assessed by whole-cell voltage clamp techniques. Using Western blot and dihydropyridine binding analysis, we found that the expression of the Ca2+ channel alpha1 subunit, and to a lesser extent the beta2 subunit, was directly correlated with the expression of SM alpha-actin and SM-MHC. We conclude that expression of L-type Ca2+ channel alpha1 subunits, and thus a functional Ca2+ channel, is highly coordinated with expression of the SM-specific proteins required for specialized smooth muscle cell functions. Furthermore, our results demonstrate that the L-type Ca2+ channel is a novel marker for differentiation of VSMC. The data suggest that regulation of ion channel expression during differentiation may have physiological importance for normal smooth muscle function and may influence VSMC behavior under pathophysiological conditions.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Actins/analysis
- Animals
- Aorta
- Calcium Channel Blockers/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/biosynthesis
- Calcium Channels/physiology
- Calcium Channels, L-Type
- Cell Differentiation/drug effects
- Cell Line
- Culture Media
- Dihydropyridines/metabolism
- Kinetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myosin Heavy Chains/analysis
- Nimodipine/pharmacology
- Patch-Clamp Techniques
- Rats
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- M Gollasch
- Franz-Volhard Clinic at the Max-Delbrück Center for Molecular Medicine, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Hoch B, Haase H, Schulze W, Hagemann D, Morano I, Krause EG, Karczewski P. Differentiation-dependent expression of cardiac δ-CaMKII isoforms. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980201)68:2<259::aid-jcb12>3.0.co;2-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Ouadid-Ahidouch H. Voltage-gated calcium channels in Pleurodeles oocytes: classification, modulation and functional roles. ZYGOTE 1998; 6:85-95. [PMID: 9652075 DOI: 10.1017/s0967199400005116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In unfertilised Pleurodeles oocytes, two distinct types of high voltage-activated Ca2+ channels are expressed: a slowly inactivating Ca2+ channel and a transient one. The first is dihydropyridine-sensitive and is referred to as the L-type Ca2+ channel. The transient channel is highly sensitive to Ni2+. Phosphorylation through protein kinases G and A facilitates and inhibits the L-type Ca2+ channel respectively. The transient type channel is insensitive to stimulation by protein kinases (A and G). The functional expression of L-type and transient Ca2+ channels is modulated by the two maturation seasons. The transient Ca2+ currents are only observed during the resting season, while the L-type current is observed either alone during the breeding season or in association with the transient current during the resting season. Moreover, the current density of the L-type Ca2+ channel is much greater during the breeding season than the resting season. Thus, the wide distribution of L-type Ca2+ channels in Pleurodeles oocytes during the two seasons suggests that the roles of these channels may be important in the regulation of the maturation process.
Collapse
Affiliation(s)
- H Ouadid-Ahidouch
- Centre de Biologie Cellulaire, USTL 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
49
|
Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG. Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 1998; 37:432-44. [PMID: 9614498 DOI: 10.1016/s0008-6363(97)00128-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The development of congestive heart failure (CHF) is accompanied by left ventricular (LV) and myocyte contractile dysfunction. However, time-dependent cellular and ionic events which contribute to the initiation and progression of CHF remain unclear. This study tested the central hypothesis that changes in L-type Ca2+ channel current (ICa) and abundance (Bmax) are early events in the transition to CHF. METHODS LV fractional shortening by echocardiography, isolated LV myocyte shortening velocity by videomicroscopy, ICa by voltage-clamp, and Bmax by [3H]nitrendipine binding were determined at each week during the progression of pacing-induced CHF in pigs (240 bpm; n = 6/week for 3 weeks). Myocyte and L-type Ca2+ channel function were determined under basal conditions and after beta-adrenergic receptor stimulation with 25 nM isoproterenol. RESULTS After 1 week of pacing, myocyte and L-type Ca2+ current responses to beta-adrenergic receptor stimulation were reduced by 20% from control values and was accompanied by over a 210% increase in plasma catecholamine levels. After 2 weeks of pacing, reductions in LV fractional shortening and myocyte shortening velocity from control values (20 +/- 1 vs. 34 +/- 2% and 36.7 +/- 2.9 vs. 50.6 +/- 2.4 microns/s, respectively, P < 0.05) were paralleled by decreased ICa (2.47 +/- 0.10 vs. 3.63 +/- 0.25 pA/pF, P < 0.02) and Bmax (149 +/- 16 vs. 180 +/- 12 fmol/mg, P < 0.03). After 3 weeks of pacing, LV fractional shortening was reduced by over 50%, myocyte shortening velocity by 37%, and ICa and Bmax were reduced by over 25% from control values. Furthermore, after 3 weeks of pacing, the ICa/Bmax ratio was reduced from control values (16.2 +/- 0.9 vs. 20.6 +/- 1.2 [fA/pF]/[fmol/mg], P < 0.03), which suggests functional defects in the remaining L-type Ca2+ channels. CONCLUSIONS An early event during the transition to pacing-induced CHF was diminished beta-adrenergic receptor augmented L-type Ca2+ current, which was followed by an absolute loss of steady-state L-type Ca2+ current and channel abundance. The development of severe CHF was accompanied by a loss of Ca2+ carrying capacity through residual channels. These unique findings suggest that a contributory molecular mechanism for the initiation and progression of CHF is changes in the structure and function of the L-type Ca2+ channels.
Collapse
Affiliation(s)
- R Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
50
|
Hu H, Chiamvimonvat N, Yamagishi T, Marban E. Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 1997; 81:742-52. [PMID: 9351448 DOI: 10.1161/01.res.81.5.742] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NO donors have complex effects on Ca2+ currents in native cardiac cells, with reports of direct stimulation and indirect cGMP-mediated inhibition or stimulation. To investigate the molecular basis of these effects, we tested the effects of one class of NO donors, S-nitrosothiols (RSNOs), on expressed cardiovascular L-type Ca2+ channels (alpha 1C +/- beta 1a +/- alpha 2 or alpha 1C +/- beta 2a +/- alpha 2) in human embryonic kidney (HEK293) cells. The RSNO compounds we used were S-nitroso-N-acetylpenicillamine (SNAP, 5 to 10 nmol/L or 100 to 800 mumol/L), S-nitrosocysteine (SNC, 100 mumol/L or 1 mmol/L), and S-nitrosoglutathione (GSNO, 1 mmol/L). Currents were measured using whole-cell patch recordings with 2 to 10 mmol/L Ba2+ as the charge carrier. SNAP reduced the amplitude of barium currents (IBa) through all the subunit combinations, with and EC50 of 360 mumol/L for alpha 1C + beta 1a channels. SNC or GSNO also inhibited IBa, albeit less potently. The inhibitory effect of SNAP was not affected by methylene blue (10 to 30 mumol/L) or 8-bromo-cGMP (200 to 400 mumol/L). The effects are relatively specific for Ca2+ channels, as expressed cardiac or skeletal muscle Na+ channels, which have a similar overall architecture, were barely affected by SNAP at concentrations as high as 1 mmol/L. We conclude that in the HEK293 expression system, the S-nitrosothiol NO donors inhibit L-type Ca2+ channels by a mechanism independent of cGMP.
Collapse
Affiliation(s)
- H Hu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|