1
|
Cut loose TIMP-1: an emerging cytokine in inflammation. Trends Cell Biol 2022; 33:413-426. [PMID: 36163148 DOI: 10.1016/j.tcb.2022.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Appreciation of the entire biological impact of an individual protein can be hampered by its original naming based on one function only. Tissue inhibitor of metalloproteinases-1 (TIMP-1), mostly known for its eponymous function to inhibit metalloproteinases, exhibits only a fraction of its cellular effects via this feature. Recently, TIMP-1 emerged as a potent cytokine acting via various cell-surface receptors, explaining a so-far under-appreciated role of TIMP-1-mediated signaling on immune cells. This, at least partly, resolved why elevated blood levels of TIMP-1 correlate with progression of numerous inflammatory diseases. Here, we emphasize the necessity of unbiased name-independent recognition of structure-function relationships to properly appreciate the biological potential of TIMP-1 and other cytokines in complex physiological processes such as inflammation.
Collapse
|
2
|
Nickel S, Christ M, Schmidt S, Kosacka J, Kühne H, Roderfeld M, Longerich T, Tietze L, Bosse I, Hsu MJ, Stock P, Roeb E, Christ B. Human Mesenchymal Stromal Cells Resolve Lipid Load in High Fat Diet-Induced Non-Alcoholic Steatohepatitis in Mice by Mitochondria Donation. Cells 2022; 11:cells11111829. [PMID: 35681524 PMCID: PMC9180625 DOI: 10.3390/cells11111829] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) increasingly emerge as an option to ameliorate non-alcoholic steatohepatitis (NASH), a serious disease, which untreated may progress to liver cirrhosis and cancer. Before clinical translation, the mode of action of MSC needs to be established. Here, we established NASH in an immune-deficient mouse model by feeding a high fat diet. Human bone-marrow-derived MSC were delivered to the liver via intrasplenic transplantation. As verified by biochemical and image analyses, human mesenchymal stromal cells improved high-fat-diet-induced NASH in the mouse liver by decreasing hepatic lipid content and inflammation, as well as by restoring tissue homeostasis. MSC-mediated changes in gene expression indicated the switch from lipid storage to lipid utilization. It was obvious that host mouse hepatocytes harbored human mitochondria. Thus, it is feasible that resolution of NASH in mouse livers involved the donation of human mitochondria to the mouse hepatocytes. Therefore, human MSC might provide oxidative capacity for lipid breakdown followed by restoration of metabolic and tissue homeostasis.
Collapse
Affiliation(s)
- Sandra Nickel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
- Division of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Madlen Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Sandra Schmidt
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Joanna Kosacka
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Hagen Kühne
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, 35392 Giessen, Germany; (M.R.); (E.R.)
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Lysann Tietze
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Ina Bosse
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Mei-Ju Hsu
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, 35392 Giessen, Germany; (M.R.); (E.R.)
| | - Bruno Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
- Correspondence: ; Tel.: +49-(0)341-9713552
| |
Collapse
|
3
|
Masuzaki R, Ray KC, Roland J, Zent R, Lee YA, Karp SJ. Integrin β1 Establishes Liver Microstructure and Modulates Transforming Growth Factor β during Liver Development and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:309-319. [PMID: 33159885 DOI: 10.1016/j.ajpath.2020.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/16/2023]
Abstract
A unique and complex microstructure underlies the diverse functions of the liver. Breakdown of this organization, as occurs in fibrosis and cirrhosis, impairs liver function and leads to disease. The role of integrin β1 was examined both in establishing liver microstructure and recreating it after injury. Embryonic deletion of integrin β1 in the liver disrupts the normal development of hepatocyte polarity, specification of cell-cell junctions, and canalicular formation. This in turn leads to the expression of transforming growth factor β (TGF-β) and widespread fibrosis. Targeted deletion of integrin β1 in adult hepatocytes prevents recreation of normal hepatocyte architecture after liver injury, with resultant fibrosis. In vitro, integrin β1 is essential for canalicular formation and is needed to prevent stellate cell activation by modulating TGF-β. Taken together, these findings identify integrin β1 as a key determinant of liver architecture with a critical role as a regulator of TGF-β secretion. These results suggest that disrupting the hepatocyte-extracellular matrix interaction is sufficient to drive fibrosis.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joseph Roland
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roy Zent
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Nashville Veterans Affairs Hospital, Nashville, Tennessee
| | - Youngmin A Lee
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
4
|
TIMP-1-Mediated Chemoresistance via Induction of IL-6 in NSCLC. Cancers (Basel) 2019; 11:cancers11081184. [PMID: 31443242 PMCID: PMC6721590 DOI: 10.3390/cancers11081184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 01/28/2023] Open
Abstract
Elevated tissue inhibitor of metalloproteinase-1 (TIMP-1) is a negative prognosticator in non-small cell lung carcinoma NSCLC patients. This study sought to identify mechanisms whereby TIMP-1 impacts anticancer therapy. Using NSCLC cells and their TIMP-1 knockdown clones, we examined the chemoresistance against two chemotherapeutic agents, Gemcitabine and Cisplatin, as identified by increased apoptosis in the knockdown clones. A bead-based cytokine screening assay identified interleukin-6 (IL-6) as a key factor in chemoresistance. Exogenous human recombinant rhTIMP-1 or rhIL-6 resulted in reduced apoptosis. IL-6 expression was closely correlated with TIMP-1 kinetics and was upregulated by the addition of exogenous TIMP-1 while TIMP-1 neutralizing antibodies delayed IL-6 elevation. IL-6 production was regulated by TIMP-1, exerting its effect via activation of downstream signal transducer and activator of transcription 3 (STAT3) signaling. Both molecules and their documented transcription factors were upregulated and activated in chemoresistant NSCLC cells, confirming the roles of TIMP-1 and IL-6 in chemoresistance. To examine the role of these genes in patients, survival data from lung adenocarcinoma (LUAD) patients was curated from the cancer genome atlas (TCGA) database. Kaplan-Meier analysis found that individuals expressing low TIMP-1 and IL-6 have a higher survival rate and that the two-gene signature was more significant than the single-gene status. We define for the first time, a regulatory relationship between TIMP-1 and IL-6 in NSCLCs, suggesting that the TIMP-1/IL6 axis may be a valuable prognostic biomarker. Therapeutic interventions directed at this dual target may improve overall prognosis while negatively affecting the development of chemoresistance in NSCLC.
Collapse
|
5
|
Jeon JM, Kwon OK, Na AY, Sung EJ, Cho IJ, Kim M, Yea SS, Chun SY, Lee JH, Ha YS, Kwon TG, Lee S. Secretome profiling of PC3/nKR cells, a novel highly migrating prostate cancer subline derived from PC3 cells. PLoS One 2019; 14:e0220807. [PMID: 31404090 PMCID: PMC6690527 DOI: 10.1371/journal.pone.0220807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer among men worldwide. Most PCa cases are not fatal; however, the outlook is poor when PCa spreads to another organ. Bone is the target organ in about 80% of patients who experience metastasis from a primary PCa tumor. In the present study, we characterized the secretome of PC3/nKR cells, which are a new subline of PC3 cells that were originally isolated from nude mice that were implanted with PC3 cells without anti-natural killer (NK) cell treatment. Wound healing and Transwell assays revealed that PC3/nKR cells had increased migratory and invasive activities in addition to a higher resistance to NK cells-induced cytotoxicity as compared to PC3 cells. We quantitatively profiled the secreted proteins of PC3/nKR and PC3 cells by liquid chromatography-tandem mass spectrometry analysis coupled with 2-plex tandem mass tag labeling. In total, 598 secretory proteins were identified, and 561 proteins were quantified, among which 45 proteins were secreted more and 40 proteins were secreted less by PC3/nKR cells than by PC3 cells. For validation, the adapter molecule crk, serpin B3, and cystatin-M were analyzed by western blotting. PC3/nKR cells showed the selective secretion of NKG2D ligand 2, HLA-A, and IL-6, which may contribute to their NK cell-mediated cytotoxicity resistance, and had a high secretion of crk protein, which may contribute to their high migration and invasion properties. Based on our secretome analysis, we propose that PC3/nKR cells represent a new cell system for studying the metastasis and progression of PCa.
Collapse
Affiliation(s)
- Ju Mi Jeon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ann-Yae Na
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Ji Sung
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Mirae Kim
- Department of Biochemistry, College of Medicine, Inje University, Busan, Republic of Korea
| | - Sung Su Yea
- Department of Biochemistry, College of Medicine, Inje University, Busan, Republic of Korea
| | - So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Hyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
- * E-mail: ;
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: ;
| |
Collapse
|
6
|
Al-Humadi H, Alhumadi A, Al-Saigh R, Strilakou A, Lazaris AC, Gazouli M, Liapi C. "Extracellular matrix remodelling in the liver of rats subjected to dietary choline deprivation and/or thioacetamide administration". Clin Exp Pharmacol Physiol 2018; 45:1245-1256. [PMID: 30019784 DOI: 10.1111/1440-1681.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 07/08/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023]
Abstract
Choline deprivation is a recognized experimental approach to nonalcoholic steatohepatitis, while thioacetamide (TAA)-induced liver fibrosis resembles alcoholic liver fibrogenesis. In order to elucidate the effect of TAA on liver extracellular matrix composition under choline deprivation due to choline-deficient diet (CDD) administration, we evaluated the transcriptional and immunohistochemical (IHC) pattern of major hepatic matrix metalloproteinases (namely, MMP-2, -9) and their tissue inhibitors (TIMP-1, -2) in adult male albino Wistar rats at 30, 60 and 90 days. In the CDD+TAA group, IHC showed an early progressive increase in MMP-2 expression, while MMP-9 initially exhibited a significant increase followed by a gradual decrease; TIMP-1 and TIMP-2 IHC expressions showed gradual increase throughout the experiment. The MMPs-TIMPs regulation at the transcriptional level was found to be increased in all groups throughout the experiment. The increased MMP-2/TIMP-2 and suppressed MMP-9/TIMP-1 ratios in IHC and in real-time polymerase chain reaction (RT-PCR) seemed to correlate with the degree of liver fibrosis. These results support the important role of MMPs and TIMPs in controlling the hepatic pathogenesis and shed more light on the recently described experimental approach to liver disease (steatohepatitis) under the impact of two insults (TAA and CDD).
Collapse
Affiliation(s)
- Hussam Al-Humadi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pharmacology & Toxicology, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Ahmed Alhumadi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rafal Al-Saigh
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Clinical & Laboratory Sciences, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Athina Strilakou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas C Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science/Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece
| | - Charis Liapi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
D'Costa Z, Jones K, Azad A, van Stiphout R, Lim SY, Gomes AL, Kinchesh P, Smart SC, Gillies McKenna W, Buffa FM, Sansom OJ, Muschel RJ, O'Neill E, Fokas E. Gemcitabine-Induced TIMP1 Attenuates Therapy Response and Promotes Tumor Growth and Liver Metastasis in Pancreatic Cancer. Cancer Res 2017; 77:5952-5962. [PMID: 28765154 DOI: 10.1158/0008-5472.can-16-2833] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Gemcitabine constitutes one of the backbones for chemotherapy treatment in pancreatic ductal adenocarcinoma (PDAC), but patients often respond poorly to this agent. Molecular markers downstream of gemcitabine treatment in preclinical models may provide an insight into resistance mechanisms. Using cytokine arrays, we identified potential secretory biomarkers of gemcitabine resistance (response) in the transgenic KRasG12D; Trp53R172H; Pdx-1 Cre (KPC) mouse model of PDAC. We verified the oncogenic role of the cytokine tissue inhibitor of matrix metalloproteinases 1 (TIMP1) in primary pancreatic tumors and metastases using both in vitro techniques and animal models. We identified potential pathways affected downstream of TIMP1 using the Illumina Human H12 array. Our findings were validated in both primary and metastatic models of pancreatic cancer. Gemcitabine increased inflammatory cytokines including TIMP1 in the KPC mouse model. TIMP1 was upregulated in patients with pancreatic intraepithelial neoplasias grade 3 and PDAC lesions relative to matched normal pancreatic tissue. In addition, TIMP1 played a role in tumor clonogenic survival and vascular density, while TIMP1 inhibition resensitized tumors to gemcitabine and radiotherapy. We observed a linear relationship between TIMP-1 expression, liver metastatic burden, and infiltration by CD11b+Gr1+ myeloid cells and CD4+CD25+FOXP3+ Tregs, whereas the presence of tumor cells was required for immune cell infiltration. Overall, our results identify TIMP1 upregulation as a resistance mechanism to gemcitabine and provide a rationale for combining chemo/radiotherapy with TIMP1 inhibitors in PDAC. Cancer Res; 77(21); 5952-62. ©2017 AACR.
Collapse
Affiliation(s)
- Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Keaton Jones
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruud van Stiphout
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Su Y Lim
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Paul Kinchesh
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - W Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute of Oncology, University of Glasgow, Glasgow, United Kingdom
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Eric O'Neill
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Attia H, Al-Rasheed N, Mohamad R, Al-Rasheed N, Al-Amin M. The antifibrotic and fibrolytic properties of date fruit extract via modulation of genotoxicity, tissue-inhibitor of metalloproteinases and nuclear factor- kappa B pathway in a rat model of hepatotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:414. [PMID: 27776513 PMCID: PMC5078931 DOI: 10.1186/s12906-016-1388-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/11/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hepatic fibrosis and its end point; cirrhosis, are the major cause of liver failure and death in patients with chronic liver disease. Therefore, the need for an effective treatment is evident. This study was designed to assess the potential effects of aqueous extract of date fruits, either flesh (DFE) or pits (DPE), on oxidative DNA damage and liver inflammation induced by carbon tetrachloride (CCl4) and whether they are related to inhibition of nuclear factor-κB pathway. In addition, the fibrolytic potential was evaluated via measuring matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases -1 and -2. METHODS Rats were divided into the following groups: normal control, model control (CCl4 only), CCl4 + DFE, CCl4 + DPE and CCl4 + coffee. Coffee was used as a positive control. Fibrosis was induced by chronic administration of CCl4 (0.4 ml/kg) 3× a week for 8 weeks, and rats were treated with 6 ml/kg/day of DFE or DPE for 8 weeks. Liver homogenate was prepared for evaluation of oxidative stress, DNA damage, inflammatory and fibrolytic markers. Data are analyzed using one-way analysis of variance followed by a Tukey-Kramer post hoc test. RESULTS Both DFE and DPE significantly attenuated CCl4-induced oxidative damage as indicated by reducing lipid, protein and DNA oxidation in addition to increasing the levels of hepatic catalase activity. Both extracts blocked the accumulation of collagen I in the liver and ameliorated the increased expression of collagen III and α-smooth muscle actin suggesting suppression of profibrotic response induced by CCl4. DFE and DPE also upregulated the expression of heme oxygenase-1 and attenuated the nuclear factor-κB activation and cycloxygenase-2 expression reflecting their anti-inflammatory potential. Additionally, both flesh and pits extracts attenuated the increase in the tissue inhibitor of metalloproteinases -1 and -2 suggesting their fibrolytic activity. CONCLUSION Our data suggest that DFE or DPE can prevent liver fibrosis by suppressing genotoxicity and nuclear factor-κB inflammatory pathway and by promoting collagen degradation.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia.
- Department of Biochemistry, College of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| | - Raeesa Mohamad
- Anatomy Department, Faculty of Medicine, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| | - Maha Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Stan MS, Sima C, Cinteza LO, Dinischiotu A. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. FEBS J 2015; 282:2914-29. [PMID: 26032556 DOI: 10.1111/febs.13330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression.
Collapse
Affiliation(s)
- Miruna-Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Romania
| | - Cornelia Sima
- National Institute for Laser, Plasma and Radiation Physics, Bucharest-Magurele, Romania
| | | | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Romania
| |
Collapse
|
10
|
Rath T, Roderfeld M, Güler C, Wenzel C, Graf J, Beitinger F, Roeb E, Zachoval R. YKL-40 and transient elastography, a powerful team to assess hepatic fibrosis. Scand J Gastroenterol 2011; 46:1369-80. [PMID: 21905976 DOI: 10.3109/00365521.2011.613949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Transient elastography (TE) is a non-invasive and accurate method for the diagnosis of severe hepatic fibrosis and cirrhosis (F = 3 and F = 4). However, the assessment of significant fibrosis (F = 2) by TE is impaired due to a high variation in the diagnostic accuracy. Within this study, we aim to compare the diagnostic value of TE and experimental biomarkers of liver fibrosis. MATERIAL AND METHODS A total of 55 patients with chronic liver disease of different etiologies were included in the study. Among them, patients with HCV infection represented the largest cohort (n = 25). Liver fibrosis was evaluated according to the Desmet/Scheuer score. All patients received TE. Serum concentrations of YKL-40, hyaluronic acid (HA), Laminin, C-terminal procollagen I peptide, MMP-9, TIMP-1, TIMP-2 and MMP-9/TIMP-1 complex were determined by ELISA. RESULTS In the total patient population, areas under the receiver operator characteristic curve (AUROC) for TE were 0.798 (F ≥ 2), 0.880 (F ≥ 3) and 1 (F = 4). Among the serum markers, highest diagnostic accuracies were calculated for YKL-40 for F ≥ 2 (0.792) and F ≥ 3 (0.914) and for YKL-40 and HA for F = 4 (both 0.936). In the subgroup of HCV patients, the following AUROCs for TE were calculated: 0.802 (F ≥ 2), 0.798 (F ≥ 3) and 0.998 (F = 4). YKL-40 exhibited the highest diagnostic accuracy of all biomarkers in the HCV population (0.880, 0.854 and 0.986, respectively). CONCLUSIONS YKL-40 is a powerful fibrosis marker with high diagnostic accuracy, in particular in HCV-associated liver disease. Its determination may confirm and improve the diagnostic accuracy of TE especially in early stages of liver fibrosis.
Collapse
Affiliation(s)
- Timo Rath
- Department of Internal Medicine, Division of Gastroenterology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Lafdil F, Wang L, Yin S, Feng D, Gao B. Tissue inhibitor of metalloproteinase 1 (TIMP-1) deficiency exacerbates carbon tetrachloride-induced liver injury and fibrosis in mice: involvement of hepatocyte STAT3 in TIMP-1 production. Cell Biosci 2011; 1:14. [PMID: 21711826 PMCID: PMC3125204 DOI: 10.1186/2045-3701-1-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
Background Tissue inhibitor of metalloproteinase 1 (TIMP-1), which is thought to be produced mainly by activated hepatic stellate cells and Kupffer cells in the liver, plays a pivotal role in matrix remodeling during liver injury and repair; while the effect of TIMP-1 on hepatocellular damage remains obscure. Results Hepatic expression of TIMP-1 mRNA and protein was up-regulated both in acute and chronic liver injury induced by carbon tetrachloride (CCl4). Compared with wild-type mice, TIMP-1 knockout mice were more susceptible to CCl4-induced acute and chronic liver injury, as shown by higher levels of serum alanine aminotransferase (ALT), greater number of apoptotic hepatocytes, and more extended necroinflammatory foci. TIMP-1 knockout mice also displayed greater degree of liver fibrosis after chronic CCl4 injection when compared with wild-type mice. In vitro treatment with TIMP-1 inhibited cycloheximide-induced cell death of primary mouse hepatocytes. Finally, up-regulation of TIMP-1 in the liver and serum after chronic CCl4 treatment was markedly diminished in hepatocyte-specific signal transducer and activator of transcription 3 (STAT3) knockout mice. In vitro treatment with interleukin-6 stimulated TIMP-1 production in primary mouse hepatocytes, but to a lesser extent in STAT3-deficient hepatocytes. Conclusions TIMP-1 plays an important role in protecting against acute and chronic liver injury and subsequently inhibiting liver fibrosis induced by CCl4. In addition to activated stellate cells and Kupffer cells, hepatocytes are also responsible for TIMP-1 production during liver injury via a STAT3-dependent manner.
Collapse
Affiliation(s)
- Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Müller-Newen G, Roeb E. Latent MMP-9 is bound to TIMP-1 before secretion. Biol Chem 2008; 388:1227-34. [PMID: 17976016 DOI: 10.1515/bc.2007.123] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Expression patterns of matrix metalloproteinase-9 (MMP-9) and its specific inhibitor, tissue inhibitor of metalloproteinases-1 (TIMP-1), are closely correlated with physiological and pathological processes characterized by the degradation and accumulation of the extracellular matrix (ECM). Both, activated MMP-9 and pro-MMP-9 can bind to TIMP-1, and most cell types secrete MMP-9 in complex with TIMP-1. Utilizing immunofluorescence, we observed intracellular co-localization of MMP-9 and TIMP-1 in stimulated human fibrosarcoma cells. In the present study we searched for the origin of the complex formation between the latent enzyme and its specific inhibitor on a subcellular level. Fluorescence resonance energy transfer (FRET) between the fluorescently labeled enzyme and its inhibitor in co-transfected cells were measured. MMP-9 and TIMP-1 were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein and transiently expressed in human hepatoma cells. The intracellular distribution of fluorescently labeled TIMP-1 and MMP-9 was analyzed by confocal laser scanning microscopy. Intracellular complex formation in the Golgi apparatus was verified, demonstrating FRET between MMP-9-CFP and TIMP-1-YFP. Our data provide evidence that the proMMP-9-TIMP-1 complex is already present in the Golgi apparatus. This may be of significance for a number of intracellular and extracellular biochemical processes involving proMMP-9. However, the magnitude and functional relevance of this finding remain unknown.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Medicine II, Gastroenterology, University Hospital Giessen & Marburg GmbH, Justus Liebig University Giessen, D-35392, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 2007; 46:955-75. [PMID: 17383048 DOI: 10.1016/j.jhep.2007.02.003] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In liver tissue matrix metalloproteinases (MMPs) and their specific inhibitors (tissue inhibitors of metalloproteinases, TIMPs) play a pivotal role in both, fibrogenesis and fibrolysis. The current knowledge of the pathophysiology of liver fibrogenesis with special emphasis on MMPs and TIMPs is presented. A systematic literature search was conducted. All experimental models of liver fibrosis that evaluated a defined anti-fibrotic intervention in vivo or in vitro considering MMPs and TIMPs were selected. The methodological quality of all these publications has been critically appraised using an objective scoring system and the content has been summarized in a table.
Collapse
Affiliation(s)
- Stefanie Hemmann
- Department of Medicine II, Gastroenterology, University Hospital Giessen and Marburg GmbH, Paul-Meimberg-Str. 5, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
14
|
Luckett LR, Gallucci RM. Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. Br J Dermatol 2007; 156:1163-71. [PMID: 17441960 DOI: 10.1111/j.1365-2133.2007.07867.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Interleukin-6-deficient (IL-6KO) mice display significantly delayed cutaneous wound healing characterized by decreased re-epithelialization, granulation tissue and wound closure. Dermal fibroblasts are one of the principal cell types found in granulation tissue and mediate numerous processes during healing. OBJECTIVES To investigate the effects that IL-6 might have on granulation tissue formation and fibroblast motility. As fibroblast motility is associated with matrix metalloproteinase (MMP) activity, the expression of MMP-2 and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2 were assessed. METHODS Punch biopsies (4 mm) were performed in the skin of IL-6KO and C57BL/6 mice. The expression of MMP-2, TIMP-1 and -2 in wound tissue was monitored over time. Cellular infiltration and granulation tissue formation was monitored by subcutaneous implantation of polyvinyl alcohol (PVA) sponges. A free-floating collagen lattice model was also used to investigate the direct effects of IL-6 treatment on isolated IL-6KO fibroblasts. The expression of MMP-2, and the inhibitors TIMP-1 and -2, were assessed via real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS IL-6KO wounds showed impaired granulation tissue formation 5 days postwounding and fewer fibroblasts had populated the PVA matrices 7 days after implantation in IL-6KO mice compared with wild-type C57BL/6. The mRNA and protein expression of MMP-2 and TIMP-2 mRNA was increased in IL-6KO mice compared with wild-type mice beyond 1 day postwounding, while the expression of TIMP-1 mRNA was transiently higher in IL-6KO only 3 days postwounding. Treatment of collagen lattices with various concentrations of rmIL-6 again showed a dose-response decrease in mRNA and protein expression of MMP-2 and TIMP-2 protein expression, compared with saline control, while TIMP-1 did not appear to be significantly modulated. CONCLUSIONS These results indicate that IL-6 influences the function of fibroblasts in wounds, and one mechanism of this regulation may be through the modulation of MMP-2 and TIMP proteins.
Collapse
Affiliation(s)
- L R Luckett
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | | |
Collapse
|
15
|
Roderfeld M, Geier A, Dietrich CG, Siewert E, Jansen B, Gartung C, Roeb E. Cytokine blockade inhibits hepatic tissue inhibitor of metalloproteinase-1 expression and up-regulates matrix metalloproteinase-9 in toxic liver injury. Liver Int 2006; 26:579-86. [PMID: 16762003 DOI: 10.1111/j.1478-3231.2006.01271.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Tissue inhibitor of metalloproteinases (TIMP)-1, the most important endogenous inhibitor of matrix metalloproteinases, plays a pivotal role in the pathogenesis of liver fibrosis and may represent an effective therapeutic target in the design of antifibrotic strategies for chronic liver diseases. METHODS Intraperitoneal application of a single dose of either tumor necrosis factor (TNF)-alpha or interleukin (IL)-1beta in mice led to an enhanced expression of hepatic TIMP-1 after 4-16 h. Male Sprague-Dawley rats were treated with carbon tetrachloride (CCl4) in the presence and absence of specific TNF-alpha and IL-1beta inhibitors. RESULTS Real-time PCR revealed a significant increase of TIMP-1 mRNA in total rat liver 24 h after CCl4 injection. Repetitive injection of both, etanercept and anakinra, before and after CCl4 injection effectively inactivated TNF-alpha and IL-1beta. Anticytokine pretreatment reduced the increase of TIMP-1 expression after a single CCl4 injection by 50% and 75%, respectively. In contrast to CCl4-treated rats with and without TNF-alpha blockade, IL-1beta inactivation caused a sevenfold increase in matrix metalloproteinases-9 mRNA levels. CONCLUSIONS In conclusion, TIMP-1 expression is up-regulated in the early phase of toxic liver injury by proinflammatory cytokines such as TNF-alpha and IL-1beta in rodents. Pharmacological inactivation of these cytokines significantly reduces TIMP-1 gene expression. Our data provide a potential new antifibrotic approach.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology (Medical Clinic 11), University Hospital, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Roderfeld M, Weiskirchen R, Wagner S, Berres ML, Henkel C, Grötzinger J, Gressner AM, Matern S, Roeb E. Inhibition of hepatic fibrogenesis by matrix metalloproteinase‐9 mutants in mice. FASEB J 2006; 20:444-54. [PMID: 16507762 DOI: 10.1096/fj.05-4828com] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) plays a crucial role in the pathogenesis of hepatic fibrosis and thus may represent an important therapeutic target in the design of anti-fibrotic strategies for chronic liver disease. We present an innovative therapy based on the assignment of inactivated enzymes acting as scavengers for TIMP-1. Hepatic fibrosis was induced in BALB/c mice by repetitive intraperitoneal CCl4 injection. The animals were treated with proteolytic inactive matrix metalloproteinase-9 mutants (E402Q, H401A, E402H/H411E) using adenovirus-mediated gene transfer. Application of these MMP-9 mutants inhibited fibrogenesis, which was indicated by decreasing portal and periportal accumulation of collagen. Total hydroxyproline of liver tissue, the morphometric stage of fibrosis as well as mRNA expression of marker proteins for hepatic fibrosis in livers of E402Q- and H401A-treated mice were significantly reduced. MMP-9 mutants suppressed transdifferentiation of hepatic stellate cells to the myofibroblast like phenotype in vitro and in vivo. Moreover, adenoviral application of the mutants MMP-9-H401A and -E402Q led to increased apoptosis of activated hepatic stellate cells, thought to be the main promoters of hepatic fibrosis. Application of MMP-9 mutants as TIMP-1 scavengers may provide a new therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Garcíade León MDC, Montfort I, Tello Montes E, López Vancell R, Olivos García A, González Canto A, Nequiz-Avendaño M, Pérez-Tamayo R. Hepatocyte production of modulators of extracellular liver matrix in normal and cirrhotic rat liver. Exp Mol Pathol 2005; 80:97-108. [PMID: 16332368 DOI: 10.1016/j.yexmp.2005.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 03/28/2005] [Indexed: 01/18/2023]
Abstract
In the present study, we found collagenolytic and gelatinolytic activity in the supernatants of hepatocyte cultures from rats with experimental CCl(4)-induced liver cirrhosis, in levels significantly higher than in comparable supernatants of hepatocyte cultures from normal rats. In addition, we clearly detected the messenger ribonucleic acids (mRNA) of four matrix metalloproteinases (MMP-2, MMP-3, MMP-10, and MMP-13) and of two tissue inhibitors of matrix metalloproteinases (TIMP-1 and TIMP-2) in hepatocytes from both normal and cirrhotic rats by RT-PCR and by in situ hybridization. Finally, we demonstrated MMP-2, MMP-3, and MMP-13 and TIMP-1 and TIMP-2 proteins in the same hepatocyte preparations by immunostaining. We conclude that rat hepatocytes produce the major enzymes and inhibitors involved in liver ECM modulation and therefore suggests that they might participate actively in the pathophysiology of liver cirrhosis in rats.
Collapse
Affiliation(s)
- María del Carmen Garcíade León
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, y Hospital General, de México, D.F. 06720, México
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Roeb E, Bosserhoff AK, Hamacher S, Jansen B, Dahmen J, Wagner S, Matern S. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases: Relevance to intracellular signaling pathways. World J Gastroenterol 2005; 11:1096-104. [PMID: 15754388 PMCID: PMC4250697 DOI: 10.3748/wjg.v11.i8.1096] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells.
METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases.
RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1.
CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9.
Collapse
Affiliation(s)
- Elke Roeb
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstr. 30, 52057 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
McMillian M, Nie AY, Parker JB, Leone A, Kemmerer M, Bryant S, Herlich J, Yieh L, Bittner A, Liu X, Wan J, Johnson MD. Inverse gene expression patterns for macrophage activating hepatotoxicants and peroxisome proliferators in rat liver. Biochem Pharmacol 2004; 67:2141-65. [PMID: 15135310 DOI: 10.1016/j.bcp.2004.01.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 01/28/2004] [Indexed: 12/21/2022]
Abstract
Macrophage activation contributes to adverse effects produced by a number of hepatotoxic compounds. Transcriptional profiles elicited by two macrophage activators, LPS and zymosan A, were compared to those produced by 100 paradigm compounds (mostly hepatotoxicants) using cDNA microarrays. Several hepatotoxicants previously reported to activate liver macrophages produced transcriptional responses similar to LPS and zymosan, and these were used to construct a gene signature profile for macrophage activators in the liver. Measurement of cytokine mRNAs in the same liver samples by RT-PCR independently confirmed that these compounds are associated with macrophage activation. In addition to expected effects on acute phase proteins and metabolic pathways that are regulated by LPS and inflammation, a strong induction was observed for many endoplasmic reticulum-associated stress/chaperone proteins. Additionally, many genes in our macrophage activator signature profile were well-characterized PPARalpha-induced genes which were repressed by macrophage activators. A shared gene signature profile for peroxisome proliferators was determined using a training set of clofibrate, WY 14643, diethylhexylphthalate, diisononylphthalate, perfluorodecanoic acid, perfluoroheptanoic acid, and perfluorooctanoic acid. The signature profile included macrophage activator-induced genes that were repressed by peroxisome proliferators. NSAIDs comprised an interesting pharmacological class in that some compounds, notably diflunisal, co-clustered with peroxisome proliferators whereas several others co-clustered with macrophage activators, possibly due to endotoxin exposure secondary to their adverse effects on the gastrointestinal system. While much of these data confirmed findings from the literature, the transcriptional patterns detected using this toxicogenomics approach showed relationships between genes and biological pathways requiring complex analysis to be discerned.
Collapse
Affiliation(s)
- Michael McMillian
- Johnson & Johnson Pharmaceutical Research & Development, LLC, Raritan, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Streetz KL, Tacke F, Leifeld L, Wüstefeld T, Graw A, Klein C, Kamino K, Spengler U, Kreipe H, Kubicka S, Müller W, Manns MP, Trautwein C. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology 2003; 38:218-29. [PMID: 12830005 DOI: 10.1053/jhep.2003.50268] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The contribution of the acute phase inducer interleukin 6 (IL-6) in the pathogenesis of liver diseases is yet unclear. Our analysis showed enhanced expression of IL-6 in livers derived from patients with acute and chronic liver diseases. Additionally, IL-6 plasma levels were significantly increased in patients with chronic liver diseases and showed an inverse correlation with biochemical markers of liver function and a positive correlation with inflammatory markers, signs of portal hypertension, and the degree of liver fibrosis. To prove the relevance of these clinical findings, we applied the tetrachlorcarbonide (CCl(4)) model to conditional knockout animals (Cre/loxP system) for gp130, the common signal transducer of IL-6 family cytokines. Cre recombinases were expressed through a hepatocyte (AlfpCre) and a ubiquitous (MxCre) control element. Gp130 deleted mice had a totally abolished STAT3 activation and acute phase response induction, but gp130 deletion had no effect on the degree of acute liver injury and subsequent hepatocyte proliferation. In contrast, during chronic liver injury induced by biweekly application of CCl(4), deletion of the gp130 receptor in nonparenchymal liver cells and not hepatocytes resulted in fibrosis progression. In conclusion, our experiments indicate an involvement of IL-6 in the pathogenesis of liver diseases and suggest a protective role of IL-6/gp130-dependent pathways in nonparenchymal liver cells during fibrosis progression in chronic liver diseases. (Hepatology 2003;38:218-229).
Collapse
Affiliation(s)
- Konrad L Streetz
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tachibana K, Shimizu T, Tonami K, Takeda K. Staurosporine enhances the expression of tissue inhibitor of metalloproteinase-1 in human prostate cancer cells. Biochem Biophys Res Commun 2002; 295:489-94. [PMID: 12150976 DOI: 10.1016/s0006-291x(02)00704-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We reported previously that human prostate cancer cell line TSU-Pr1 can differentiate into neuronal cells by staurosporine treatment. In this process, reduction of invasive abilities was observed in staurosporine treated TSU-Pr1 cells. In the present study, we investigated the effect of staurosporine on tissue inhibitor of metalloproteinases (TIMPs) in prostate cancer cells. We show that treatment of TSU-Pr1 cells with staurosporine results in induction of TIMP-1 mRNA and protein secretion. The induction of TIMP-1 mRNA expression by staurosporine is likely to be caused by increased transcriptional activity and this mechanism is indirect. Furthermore, recombinant human TIMP-1 reduces the invasive activity of TSU-Pr1 cells. We are the first to report that mRNA expression and protein secretion of TIMP-1 are enhanced by staurosporine treatment in prostate cancer cells. These findings suggest that enhancement of TIMP-1 is associated with suppression of invasive activity caused by staurosporine treatment.
Collapse
Affiliation(s)
- Ken Tachibana
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 12 Ichigaya, Funagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | | | | | | |
Collapse
|
22
|
Oelmann E, Herbst H, Zühlsdorf M, Albrecht O, Nolte A, Schmitmann C, Manzke O, Diehl V, Stein H, Berdel WE. Tissue inhibitor of metalloproteinases 1 is an autocrine and paracrine survival factor, with additional immune-regulatory functions, expressed by Hodgkin/Reed-Sternberg cells. Blood 2002; 99:258-67. [PMID: 11756180 DOI: 10.1182/blood.v99.1.258] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 are proteins with proteinase-inhibiting and cytokine properties. TIMP-1 is active primarily in B cells and B-cell lymphomas, whereas TIMP-2 expression is restricted to T cells. The expression of TIMP-1 and TIMP-2 in lymph nodes from patients with Hodgkin disease (HD) and in Hodgkin-derived cell lines was investigated. In situ hybridization showed TIMP-1 RNA expression in 3% to 80% of Hodgkin/Reed-Sternberg (H/R-S) cells from 14 of 15 patients, with results in one patient being at the lowest detection limit; no expression of TIMP-2 in H/R-S cells; and only weak expression of TIMP-2 in reactive lymphoid tissue. Production of TIMP-1 protein by H/R-S cells was accordingly found on immunohistochemical analysis of lymph nodes from patients with HD. There was only low expression of matrix metalloproteinase (MMP)-2, which is mainly inhibited by TIMP-2; no expression of MMP-1 and MMP-3 in reactive lymphoid tissue; and no expression of these MMPs in H/R-S cells. Thus, TIMP-1 expression in lymph nodes was not correlated with metalloproteinase expression. Five of 7 Hodgkin-derived cell lines expressed TIMP-1 at the protein level. Only one of these cell lines expressed TIMP-2, at the lowest detection limit. TIMP-1 levels in plasma from patients with HD were within the same range as those in plasma from healthy controls. Recombinant human TIMP-1 inhibited induced cell death in Hodgkin-derived cell lines in vitro. TIMP-1 and TIMP-2 inhibited T-cell cytotoxicity against autologous cells presenting tumor-associated antigens and in allogeneic mixed lymphocyte cultures. Thus, TIMP-1, aside from its role in proteinase equilibrium, is an autocrine and paracrine survival factor for H/R-S cells and an immunosuppressive protein expressed in Hodgkin lymphomas.
Collapse
Affiliation(s)
- Elisabeth Oelmann
- Department of Medicine (Hematology/Oncology), Westfaelische Wilhelms Universitaet Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lichtinghagen R, Michels D, Haberkorn CI, Arndt B, Bahr M, Flemming P, Manns MP, Boeker KH. Matrix metalloproteinase (MMP)-2, MMP-7, and tissue inhibitor of metalloproteinase-1 are closely related to the fibroproliferative process in the liver during chronic hepatitis C. J Hepatol 2001; 34:239-47. [PMID: 11281552 DOI: 10.1016/s0168-8278(00)00037-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS To study whether expression of matrix metalloproteinases and their inhibitors correlate with ongoing fibrogenesis, we measured hepatic mRNA levels of matrix metalloproteinase (MMP) -2, MMP-7, and MMP-9 as well as tissue inhibitor of metalloproteinase (TIMP) -1, TIMP-2, and TIMP-3 and compared it to histology, procollagen IV alpha-1 chain mRNA levels, and biochemical parameters in patients with chronic active hepatitis C (CAH). METHODS Quantitative reverse transcription-polymerase chain reaction/enzyme-linked immunossorbent assay using in vitro transcribed competitor and standard RNA were performed from ten normal livers (N), 29 CAH liver biopsies and seven samples with hepatitis C virus (HCV)-induced end-stage cirrhosis (Ci). RESULTS From N to Ci both TIMP and MMP RNA expression increased. However, none of the RNA levels differed significantly between CAH patients with and without fibrosis. Non-parametric correlation analysis and receiver operating characteristics curves show that MMP-2, MMP-7, and TIMP-1 provide the best discrimination between cirrhosis and pre-cirrhotic stages. They also correlate with histologic and biochemical inflammatory activity and with procollagen IV mRNA. CONCLUSION Hepatic fibroproliferation is associated with alterations of hepatic TIMP and MMP expression. The relation of hepatic TIMP and MMP mRNA levels to disease stage and inflammatory activity underlines their potential as diagnostic markers in chronic liver disease.
Collapse
Affiliation(s)
- R Lichtinghagen
- Department of Clinical Chemistry, Medizinische Hochschule, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu HL, Li XH, Wang DY, Yang SP. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 expression in fibrotic rat liver. World J Gastroenterol 2000; 6:881-884. [PMID: 11819713 PMCID: PMC4728279 DOI: 10.3748/wjg.v6.i6.881] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
25
|
Roeb E, Behrmann I, Grötzinger J, Breuer B, Matern S. An MMP-9 mutant without gelatinolytic activity as a novel TIMP-1-antagonist. FASEB J 2000; 14:1671-3. [PMID: 10973913 DOI: 10.1096/fj.99-0947fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- E Roeb
- Medizinische Klinik III, Institut für Biochemie, 52057 Aachen, Germany.
| | | | | | | | | |
Collapse
|
26
|
Roeb E, Winograd R, Breuer B, Nguyen H, Matern S. Increased TIMP-1 activity results in increased expression of gelatinases and altered cell motility. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991101)75:2<346::aid-jcb16>3.0.co;2-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Arthur MJ, Iredale JP, Mann DA. Tissue inhibitors of metalloproteinases: role in liver fibrosis and alcoholic liver disease. Alcohol Clin Exp Res 1999; 23:940-3. [PMID: 10371419 DOI: 10.1111/j.1530-0277.1999.tb04208.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In liver fibrosis, activated hepatic stellate cells (HSC) play a major role in the deposition of excess extracellular matrix, including fibrillar collagens type I and type III. In addition to matrix protein synthesis, HSC regulate matrix degradation in the liver. This is mediated via a combination of synthesis of matrix (pro)metalloproteinases, which activate these zymogens via specific mechanisms and by inhibiting the active matrix-degrading enzymes via expression of tissue inhibitors of metalloproteinases (TIMPs). There are currently four members of the TIMP family described and of these, both TIMP-1 and TIMP-2 are synthesised by HSC. These observations have led to the suggestion that inhibition of matrix degradation mediated by a change in HSC-expression of TIMPs relative to metalloproteinases, such as interstitial collagenase, may contribute to progression of liver fibrosis. This hypothesis is supported by studies of human liver disease in which TIMP-1 expression is upregulated 5-fold in cirrhotic compared with normal liver. TIMP-1 and TIMP-2 expression is also upregulated in animal models of progressive fibrosis, whereas expression of collagenase is unchanged. In a model which is characterized by natural resolution of liver fibrosis, degradation of the deposited fibrillar liver matrix is accompanied by rapid down-regulation of TIMP-1 expression. In alcoholic liver disease, the role of TIMPs has not been studied exhaustively, but the evidence currently available supports a role for inhibition of matrix degradation by TIMPs in this progressive fibrotic liver disease.
Collapse
Affiliation(s)
- M J Arthur
- University Medicine, University of Southampton, Hampshire, United Kingdom.
| | | | | |
Collapse
|
28
|
Yata Y, Takahara T, Furui K, Zhang LP, Watanabe A. Expression of matrix metalloproteinase-13 and tissue inhibitor of metalloproteinase-1 in acute liver injury. J Hepatol 1999; 30:419-24. [PMID: 10190724 DOI: 10.1016/s0168-8278(99)80100-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS Matrix metalloproteinase-13, one of the principal neutral proteinases capable of cleaving native fibrillar collagens, is important in the degradation and remodeling of extracellular matrix. However, its precise expression in liver injury has not been characterized. We examined the kinetics of the expression of matrix metalloproteinase-13 and one of its specific inhibitors, tissue inhibitor of metalloproteinase-1, in acute liver injury in rats. METHODS Acute liver injury was induced by administration of carbon tetrachloride or two different doses of D-galactosamine hydrochloride in Wistar rats. Hepatic matrix metalloproteinase-13 and tissue inhibitor of metalloproteinase-1 mRNA levels were then examined by Northern blotting. RESULTS All rats survived after liver injury induced by carbon tetrachloride or low doses of D-galactosamine hydrochloride. However, rats died 5 days after induction of liver injury by high doses of D-galactosamine hydrochloride. In carbon tetrachloride-induced liver injury, matrix metalloproteinase-13 mRNA was transiently increased between 6 h and 1 day after injury. Tissue inhibitor of metalloproteinase-1 mRNA expression was increased between 6 h and 3 days after the peak of matrix metalloproteinase-13 expression. Similar patterns of matrix metalloproteinase-13 and tissue inhibitor of metalloproteinase-1 expression were observed in low-dose D-galactosamine hydrochloride-induced liver injury. In contrast, in high-dose D-galactosamine hydrochloride-induced liver injury, tissue inhibitor of metalloproteinase-1 expression peaked before matrix metalloproteinase-13 expression, which was increased 2 days after injury. Both mRNA levels continued to increase until death. CONCLUSIONS Transient expression of matrix metalloproteinase-13, followed by that of tissue inhibitor of metalloproteinase-1, was observed during recovery from acute liver injury induced by carbon tetrachloride and low-dose D-galactosamine hydrochloride. In contrast, disordered expression of matrix metalloproteinase-13 was observed in fatal liver injury caused by high-dose D-galactosamine hydrochloride. These results indicate that matrix metalloproteinase13 plays an important role in the early phase of recovery from liver injury.
Collapse
Affiliation(s)
- Y Yata
- Third Department of Internal Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
29
|
Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol 1999; 30:48-60. [PMID: 9927150 DOI: 10.1016/s0168-8278(99)80007-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS Although matrix metalloproteinases (MMPs) and their specific inhibitors (TIMPs) play an essential role in liver injury associated with tissue remodeling, the cellular origin of MMPs/TMPs within the liver remains to be clarified. METHODS Different liver cell populations were analysed with respect to their expression by reverse transcription-polymerase chain reaction, Northern blot analysis and zymography. RESULTS MMP and TIMP coding transcripts were detectable in all liver cell types by reverse transcription-polymerase chain reaction; however, the cellular expression levels were markedly different as assessed by Northern blot analysis. Gelatinase-B was predominantly expressed in Kupffer cells, gelatinase-A in hepatic stellate cells and rat liver myofibroblasts and stromelysins-1, -2 as well as collagenase in hepatic stellate cells. Membrane type-1 MMP (MMP-14) was found in significant amounts in all liver cells. TIMP-1 coding m-RNAs were present mainly in hepatic stellate cells and rat liver myofibroblasts, TIMP-2 additionally in Kupffer cells, while TIMP-3 expression was detectable only in hepatocytes. During in vitro activation of hepatic stellate cells, MMP expression was mostly downregulated, while TIMP expression was enhanced, thereby providing an explanation for matrix accumulation co-localised with these cells during chronic liver injury. In general, TNF-alpha stimulated both MMP and TIMP expression of hepatic stellate cells, while TGF-beta1 induced TIMP expression only. CONCLUSIONS Collectively these data demonstrate that all resident liver cells are involved in matrix degradation to some extent and that hepatic stellate cells play an important role in matrix breakdown in addition to matrix synthesis. The cytokine-specific regulation of MMP/TIMP expression in hepatic stellate cells suggests that the initial matrix breakdown following liver injury might be enhanced by TNF-alpha, while diminished matrix degradation during chronic tissue injury might be due to the action of TGF-beta1 through TIMP induction.
Collapse
Affiliation(s)
- T Knittel
- Department of Internal Medicine, University of Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Nothnick WB, Soloway PD. Novel implications in the development of endometriosis: biphasic effect of macrophage activation on peritoneal tissue expression of tissue inhibitor of metalloproteinase-1. Am J Reprod Immunol 1998; 40:364-9. [PMID: 9870081 DOI: 10.1111/j.1600-0897.1998.tb00067.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Elevated levels of activated macrophages are associated with endometriosis, but their role in the etiology of the disease is uncertain. The current study was undertaken to examine whether activated macrophages could modulate peritoneal tissue expression of the tissue inhibitor of metalloproteinase-1 (TIMP-1), which may play a role in the development of endometriosis. METHOD OF STUDY Female mice were treated with the macrophage activator lipopolysaccharide (LPS), and peritoneum TIMP-1 mRNA was examined by Northern blot analysis. RESULTS LPS induced a dose-dependent increase (P < 0.05) in TIMP-1 mRNA expression at levels of 1 microgram (70.0% +/- 5.8% greater than the control), 10 micrograms (83.0% +/- 12.0% greater than the control), and 25 micrograms (100.0% +/- 10.0% greater than the control). In contrast, the administration of 50 micrograms of LPS resulted in a decrease in TIMP-1 mRNA expression below baseline levels (18.0% +/- 6.0% less than the control values). CONCLUSIONS Activated macrophages and/or their products modulate peritoneum TIMP-1 expression. These data suggest that, in addition to their phagocytotic role in the peritoneal cavity, these immune cells also may play a novel role in influencing the ability of the peritoneum to regulate tissue/cell invasion and in the development of endometriosis through TIMP-1 expression.
Collapse
Affiliation(s)
- W B Nothnick
- University of Kansas Medical Center, Department of Obstetrics and Gynecology, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
31
|
Arthur MJ, Mann DA, Iredale JP. Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol 1998; 13:S33-S38. [PMID: 28976699 DOI: 10.1111/jgh.1998.13.s1.33] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic stellate cells (HSC) play a central role in the pathogenesis of liver fibrosis. Following liver injury, these cells proliferate and are activated to a profibrogenic myofibroblastic phenotype. In addition to increased matrix protein synthesis, there is evidence to indicate that these cells are able to regulate matrix degradation. In the early phases of their cellular activation, HSC release matrix metalloproteinases with the ability to degrade the normal liver matrix. When HSC are fully activated, there is a net down-regulation of matrix degradation mediated by increased synthesis and extracellular release of tissue inhibitors of metalloproteinase (TIMP)-1 and -2. These studies in cell culture have been complemented by in vivo studies of hepatic TIMP-1 and TIMP-2 gene expression. In advanced human liver disease of various aetiologies, there is increased TIMP-1-mRNA and protein and increased TIMP-2-mRNA in fibrotic liver compared with control liver. Temporal studies of progressive rat liver fibrosis caused by bile duct ligation or by carbon tetrachloride, indicate an important role for increased TIMP-1 and TIMP-2 expression in pathogenesis. Moreover, in a rat model of reversible liver fibrosis, matrix remodelling and resolution of liver fibrosis is closely associated, temporally, with a marked decrease in TIMP-1 and TIMP-2 expression. These combined cell culture and in vivo findings have led us to investigate the mechanisms of regulation of TIMP-1 gene expression in hepatic stellate cells. Our recent data indicate that transcriptional regulation of TIMP-1 gene expression in HSC is mediated via a mechanism which differs considerably from that previously identified in skin fibroblasts. We conclude that increased TIMP-1 and TIMP-2 expression by HSC plays an important role in the pathogenesis of liver fibrosis. This may represent an important therapeutic target in the design of anti-fibrotic strategies for chronic liver disease.
Collapse
Affiliation(s)
- Michael Jp Arthur
- University Medicine, University of Southampton, Southampton, United Kingdom
| | - Derek A Mann
- University Medicine, University of Southampton, Southampton, United Kingdom
| | - John P Iredale
- University Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
|
33
|
Botelho FM, Edwards DR, Richards CD. Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 1998; 273:5211-8. [PMID: 9478976 DOI: 10.1074/jbc.273.9.5211] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) can be regulated by gp130 cytokines such as IL-6 and oncostatin M (OSM). Polymerase chain reaction deletion analysis of the murine TIMP-1 proximal promoter in chloramphenicol acetyltransferase reporter gene constructs identified an AP-1 element (-59/-53) that allows maximal responsiveness to OSM in HepG2 cells. Fos and Jun nuclear factors bound constitutively to this site as identified by supershift analysis in electrophoretic mobility shift assays, and oncostatin M (but not IL-6) induced an additional "complex 2" that contained c-Fos and JunD. OSM stimulated a rapid and transient increase in c-Fos mRNA and nuclear protein that coincided with complex 2 formation. Phorbol 13-myristate 12-acetate could also induce c-Fos but could not regulate the TIMP-1 reporter gene constructs. Transfection studies also showed that 3'-deletion of sequences downstream of the transcriptional start site (+1/+47) markedly reduced OSM -fold induction. Nuclear factors bound to SP1 and Ets sequences were detected, but were not altered upon OSM stimulation. Although OSM and IL-6 induced STAT (signal transducers and activators of transcription) factors to bind a high affinity Sis-inducible element DNA probe, binding to homologous TIMP-1 promoter sequences was not detected. Thus, OSM (but not IL-6) stimulates c-Fos, which participates in maximal activation of TIMP-1 transcription, likely in cooperation with other factors such as SP1 or as yet unidentified mechanisms involving the +1 to +47 region of the promoter.
Collapse
Affiliation(s)
- F M Botelho
- Molecular Virology and Immunology Program, Department of Pathology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
34
|
Roeb E, Purucker E, Breuer B, Nguyen H, Heinrich PC, Rose-John S, Matern S. TIMP expression in toxic and cholestatic liver injury in rat. J Hepatol 1997; 27:535-44. [PMID: 9314132 DOI: 10.1016/s0168-8278(97)80359-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Hepatic fibrosis is a dynamic pathological process with a net accumulation of extracellular matrix proteins. Recent evidence suggests that besides their increased synthesis, inhibition of matrix degradation plays a significant role. ECM degradation occurs via metalloproteinases which are inhibited in situ by specific tissue inhibitors of metalloproteinases (TIMPs). The aim of our studies was to determine the expression of TIMPs during toxic liver injury and cholestatic liver injury leading to fibrosis. METHODS We examined the expression of TIMP-1, -2 and -3 in two different rat models for liver injury (intraperitoneal CCl4 injection and bile duct ligation) by Northern blot analysis and in situ hybridization. For comparison, the mRNA expression of the acute phase protein haptoglobin was measured. RESULTS TIMP-1 was increased during the early phase of toxic liver injury and in cholestasis. Its expression occurred predominantly in areas of inflammation, in hepatocytes, and in mesenchymal and endothelial cells. There was a slight upregulation of TIMP-2 expression during cholestasis. TIMP-3 was not detected at all. CONCLUSIONS Our results emphasize an involvement of TIMP-1 in matrix homeostasis, indicating its possible participation in liver fibrosis.
Collapse
Affiliation(s)
- E Roeb
- Medizinische Klinik III RWTH Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Gatsios P, Haubeck HD, Van de Leur E, Frisch W, Apte SS, Greiling H, Heinrich PC, Graeve L. Oncostatin M differentially regulates tissue inhibitors of metalloproteinases TIMP-1 and TIMP-3 gene expression in human synovial lining cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:56-63. [PMID: 8898888 DOI: 10.1111/j.1432-1033.1996.0056t.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue inhibitor of metalloproteinases (TIMP) 1, 2 and 3 are related proteins that can form complexes with all known matrix metalloproteinases (MMPs). They inhibit the action of MMPs on extracellular matrix components. The balance of MMPs and TIMPs is important for tissue remodeling and its disturbance is believed to play a crucial role in pathophysiological processes such as tumor metastasis, destruction of cartilage and fibrosis. Cytokines and growth factors were found to regulate TIMPs and MMPs in a complex manner. In order to better understand the role of TIMPs in inflammatory joint diseases we have studied in vitro the regulation of TIMP-1 and TIMP-3 by inflammatory cytokines in cultured human synovial lining cells. We found that transforming growth factor beta 1 as well as interleukin-1 beta induce gene expression of both TIMP-1 and TIMP-3. In contrast, oncostatin M, an interleukin-6-type cytokine produced by activated T-lymphocytes and monocytes, had a differential effect on TIMP mRNA levels. After oncostatin M treatment, TIMP-1 expression was up-regulated but basal, as well as interleukin-1 beta-induced, TIMP-3 expression was inhibited. Interleukin-6 itself had no effect on synovial lining cells but a complex of interleukin-6 and the soluble interleukin-6 receptor induced activation of signal transducer and activator of transcription (STAT) factors in these cells and regulated TIMP-1 and TIMP-3 expression in a similar fashion as oncostatin M. Since TIMP-3 is matrix-associated whereas TIMP-1 is found in many body fluids, the role of oncostatin M during inflammatory processes might be to promote ECM degradation in the local environment but to prevent it systemically.
Collapse
Affiliation(s)
- P Gatsios
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The small leucine-rich proteoglycan biglycan is involved in several physiological and pathophysiological processes through the ability of its core protein to interact with other extracellular matrix molecules and transforming growth factor-beta (TGF-beta). To learn more about the regulation of biglycan core protein expression, we have cloned and sequenced 1218 base pairs from the 5'-flanking region of the human biglycan gene, demonstrated functional promoter activity, and investigated the molecular mechanisms through which various agents modulate its transcriptional activity. Sequencing revealed the presence of several cis-acting elements including multiple AP-2 sites and interleukin-6 response elements, a NF-kappaB site, a TGF-beta negative element, and an E-box. The TATA and CAAT box-lacking promoter possesses many features of a growth-related gene, e.g. a GC-rich immediate 5' region, many Sp1 sites, and the use of multiple transcriptional start sites. Transient transfections of the tumor cell lines MG-63, SK-UT-1, and T47D with various biglycan 5'-flanking region-luciferase reporter gene constructs showed that the proximal 78 base pairs are sufficient for full promoter activity. Several agents among them interleukin-6, and tumor necrosis factor-alpha. were capable of altering biglycan promoter activity. However, in MG-63 cells, TGF-beta1 failed to increase either activity of the biglycan promoter constructs or specific transcription from the endogenous biglycan gene. Since TGF-beta1 also did not alter the stability of cytoplasmic biglycan mRNA as determined from Northern analysis after inhibition of transcription with 5,6-dichloro-1beta-D-ribofuranosylbenzimidazole, an as yet unidentified nuclear post-transcriptional mechanism was considered responsible for the TGF-beta effect in this cell type. These results might help to elucidate the molecular pathways leading to pathological alterations of biglycan expression observed in atherosclerosis, glomerulonephritis, and fibrosis.
Collapse
Affiliation(s)
- H Ungefroren
- Institute of Anatomy, University of Hamburg, 20246 Hamburg, Federal Republic of Germany
| | | |
Collapse
|
38
|
Kurschat P, Graeve L, Erren A, Gatsios P, Rose-John S, Roeb E, Tschesche H, Koj A, Heinrich PC. Expression of a biologically active murine tissue inhibitor of metalloproteinases-1 (TIMP-1) in baculovirus-infected insect cells. Purification and tissue distribution in the rat. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:485-91. [PMID: 8536693 DOI: 10.1111/j.1432-1033.1995.485_b.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Murine tissue inhibitor of metalloproteinases-1 (mTIMP-1) was expressed in baculovirus-infected insect cells (Sf9). The protein secreted into the culture medium was purified to homogeneity by means of heparin-Sepharose CL-6B and FPLC. The purified protein showed metalloproteinase-inhibitory activity in two independent assays: reverse zymography and inhibition of collagenase activity. Digestion of the recombinant TIMP-1 with peptide-N-glycanaseF revealed that both N-glycosylation sites are used. 125I-mTIMP-1 intraveneously injected into a male Sprague Dawley rat disappeared within 2 min from the circulation. 5 min after injection more than 50% of the 125I-mTIMP-1 were found in the liver and 20% in the kidneys. At later times, trichloroacetic-acid-soluble material accumulated in the intestinal tract.
Collapse
Affiliation(s)
- P Kurschat
- Institut für Biochemie der RWTH Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Plumpton TA, Clark IM, Plumpton C, Calvin J, Cawston TE. Development of an enzyme-linked immunosorbent assay to measure total TIMP-1 (free TIMP-1 and TIMP-1 in combination with matrix-metalloproteinases) and measurement of TIMP 1 and CRP in serum. Clin Chim Acta 1995; 240:137-54. [PMID: 8548924 DOI: 10.1016/0009-8981(95)06137-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A panel of six monoclonal antibodies (MAbs) was raised against purified human fibroblast tissue inhibitor of metalloproteinase-1 (TIMP-1) and characterised. All possible antibody pairs were tested for their suitability as capture and revealing antibodies in a two-site enzyme-linked immunosorbent assay (ELISA) to measure total TIMP-1 (both free TIMP-1 and TIMP-1 together with matrix metalloproteinases (MMPs)). Using the best combination of MAbs the assay was optimised. The sensitivity of detection of the assay was 1.4 ng/ml, and inter- and intra-assay coefficients of variation were between 10.4-13.7% and 8.8-9.7%, respectively. Dilution series of human cerebrospinal and synovial fluids, plasma and sera paralleled those of the TIMP-1 standard curve indicating that the immunoreactivity detected in these samples was authentic TIMP-1. TIMP-2 shows no detectable cross reactivity in this assay confirming that this ELISA is specific for TIMP-1. The levels of total TIMP-1 and collagenase were measured in conditioned medium from A2058 human melanoma cells cultured in the absence or presence of human recombinant interleukin-1 alpha (hrIL-1 alpha). Total TIMP-1 was also measured in serum samples with known C-reactive protein (CRP) (n = 100) and alpha 1 antichymotrypsin (ACT) (n = 52) concentrations; no correlation was found between TIMP-1 levels and either of these acute phase reactants although the levels of TIMP-1 were raised when compared to normal sera. This ELISA provides a rapid and convenient procedure for the quantitation of total TIMP-1 in human biological fluids and supernatants from cultured cell lines.
Collapse
Affiliation(s)
- T A Plumpton
- Rheumatology Research Unit, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | |
Collapse
|