1
|
Nasiri E, Sankowski R, Dietrich H, Oikonomidi A, Huerta PT, Popp J, Al-Abed Y, Bacher M. Key role of MIF-related neuroinflammation in neurodegeneration and cognitive impairment in Alzheimer's disease. Mol Med 2020; 26:34. [PMID: 32303185 PMCID: PMC7164357 DOI: 10.1186/s10020-020-00163-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage Migration Inhibitory Factor (MIF) is a potent proinflammatory cytokine that promotes the production of other immune mediators. MIF is produced by most cell types in the brain including microglia, astrocytes and neurons. Enhanced expression of MIF might contribute to the persistent activation of glial, chronic neuroinflammation and neurodegeneration. Here, we investigated the effect of MIF on inflammatory markers and spatial learning in a mouse model of sporadic AD and on tau pathology in AD patients. Methods We examined the effects of MIF deficiency and pharmacological MIF inhibition in vitro and in vivo. In vitro, quantitative PCR and ELISA were used to assess cytokine production of STZ-treated glial cells. In vivo, C57BL/6 mice were subjected to intracerebroventricular streptozotocin injection (3 mg/kg, ICV-STZ). Neuroinflammation and contextual learning performance were assessed using quantitative PCR and fear conditioning, respectively. Pharmacological MIF inhibition was achieved with intraperitoneal injections of ISO-1 (daily, IP, 20 mg/kg in 5% DMSO in 0.9% NaCl) for 4 weeks following ICV-STZ injection. The findings from ISO-1 treated mice were confirmed in MIF knockout C57BL/6. To assess the role of MIF in human AD, cerebrospinal fluid levels of MIF and hyperphosphorylated tau were measured using ELISA. Results Administration ICV-STZ resulted in hippocampal dependent cognitive impairment. MIF inhibition with ISO-1 significantly improved the STZ-induced impairment in contextual memory performance, indicating MIF-related inflammation as a major contributor to ICV-STZ-induced memory deficits. Furthermore, inhibition of the MIF resulted in reduced cytokine production in vitro and in vivo. In human subjects with AD at early clinical stages, cerebrospinal fluid levels of MIF were increased in comparison with age-matched controls, and correlated with biomarkers of tau hyper-phosphorylation and neuronal injury hinting at MIF levels as a potential biomarker for early-stage AD. Conclusions The present study indicates the key role of MIF in controlling the chronic cytokine release in neuroinflammation related to tau hyperphosphorylation, neurodegeneration, and clinical manifestations of AD, suggesting the potential of MIF inhibition as therapeutic strategy to slow down neurodegeneration and clinical disease progression.
Collapse
Affiliation(s)
- Elham Nasiri
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Roman Sankowski
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, NY, USA. .,Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA. .,Current address: Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Current address: Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Aikaterini Oikonomidi
- Old Age Psychiatry, Department of Psychiatry, University hospital of Lausanne, Lausanne, Switzerland
| | - Patricio T Huerta
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Laboratory of Immune & Neural Networks, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, University hospital of Lausanne, Lausanne, Switzerland.,Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Bacher
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun 2018; 9:2223. [PMID: 29884801 PMCID: PMC5993818 DOI: 10.1038/s41467-018-04581-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) exerts multiple effects on immune cells, as well as having functions outside the immune system. MIF can promote inflammation through the induction of other cytokines, including TNF, IL-6, and IL-1 family cytokines. Here, we show that inhibition of MIF regulates the release of IL-1α, IL-1β, and IL-18, not by affecting transcription or translation of these cytokines, but via activation of the NLRP3 inflammasome. MIF is required for the interaction between NLRP3 and the intermediate filament protein vimentin, which is critical for NLRP3 activation. Further, we demonstrate that MIF interacts with NLRP3, indicating a role for MIF in inflammasome activation independent of its role as a cytokine. These data advance our understanding of how MIF regulates inflammation and identify it as a factor critical for NLRP3 inflammasome activation. MIF is a cytokine best known for its modulatory effect on expression of proinflammatory cytokines. Here the authors show that MIF facilitates the NLRP3–vimentin interaction, resulting in Nlrp3 inflammasome activation.
Collapse
|
3
|
Davidson R, Baas BJ, Akiva E, Holliday GL, Polacco BJ, LeVieux JA, Pullara CR, Zhang YJ, Whitman CP, Babbitt PC. A global view of structure-function relationships in the tautomerase superfamily. J Biol Chem 2018; 293:2342-2357. [PMID: 29184004 PMCID: PMC5818174 DOI: 10.1074/jbc.m117.815340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure-function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis-3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase-like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies.
Collapse
Affiliation(s)
| | - Bert-Jan Baas
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy
| | - Eyal Akiva
- From the Department of Bioengineering and Therapeutic Sciences
| | | | | | | | - Collin R Pullara
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy
| | - Yan Jessie Zhang
- the Department of Molecular Biosciences, and
- the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Christian P Whitman
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy,
| | - Patricia C Babbitt
- From the Department of Bioengineering and Therapeutic Sciences,
- the Department of Pharmaceutical Chemistry, and
- the Quantitative Biosciences Institute, University of California, San Francisco, California 94143 and
| |
Collapse
|
4
|
Tynan A, Mawhinney L, Armstrong ME, O'Reilly C, Kennedy S, Caraher E, Jülicher K, O'Dwyer D, Maher L, Schaffer K, Fabre A, McKone EF, Leng L, Bucala R, Bernhagen J, Cooke G, Donnelly SC. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis. FASEB J 2017; 31:5102-5110. [PMID: 28768722 DOI: 10.1096/fj.201700463r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine's unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P < 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF's tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O'Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O'Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis.
Collapse
Affiliation(s)
- Aisling Tynan
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - Leona Mawhinney
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | | | - Ciaran O'Reilly
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - Sarah Kennedy
- Department of Science, Centre for Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Emma Caraher
- Department of Science, Centre for Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Karen Jülicher
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland
| | - David O'Dwyer
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lewena Maher
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kirsten Schaffer
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Edward F McKone
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lin Leng
- Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany.,Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Gordon Cooke
- Department of Science, Centre for Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght Hospital, Trinity College, Dublin, Ireland;
| |
Collapse
|
5
|
Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, Chen R, Wang JE, Kam TI, Jeong JS, Xie Z, Neifert S, Qian J, Andrabi SA, Blackshaw S, Zhu H, Song H, Ming GL, Dawson VL, Dawson TM. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 2017; 354:354/6308/aad6872. [PMID: 27846469 PMCID: PMC5134926 DOI: 10.1126/science.aad6872] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/22/2016] [Indexed: 12/26/2022]
Abstract
Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1-dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1-dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation.
Collapse
Affiliation(s)
- Yingfei Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ran An
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology of Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Kalyani Nambiar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen M Eacker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - BongWoo Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Bao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maged M Harraz
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Calvin Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer E Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jun Seop Jeong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhi Xie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Meza-Romero R, Benedek G, Jordan K, Leng L, Pantouris G, Lolis E, Bucala R, Vandenbark AA. Modeling of both shared and distinct interactions between MIF and its homologue D-DT with their common receptor CD74. Cytokine 2016; 88:62-70. [PMID: 27573366 PMCID: PMC5067215 DOI: 10.1016/j.cyto.2016.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/23/2022]
Abstract
D-dopachrome tautomerase (D-DT) shares amino acid sequence similarity, structural architecture and biological activity with the cytokine MIF. Recent studies show that the two protein homologs also bind to the same cell surface receptor, CD74, to activate the ERK1/2 pathway that ultimately leads to pro-inflammatory and pro-survival gene expression. We recently showed that RTL1000 and DRa1-MOG-35-55, two biological drugs with potent anti-inflammatory properties that treat experimental autoimmune encephalomyelitis (EAE) in mice, bind to the cell surface receptor CD74 with high affinity and compete with MIF for binding to the same regions of CD74. Computational modeling of MIF and RTL1000 binding interactions with CD74 predicted the presence of three CD74 binding regions for each MIF homotrimer. Through a similar approach we have now expanded our work to study the D-DT (MIF-2) interaction with CD74 that is mainly defined by three elements scattered throughout the disordered regions of the interacting molecules. The model predicted: (a) a hydrophobic cradle between CD74 and D-DT consisting of N-terminal tyrosine residues of three CD74 monomers arranged in a planar alignment interacts with aromatic amino acid residues located in the disordered D-DT C-terminus; (b) a triad consisting of the E103 residue on one D-DT monomer in close contact with R179 and S181 on one chain of the CD74 trimer forms an intermolecular salt bridge; and (c) amino acid residues on the C-terminus random coil of CD74 chain C form a long interacting area of ∼500Å2 with a disordered region of D-DT chain B. These three binding elements were also present in MIF/CD74 binding interactions, with involvement of identical or highly similar amino acid residues in each MIF homotrimer that partner with the exact same residues in CD74. Topologically, however, the location of the three CD74 binding regions of the D-DT homotrimer differs substantially from that of the three MIF binding regions. This key difference in orientation appears to derive from a sequence insertion in D-DT that topologically limits binding to only one CD74 molecule per D-DT homotrimer, in contrast to predicted binding of up to three CD74 molecules per MIF homotrimer. These results have implications for the manner in which D-DT and MIF compete with each other for binding to the CD74 receptor and for the relative potency of DRa1-MOG-35-55 and RTL1000 for competitive inhibition of D-DT and MIF binding and activation through CD74.
Collapse
Affiliation(s)
- Roberto Meza-Romero
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW US Veterans Hosp. Rd, Portland, OR, USA; Tykeson MS Research Laboratory, Department of Neurology UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR, USA
| | - Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW US Veterans Hosp. Rd, Portland, OR, USA; Tykeson MS Research Laboratory, Department of Neurology UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR, USA
| | - Kelley Jordan
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW US Veterans Hosp. Rd, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, 330 Cedar St, New Haven, CT 06520, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Elias Lolis
- Department of Pharmacology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, 330 Cedar St, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW US Veterans Hosp. Rd, Portland, OR, USA; Tykeson MS Research Laboratory, Department of Neurology UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA.
| |
Collapse
|
7
|
Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016; 20:1463-1475. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) has emerged as a promising drug target in diseases including sepsis, rheumatoid arthritis, and cancer. MIF has multiple properties that favor development of specific, targeted therapies: it is expressed broadly among human cells, has noted roles in diverse inflammatory and oncological processes, and has intrinsic enzymatic activity amenable to high-throughput screening. Despite these advantages, anti-MIF therapy remains well behind other cytokine-targeted therapeutics, with no small molecules in the pipeline for clinical development and anti-MIF antibodies only recently beginning clinical trials. Areas covered: In this review we summarize current literature regarding MIF structure and function-including challenges and controversies that have arisen in studies of anti-MIF therapeutics-and propose a strategy for development of clinically relevant anti-MIF drugs. Expert opinion: We believe that the field of anti-MIF therapeutics would benefit from capitalizing on the protein's multiple assets while acknowledging their flaws. The tautomerase enzymatic site of MIF may not be active biologically, but can nonetheless offer a high-throughput method to highlight molecules of interest that can affect its other, frequently intertwined bioactivities. Future work should also focus on developing more robust assays for MIF bioactivity that can be used for second-pass screening and specificity studies.
Collapse
Affiliation(s)
- Joshua Bloom
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
8
|
Lang T, Foote A, Lee JPW, Morand EF, Harris J. MIF: Implications in the Pathoetiology of Systemic Lupus Erythematosus. Front Immunol 2015; 6:577. [PMID: 26617609 PMCID: PMC4641160 DOI: 10.3389/fimmu.2015.00577] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022] Open
Abstract
Macrophage migration Inhibitory factor (MIF) was one of the earliest pro-inflammatory cytokines to be identified. Increasing interest in this cytokine in recent decades has followed the cloning of human MIF and the generation of Mif−/− mice. Deepening understanding of signaling pathways utilized by MIF and putative receptor mechanisms have followed. MIF is distinct from all other cytokines by virtue of its unique induction by and counter regulation of glucocorticoids (GCs). MIF is further differentiated from other cytokines by its structural homology to specific tautomerase and isomerase enzymes and correlative in vitro enzymatic functions. The role of MIF in immune and inflammatory states, including a range of human autoimmune diseases, is now well established, as are the relationships between MIF polymorphisms and a number of inflammatory diseases. Here, we review the known pleiotropic activities of MIF, in addition to novel functions of MIF in processes including autophagy and autophagic cell death. In addition, recent developments in the understanding of the role of MIF in systemic lupus erythematosus (SLE) are reviewed. Finally, we discuss the potential application of anti-MIF strategies to treat human diseases such as SLE, which will require a comprehensive understanding of the unique and complex activities of this ubiquitously expressed cytokine.
Collapse
Affiliation(s)
- Tali Lang
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - Andrew Foote
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - Jacinta P W Lee
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - Eric F Morand
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - James Harris
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| |
Collapse
|
9
|
Youn H, Son B, Kim W, Jun SY, Lee JS, Lee J, Kang C, Kim J, Youn B. Dissociation of MIF‐rpS3 Complex and Sequential NF‐κB Activation Is Involved in IR‐Induced Metastatic Conversion of NSCLC. J Cell Biochem 2015; 116:2504-16. [DOI: 10.1002/jcb.25195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/14/2015] [Indexed: 12/25/2022]
Affiliation(s)
- HyeSook Youn
- Department of Biological SciencesPusan National UniversityBusan609‐735Republic of Korea
- Nuclear Science Research InstitutePusan National UniversityBusan609‐735Republic of Korea
| | - Beomseok Son
- Department of Integrated Biological SciencePusan National UniversityBusan609‐735Republic of Korea
| | - Wanyeon Kim
- Department of Biological SciencesPusan National UniversityBusan609‐735Republic of Korea
- Nuclear Science Research InstitutePusan National UniversityBusan609‐735Republic of Korea
| | - Se Young Jun
- Department of ChemistryWashington State UniversityPullmanWA 99164USA
| | - Jung Sub Lee
- Department of Orthopaedic SurgeryMedical Research InstitutePusan National University School of MedicineBusan602‐739Republic of Korea
| | - Jae‐Myung Lee
- Department of Naval Architecture and Ocean EngineeringPusan National UniversityBusan609‐735Republic of Korea
| | - ChulHee Kang
- Department of ChemistryWashington State UniversityPullmanWA 99164USA
| | - Joon Kim
- Laboratory of BiochemistrySchool of Life Sciences & BiotechnologyKorea UniversitySeoul136‐701Republic of Korea
| | - BuHyun Youn
- Department of Biological SciencesPusan National UniversityBusan609‐735Republic of Korea
- Nuclear Science Research InstitutePusan National UniversityBusan609‐735Republic of Korea
- Department of Integrated Biological SciencePusan National UniversityBusan609‐735Republic of Korea
| |
Collapse
|
10
|
Zheng Y, Li X, Qian X, Wang Y, Lee JH, Xia Y, Hawke DH, Zhang G, Lyu J, Lu Z. Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation. Nat Cell Biol 2015; 17:1348-55. [PMID: 26280537 DOI: 10.1038/ncb3222] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
Activation of epidermal growth factor receptor (EGFR), which occurs in many types of tumour, promotes tumour progression. However, no extracellular antagonist of human EGFR has been identified. We found that human macrophage migration inhibitory factor (MIF) is O-GlcNAcylated at Ser 112/Thr 113 at its carboxy terminus. The naturally secreted and O-GlcNAcylated MIF binds to EGFR, thereby inhibiting the binding of EGF to EGFR and EGF-induced EGFR activation, phosphorylation of ERK and c-Jun, cell invasion, proliferation and brain tumour formation. Activation of EGFR through mutation or its ligand binding enhances the secretion of MMP13, which degrades extracellular MIF, and results in abrogation of the negative regulation of MIF on EGFR. The finding that EGFR activation downregulates its antagonist in the tumour microenvironment represents an important feedforward mechanism for human tumour cells to enhance EGFR signalling and promote tumorigenesis.
Collapse
Affiliation(s)
- Yanhua Zheng
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xinjian Li
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xu Qian
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yugang Wang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jong-Ho Lee
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yan Xia
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gang Zhang
- Department of Surgical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhimin Lu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Müller I, Schönberger T, Schneider M, Borst O, Ziegler M, Seizer P, Leder C, Müller K, Lang M, Appenzeller F, Lunov O, Büchele B, Fahrleitner M, Olbrich M, Langer H, Geisler T, Lang F, Chatterjee M, de Boer JF, Tietge UJF, Bernhagen J, Simmet T, Gawaz M. Gremlin-1 is an inhibitor of macrophage migration inhibitory factor and attenuates atherosclerotic plaque growth in ApoE-/- Mice. J Biol Chem 2013; 288:31635-45. [PMID: 24003215 DOI: 10.1074/jbc.m113.477745] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Monocyte infiltration and macrophage formation are pivotal steps in atherosclerosis and plaque vulnerability. Gremlin-1/Drm is crucial in embryo-/organogenesis and has been shown to be expressed in the adult organism at sites of arterial injury and to inhibit monocyte migration. The purpose of the present study was to evaluate and characterize the role of Gremlin-1 in atherosclerosis. Here we report that Gremlin-1 is highly expressed primarily by monocytes/macrophages in aortic atherosclerotic lesions of ApoE(-/-) mice and is secreted from activated monocytes and during macrophage development in vitro. Gremlin-1 reduces macrophage formation by inhibiting macrophage migration inhibitory factor (MIF), a cytokine critically involved in atherosclerotic plaque progression and vulnerability. Gremlin-1 binds with high affinity to MIF (KD = 54 nm), as evidenced by surface plasmon resonance analysis and co-immunoprecipitation, and reduces MIF-induced release of TNF-α from macrophages. Treatment of ApoE(-/-) mice with a dimeric recombinant fusion protein, mGremlin1-Fc, but not with equimolar control Fc or inactivated mGremlin1-Fc, reduced TNF-α expression, the content of monocytes/macrophages of atherosclerotic lesions, and attenuated atheroprogression. The present data disclose that Gremlin-1 is an endogenous antagonist of MIF and define a role for Gremlin-1/MIF interaction in atherosclerosis.
Collapse
Affiliation(s)
- Iris Müller
- From the Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universität, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qu G, Fetterer R, Jenkins M, Leng L, Shen Z, Murphy C, Han W, Bucala R, Tuo W. Characterization of Neospora caninum macrophage migration inhibitory factor. Exp Parasitol 2013; 135:246-56. [PMID: 23850997 DOI: 10.1016/j.exppara.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022]
Abstract
The present study is the first characterization of Neospora caninum macrophage migration inhibitory factor (NcMIF). BLAST-N analysis of NcMIF revealed high similarity (87%) to the Toxoplasma gondii MIF. NcMIF was cloned and expressed in Escherichia coli in 3 forms, NcMIF (mature protein), NcMIFm (mutation of proline-2 to glycine), and NcMIFhis (addition of a polyhistidine tag at the N-terminus). None of these recombinant NcMIFs (rNcMIF) had tautomerase, oxidoreductase, or immunologic regulatory activities. rNcMIF was unable to compete with recombinant human MIF for a MIF receptor (CD74), suggesting that NcMIF does not bind to this MIF receptor. The glycine substitution for proline-2 of NcMIF resulted in increased retention time on SEC-HPLC and decreased formation of dimers and trimers. The addition of N-terminal HIS-tag led to increased formation of trimers. Immunofluorescence staining demonstrated that NcMIF was localized to the apical end of N. caninum tachyzoites. Immunoelectron microscopy further revealed that NcMIF was present in the micronemes, rhoptries, dense granules, and nuclei. NcMIF was abundant in the tachyzoite lysate and present in excretory and secretory antigen (ESAg) preparations. Total and secretory NcMIF was more abundant in a non-pathologic clone, Ncts-8, than in the wild type isolate (NC1). Furthermore, NcMIF release by the both isolates was increased in the presence of calcium ionophore. This differential production of NcMIF by the pathologic and non-pathologic isolates of N. caninum may suggest a critical role of this molecule in the infectious pathogenesis of this parasite.
Collapse
Affiliation(s)
- Guanggang Qu
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA; Shangdong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou City, Shandong 256600, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kindt N, Laurent G, Nonclercq D, Journé F, Ghanem G, Duvillier H, Gabius HJ, Lechien J, Saussez S. Pharmacological inhibition of macrophage migration inhibitory factor interferes with the proliferation and invasiveness of squamous carcinoma cells. Int J Oncol 2013; 43:185-93. [PMID: 23677331 DOI: 10.3892/ijo.2013.1944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/21/2012] [Indexed: 11/06/2022] Open
Abstract
Recent clinical observations and experimental studies of our group indicate that macrophage migration inhibitory factor (MIF) may contribute to tumor progression in head and neck squamous cell carcinomas (HNSCC). The present study was undertaken to examine the effects of the irreversible MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) on proliferation and invasiveness of the squamous carcinoma cell line SCCVII. Cell counting, crystal violet assay and flow cytometry were used to analyze the effects of 4-IPP on SCCVII cell growth. The impact of 4-IPP on cell invasiveness was assessed by Boyden chamber assay. Knockdown of the MIF receptor CD74 was achieved by transduction with lentiviral vectors encoding anti-CD74 shRNAs. As shown by immunofluorescence staining, SCCVII cells express both MIF and CD74. Decreased MIF immunoreactivity as a result of exposure to 4-IPP suggested a covalent modification of the cytokine. 4-IPP inhibited SCCVII cell proliferation and invasiveness. Moreover, the cytostatic effect of 4-IPP was enhanced by CD74 knockdown. The inhibitory effects of 4-IPP on cell proliferation and invasiveness strongly suggest that MIF is involved in proliferative activity and invasive properties of squamous carcinoma cells. In conclusion, MIF inhibition may open possibilities for target-directed treatment of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Nadège Kindt
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tillmann S, Bernhagen J, Noels H. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Front Immunol 2013; 4:115. [PMID: 23720662 PMCID: PMC3655399 DOI: 10.3389/fimmu.2013.00115] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been defined as an important chemokine-like function (CLF) chemokine with an essential role in monocyte recruitment and arrest. Adhesion of monocytes to the vessel wall and their transendothelial migration are critical in atherogenesis and many other inflammatory diseases. Chemokines carefully control all steps of the monocyte recruitment process. Those chemokines specialized in controlling arrest are typically immobilized on the endothelial surface, mediating the arrest of rolling monocytes by chemokine receptor-triggered pathways. The chemokine receptor CXCR2 functions as an important arrest receptor on monocytes. An arrest function has been revealed for the bona fide CXCR2 ligands CXCL1 and CXCL8, but genetic studies also suggested that additional arrest chemokines are likely to be involved in atherogenic leukocyte recruitment. While CXCR2 is known to interact with numerous CXC chemokine ligands, the CLF chemokine MIF, which structurally does not belong to the CXC chemokine sub-family, was surprisingly identified as a non-cognate ligand of CXCR2, responsible for critical arrest functions during the atherogenic process. MIF was originally identified as macrophage migration inhibitory factor (this function being eponymous), but is now known as a potent inflammatory cytokine with CLFs including chemotaxis and leukocyte arrest. This review will cover the mechanisms underlying these functions, including MIF’s effects on LFA1 integrin activity and signal transduction, and will discuss the structural similarities between MIF and the bona fide CXCR2 ligand CXCL8 while emphasizing the structural differences. As MIF also interacts with CXCR4, a chemokine receptor implicated in CXCL12-elicited lymphocyte arrest, the arrest potential of the MIF/CXCR4 axis will also be scrutinized as well as the recently identified role of pericyte MIF in attracting leukocytes exiting through venules as part of the pericyte “motility instruction program.”
Collapse
Affiliation(s)
- Sabine Tillmann
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University Aachen, Germany
| | | | | |
Collapse
|
15
|
Brain miffed by macrophage migration inhibitory factor. Int J Cell Biol 2012; 2012:139573. [PMID: 22973314 PMCID: PMC3438795 DOI: 10.1155/2012/139573] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 12/31/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine which also exhibits enzymatic properties like oxidoreductase and tautomerase. MIF plays a pivotal role in innate and acquired immunity as well as in the neuroendocrine axis. Since it is involved in the pathogenesis of acute and chronic inflammation, neoangiogenesis, and cancer, MIF and its signaling components are considered suitable targets for therapeutic intervention in several fields of medicine. In neurodegenerative and neurooncological diseases, MIF is a highly relevant, but still a hardly investigated mediator. MIF operates via intracellular protein-protein interaction as well as in CD74/CXCR2/CXCR4 receptor-mediated pathways to regulate essential cellular systems such as redox balance, HIF-1, and p53-mediated senescence and apoptosis as well as multiple signaling pathways. Acting as an endogenous glucocorticoid antagonist, MIF thus represents a relevant resistance gene in brain tumor therapies. Alongside this dual action, a functional homolog-annotated D-dopachrome tautomerase/MIF-2 has been uncovered utilizing the same cell surface receptor signaling cascade as MIF. Here we review MIF actions with respect to redox regulation in apoptosis and in tumor growth as well as its extracellular function with a focus on its potential role in brain diseases. We consider the possibility of MIF targeting in neurodegenerative processes and brain tumors by novel MIF-neutralizing approaches.
Collapse
|
16
|
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that has been implicated as playing a causative role in many disease states, including sepsis, pneumonia, diabetes, rheumatoid arthritis, inflammatory bowel disease, psoriasis and cancer. To inhibit the enzymatic and biologic activities of MIF, we and others have developed small-molecule MIF inhibitors. Most MIF inhibitors bind within the hydrophobic pocket that contains highly conserved amino acids known to be essential for MIF's proinflammatory activity. The best characterized of these small-molecule MIF inhibitors, (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) has been validated in scores of laboratories worldwide. Like neutralizing anti-MIF antibodies, ISO-1 significantly improves survival and reduces disease progression and/or severity in multiple murine models where MIF is implicated. This MIF inhibitor, its derivatives and other MIF-targeted compounds show great promise for future testing in disease states where increased MIF activity has been discovered.
Collapse
|
17
|
Carpy JMA, Haasbroek PP, Oliver DW. Design of agents interacting with immunoregulating proteins: Potential inhibitors of the phenylpyruvate tautomerase activity catalysed by macrophage migration inhibitory factor (MIF). CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030211005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Buonocore F, Randelli E, Facchiano AM, Pallavicini A, Modonut M, Scapigliati G. Molecular and structural characterisation of a macrophage migration inhibitory factor from sea bass (Dicentrarchus labrax L.). Vet Immunol Immunopathol 2010; 136:297-304. [PMID: 20363032 DOI: 10.1016/j.vetimm.2010.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 01/02/2023]
Abstract
The macrophage migration inhibitory factor (MIF) is a cytokine produced in numerous cell types, mainly T lymphocytes and macrophages, in response to inflammatory stimuli. In this paper we report the identification of a cDNA encoding a MIF molecule from sea bass (Dicentrarchus labrax L.), its expression analysis and its 3D structure obtained by template-based modelling. The sea bass MIF cDNA consists of 609bp that translates in one reading frame to give the entire molecule containing 115 amino acids. The sequence contains three cysteine residues in conserved positions compared to human MIF and most Teleost fishes, with the exception of zebrafish and carp. The Cys(57)-Ala(58)-Leu(59)-Cys(60) motif, present inside the stretch important for JAB1-interaction and mediator of the thiol-protein oxidoreductase activity of MIF, is conserved in sea bass, together with the Pro(2) residue that is crucial for the tautomerase catalytic activity. Real-time PCR analyses revealed that MIF is constitutively expressed in all selected tissues and organs, with the highest mRNA level observed in thymus. MIF expression was induced after 4h in vitro stimulation of head kidney leukocytes with LPS and decreased after 24h. The predicted 3D model of sea bass MIF has been used to verify the presence of structural requirements for its known biological activities.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department of Environmental Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Son A, Kato N, Horibe T, Matsuo Y, Mochizuki M, Mitsui A, Kawakami K, Nakamura H, Yodoi J. Direct association of thioredoxin-1 (TRX) with macrophage migration inhibitory factor (MIF): regulatory role of TRX on MIF internalization and signaling. Antioxid Redox Signal 2009; 11:2595-605. [PMID: 19601712 DOI: 10.1089/ars.2009.2522] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioredoxin-1 (TRX) is a small (14 kDa) multifunctional protein with the redox-active site Cys-Gly-Pro-Cys. Macrophage migration inhibitory factor (MIF) is a 12 kDa cytokine belonging to the TRX family. Historically, when we purified TRX from the supernatant of ATL-2 cells, a 12 kDa protein was identified along with TRX, which was later proved to be MIF. Here, we show that TRX and MIF form a complex in the cell and the culture supernatant of ATL-2 cells. Using a BIAcore assay, we confirmed that TRX has a specific affinity with MIF. We also found that extracellular MIF was more effectively internalized into the ATL-2 cells expressing TRX on the cell surface, than the Jurkat T cells which do not express surface TRX. Moreover, anti-TRX antibody blocked the MIF internalization, suggesting that the cell surface TRX is involved in MIF internalization into the cells. Furthermore, anti-TRX antibody inhibited MIF-mediated enhancement of TNF-alpha production from macrophage RAW264.7 cells. These results suggest that the cell surface TRX serves as one of the MIF binding molecules or MIF receptor component and inhibits MIF-mediated inflammatory signals.
Collapse
Affiliation(s)
- Aoi Son
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rendon BE, Willer SS, Zundel W, Mitchell RA. Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol 2009; 86:180-5. [PMID: 19186177 DOI: 10.1016/j.yexmp.2009.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 01/08/2023]
Abstract
Since its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF) has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast array of cellular and biological processes. Studies in recent years suggest that MIF contributes to malignant disease progression on several different levels. Both circulating and intracellular MIF protein levels are elevated in cancer patients and MIF expression reportedly correlates with stage, metastatic spread and disease-free survival. Additionally, MIF expression positively correlates with angiogenic growth factor expression, microvessel density and tumor-associated neovascularization. Not coincidentally, MIF has recently been shown to contribute to tumoral hypoxic adaptation by promoting hypoxia-induced HIF-1alpha stabilization. Intriguingly, hypoxia is a strong regulator of MIF expression and secretion, suggesting that hypoxia-induced MIF acts as an amplifying factor for both hypoxia and normoxia-associated angiogenic growth factor expression in human malignancies. Combined, these findings suggest that MIF overexpression contributes to tumoral hypoxic adaptation and, by extension, therapeutic responsiveness and disease prognosis. This review summarizes recent literature on the contributions of MIF to tumor-associated angiogenic growth factor expression, neovascularization and hypoxic adaptation. We also will review recent efforts aimed at identifying and employing small-molecule antagonists of MIF as a novel approach to cancer therapeutics.
Collapse
Affiliation(s)
- Beatriz E Rendon
- JG Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
21
|
Winner M, Leng L, Zundel W, Mitchell RA. Macrophage migration inhibitory factor manipulation and evaluation in tumoral hypoxic adaptation. Methods Enzymol 2007; 435:355-69. [PMID: 17998063 DOI: 10.1016/s0076-6879(07)35018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasingly clear is an important regulatory role for hypoxia-inducible factor 1alpha (HIF-1alpha) in the expression of the cytokine/growth factor macrophage migration inhibitory factor (MIF). The functional significance of hypoxia-induced MIF expression is revealed by findings demonstrating that HIF-1alpha-dependent MIF expression is necessary for hypoxia-induced evasion from cell senescence and that MIF is necessary for HIF-1alpha stabilization induced by hypoxia and prolyl hydroxylase (PHD) inhibitors. Both of these activities attributed to MIF likely involve the modulation of protein degratory pathways mediated by cullin-dependent E3 ubiquitin ligase complexes and their regulation by the COP9 signalosome (CSN). As the importance of MIF in hypoxic adaptation of human tumors is now becoming fully realized, we review protocols designed to evaluate MIF expression, activity, and functional consequences in hypoxic environments.
Collapse
Affiliation(s)
- Millicent Winner
- Molecular Targets Program, JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | | | | | |
Collapse
|
22
|
Leng L, Bucala R. Insight into the biology of Macrophage Migration Inhibitory Factor (MIF) revealed by the cloning of its cell surface receptor. Cell Res 2006; 16:162-8. [PMID: 16474429 DOI: 10.1038/sj.cr.7310022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recent cloning of MIF receptor fills an important gap in our understanding of the molecular biology and immunology of MIF. The MIF receptor, like MIF, does not fall into any established family of protein mediators, providing both new challenges and opportunities for the structural and functional analysis of MIF signal transduction.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cloning, Molecular
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- Macrophage Migration-Inhibitory Factors/chemistry
- Macrophage Migration-Inhibitory Factors/metabolism
- Models, Molecular
- Protein Structure, Quaternary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Lin Leng
- Department of Medicine, Yale University School of Medicine, The Anlyan Center, S525, 300 Cedar Street, New Haven CT 06520-8056, USA.
| | | |
Collapse
|
23
|
Cherepkova OA, Lyutova EM, Eronina TB, Gurvits BY. Chaperone-like activity of macrophage migration inhibitory factor. Int J Biochem Cell Biol 2006; 38:43-55. [PMID: 16099194 DOI: 10.1016/j.biocel.2005.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/23/2005] [Accepted: 07/07/2005] [Indexed: 11/19/2022]
Abstract
Macrophage migration inhibitory factor is a ubiquitous multifunctional cytokine having diverse immunological and neuroendocrine properties. Although this protein is known to be released into the circulation from the secretory granules of anterior pituitary or directly from immune cells as a consequence of stress, its participation in heat stress-induced aggregation of proteins has not yet been reported. We provide here the first evidence that the macrophage migration inhibitory factor possesses chaperone-like properties. It was shown to exist in the form of a mixture of low and high molecular weight oligomers. At heat stress temperatures the large oligomers dissociate into monomers that bind and stabilize thermally denatured malate dehydrogenase and glycogen phosphorylase b and thus prevent aggregation of the model proteins. Similar chaperone-like effects were also observed in the presence of partially purified brain extract containing besides the macrophage migration inhibitory factor a number of ubiquitous hydrophobic low molecular weight proteins identified by N-terminal microsequence analysis. Being highly stable and hydrophobic, the macrophage migration inhibitory factor in combination with other proteins of similar properties may comprise a family of constitutively expressed "small chaperones" that counteract the early onset of stress, around physiological conditions, when heat shock proteins are not abundant.
Collapse
Affiliation(s)
- Oxana A Cherepkova
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | | | | | | |
Collapse
|
24
|
Thiele M, Bernhagen J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal 2005; 7:1234-48. [PMID: 16115028 DOI: 10.1089/ars.2005.7.1234] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionary conserved 12.5-kDa protein mediator with multiple functions in innate and acquired immunity. Upon leaderless secretion, MIF acts as a typical inflammatory cytokine, but there is no structural homology between MIF and any of the known cytokine protein families. Also, MIF is unique among cytokines in that it exhibits certain endocrine properties and has enzymatic activity. The catalytic thiol-protein oxidoreductase (TPOR) activity of MIF is mediated by a Cys-Ala-Leu-Cys active site between residues 57 and 60 that can undergo reversible intramolecular disulfide formation. Such a redox motif is typically found in TPORs of the thioredoxin (Trx) family of proteins. MIF seems to act as a disulfide reductase, and structure-function analyses of the redox site indicate that this activity is not only observed in vitro, but plays a role in cellular redox homeostasis, apoptosis inhibition, MIF-mediated monocyte/macrophage activation, and possibly the modulation of the activity of MIF-binding proteins. In this Forum review, the biochemical and biological evidence for a role of the TPOR activity for various MIF functions is summarized and discussed. In particular, the marked functional homologies with Trx proteins, the MIF redox/MHC II link, and recent attempts to discern the intra- versus extracellular roles of the MIF TPOR activity are dealt with.
Collapse
Affiliation(s)
- Michael Thiele
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
25
|
Abstract
The importance of secreted cytokines and growth factors in the development and promotion of malignancies is often underestimated. Many different soluble, extracellular gene products participate in processes that collectively contribute to the growth and survival of a developing neoplasm. These secreted molecules can, directly or indirectly, play a central role in uncontrolled tumour cell division, angiogenic stimulation or suppression of tumour cell immune surveillance. One of the first cytokine activities ever described, macrophage migration inhibitory factor (MIF), is unique to these soluble mediators in that it participates in all of these pro-tumourigenic processes. Overexpressed in most tumour types examined, MIF has been shown to promote malignant cell transformation, inhibit tumour cell-specific immune cytolytic responses and strongly enhance neovascularization. Despite this broad array of activities, the elucidation of molecular and cellular mechanisms involved in MIF-dependent bioactions has remained elusive. This review will focus on recently characterized phenotypes and mechanistic effectors thought to be associated with MIF-dependent promotion of neoplastic processes and discuss their relative importance in carcinogenesis.
Collapse
Affiliation(s)
- Robert A Mitchell
- James Graham Brown Cancer Center, University of Louisville, Baxter II Research Building, 580 S. Preston Street, Louisville, KY 40202, USA.
| |
Collapse
|
26
|
Philo JS, Yang TH, LaBarre M. Re-examining the oligomerization state of macrophage migration inhibitory factor (MIF) in solution. Biophys Chem 2004; 108:77-87. [PMID: 15043922 DOI: 10.1016/j.bpc.2003.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The state of oligomerization of macrophage migration inhibitory factor (MIF, also known as glycosylation inhibiting factor, GIF) in solution has been variously reported as monomer, dimer, trimer, or mixtures of all three. Several crystal structures show MIF to be a trimer. Sedimentation velocity shows a recombinant human MIF sample is quite homogeneous, with 98% as a species with s(20,w)=3.07 S and D(20,w)=8.29 x 10(-7) cm(2)/s. Using the partial specific volume calculated from the amino acid composition these values imply a mass of 33.56 kDa, well above that of dimer, but also 9% below the trimer mass of 37.035 kDa. Sedimentation equilibrium data at loading concentrations from 0.01 to 1 mg/ml show unequivocally that the self-association is extremely tight. However, the apparent mass is 33.53 kDa [95% confidence 33.25-33.82], again 9% below that expected for 100% trimer. To examine the possibility this protein has an unusual partial specific volume, sedimentation equilibrium was also done in H(2)O/D(2)O mixtures, giving 0.765+/-0.017 ml/g rather than the calculated 0.735 ml/g. With this revised partial specific volume, the equilibrium and velocity data each give M=37.9+/-2.8 kDa, fully consistent with a strongly-associated trimeric quaternary structure.
Collapse
Affiliation(s)
- John S Philo
- Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, USA.
| | | | | |
Collapse
|
27
|
Du J, Xie X, Chen H, Yang W, Dong M, Su J, Wang Y, Yu C, Zhang S, Xu A. Macrophage migration inhibitory factor (MIF) in chinese amphioxus as a molecular marker of immune evolution during the transition of invertebrate/vertebrate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:961-971. [PMID: 15236927 DOI: 10.1016/j.dci.2004.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/24/2004] [Accepted: 04/02/2004] [Indexed: 05/24/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an important cytokine related to host defenses and autoimmune diseases. Here, we reported two full-length cDNA clones isolated from Chinese amphioxus (Branchiostoma belcheri tsingtaunese). Amino acid sequences analysis and structure prediction of these two molecules, called Bbt-MIF-I and Bbt-MIF-II, respectively, indicated that several conservative domains existed in the two amphioxus MIFs and their sequences were highly homologous to their counterparts of other species. Intriguingly, the Bbt-MIFs gene is present in multi-copy per haploid genome, which is very unusual compared with vertebrate's MIF gene given the known genome duplication theory. The genomic copy number, expression pattern of MIF gene and phylogenetic analysis of MIF proteins all suggested that a leap forward happened for MIF gene during the evolution from invertebrate to vertebrate. Considering the crucial role of MIF in innate immunity, MIF might serve as one of key molecular markers of evolution of immune system.
Collapse
Affiliation(s)
- Jingchun Du
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Suzuki M, Takamura Y, Maéno M, Tochinai S, Iyaguchi D, Tanaka I, Nishihira J, Ishibashi T. Xenopus laevis Macrophage Migration Inhibitory Factor Is Essential for Axis Formation and Neural Development. J Biol Chem 2004; 279:21406-14. [PMID: 15024012 DOI: 10.1074/jbc.m311416200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine involved in both acquired and innate immunity. MIF also has many functions outside the immune system, such as isomerase and oxidoreductase activities and control of cell proliferation. Considering the involvement of MIF in various intra- and extracellular events, we expected that MIF might also be important in vertebrate development. To elucidate the possible role of MIF in developmental processes, we knocked down MIF in embryos of the African clawed frog Xenopus laevis, using MIF-specific morpholino oligomers (MOs). For the synthesis of the MOs, we cloned a cDNA for a Xenopus homolog of MIF. Sequence analysis, determination of the isomerase activity, and x-ray crystallographic analysis revealed that the protein encoded by the cDNA was the ortholog of mammalian MIF. We carried out whole mount in situ hybridization of MIF mRNA and found that MIF was expressed at high levels in the neural tissues of normal embryos. Although early embryogenesis of MO-injected embryos proceeded normally until the gastrula stage, their neurulation was completely inhibited. At the tailbud stage, the MO-injected embryos lacked neural and mesodermal tissues, and also showed severe defects in their head and tail structures. Thus, MIF was found to be essential for axis formation and neural development of Xenopus embryos.
Collapse
Affiliation(s)
- Masaki Suzuki
- Department of Molecular Biochemistry, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Design and synthesis of 2,4-difluorophenylpyruvic acid and of its azlactone precursor for macrophage migration inhibitory factor (MIF) tautomerase activity. J Mol Struct 2004. [DOI: 10.1016/j.molstruc.2003.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Nguyen MT, Beck J, Lue H, Fünfzig H, Kleemann R, Koolwijk P, Kapurniotu A, Bernhagen J. A 16-residue peptide fragment of macrophage migration inhibitory factor, MIF-(50-65), exhibits redox activity and has MIF-like biological functions. J Biol Chem 2003; 278:33654-71. [PMID: 12796500 DOI: 10.1074/jbc.m301735200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that participates in the host inflammatory response. A Cys-Xaa-Xaa-Cys (CXXC)-based thiol-protein oxidoreductase activity of MIF is associated with certain biological functions. Peptides spanning the CXXC region of thiol-protein oxidoreductases retain some biochemical properties of the full-length protein. We report on the characterization of CXXC-spanning MIF-(50-65) and its serine variant, C57S/C60S-MIF-(50-65). Following disulfide-mediated cyclization, MIF-(50-65) adapted a beta-turn conformation comparable with that of beta-turn-containing cyclo-57,60-[Asp57,Dap60]MIF-(50-65). MIF-(50-65) had a redox potential E'0 of -0.258 V and formed mixed disulfides with glutathione and cysteine. MIF-(50-65) but not C57S/C60S-MIF-(50-65) had oxidoreductase activity in vitro. Intriguingly, MIF-(50-65) exhibited MIF-like cellular activities. The peptide but not its variant had glucocorticoid overriding and proliferation-enhancing activity and stimulated ERK1/2 phosphorylation. MIF-(50-65) and its variant bound to the MIF-binding protein JAB1 and enhanced cellular levels of p27Kip1. As the peptide and its variant were endocytosed at similar efficiency, sequence 50-65 appears sufficient for the JAB1-related effects of MIF, whereas other activities require CXXC. Cyclo-57,60-[Asp57,Dap60]MIF-(50-65) activated ERK1/2, indicating that CXXC-dependent disulfide and beta-turn formation is associated with an activity-inducing conformation. We conclude that CXXC and sequence 50-65 are critical for the activities of MIF. MIF-(50-65) is a surprisingly short sequence with MIF-like functions that could be an excellent molecular template for MIF therapeutics.
Collapse
Affiliation(s)
- Mai Tuyet Nguyen
- Division of Biochemistry and Molecular Cell Biology, Institute of Biochemistry, University Hospital RWTH Aachen, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lubetsky JB, Dios A, Han J, Aljabari B, Ruzsicska B, Mitchell R, Lolis E, Al-Abed Y. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J Biol Chem 2002; 277:24976-82. [PMID: 11997397 DOI: 10.1074/jbc.m203220200] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory protein that is a potential therapeutic target for a number of inflammatory diseases. Evidence exists that an unexpected catalytic active site of MIF may have a biological function. To gain further insight into the role of the catalytic active site, a series of mutational, structural, and biological activity studies were performed. The insertion of an alanine between Pro-1 and Met-2 (PAM) abolishes a non-physiological catalytic activity, and this mutant is defective in the in vitro glucocorticoid counter-regulatory activity of MIF. The crystal structure of MIF complexed to (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an inhibitor of MIF d-dopachrome tautomerase activity, reveals that ISO-1 binds to the same position of the active site as p-hydroxyphenylpyruvic acid, a substrate of MIF. ISO-1 inhibits several MIF biological activities, further establishing a role for the catalytic active site of MIF.
Collapse
Affiliation(s)
- Jodi B Lubetsky
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fukuzawa J, Nishihira J, Hasebe N, Haneda T, Osaki J, Saito T, Nomura T, Fujino T, Wakamiya N, Kikuchi K. Contribution of macrophage migration inhibitory factor to extracellular signal-regulated kinase activation by oxidative stress in cardiomyocytes. J Biol Chem 2002; 277:24889-95. [PMID: 11978785 DOI: 10.1074/jbc.m112054200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to oxidative stress, the pathogenesis of a number of cardiovascular events and several genes are stimulated by extracellular signal-regulated kinases (ERK1/2). Biphasic (early, 10 min; and delayed, 120 min) ERK1/2 activation by H(2)O(2), a reactive oxygen species, was observed in cultured neonatal rat cardiomyocytes. We investigated the hypothesis that the delayed activation of ERK1/2 depends on a factor secreted by oxidative stress (FSO). The delayed activation was inhibited by calphostin C, a protein kinase C inhibitor. Conditioned medium (CM) obtained from cells stimulated with H(2)O(2) induced rapid and monophasic ERK1/2 activation, which was not inhibited by calphostin C. In contrast, calphostin C-pretreated CM did not activate ERK1/2. Macrophage migration inhibitory factor (MIF) was one of the candidate FSOs activating ERK1/2. The existence of MIF in CM, the recombinant MIF-stimulated ERK1/2 rapid activation, and anti-MIF neutralizing antibody-induced inhibition of the delayed activation implied that MIF could be the FSO. Pretreatment of cardiomyocytes with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor did not suppress the MIF secretion, although it prevented the ERK1/2 activation by H(2)O(2). These results indicate that MIF is secreted from cardiomyocytes as a result of oxidative stress and activates ERK1/2 through a MEK1/2-dependent mechanism, although the secretion is not regulated by ERK1/2 but by protein kinase C.
Collapse
Affiliation(s)
- Jun Fukuzawa
- First Department of Medicine, Asahikawa Medical College, 2-1-1-1 Midorigaoka-Higashi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dios A, Mitchell RA, Aljabari B, Lubetsky J, O'Connor K, Liao H, Senter PD, Manogue KR, Lolis E, Metz C, Bucala R, Callaway DJE, Al-Abed Y. Inhibition of MIF bioactivity by rational design of pharmacological inhibitors of MIF tautomerase activity. J Med Chem 2002; 45:2410-6. [PMID: 12036350 DOI: 10.1021/jm010534q] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pro-inflammatory mediator macrophage migration inhibitory factor (MIF) is produced by immune and endocrine cells and inhibits the antiinflammatory activities of glucocorticoids. MIF also catalyzes the tautomerization of the non-naturally occurring D-isomer of dopachrome, phenylpyruvate, and certain catecholamines, suggesting that MIF might exert its biological effects via enzymatic action on a substrate. However, no physiologically relevant substrate for MIF has been identified. Site-directed mutagenesis studies have not consistently supported a requirement for an intact, functional catalytic site as a prerequisite for MIF bioactivity. We hypothesized that the catalytically active site, but not the enzymatic activity per se, nevertheless plays a critical role in MIF pro-inflammatory activity. Accordingly, we designed small druglike molecules that bind at the catalytically active tautomerase site of MIF and tested the complex for MIF bioactivity. We describe herein the rational design and synthesis of a class of imine conjugates produced by coupling amino acids to a range of benzaldehyde derivatives that inhibit MIF tautomerase and biological activities. We found that aromatic amino acid Schiff bases were better inhibitors of MIF enzymatic and bioactivities compared to the aliphatic ones. For instance, the IC(50) inhibition of MIF tautomerase activity by aromatic amino acid Schiff base methyl esters was achieved at a concentration between 1.65 and 50 microM, suggesting a critical role for the additional binding of the aromatic residues within the vicinity of the active site. The most potent inhibitor of MIF tautomerase activity was 2-[(4-hydroxybenzylidene)amino]-3-(1H-indol-3-yl)propionic acid methyl ester (8), with an IC(50) of 1.65 microM. We found that compound 8 binding to MIF active site resulted in the inhibition of MIF bioactivity in three established bioassays: ERK-1/2 MAP kinase activation, p53-dependent apoptosis, and proliferation of serum-starved cells. Compound 8 inhibited MIF interaction with its as yet unidentified cognate cell surface receptor as shown by flow cytometry, concluding a critical role for the tautomerase active site in receptor binding. Thus the inhibitory effect of compound 8 on MIF bioactivities strongly correlated with the inhibition of MIF tautomerase activity, a connection not made previously through use of small-molecule MIF inhibitors. The inhibitory activity of amino acid-benzaldehyde Schiff base-type MIF antagonists is the first step toward a meaningful structure/function analysis of inhibitors of MIF cellular bioactivities.
Collapse
Affiliation(s)
- Angeles Dios
- The Picower Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fingerle-Rowson GR, Bucala R. Neuroendocrine properties of macrophage migration inhibitory factor (MIF). Immunol Cell Biol 2001; 79:368-75. [PMID: 11488984 DOI: 10.1046/j.1440-1711.2001.01024.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is produced by neuroendocrine and immune tissues and possesses several features that allow it to be characterized as a neuroendocrine mediator. Its pro-inflammatory action and its pathogenic role in inflammatory diseases, such as septic shock, arthritis and other diseases, have clearly been demonstrated and may be based in part on neuroendocrine mechanisms. Macrophage migration inhibitory factor possesses glucocorticoid-antagonist properties within the immune system and participates in the regulation of several endocrine circuits. This review summarizes the current state of MIF research and focuses on MIF expression and function in nervous and endocrine tissues.
Collapse
|
35
|
Petrovsky N, Bucala R. Macrophage migration inhibitory factor (MIF). A critical neurohumoral mediator. Ann N Y Acad Sci 2001; 917:665-71. [PMID: 11268395 DOI: 10.1111/j.1749-6632.2000.tb05432.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N Petrovsky
- Cytokine and Autoimmunity Research Unit, Department of Endocrinology, Canberra Hospital, Yamba Drive, Woden, ACT, Australia 2606
| | | |
Collapse
|
36
|
Orita M, Yamamoto S, Katayama N, Aoki M, Takayama K, Yamagiwa Y, Seki N, Suzuki H, Kurihara H, Sakashita H, Takeuchi M, Fujita S, Yamada T, Tanaka A. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J Med Chem 2001; 44:540-7. [PMID: 11170644 DOI: 10.1021/jm000386o] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine released from T-cells and macrophages. Although a detailed understanding of the biological functions of MIF has not yet been clarified, it is known that MIF catalyzes the tautomerization of a nonphysiological molecule, D-dopachrome. Using a structure-based computer-assisted search of two databases of commercially available compounds, we have found 14 novel tautomerase inhibitors of MIF whose K(i) values are in the range of 0.038-7.4 microM. We also have determined the crystal structure of MIF complexed with the hit compound 1. It showed that the hit compound is located in the active site of MIF containing the N-terminal proline which plays an important role in the tautomerase reaction and forms several hydrogen bonds and undergoes hydrophobic interactions. A crystallographic study also revealed that there is a hydrophobic surface which consists of Pro-33, Tyr-36, Trp-108, and Phe-113 at the rim of the active site of MIF, and molecular modeling studies indicated that several more potent hit compounds have the aromatic rings which can interact with this hydrophobic surface. To our knowledge, our compounds are the most potent tautomerase inhibitors of MIF. One of these small, drug-like molecules has been cocrystallized with MIF and binds to the active site for tautomerase activity. Molecular modeling also suggests that the other hit compounds can bind in a similar fashion.
Collapse
Affiliation(s)
- M Orita
- Yamanouchi Pharmaceutical Company Ltd., 21 Miyukigaoka, Tsukuba Science City 305-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kitaichi N, Ogasawara K, Iwabuchi K, Nishihira J, Namba K, Onoé K, Konishi J, Kotake S, Matsuda H, Onoé K. Different influence of macrophage migration inhibitory factor (MIF) in signal transduction pathway of various T cell subsets. Immunobiology 2000; 201:356-67. [PMID: 10776792 DOI: 10.1016/s0171-2985(00)80090-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been shown that macrophage migration inhibitory factor (MIF) modulates not only macrophage functions, but also T cell functions. However, detailed analysis of the MIF function on responses of various T cell subpopulations remained to be elucidated. In this report, using a neutralizing anti-MIF monoclonal antibody (mAb) we examined MIF functions on various T cell lineages. It was shown that anti-MIF mAb inhibited antigen-specific responses of both IFN-gamma producing and IL-4 producing T cells. The inhibition appeared to be related to blockade of the signal pathway via T cell receptor (TCR) but not that via IL-2 receptor (IL-2R). However, the anti-MIF mAb showed no inhibitory effect on NK-T cell responses stimulated through TCR. These results suggest that MIF is involved in the signal pathway via TCR in mainstream T cells but not in NK-T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibody Specificity/immunology
- Antigens/immunology
- Antigens, Surface
- Cell Division
- Cell Line
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Lymphocyte Activation
- Macrophage Migration-Inhibitory Factors/biosynthesis
- Macrophage Migration-Inhibitory Factors/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily B
- Proteins/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interleukin-2/immunology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- N Kitaichi
- Institute of Immunological Science Hokkaido University, Department of Ophthalmology, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shimizu T, Abe R, Nakamura H, Ohkawara A, Suzuki M, Nishihira J. High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem Biophys Res Commun 1999; 264:751-8. [PMID: 10544003 DOI: 10.1006/bbrc.1999.1584] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to function as a cytokine, hormone, and glucocorticoid-induced immunoregulator. In this study, we reported for the first time that human melanocytes and melanoma cells express MIF mRNA and produce MIF protein. Immunohistochemical analysis demonstrated that MIF was mostly localized in the cytoplasm of melanocytes and G361 cells, a widely available human melanoma cell line. In particular, strong positive staining was observed at the dendrites of these cells. Expression of MIF mRNA and production of MIF protein were much higher in human melanoma cells such as G361, A375, and L32 than in normal cultured melanocytes. To assess the role of MIF overexpression in melanoma cells, G361 cells were transfected with an antisense human MIF plasmid. The results demonstrated that the cell growth rate of the transfected cells was markedly suppressed, suggesting that MIF participates in the mechanism of proliferation of melanoma cells. To further evaluate the function of MIF, we employed the Boyden chamber method to examine the effect on tumor cell migration and found that MIF enhanced the migration of G361 cells in a dose-dependent manner. Furthermore, we administered anti-MIF antibody into tumor (G361 cells in a Millipore chamber)-bearing mice to assess the effect on tumor-associated angiogenesis. The anti-MIF antibody significantly suppressed tumor-induced angiogenesis. Taken together, these results indicated that it is likely that MIF may function as a novel growth factor that stimulates incessant growth and invasion of melanoma concomitant with neovascularization.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, 060, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 A resolution. Biochemistry 1999; 38:3268-79. [PMID: 10079069 DOI: 10.1021/bi982184o] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-Dopachrome tautomerase shares a low homologous amino acid sequence (33% homology) with the macrophage migration inhibitory factor (MIF) and possesses similar tautomerase activity as well. MIF is a cytokine involved in inflammatory reactions and immune responses. Whereas recent studies have identified MIF as a pituitary hormone and immunoregulator, much less is known about the structural basis of these physiological functions and the real significance of tautomerase activity. Therefore, interest in the structure-function relationship between D-dopachrome tautomerase and MIF has increased, especially with regard to inflammation and immune responses. We have determined the X-ray crystal structure of human D-dopachrome tautomerase at 1.54 A resolution. D-Dopachrome tautomerase folds to form a homotrimer that has extensive contact between subunits by intersubunit beta-sheets. Its overall topology and trimeric formations are similar to those of human MIF. The N-terminal proline is located at the bottom of a positively charged pocket in which the conformations of Lys32 and Ser63 are highly conserved. These positively charged properties are also seen in the active site pocket of human MIF, bacterial 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), and 4-oxalocrotonate tautomerase (4-OT). A detailed comparison of these structures revealed significant differences in the environment around the potential active site, the intersubunit contacts, and charge distribution on the molecular surface. It can be concluded that these features are related to the physiological role and tautomerase activity of MIF and D-dopachrome tautomerase. The present structural study could be helpful for designing effective inhibitors that modulate immunoregulatory and hormone-like effects.
Collapse
Affiliation(s)
- H Sugimoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Matsunaga J, Sinha D, Pannell L, Santis C, Solano F, Wistow GJ, Hearing VJ. Enzyme activity of macrophage migration inhibitory factor toward oxidized catecholamines. J Biol Chem 1999; 274:3268-71. [PMID: 9920865 DOI: 10.1074/jbc.274.6.3268] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a relatively small, 12.5-kDa protein that is structurally related to some isomerases and for which multiple immune and catalytic roles have been proposed. MIF is widely expressed in tissues with particularly high levels in neural tissues. Here we show that MIF is able to catalyze the conversion of 3,4-dihydroxyphenylaminechrome and norepinephrinechrome, toxic quinone products of the neurotransmitter catecholamines 3,4-dihydroxyphenylamine and norepinephrine, to indoledihydroxy derivatives that may serve as precursors to neuromelanin. This raises the possibility that MIF participates in a detoxification pathway for catecholamine products and could therefore have a protective role in neural tissues, which as in Parkinson's disease, may be subject to catecholamine-related cell death.
Collapse
Affiliation(s)
- J Matsunaga
- Pigment Cell Biology Section, Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Mischke R, Kleemann R, Brunner H, Bernhagen J. Cross-linking and mutational analysis of the oligomerization state of the cytokine macrophage migration inhibitory factor (MIF). FEBS Lett 1998; 427:85-90. [PMID: 9613605 DOI: 10.1016/s0014-5793(98)00400-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structure of the cytokine MIF has been investigated by X-ray crystallography, NMR, and biochemical methods with conflicting results regarding the structural and functional oligomerization state of this protein. Determination of the oligomeric state(s) is important for understanding more precisely the molecular mechanism of MIF action. To address this issue, we performed cross-linking of human and mouse MIF and selected mutants by various methods and analyzed the oligomerization by SDS-PAGE and gel filtration. MIF was found to form a mixture of monomeric, dimeric, and trimeric states at physiological concentrations, with the monomer and dimer representing the major species. Similar results were obtained when the carboxy-truncated mutants MIF(1-104) and MIF(1-109) were examined, indicating that the C-terminus of MIF is not critical for trimer stabilization. Cross-linking analysis of the isosteric Cys --> Ser mutants C56S and C80S of human MIF resulted in a similar oligomer distribution, whereas substitution of Cys59 led to a significant reduction in the dimeric and trimeric forms, indicating that the hydrophobic region around Cys59 is important for the oligomerization of MIF. Together, our data argue that physiological MIF solutions contain a mixture of monomers, dimers, and trimers.
Collapse
Affiliation(s)
- R Mischke
- Laboratory of Biochemistry, Chair for Interfacial Engineering, University of Stuttgart, Germany
| | | | | | | |
Collapse
|
42
|
Nishihira J, Fujinaga M, Kuriyama T, Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Sakai M. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochem Biophys Res Commun 1998; 243:538-44. [PMID: 9480844 DOI: 10.1006/bbrc.1998.8123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
D-Dopachrome tautomerase converts 2-carboxy-2,3-dihydroindole-5,6-quinone (D-dopachrome) into 5,6-dihydroxyindole. This protein has an amino acid sequence that is highly homologous with that of macrophage migration inhibitory factor (MIF), which has the potential to catalyze D-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid and is an important cytokine for T-lymphocyte activation. We isolated and sequenced a 566 bp-long cDNA encoding human D-dopachrome tautomerase. The cDNA contains an open reading frame encoding 118 amino acids, including the initiator methionine. The amino acid sequence of the protein shares 80% homology with that of the rat enzyme. Northern blot analysis demonstrated that mRNA of D-dopachrome tautomerase is expressed in a large amount in the liver, and to lesser extent in other organs, including the heart, lung and pancreas. After purification of D-dopachrome tautomerase expressed in E. coli, we confirmed that the recombinant protein catalyzes the conversion of D-dopachrome to 5,6-dihydroxyindole. Its catalytic mechanism is not well understood. We found that the protein completely lost the enzyme activity when the N-terminal proline residue was replaced with alanine by site-directed mutagenesis. This fact suggests that the N-terminal proline is essential for the catalytic mechanism. Although the precise pathophysiological function of D-dopachrome tautomerase remains to be elucidated, the present results could contribute to further understanding of isomerase activity in relation to the immune response.
Collapse
Affiliation(s)
- J Nishihira
- Central Research Institute, School of Medicine Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bendrat K, Al-Abed Y, Callaway DJ, Peng T, Calandra T, Metz CN, Bucala R. Biochemical and mutational investigations of the enzymatic activity of macrophage migration inhibitory factor. Biochemistry 1997; 36:15356-62. [PMID: 9398265 DOI: 10.1021/bi971153a] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein mediator MIF has been identified as being released from immune cells by glucocorticoid stimulation and to counter-regulate glucocorticoid action. MIF also has been described recently to exhibit dopachrome tautomerase activity and to be structurally homologous to the bacterial enzymes 4-oxalocrotonate tautomerase (4-OT) and 5-carboxymethyl-2-hydroxymuconate isomerase (CHMI). We performed site-directed mutagenesis and biochemical analyses of mouse MIF in order to identify amino acid residues and protein domains that are essential for enzymatic reactivity. Mutant proteins which lacked a free N-terminal proline residue were enzymatically inactive, as was a preparation of native MIF modified covalently at its N terminus by 3-bromopyruvate, suggesting that this proline has a catalytic function. Substitutions of the internal histidine residues 42 and 63 did not affect enzymatic activity, indicating that these basic residues are not involved in dopachrome tautomerization. Carboxy-truncated forms of MIF (residues 1-110 and 1-104) also were inactive, affirming the role of the carboxy terminus in stable trimer formation and the importance of the trimer for enzymatic activity. Additional evidence for the homotrimeric structure of MIF under native solution conditions was obtained by SDS-PAGE analysis of MIF after chemical cross-linking at low protein concentrations. The enzymatic activity of MIF was found to be reversibly inhibited by micromolar concentrations of fatty acids with chain lengths of at least 16 carbon atoms. Of note, molecular modeling of the substrate L-dopachrome methyl ester into the active site of MIF suggests an acid-catalyzed enzymatic mechanism that is different from that deduced from studies of the enzymes 4-OT and CHMI. Finally, in vitro analysis of an enzymatically inactive MIF species (P2 --> S) indicates that the glucocorticoid counter-regulatory activity of MIF can be functionally dissociated from its tautomerization activity.
Collapse
Affiliation(s)
- K Bendrat
- The Picower Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Björk P, Jacobsson L, Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett 1997; 417:85-8. [PMID: 9395080 DOI: 10.1016/s0014-5793(97)01261-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A macrophage migration inhibitory factor (MIF), originally described as a product of activated lymphocytes, has been defined as a 12 kDa protein, expressed in a wide variety of tissues. Here MIF is identified as a phenylpyruvate tautomerase (EC 5.3.2.1) having p-hydroxyphenylpyruvate and phenylpyruvate as its natural substrates. The definition of MIF as an enzyme may yield insight into the mechanism of action of this proinflammatory and immunomodulating cytokine.
Collapse
Affiliation(s)
- E Rosengren
- Department of Pharmacology, University of Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. Crystallization and preliminary X-ray analysis of human D-dopachrome tautomerase. J Struct Biol 1997; 120:105-8. [PMID: 9356298 DOI: 10.1006/jsbi.1997.3904] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
D-Dopachrome tautomerase catalyzes the conversion of D-dopachrome to 5,6-dihydroxyindole. This protein has amino acid sequence homology with that of macrophage migration inhibitory factor (MIF), suggesting a pathophysiological role of this protein in inflammatory and immunological events. We previously determined the tertiary structure of MIF and revealed the functional and evolutional relationships of this protein to isomerase. However, the reaction mechanism of both proteins associated with the inflammatory response, immune system, or tautomerase activities in vitro have not yet been clarified. The tertiary structure of D-dopachrome tautomerase would provide insight into the molecular function and the mechanism of these proteins. In this study, we crystallized human D-dopachrome tautomerase by a hanging-drop vapor diffusion method. The crystals belong to the trigonal space group P3, with unit cell dimensions a = b = 84.2 A and c = 41.0 A. They contain three (or two) monomers in the asymmetric unit, corresponding to a VM value of 2.21 (or 3.32) A3 Da-1. The best crystals diffract X-ray to 1.6 A resolution using a synchrotron radiation source. Crystallization of the selenomethionyl derivative of the protein for applying the multiwavelength anomalous diffraction method was also successful.
Collapse
Affiliation(s)
- H Sugimoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Mischke R, Gessner A, Kapurniotu A, Jüttner S, Kleemann R, Brunner H, Bernhagen J. Structure activity studies of the cytokine macrophage migration inhibitory factor (MIF) reveal a critical role for its carboxy terminus. FEBS Lett 1997; 414:226-32. [PMID: 9315691 DOI: 10.1016/s0014-5793(97)01039-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carboxy-truncated mutants of human MIF (MIF(1-104) and MIF(1-109)) were used in structure activity studies. CD spectroscopy revealed an overall structural similarity between the mutants and MIF. Denaturant-induced unfolding demonstrated that the C-terminus contributed significantly to the conformational stability of MIF. This appears to be due to the formation of two C-terminal beta-strands. The mutants were enzymatically active, exhibiting half of the enzymatic redox activity of MIF. However, immunological analysis showed that deletion of both 5 and 10 C-terminal residues resulted in loss of the macrophage activating properties of MIF, providing functional evidence that the C-terminus is important for immunological activity and trimer formation. A more detailed study of the C-terminus may assist in identifying the molecular basis for the immunological and enzymatic activities of MIF.
Collapse
Affiliation(s)
- R Mischke
- Laboratory of Biochemistry, Chair for Interfacial Engineering, University of Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|