1
|
Wang B, Hao X, Xu J, Wang B, Ma W, Liu X, Ma L. Cytochrome P450 metabolism mediates low-temperature resistance in pinewood nematode. FEBS Open Bio 2020; 10:1171-1179. [PMID: 32348629 PMCID: PMC7262887 DOI: 10.1002/2211-5463.12871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 01/23/2023] Open
Abstract
Pinewood nematode (PWN; Bursaphelenchus xylophilus) is a devastating invasive species that is expanding into colder regions. Here, we investigated the molecular mechanisms underlying low-temperature resistance of PWN. We identified differentially expressed genes enriched under low temperature in previously published transcriptome data using the Kyoto Encyclopedia of Genes and Genomes. Quantitative real-time PCR was used to further validate the transcript level changes of three known cytochrome P450 genes under low temperature. RNA interference was used to validate the low-temperature resistance function of three cytochrome P450 genes from PWN. We report that differentially expressed genes were significantly enriched in two cytochrome P450-related pathways under low-temperature treatment. Heatmap visualization of transcript levels of cytochrome P450-related genes revealed widely different transcript patterns between PWNs treated under low and regular temperatures. Transcript levels of three cytochrome P450 genes from PWNs were elevated at low temperature, and knockdown of these genes decreased the survival rates of PWNs under low temperature. In summary, these findings suggest that cytochrome P450 metabolism plays a critical role in the low-temperature resistance mechanism of PWN.
Collapse
Affiliation(s)
- Bowen Wang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xin Hao
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Jiayao Xu
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Buyong Wang
- College of Agricultural and Biological Engineering, Heze University, Heze, China
| | - Wei Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuefeng Liu
- College of Forestry, Northeast Forestry University, Harbin, China.,Heilongjiang Forest Protection Technology Innovation Center, Northeast Forestry University, Harbin, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin, China.,Heilongjiang Forest Protection Technology Innovation Center, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Abstract
Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein.
Collapse
Affiliation(s)
- Martin J J Ronis
- a Department of Pharmacology & Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
3
|
Osselaere A, De Bock L, Eeckhaut V, De Backer P, Van Bocxlaer J, Boussery K, Croubels S. Hepatic and intestinal CYP3A expression and activity in broilers. J Vet Pharmacol Ther 2013; 36:588-93. [DOI: 10.1111/jvp.12034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Affiliation(s)
- A. Osselaere
- Department of Pharmacology, Toxicology and Biochemistry; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - L. De Bock
- Department of Bioanalysis; Laboratory of Medical Biochemistry and Clinical Analysis; Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - V. Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - P. De Backer
- Department of Pharmacology, Toxicology and Biochemistry; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - J. Van Bocxlaer
- Department of Bioanalysis; Laboratory of Medical Biochemistry and Clinical Analysis; Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - K. Boussery
- Department of Bioanalysis; Laboratory of Medical Biochemistry and Clinical Analysis; Faculty of Pharmaceutical Sciences; Ghent University; Ghent Belgium
| | - S. Croubels
- Department of Pharmacology, Toxicology and Biochemistry; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
4
|
Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:399-451. [PMID: 24219506 PMCID: PMC3856475 DOI: 10.1080/10937404.2013.842523] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sucralose is a synthetic organochlorine sweetener (OC) that is a common ingredient in the world's food supply. Sucralose interacts with chemosensors in the alimentary tract that play a role in sweet taste sensation and hormone secretion. In rats, sucralose ingestion was shown to increase the expression of the efflux transporter P-glycoprotein (P-gp) and two cytochrome P-450 (CYP) isozymes in the intestine. P-gp and CYP are key components of the presystemic detoxification system involved in first-pass drug metabolism. The effect of sucralose on first-pass drug metabolism in humans, however, has not yet been determined. In rats, sucralose alters the microbial composition in the gastrointestinal tract (GIT), with relatively greater reduction in beneficial bacteria. Although early studies asserted that sucralose passes through the GIT unchanged, subsequent analysis suggested that some of the ingested sweetener is metabolized in the GIT, as indicated by multiple peaks found in thin-layer radiochromatographic profiles of methanolic fecal extracts after oral sucralose administration. The identity and safety profile of these putative sucralose metabolites are not known at this time. Sucralose and one of its hydrolysis products were found to be mutagenic at elevated concentrations in several testing methods. Cooking with sucralose at high temperatures was reported to generate chloropropanols, a potentially toxic class of compounds. Both human and rodent studies demonstrated that sucralose may alter glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels. Taken together, these findings indicate that sucralose is not a biologically inert compound.
Collapse
Affiliation(s)
- Susan S. Schiffman
- Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Address correspondence to Susan S. Schiffman, PhD, Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA. E-mail:
| | - Kristina I. Rother
- Section on Pediatric Diabetes & Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Pałasz A, Wiaderkiewicz A, Wiaderkiewicz R, Czekaj P, Czajkowska B, Lebda-Wyborny T, Piwowarczyk A, Bryzek A. Age-related changes in the mRNA levels of CYP1A1, CYP2B1/2 and CYP3A1 isoforms in rat small intestine. GENES AND NUTRITION 2011; 7:197-207. [PMID: 21769602 DOI: 10.1007/s12263-011-0240-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 07/06/2011] [Indexed: 11/27/2022]
Abstract
It has been established beyond doubt that, as well as the liver, the small intestine is an important site of first-pass metabolism of numerous drugs, food components and toxic xenobiotics. However, there is not much information available about age-dependent changes of intestinal biotransformation pathways. In the present paper, we evaluated the relationships between intestinal cytochrome P450 complex activity and the age of animals. The study was carried out on male Sprague-Dawley rats (n = 5) from 5 age series: 0.5-, 2-, 4-, 20-, and 28 months old. Animals at every age series were divided into 4 groups: control and three groups of rats treated with the CYP450 specific inducers: phenobarbital, β-naphtoflavone and dexamethasone, respectively. RNA was isolated from intestinal mucosa, and then standard RT-PCR was used for the analysis of CYP1A1, CYP2B1/2 and CYP3A1 mRNA expression. Additionally, the activities of NADPH-cytochrome P450 and NADH-cytochrome b(5) reductases in the microsomal fraction were biochemically estimated. The constitutive intestinal CYP1A1 mRNA expression changes during maturation and aging. Inducibility of CYP1A1 gene was evident in intestinal mucosa at 2-, 4- and 20-month-old rats. A similar pattern of changes was observed for CYP2B1/2 isoforms. CYP3A1 mRNA expression was not detected in small intestine of 2-week-old rats. In matured rats, constitutive intestinal CYP3A1 expression was low, although after induction, significant increases in CYP3A1 mRNA amount were noted in aged individuals. Intestinal activity of both analyzed reductases was lowest in immature rats and highest in 28-month-old animals. In conclusion, the activity of cytochrome P450 complex in rat small intestine was not decreased by the aging processes, so the high rate of oxidative metabolic reactions in intestinal mucosa can be maintained till the advanced life stage.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee DY, Lee I, Lee MG. Effects of cysteine on the pharmacokinetic parameters of omeprazole in rats with protein-calorie malnutrition: partial restoration of some parameters to control levels by oral cysteine supplementation. JPEN J Parenter Enteral Nutr 2007; 31:37-46. [PMID: 17202439 DOI: 10.1177/014860710703100137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND It has been reported that omeprazole is mainly metabolized via the hepatic cytochrome (CYP) 1A1/2, 3A1/2, and 2D1, and the expressions and mRNA levels of CYP1A2, 2C11, and 3A1/2 decreased in protein-calorie malnutrition (PCM) rats compared with controls. Interestingly, the decreased CYP1A2, 2C11, and 3A1/2 in PCM rats returned fully or partially to control levels by oral cysteine supplementation (PCMC rats). Hence, it could be expected that some pharmacokinetic parameters of omeprazole might change in PCM rats and partially restore to control levels in PCMC rats. The purpose of this study is to investigate the pharmacokinetic changes of omeprazole in PCM rats and restoration of the parameters in PCMC rats to control levels. METHODS Omeprazole was administered intravenously (20 mg/kg) and orally (40 mg/kg) to control, PCM, and PCMC rats. RESULTS The following pharmacokinetic parameters were changed in PCM rats and partially returned to control levels in PCMC rats: the area under the plasma concentration-time curve (AUC; 387, 762, and 539 microg min/mL for control, PCM, and PCMC rats, respectively, after intravenous [IV] administration, and the corresponding values after oral administration: 115, 304, and 201 microg min/mL), total body clearance (51.7, 25.5, and 37.1 mL/min/kg, respectively), nonrenal clearance (51.5, 25.4, and 36.1 mL/min/kg, respectively), and in vitro intrinsic clearance (0.158, 0.118, and 0.138 mL/min/mg protein). CONCLUSIONS PCM was associated with significant changes in some omeprazole pharmacokinetics and the pharmacokinetic parameters restored to control levels by oral cysteine.
Collapse
Affiliation(s)
- Dae Y Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
7
|
Nguyen TV, Smith DE, Fleisher D. PEPT1 Enhances the Uptake of Gabapentin via Trans-Stimulation of b0,+ Exchange. Pharm Res 2006; 24:353-60. [PMID: 17192834 DOI: 10.1007/s11095-006-9155-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 08/28/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE The aims of this study were (1) to determine whether amino acid and dipeptide loading can improve the effective permeability of gabapentin and (2) to characterize the underlying mechanism that is responsible for this interaction. MATERIALS AND METHODS An in situ single-pass rat intestinal perfusion model was used to assess the effective permeability of gabapentin in rat, in the absence and presence of cellular loading by amino acid and dipeptide mixtures. RESULTS Compared to gabapentin alone, cellular loading with amino acid and dipeptide mixtures significantly improved the effective permeability of gabapentin by 46-79% in jejunum and by 67-72% in ileum (p < or = 0.01). However, coperfusion of glycylsarcosine (i.e., PEPT1 substrate), methionine sulfoximine (i.e., glutamine synthase inhibitor), or lysine and arginine (i.e., b(0,+) substrates) with the amino acid and dipeptide mixtures compromised the intestinal uptake of gabapentin. CONCLUSIONS These findings demonstrate, for the first time, a direct relationship between the PEPT1-mediated uptake of a dipeptide and the trans-stimulated uptake of gabapentin (an amino acid-like drug) through the transport system b(0,+).
Collapse
Affiliation(s)
- Theresa V Nguyen
- Deparment of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, USA.
| | | | | |
Collapse
|
8
|
Ronis MJ, Little JM, Barone GW, Chen G, Radominska-Pandya A, Badger TM. Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract. J Med Food 2006; 9:348-55. [PMID: 17004897 DOI: 10.1089/jmf.2006.9.348] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytoestrogens, in particular the isoflavone aglycones genistein and daidzein, are thought to be the bioactive components of soy. Like estrogens, isoflavones can be sulfur-conjugated. However, although isoflavones in the serum are found largely in the form of glucuronide and sulfur conjugates following soy consumption, little is known regarding the relative contributions of sulfotransferases in the liver and small intestine to isoflavone sulfation. Since the sulfates may be deconjugated in target tissues, circulating isoflavone sulfates may act as a source of tissue aglycones. In the current study genistein and daidzein sulfotransferase activities were measured in cytosol from human and rat liver and gastrointestinal tract. Isoflavone sulfation in the human gastrointestinal (GI) tract was correlated with activities towards substrates for previously characterized human sulfotransferases. Western blots of human cytosols were also conducted using antisera towards human sulfotransferases SULT1E1 and SULT2A1. Whereas rat liver was almost fourfold more active than small intestine in sulfation of genistein, in the human, activities in the two tissues were comparable. In contrast, intestinal sulfation of daidzein was comparable to hepatic sulfation in the rat and significantly greater in the human. Genistein and daidzein sulfation occurred throughout the human GI tract, but with a different distribution and different interindividual variability. Whereas genistein sulfation in the human GI tract correlated significantly with sulfation of the prototypical human phenolic sulfotransferase SULT1A family substrate 2-naphthol (r2 = 0.71), daidzein sulfotransferase activity did not correlate with activities towards any prototypical sulfotransferase substrate or with genistein sulfation. Our results suggest that metabolism in the human GI tract has an important role in the generation of potentially bioactive isoflavone sulfates and a major role for the human phenolic sulfotransferase SULT1A family in metabolism of genistein in the gut. However, human intestinal daidzein sulfation appears to be catalyzed by a separate enzyme.
Collapse
Affiliation(s)
- Martin J Ronis
- Department of Pharmacology, University of Arkansas for Medical Sciences, Arkansas, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Lee DY, Lee I, Lee MG. Pharmacokinetics of omeprazole after intravenous and oral administration to rats with liver cirrhosis induced by dimethylnitrosamine. Int J Pharm 2006; 330:37-44. [PMID: 16997515 DOI: 10.1016/j.ijpharm.2006.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 08/17/2006] [Accepted: 08/28/2006] [Indexed: 11/19/2022]
Abstract
The aim of this study is to report the pharmacokinetics of omeprazole after intravenous (20 mg/kg) and oral (40 mg/kg) administration to rats with liver cirrhosis induced by dimethylnitrosamine (cirrhotic rats) with respect to CYP isozyme changes. The expressions of CYP1A2 and 3A1 decreased in cirrhotic rats and omeprazole is reported to be mainly metabolized via CYP1A1/2, 2D1, and 3A1/2 in male Sprague-Dawley rats. Hence, the pharmacokinetics of omeprazole could be changed in cirrhotic rats. After intravenous administration to cirrhotic rats, the AUC (1180 microg min/ml versus 474 microg min/ml) and CL(NR) (17.4 ml/min/kg versus 42.3 ml/min/kg) of omeprazole were significantly greater and slower, respectively, than the controls. This could be due to decrease in the expressions of CYP1A2 and 3A1 in cirrhotic rats. The significantly slower CL(NR) could be supported by significantly slower in vitro CL(int) for the disappearance of omeprazole from hepatic microsomal study (0.102 ml/min/mg protein versus 0.144 ml/min/mg protein) and slower hepatic blood flow rate in cirrhotic rats. After oral administration to cirrhotic rats, the AUC difference was considerably greater (451% versus 149%) than that after intravenous administration, possibly due to decrease in intestinal first-pass effect of omeprazole in addition to decrease in hepatic metabolism of omeprazole in cirrhotic rats.
Collapse
Affiliation(s)
- Dae Y Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | |
Collapse
|
10
|
Abstract
AIM: To characterize the intestinal transport and mechanism of metformin in rats and to investigate whether or not metformin is a substrate for P-glycoprotein (P-gp).
METHODS: The effective intestinal permeability of metformin was investigated using single-pass intestinal perfusion (SPIP) technique in male Waster rats. SPIP was performed in three isolated intestinal segments (duodenum, jejunum and ileum) at the same concentration of metformin (50 μg/mL) to test if the intestinal transport of metformin exhibited site-dependent changes, and in a same isolated intestinal segment (duodenal segment) at three different concentrations of metformin (10, 50, 200 μg/mL) to test if the intestinal transport of metformin exhibited concentration-dependent changes. Besides, P-gp inhibitor verapamil (400 μg/mL) was co-perfused with metformin (50 μg/mL) in the duodenum segment to find out if the intestinal absorption of metformin was affected by P-gp exiting along the gastrointestinal track. Stability studies were conducted to ensure that the loss of metformin could be attributed to intestinal absorption.
RESULTS: The effective permeability values (Peff) of metformin in the jejunum and ileum at 50 μg/mL were significantly lower than those in the duodenum at the same concentration. Besides, Peff values in the duodenum at high concentration (200 μg/mL) were found to be significantly lower than those at low and medium concentrations (10 and 50 μg/mL). Moreover the co-perfusion with verapamil did not increase the Peff value of metformin at 50 μg/mL in the duodenum.
CONCLUSION: Metformin could be absorbed from the whole intestine, with the main absorption site at duodenum. This concentration-dependent permeability behavior in the duodenum indicates that metformin is transported by both passive and active carrier-mediated saturable mechanism. The Peff value can not be increased by co-perfusion with verapamil, indicating that absorption of metformin is not efficiently transported by P-gp in the gut wall. Furthermore metformin is neither a substrate nor an inducer of P-gp. Based on the Peff values obtained in the present study and using established relationships, the human fraction dose absorbed for metformin is estimated to be 74%-90% along human intestine.
Collapse
Affiliation(s)
- Nai-Ning Song
- School of Chemical Engineering and Technology, Tianjin University, China
| | | | | |
Collapse
|
11
|
Hidestrand M, Shankar K, Ronis MJJ, Badger TM. Effects of light and dark beer on hepatic cytochrome P-450 expression in male rats receiving alcoholic beverages as part of total enteral nutrition. Alcohol Clin Exp Res 2005; 29:888-95. [PMID: 15897735 DOI: 10.1097/01.alc.0000164371.91315.2b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alcoholic beverages contain many congeners in addition to ethanol. Therefore, consumption of alcoholic beverages may have considerably different effects on expression of hepatic microsomal monooxygenases than the relatively selective induction of cytochrome P-450 (CYP) 2E1 observed after consumption of pure ethanol. METHODS : In the current study, we compared the effects of two beers: lager (a light roasted beer) and stout (a dark roasted beer) with those of an equivalent amount of pure ethanol on hepatic CYP expression. Beer or pure ethanol was part of a complete total enteral nutrition diet that was infused intragastrically into male Sprague Dawley rats for 21 days. At the end of the infusion period, rats were euthanized, and liver and intestinal microsomes were prepared. Expression and activity of CYP1A1/2, CYP2B1, CYP2E1, CYP3A, and CYP4A were assessed by Western immunoblotting and by using CYP enzyme-specific substrates, respectively. RESULTS mRNA and protein levels of CYP4A1 were elevated only in stout-treated animals. However, lauric acid 12-hydroxylase activity (a CYP4A-specific activity) was reduced (p < or = 0.05) in microsomes from lager- and stout-fed rats. After oxidation with potassium ferricyanide, this activity was significantly increased in microsomes from stout-fed animals. The relative expression of CYP2E1 and CYP2B1 and the activities toward p-nitrophenol, pentoxyresorufin, or benzyloxyresorufin did not differ between beers or compared with pure ethanol or controls. However, the mean expression of CYP1A2, CYP3A, and CYP4A apoproteins was greater in liver microsomes from stout-infused rats than in those from lager-infused rats, ethanol-infused rats, and diet controls (p < or = 0.05). In addition, although no significant differences were observed in ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), midazolam, or testosterone hydroxylase activities between groups, stout-infused rats had greater hepatic microsomal erythromycin N-demethylase activity than other groups (p < or = 0.05). CONCLUSIONS Stout contains components other than ethanol that interact in a complex fashion with the monooxygenase system.
Collapse
Affiliation(s)
- Mats Hidestrand
- Arkansas Children's Nutrition Center and University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas 72202, USA
| | | | | | | |
Collapse
|
12
|
Catterall F, McArdle NJ, Mitchell L, Papayanni A, Clifford MN, Ioannides C. Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. Food Chem Toxicol 2003; 41:1141-7. [PMID: 12842182 DOI: 10.1016/s0278-6915(03)00073-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Theaflavins and theafulvins, a fraction of thearubigins, were isolated from aqueous infusions of black tea, and their effects on the hepatic and intestinal cytochrome P450 system, and on the glutathione S-transferase, epoxide hydrolase, glucuronosyl transferase and sulphotransferase enzyme systems were investigated in rats following oral intake for four weeks. Neither theafulvins nor theaflavins influenced cytochrome P450 activity in the liver as exemplified by the O-dealkylations of methoxy-, ethoxy- and pentoxyresorufin, the hydroxylations of lauric acid and p-nitrophenol, and the N-demethylation of erythromycin; similarly, hepatic xenobiotic conjugation systems were unaffected. In the intestine, both polyphenolic fractions markedly suppressed the O-deethylation of ethoxyresorufin and this was accompanied by a decrease in the CYP1A1 apoprotein levels. Probing intestinal microsomes with antibodies to CYP2E1 revealed the presence of a single band in the cytochrome P450 region whose intensity was lower in the polyphenol-treated animals. Immunoblot analysis utilising antibodies to CYP3A showed that the treatment with theafulvins and theaflavins reduced the apoprotein levels. A single band in the cytochrome P450 region was evident when the intestinal microsomes were probed with antibodies to CYP4A1 but the level of expression was not affected by the treatment with the black tea polyphenols. Finally, treatment of the rats with theaflavins had no effect on any of the intestinal conjugating enzymes studied, but treatment with theafulvins led to inhibition of glucuronosyl transferase activity.
Collapse
Affiliation(s)
- F Catterall
- School of Biomedical and Life Sciences, University of Surrey, Surrey, GU2 7XH, Guildford, UK
| | | | | | | | | | | |
Collapse
|
13
|
Liu J, Callahan SM, Brunner LJ. Effect of sodium alterations on hepatic cytochrome P450 3A2 and 2C11 and renal function in rats. Drug Dev Ind Pharm 2003; 29:767-75. [PMID: 12906334 DOI: 10.1081/ddc-120021776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Numerous dietary supplements are known to modulate cytochrome P450 (CYP)-mediated metabolism and subsequently alter drug toxicity or efficacy in animals and humans. In the present study we investigated the effect of varying amounts of sodium intake on renal function and the metabolic activity of the hepatic CYP3A2 and CYP2C11 isoforms. Rats were maintained on standard rodent chow or a low-salt rice diet. Within each of these groups rats received either a single intraperitoneal injection of furosemide to initiate salt depletion, or saline. Additional groups included salt supplementation of 500 mg/300 g body weight/day and 1.25 g/300 g body weight/day of sodium chloride solution. Rats receiving the low-salt diet, both with and without a concomitant furosemide administration, had a significant reduction in creatinine clearance without changes in serum creatinine. In addition, urine flow rate was markedly reduced in rats maintained on the low-salt diet. Western blot analysis indicated that neither sodium supplementation nor deprivation altered hepatic microsomal CYP3A2 levels; however, hepatic CYP2C11 levels significantly increased in rats receiving the largest sodium supplement. In vitro metabolic activity of CYP3A2 was unchanged as compared with controls. Activity of CYP2C11 was significantly reduced in both rat groups receiving additional sodium supplements. Acute manipulation of daily sodium intake does alter renal function and specific hepatic CYP isoforms and should be considered when using these rat models.
Collapse
Affiliation(s)
- Jinrong Liu
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712-1074, USA
| | | | | |
Collapse
|
14
|
Johnson TN, Tanner MS, Tucker GT. Developmental changes in the expression of enterocytic and hepatic cytochromes P4501A in rat. Xenobiotica 2002; 32:595-604. [PMID: 12162855 DOI: 10.1080/00498250210131888] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The development of CYP1A enzymes was studied in enterocytic and hepatic microsomes from 1-day-old to adult male and female rats. Microsomes were prepared by calcium precipitation. Enzyme expression was determined by Western blotting using a polyclonal CYP1A1 antibody. 2. The developmental expression of CYP1A in enterocytic and hepatic microsomes was similar for males and females. 3. Enterocytic CYP1A (CYP1A1) showed a sharp increase at weaning, plateauing at adult levels by 60 days. 4. Hepatic CYP1A (mostly CYP1A2) increased sharply just before weaning. However, in contrast to the enterocytic enzyme, there was a 4-fold decrease in enzyme expression down to adult levels by day 60.
Collapse
Affiliation(s)
- T N Johnson
- University of Sheffield, Academic Unit of Molecular Pharmacology and Pharmacogenetics, Division of Clinical Sciences, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | |
Collapse
|
15
|
Salphati L, Childers K, Pan L, Tsutsui K, Takahashi L. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol 2001; 53:1007-13. [PMID: 11480535 DOI: 10.1211/0022357011776252] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Prediction of the fraction of dose absorbed from the intestine (Fa) in man is essential in the early drug discovery stage. In-vitro assays in Caco-2 and MDCK cells are routinely used for that purpose, and their predictive value has been reported. However, in-situ techniques might provide a more accurate estimation of Fa. In this study, we evaluated a single-pass intestinal-perfusion (SPIP) method in the rat for its use in the prediction of absorption in man and compared it with a previous report using cell-based assays. Effective permeability coefficients (Peff) were determined in rats for 14 compounds, and ranged from 0.043x 10(-4) cm s(-1) to 1.67 x 10(-4) cm s(-1). These values strongly correlated (r2 = 0.88) with reported Peff values for man. In addition, the Spearman rank correlation coefficient calculated for in-situ-derived Peff and absorption in man was 0.92 while for the previously tested in-vitro Caco-2 and MDCK systems vs absorption in man, the correlation coefficients were 0.61 and 0.59, respectively. SPIP provided a better prediction of human absorption than the cell-based assays. This method, although time consuming, could be used as a secondary test for studying the mechanisms governing the absorption of new compounds, and for predicting more accurately the fraction absorbed in man.
Collapse
Affiliation(s)
- L Salphati
- Affymax Research Institute, Santa Clara, CA 95051, USA.
| | | | | | | | | |
Collapse
|
16
|
Darbar D, Fromm MF, Dell'Orto S, Kim RB, Kroemer HK, Eichelbaum M, Roden DM. Modulation by dietary salt of verapamil disposition in humans. Circulation 1998; 98:2702-8. [PMID: 9851956 DOI: 10.1161/01.cir.98.24.2702] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The intestine is an increasingly well-recognized site of first-pass drug metabolism. In this study, we determined the influence of dietary salt on the steady-state disposition of verapamil, a drug that undergoes extensive first-pass metabolism. METHODS AND RESULTS Eight normal volunteers received 120 mg of racemic verapamil orally twice a day for 21 days. The disposition kinetics of verapamil enantiomers were determined after coadministration of intravenous deuterated verapamil with the morning oral dose on days 7, 14, and 21. Each study day was preceded by 7 days on a fixed-salt diet: in 5 subjects, the initial study was conducted during a low-salt (10 mEq/d) diet, the second study during a high-salt (400 mEq/d) diet, and the third during a low-salt diet, whereas in the other 3 subjects, the sequence of diets was reversed. Plasma concentrations of both unlabeled enantiomers (ie, from oral therapy) were significantly (P<0.05) lower during the high-salt phase (eg, mean area under the time-concentration curve [0 to 12 hours] for S-verapamil: 7765+/-2591 ng. min. mL-1 [high salt] versus 12 514+/-3527 ng. min. mL-1 [low salt], P<0.05). Peak plasma concentrations were significantly lower and the extent of PR interval prolongation significantly blunted with the high-salt diet. In contrast, data with labeled drug (ie, reflecting the intravenous route) were nearly identical for the 2 diets. CONCLUSIONS These data indicate that a clinically important component of presystemic drug disposition occurs at the prehepatic (presumably intestinal) level and is sensitive to dietary salt.
Collapse
Affiliation(s)
- D Darbar
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ronis MJ, Celander M, Badger TM. Cytochrome P450 enzymes in the kidney of the bobwhite quail (Colinus virginianus): induction and inhibition by ergosterol biosynthesis inhibiting fungicides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:221-9. [PMID: 9972464 DOI: 10.1016/s0742-8413(98)10043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metabolism of testosterone and the alkoxyresorufins was examined in kidney microsomes from male Bobwhite quail (Colinus virginianus) and was compared with that in kidney microsomes prepared from the male rat. In addition, cross-reactivity studies were conducted with a number of antibodies prepared against cytochrome P450 (CYP) enzymes purified from rat and trout liver. The effects of treatment with the fungicides: propiconazole, vinclozolin, clotrimazole and ketoconazole were examined. While kidney microsomes from both quail and rat catalyzed testosterone metabolism at multiple positions, the pattern of hydroxylated metabolites differed. Treatment with vinclozolin resulted in significant induction of testosterone 2 beta- and 15 beta-hydroxylase activity in quail kidney accompanied by increases in expression of P450 enzymes cross-reactive with antibodies raised against a CYP 3A-like protein in teleost fish. In contrast, ketoconazole treatment resulted in inhibition of testosterone hydroxylation at positions 15 beta- and 6 alpha-. Propiconazole and vinclozolin significantly induced a CYP 1A1 cross-reactive P450 enzyme in quail kidney 2-3-fold unaccompanied by significant increases in alkoxyresorufin O-dealkylase activity. These activities were significantly inhibited by ketoconazole treatment. Quail kidney microsomes also expressed high levels of a CYP 4A1 cross-reactive apoprotein which was inducible 3-4-fold by ketoconazole. Thus, quail kidney possesses cytochrome P450 enzymes related to forms found in mammalian gene families 1, 3 and 4. Fungicide treatment results in mixed patterns of induction and inhibition of kidney P450 enzymes different from those previously reported in quail liver.
Collapse
Affiliation(s)
- M J Ronis
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock 72205, USA.
| | | | | |
Collapse
|
18
|
Darbar D, Dell'Orto S, Mörike K, Wilkinson GR, Roden DM. Dietary salt increases first-pass elimination of oral quinidine. Clin Pharmacol Ther 1997; 61:292-300. [PMID: 9084454 DOI: 10.1016/s0009-9236(97)90161-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Some cytochrome P450 (CYP) enzymes, including CYP3A, are expressed not only in the liver but also in the intestine; the latter may therefore be an important site of drug disposition. Animal data suggests that dietary salt modulates expression of renal CYPs. We therefore hypothesized that intestinal CYP3A may be similarly modulated by dietary salt. METHODS The effect of changes in dietary salt on the disposition of two CYP3A substrates, quinidine (administered orally and intravenously) and 14C-erythromycin (administered intravenously) were determined after normal volunteers were given high-salt (400 mEq/day) and low-salt (10 mEq/day) diets for 7 to 10 days each. RESULTS Plasma concentrations after oral quinidine were significantly lower during the high-salt phase, with the difference between the two treatments attributable to changes within the first 1 to 4 hours after administration. For example, the area under the plasma concentration-time curve for the first hour after drug administration was 0.56 +/- 0.38 microgram.hr/ml for the high-salt diet compared with 1.57 +/- 0.60 micrograms.hr/ml for the low-salt diet (p < 0.05). Similarly, the peak plasma concentration (Cmax) achieved was lower and the time to reach Cmax was later for the high-salt diet (p < 0.05). In contrast, the terminal phase elimination half-lives were similar for the two diets, and no differences in disposition were found with the intravenous drug. The erythromycin breath test was unaffected by the dietary treatments. CONCLUSIONS These results indicate an effect of dietary salt on the presystemic disposition of orally administered quinidine. Although the mechanism(s) of CYP3A activity modulation is unknown, this finding may be important in determining drug availability in conditions associated with abnormal salt homeostasis.
Collapse
Affiliation(s)
- D Darbar
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA
| | | | | | | | | |
Collapse
|
19
|
Campbell SJ, Carlotti F, Hall PA, Clark AJ, Wolf CR. Regulation of the CYP1A1 promoter in transgenic mice: an exquisitely sensitive on-off system for cell specific gene regulation. J Cell Sci 1996; 109 ( Pt 11):2619-25. [PMID: 8937980 DOI: 10.1242/jcs.109.11.2619] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian cytochrome P-450s in the CYP1A gene family catalyse the oxidation of a wide range of drugs and foreign compounds resulting in their excretion. These enzymes are highly inducible by a range of compounds, including polycyclic aromatic hydrocarbons such as 3-methylcholanthrene (3-MC) and dioxins. Analysis of the CYP1A1 promoter has identified dioxin responsive enhancer elements which mediate the induction response. In order to evaluate this promoter as an in vivo regulatable expression system and to gain further insights into the tissue specific regulation of this gene, an 8.5 kb genomic fragment of the rat CYP1A1 promoter was cloned upstream of the lacZ reporter gene. This construct was used to generate transgenic mice and three independent lines were expanded for further study. The regulation of beta-galactosidase expression was determined in mock and 3-MC-treated mice in an extensive range of tissues. In untreated animals no transgene expression was detectable over non-transgenic controls. Treatment with 3-MC caused a profound increase in transgene expression (> 1,000-fold) in many tissues including liver, adrenal, kidney and intestine. Inducible transgene expression was also detectable in many of the other tissues including the spleen, lung, pancreas and the reproductive organs. Although the absolute levels of induction varied, no significant differences in the pattern of transgene expression were observed between the three different transgenic mouse lines. In addition, the pattern of transgene expression correlated closely with the reported regulation of CYP1A1 protein. These results indicate that the CYP1A1 promoter can drive expression of heterologous genes in a truly on/off manner in a variety of tissues and cell types which will allow the expression of other proteins to be controlled in vivo. This reporter system also provides a model for establishing the environmental and hormonal factors regulating the expression of the CYP1A1 gene.
Collapse
Affiliation(s)
- S J Campbell
- University of Dundee, Biomedical Research Centre, Ninewells Hospital and Medical School, UK
| | | | | | | | | |
Collapse
|
20
|
Hakkak R, Korourian S, Ronis MJ, Ingelman-Sundberg M, Badger TM. Effects of diet and ethanol on the expression and localization of cytochromes P450 2E1 and P450 2C7 in the colon of male rats. Biochem Pharmacol 1996; 51:61-9. [PMID: 8534269 DOI: 10.1016/0006-2952(95)02154-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Local activation of procarcinogens in target tissues such as the colon by cytochrome P450-dependent microsomal monooxygenases is considered to be an important factor in the etiology of cancer. Diet and alcohol consumption are considered risk factors in colon cancer, and the cytochrome P450 isozymes CYP2E1 and CYP2C7 have been implicated in the biochemical mechanisms underlying colon cancer. The current study was conducted to determine the effects of diet and ethanol consumption on colonic and hepatic expression of these two enzymes. Adult male rat Sprague-Dawley rats were fed rat chow ad lib. or were infused intragastrically with control or ethanol-containing diets. Our results indicate that CYP2E1 is present in colonic epithelial cells, and expression of colonic and hepatic microsomal CYP2E1 and CYP2C7 was increased by chronic ethanol intake. As compared with rats having ad lib. access to standard rat food, rats receiving total enteral nutrition had significant (P < 0.01) reductions of CYP2C7 and slight, but not statistically significant, reductions in the expression of CYP2E1 in colon. Diet and ethanol differentially regulated CYP2E1 and CYP2C7 in a tissue-specific manner such that the ethanol induced CYP2E1 and CYP2C7 in the colon and liver, and the intragastric diet alone had a tendency to induce these isozymes in the liver and reduce them in the colon. These results may provide a partial explanation for the mechanism underlying effects of diet and ethanol on colon cancer.
Collapse
Affiliation(s)
- R Hakkak
- Department of Pediatrics and Pathology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock 72205, USA
| | | | | | | | | |
Collapse
|