1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Adamala KP, Agashe D, Belkaid Y, Bittencourt DMDC, Cai Y, Chang MW, Chen IA, Church GM, Cooper VS, Davis MM, Devaraj NK, Endy D, Esvelt KM, Glass JI, Hand TW, Inglesby TV, Isaacs FJ, James WG, Jones JDG, Kay MS, Lenski RE, Liu C, Medzhitov R, Nicotra ML, Oehm SB, Pannu J, Relman DA, Schwille P, Smith JA, Suga H, Szostak JW, Talbot NJ, Tiedje JM, Venter JC, Winter G, Zhang W, Zhu X, Zuber MT. Confronting risks of mirror life. Science 2024; 386:1351-1353. [PMID: 39666824 DOI: 10.1126/science.ads9158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Broad discussion is needed to chart a path forward.
Collapse
Affiliation(s)
| | - Deepa Agashe
- Author affiliations are available in the supplementary materials
| | - Yasmine Belkaid
- Author affiliations are available in the supplementary materials
| | | | - Yizhi Cai
- Author affiliations are available in the supplementary materials
| | - Matthew W Chang
- Author affiliations are available in the supplementary materials
| | - Irene A Chen
- Author affiliations are available in the supplementary materials
| | - George M Church
- Author affiliations are available in the supplementary materials
| | - Vaughn S Cooper
- Author affiliations are available in the supplementary materials
| | - Mark M Davis
- Author affiliations are available in the supplementary materials
| | - Neal K Devaraj
- Author affiliations are available in the supplementary materials
| | - Drew Endy
- Author affiliations are available in the supplementary materials
| | - Kevin M Esvelt
- Author affiliations are available in the supplementary materials
| | - John I Glass
- Author affiliations are available in the supplementary materials
| | - Timothy W Hand
- Author affiliations are available in the supplementary materials
| | | | - Farren J Isaacs
- Author affiliations are available in the supplementary materials
| | - Wilmot G James
- Author affiliations are available in the supplementary materials
| | | | - Michael S Kay
- Author affiliations are available in the supplementary materials
| | - Richard E Lenski
- Author affiliations are available in the supplementary materials
| | - Chenli Liu
- Author affiliations are available in the supplementary materials
| | - Ruslan Medzhitov
- Author affiliations are available in the supplementary materials
| | | | - Sebastian B Oehm
- Author affiliations are available in the supplementary materials
| | - Jaspreet Pannu
- Author affiliations are available in the supplementary materials
| | - David A Relman
- Author affiliations are available in the supplementary materials
| | - Petra Schwille
- Author affiliations are available in the supplementary materials
| | - James A Smith
- Author affiliations are available in the supplementary materials
| | - Hiroaki Suga
- Author affiliations are available in the supplementary materials
| | - Jack W Szostak
- Author affiliations are available in the supplementary materials
| | | | - James M Tiedje
- Author affiliations are available in the supplementary materials
| | - J Craig Venter
- Author affiliations are available in the supplementary materials
| | - Gregory Winter
- Author affiliations are available in the supplementary materials
| | - Weiwen Zhang
- Author affiliations are available in the supplementary materials
| | - Xinguang Zhu
- Author affiliations are available in the supplementary materials
| | - Maria T Zuber
- Author affiliations are available in the supplementary materials
| |
Collapse
|
3
|
Rajput I, Rajendran VM, Nickerson AJ, Lodge JPA, Sandle GI. Somatostatin peptides prevent increased human colonic epithelial permeability induced by hypoxia. Am J Physiol Gastrointest Liver Physiol 2024; 327:G701-G710. [PMID: 39226584 PMCID: PMC11559641 DOI: 10.1152/ajpgi.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Mesenteric ischemia increases gut permeability and bacterial translocation. In human colon, chemical hypoxia induced by 2,4-dinitrophenol (DNP) activates basolateral intermediate conductance K+ (IK) channels (designated KCa3.1 or KCNN4) and increases paracellular shunt conductance/permeability (GS), but whether this leads to increased macromolecule permeability is unclear. Somatostatin (SOM) inhibits IK channels and prevents hypoxia-induced increases in GS. Thus, we examined whether octreotide (OCT), a synthetic SOM analog, prevents hypoxia-induced increases GS in human colon and hypoxia-induced increases in total epithelial conductance (GT) and permeability to FITC-dextran 4000 (FITC) in rat colon. The effects of serosal SOM and OCT on increases in GS induced by 100 µM DNP were compared in isolated human colon. The effects of OCT on DNP-induced increases in GT and transepithelial FITC movement were evaluated in isolated rat distal colon. GS in DNP-treated human colon was 52% greater than in controls (P = 0.003). GS was similar when 2 µM SOM was added after or before DNP treatment, in both cases being less (P < 0.05) than with DNP alone. OCT (0.2 µM) was equally effective preventing hypoxia-induced increases in GS, whether added after or before DNP treatment. In rat distal colon, DNP significantly increased GT by 18% (P = 0.016) and mucosa-to-serosa FITC movement by 43% (P = 0.01), and 0.2 µM OCT pretreatment completely prevented these changes. We conclude that OCT prevents hypoxia-induced increases in paracellular/macromolecule permeability and speculate that it may limit ischemia-induced gut hyperpermeability during abdominal surgery, thereby reducing bacterial/bacterial toxin translocation and sepsis.NEW & NOTEWORTHY Somatostatin (SOM, 2 µM) and octreotide (OCT, 0.2 µM, a long-acting synthetic analog of SOM) were equally effective in preventing chemical hypoxia-induced increases in paracellular shunt permeability/conductance in isolated human colon. In rat distal colon, chemical hypoxia significantly increased total epithelial conductance and transepithelial movement of FITC-dextran 4000, changes completely prevented by 0.2 µM OCT. OCT may prevent or limit gut ischemia during abdominal surgery, thereby decreasing the risk of bacterial/bacterial toxin translocation and sepsis.
Collapse
Affiliation(s)
- Ibrahim Rajput
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Andrew J Nickerson
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - J Peter A Lodge
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Geoffrey I Sandle
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
4
|
Givan SA, Estell KE, Martinez-Lopez J, Brown JA, Wong DM, Werre SR. Risk factors associated with development of colitis in horses post-exploratory laparotomy. Equine Vet J 2024; 56:1162-1169. [PMID: 37935457 DOI: 10.1111/evj.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Diagnosis of colitis has been shown to impact morbidity and mortality in hospitalised horses. There are no studies to date that describe the incidence of infectious colitis after exploratory laparotomy. OBJECTIVES To investigate risk factors associated with the development of colitis and infectious colitis post-exploratory laparotomy. STUDY DESIGN Retrospective case-control. METHODS Medical records of equids admitted from 2011 to 2020 were reviewed. The primary outcome was a diagnosis of colitis following exploratory laparotomy. Bivariable associations between colitis and risk factors were assessed using the 2-sample t-test and Fisher's exact test. All risk factors were subjected to a backward elimination variable reduction algorithm within a logistic regression framework (p-value set to 0.05). Odds ratios and 95% confidence intervals were computed for the final model. RESULTS A total of 504 equids were included in the study. Forty-two patients (8.3%) were diagnosed with postoperative colitis. Five patients were diagnosed with Salmonella spp. and two with Clostridioides difficile. The odds of postoperative colitis were higher among patients that had pelvic flexure enterotomy (OR = 3.7, 95% CI = 1.7-7.9, p = 0.001), postoperative leukopenia or leukocytosis (OR = 21.2, 95% CI = 9.7-46.7, p < 0.001), or plasma lactate 2.0-4.0 mmol/L (OR = 3.0, 95% CI = 1.3-6.7, p < 0.008). Patients diagnosed with colitis had a longer median length of hospitalisation (9 days; range 2-21) compared with patients without colitis (7 days; range 2-25). Patients with colitis had a survival to discharge rate similar to patients without colitis (95% compared to 93%). MAIN LIMITATIONS Risk factors for infectious colitis could not be determined due to variation in testing protocols in this retrospective study and the low number of positive cases. CONCLUSIONS Colitis as a postoperative complication does not negatively impact survival to discharge but is associated with longer hospitalisation. Pelvic flexure enterotomy, postoperative leukopenia or leukocytosis, and increased plasma lactate were identified as significant risk factors associated with colitis.
Collapse
Affiliation(s)
- Stephanie A Givan
- Virginia Tech Marion duPont Scott Equine Medical Center - Internal Medicine, Leesburg, Virginia, USA
| | - Krista E Estell
- Virginia Tech Marion duPont Scott Equine Medical Center - Internal Medicine, Leesburg, Virginia, USA
| | - Javier Martinez-Lopez
- Virginia Tech Marion duPont Scott Equine Medical Center - Internal Medicine, Leesburg, Virginia, USA
| | - James A Brown
- Virginia Tech Marion duPont Scott Equine Medical Center - Internal Medicine, Leesburg, Virginia, USA
| | - David M Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Stephen R Werre
- Study Design and Statistical Analysis Lab, Virginia Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Mikami Y, Ogawa M, Hayasaka Y, Yamakami A, Hattori K, Fukazawa C, Ito T, Kanomata N, Terawaki H. Kidney damage relates to agonal bacteremia: a single-center retrospective study. Clin Exp Nephrol 2024; 28:773-783. [PMID: 38506981 DOI: 10.1007/s10157-024-02485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Agonal bacteremia, diagnosed with postmortem positive blood culture results, is considered a possible contributing factor to death. We hypothesized that some premortem organ damage, such as kidney damage, can enhance agonal bacteremia. METHODS We performed a postmortem blood and alveolar fluid culture study in 30 cadavers and evaluated the relationship between blood culture results and clinical parameters, including organ damage (brain, heart, lung, kidney, liver and gastrointestinal tract). RESULTS A total of 23 cases (76.7%) were positive for blood culture; the number of cultured species was one in 12 cases, two in 7 cases, and three in 4 cases. The ratio of agonal bacteremia was significantly higher in patients with heart damage (100%, n = 13) and those with kidney damage (end-stage kidney damage, acute kidney injury, obstructive kidney failure, or metastatic kidney tumours) (100%, n = 13). The mean number of cultured species was 0.67 ± 0.98 in heart or kidney damage, 1.40 ± 0.55 in heart damage only, 1.40 ± 0.55 in kidney damage only, and 2.00 ± 0.93 in heart and kidney damage. As the number of damaged organs increased (0 organs, no heart/kidney damage; 1 organ, heart or kidney damage; and 2 organs, heart and kidney damage), the mean number of cultured species increased significantly (p for trend = 0.001964). CONCLUSION Premortem kidney damage relates to agonal bacteremia.
Collapse
Affiliation(s)
- Yumiko Mikami
- Clinical Laboratory Department, St. Luke's International University, 9-1 Akashi-Cho, Chuo-City, Tokyo, Japan
| | - Meiko Ogawa
- Department of Pathology, St. Luke's International Hospital, Tokyo, Japan
| | - Yuuki Hayasaka
- Clinical Laboratory Department, St. Luke's International University, 9-1 Akashi-Cho, Chuo-City, Tokyo, Japan
| | - Asuka Yamakami
- Clinical Laboratory Department, St. Luke's International University, 9-1 Akashi-Cho, Chuo-City, Tokyo, Japan
| | - Kanako Hattori
- Clinical Laboratory Department, St. Luke's International University, 9-1 Akashi-Cho, Chuo-City, Tokyo, Japan
| | - Chizumi Fukazawa
- Clinical Laboratory Department, St. Luke's International University, 9-1 Akashi-Cho, Chuo-City, Tokyo, Japan
| | - Takafumi Ito
- Department of Nephrology, Teikyo University Chiba Medical Hospital, Chiba, Japan
| | - Naoki Kanomata
- Department of Pathology, St. Luke's International Hospital, Tokyo, Japan
| | - Hiroyuki Terawaki
- Clinical Laboratory Department, St. Luke's International University, 9-1 Akashi-Cho, Chuo-City, Tokyo, Japan.
- Department of Nephrology, Teikyo University Chiba Medical Hospital, Chiba, Japan.
| |
Collapse
|
7
|
Galván-Peña S, Zhu Y, Hanna BS, Mathis D, Benoist C. A dynamic atlas of immunocyte migration from the gut. Sci Immunol 2024; 9:eadi0672. [PMID: 38181094 PMCID: PMC10964343 DOI: 10.1126/sciimmunol.adi0672] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Dysbiosis in the gut microbiota affects several systemic diseases, possibly by driving the migration of perturbed intestinal immunocytes to extraintestinal tissues. Combining Kaede photoconvertible mice and single-cell genomics, we generated a detailed map of migratory trajectories from the colon, at baseline, and in several models of intestinal and extraintestinal inflammation. All lineages emigrated from the colon in an S1P-dependent manner. B lymphocytes represented the largest contingent, with the unexpected circulation of nonexperienced follicular B cells, which carried a gut-imprinted transcriptomic signature. T cell emigration included distinct groups of RORγ+ and IEL-like CD160+ subsets. Gut inflammation curtailed emigration, except for dendritic cells disseminating to lymph nodes. Colon-emigrating cells distributed differentially to distinct sites of extraintestinal models of inflammation (psoriasis-like skin, arthritic synovium, and tumors). Thus, specific cellular trails originating in the gut and influenced by microbiota may shape peripheral immunity in varied ways.
Collapse
Affiliation(s)
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Bola S. Hanna
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
8
|
Le HT, Lubian AF, Bowring B, van der Poorten D, Iredell J, George J, Venturini C, Ahlenstiel G, Read S. Using a human colonoid-derived monolayer to study bacteriophage translocation. Gut Microbes 2024; 16:2331520. [PMID: 38517357 PMCID: PMC10962583 DOI: 10.1080/19490976.2024.2331520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Bacteriophages (phages) are estimated to be the most abundant microorganisms on Earth. Their presence in human blood suggests that they can translocate from non-sterile sites such as the gastrointestinal tract where they are concentrated. To examine phage translocation ex vivo, we adapted a primary colonoid monolayer model possessing cell diversity and architecture, and a thick layer of mucus akin to the colonic environment in vivo. We show that the colonoid monolayer is superior to the Caco-2 cell-line model, possessing intact and organized tight junctions and generating a physiologically relevant mucus layer. We showed, using two different phages, that translocation across the colonoid monolayer was largely absent in differentiated monolayers that express mucus, unlike Caco-2 cultures that expressed little to no mucus. By stimulating mucus production or removing mucus, we further demonstrated the importance of colonic mucus in preventing phage translocation. Finally, we used etiological drivers of gut permeability (alcohol, fat, and inflammatory cytokines) to measure their effects on phage translocation, demonstrating that all three stimuli have the capacity to amplify phage translocation. These findings suggest that phage translocation does occur in vivo but may be largely dependent on colonic mucus, an important insight to consider in future phage applications.
Collapse
Affiliation(s)
- Huu Thanh Le
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
| | - David van der Poorten
- Department of Hepatology and Gastroenterology, Westmead Hospital, Westmead, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Department of Hepatology and Gastroenterology, Westmead Hospital, Westmead, Australia
- School of Medicine, The University of Sydney, Sydney, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Blacktown Mt Druitt Hospital, Sydney, Australia
| | - Scott Read
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Blacktown Mt Druitt Hospital, Sydney, Australia
| |
Collapse
|
9
|
Vasudevan D, Ramakrishnan A, Velmurugan G. Exploring the diversity of blood microbiome during liver diseases: Unveiling Novel diagnostic and therapeutic Avenues. Heliyon 2023; 9:e21662. [PMID: 37954280 PMCID: PMC10638009 DOI: 10.1016/j.heliyon.2023.e21662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Liver diseases are a group of major metabolic and immune or inflammation related diseases caused due to various reasons including infection, abnormalities in immune system, genetic defects, and lifestyle habits. However, the cause-effect relationship is not completely understood in liver disease. The role of microbiome, particularly, the role of gut and oral microbiome in liver diseases has been extensively studied in recent years. More interestingly, the presence of blood microbiome and tissue microbiome has been identified in many liver diseases. The translocation of microbes from the gut into the portal circulation has been attributed to be the major reason for the presence of blood microbial components and its clinical implications in liver disorders. Besides microbial translocation, Pathogen associated Molecular Patterns (PAMPs) derived from gut microbiota might also translocate. The presence of blood microbiome in liver disease has been reviewed earlier. However, the role of blood microbiome as a biomarker and therapeutic target in liver diseases has not been analysed earlier. In this review, we confabulate the origin and physiology of blood microbiome and blood microbial components in relation to the progression and pathogenesis of liver disease. In conclusion, we discuss the translational perspectives targeting the blood microbial components in the diagnosis and therapy of liver disease.
Collapse
Affiliation(s)
- Dinakaran Vasudevan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641014, Tamil Nadu, India
- Gut Microbiome Division, SKAN Research Trust, Bengaluru, 560034, Karnataka, India
| | - Arulraj Ramakrishnan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641014, Tamil Nadu, India
- Liver Unit, Kovai Medical Center and Hospital, Coimbatore, 641014, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641014, Tamil Nadu, India
| |
Collapse
|
10
|
Belli M, Barone L, Longo S, Prandi FR, Lecis D, Mollace R, Margonato D, Muscoli S, Sergi D, Federici M, Barillà F. Gut Microbiota Composition and Cardiovascular Disease: A Potential New Therapeutic Target? Int J Mol Sci 2023; 24:11971. [PMID: 37569352 PMCID: PMC10418329 DOI: 10.3390/ijms241511971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
A great deal of evidence has revealed an important link between gut microbiota and the heart. In particular, the gut microbiota plays a key role in the onset of cardiovascular (CV) disease, including heart failure (HF). In HF, splanchnic hypoperfusion causes intestinal ischemia resulting in the translocation of bacteria and their metabolites into the blood circulation. Among these metabolites, the most important is Trimethylamine N-Oxide (TMAO), which is responsible, through various mechanisms, for pathological processes in different organs and tissues. In this review, we summarise the complex interaction between gut microbiota and CV disease, particularly with respect to HF, and the possible strategies for influencing its composition and function. Finally, we highlight the potential role of TMAO as a novel prognostic marker and a new therapeutic target for HF.
Collapse
Affiliation(s)
- Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucy Barone
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Susanna Longo
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
| | - Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Rocco Mollace
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
- Cardiovascular Department, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Davide Margonato
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Saverio Muscoli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Domenico Sergi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| |
Collapse
|
11
|
Huang R, Lu Y, Jin M, Liu Y, Zhang M, Xian S, Chang Z, Wang L, Zhang W, Lu J, Tong X, Wang S, Zhu Y, Huang J, Jiang L, Gu M, Huang Z, Wu M, Ji S. A bibliometric analysis of the role of microbiota in trauma. Front Microbiol 2023; 14:1091060. [PMID: 36819034 PMCID: PMC9932281 DOI: 10.3389/fmicb.2023.1091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zongqiang Huang ✉
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Minjuan Wu ✉
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Shizhao Ji ✉
| |
Collapse
|
12
|
Shimizu K, Horinishi Y, Sano C, Ohta R. Infection Route of Parvimonas micra: A Case Report and Systematic Review. Healthcare (Basel) 2022; 10:1727. [PMID: 36141340 PMCID: PMC9498800 DOI: 10.3390/healthcare10091727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Parvimonas micra (P. micra), a bacterium that colonizes the gastrointestinal tract, is often isolated from periodontitis and abscesses as part of a complex bacterial infection. However, reports of monobacterium infections due to P. micra are limited. Here, we report a case of monobacterial bacteremia caused by P. micra with the aim of identifying the source of the invasion and clarifying the clinical features. A 54-year-old patient presented with bacteremia due to P. micra and with an oral invasion that we suspected resulted from prior dental treatment. Using PubMed and Google Scholar databases, we undertook a systematic review of monobacteremia caused by P. micra. We identified 26 patients (mean age, 70.15 years) in our systematic review. P. micra bacteremia and its associated phenotypes were most frequently identified in spinal discitis, followed by epidural and lumbar abscesses, and infective endocarditis. The major risk factors were malignancy, diabetes mellitus, and post-arthroplasty. When P. micra is detected in blood cultures, evaluation and intervention for oral contamination may be indicated.
Collapse
Affiliation(s)
- Kai Shimizu
- Community Care, Unnan City Hospital, Unnan 699-1221, Japan
| | - Yuta Horinishi
- Community Care, Unnan City Hospital, Unnan 699-1221, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Ryuichi Ohta
- Community Care, Unnan City Hospital, Unnan 699-1221, Japan
| |
Collapse
|
13
|
Sanidad KZ, Amir M, Ananthanarayanan A, Singaraju A, Shiland NB, Hong HS, Kamada N, Inohara N, Núñez G, Zeng MY. Maternal gut microbiome-induced IgG regulates neonatal gut microbiome and immunity. Sci Immunol 2022; 7:eabh3816. [PMID: 35687695 DOI: 10.1126/sciimmunol.abh3816] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gut microbiome elicits antigen-specific immunoglobulin G (IgG) at steady state that cross-reacts to pathogens to confer protection against systemic infection. The role of gut microbiome-specific IgG antibodies in the development of the gut microbiome and immunity against enteric pathogens in early life, however, remains largely undefined. In this study, we show that gut microbiome-induced maternal IgG is transferred to the neonatal intestine through maternal milk via the neonatal Fc receptor and directly inhibits Citrobacter rodentium colonization and attachment to the mucosa. Enhanced neonatal immunity against oral C. rodentium infection was observed after maternal immunization with a gut microbiome-derived IgG antigen, outer membrane protein A, or induction of IgG-inducing gut bacteria. Furthermore, by generating a gene-targeted mouse model with complete IgG deficiency, we demonstrate that IgG knockout neonates are more susceptible to C. rodentium infection and exhibit alterations of the gut microbiome that promote differentiation of interleukin-17A-producing γδ T cells in the intestine, which persist into adulthood and contribute to increased disease severity in a dextran sulfate sodium-induced mouse model of colitis. Together, our studies have defined a critical role for maternal gut microbiome-specific IgG antibodies in promoting immunity against enteric pathogens and shaping the development of the gut microbiome and immune cells in early life.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Mohammed Amir
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Aparna Ananthanarayanan
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Anvita Singaraju
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas B Shiland
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Hanna S Hong
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melody Y Zeng
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Potruch A, Schwartz A, Ilan Y. The role of bacterial translocation in sepsis: a new target for therapy. Therap Adv Gastroenterol 2022; 15:17562848221094214. [PMID: 35574428 PMCID: PMC9092582 DOI: 10.1177/17562848221094214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a leading cause of death in critically ill patients, primarily due to multiple organ failures. It is associated with a systemic inflammatory response that plays a role in the pathogenesis of the disease. Intestinal barrier dysfunction and bacterial translocation (BT) play pivotal roles in the pathogenesis of sepsis and associated organ failure. In this review, we describe recent advances in understanding the mechanisms by which the gut microbiome and BT contribute to the pathogenesis of sepsis. We also discuss several potential treatment modalities that target the microbiome as therapeutic tools for patients with sepsis.
Collapse
|
15
|
Yin Y, Zhu ZX, Li Z, Chen YS, Zhu WM. Role of mesenteric component in Crohn’s disease: A friend or foe? World J Gastrointest Surg 2021; 13:1536-1549. [PMID: 35070062 PMCID: PMC8727179 DOI: 10.4240/wjgs.v13.i12.1536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/01/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Crohn’s disease (CD) is a complex and relapsing gastrointestinal disease with mesenteric alterations. The mesenteric neural, vascular, and endocrine systems actively take part in the gut dysbiosis-adaptive immunity-mesentery-body axis, and this axis has been proven to be bidirectional. The abnormalities of morphology and function of the mesenteric component are associated with intestinal inflammation and disease progress of CD via responses to afferent signals, neuropeptides, lymphatic drainage, adipokines, and functional cytokines. The hypertrophy of mesenteric adipose tissue plays important roles in the pathogenesis of CD by secreting large amounts of adipokines and representing a rich source of proinflammatory or profibrotic cytokines. The vascular alteration, including angiogenesis and lymphangiogenesis, is concomitant in the disease course of CD. Of note, the enlarged and obstructed lymphatic vessels, which have been described in CD patients, are likely related to the early onset submucosa edema and being a cause of CD. The function of mesenteric lymphatics is influenced by endocrine of mesenteric nerves and adipocytes. Meanwhile, the structure of the mesenteric lymphatic vessels in hypertrophic mesenteric adipose tissue is mispatterned and ruptured, which can lead to lymph leakage. Leaky lymph factors can in turn stimulate adipose tissue to proliferate and effectively elicit an immune response. The identification of the role of mesentery and the crosstalk between mesenteric tissues in intestinal inflammation may shed light on understanding the underlying mechanism of CD and help explore new therapeutic targets.
Collapse
Affiliation(s)
- Yi Yin
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhen-Xing Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yu-Sheng Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Ming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
16
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Doudakmanis C, Bouliaris K, Kolla C, Efthimiou M, Koukoulis GD. Bacterial translocation in patients undergoing major gastrointestinal surgery and its role in postoperative sepsis. World J Gastrointest Pathophysiol 2021; 12:106-114. [PMID: 34877025 PMCID: PMC8611185 DOI: 10.4291/wjgp.v12.i6.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria of the human intestinal microflora have a dual role. They promote digestion and are part of a defense mechanism against pathogens. These bacteria could become potential pathogens under certain circumstances. The term “bacterial translocation” describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. In some cases, the passage of bacteria and endotoxins could result in blood stream infections and in multiple organ failure. Open elective abdominal surgery more frequently results in malfunction of the intestinal barrier and subsequent bacterial translocation and blood stream infections than laparoscopic surgery. Postoperative sepsis is a common finding in patients who have undergone non-elective abdominal surgeries, including trauma patients treated with laparotomy. Postoperative sepsis is an emerging issue, as it changes the treatment plan in surgical patients and prolongs hospital stay. The association between bacterial translocation and postoperative sepsis could provide novel treatment options.
Collapse
Affiliation(s)
- Christos Doudakmanis
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| | | | - Christina Kolla
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| | - Matthaios Efthimiou
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| | - Georgios D Koukoulis
- Department of General Surgery, General Hospital of Larissa, Larisa 41221, Greece
| |
Collapse
|
18
|
Monteiro ADSS, Oliveira EGD, Santos DBD, Cordeiro SM, Couto RD, Couto FD. Sickle cell disease children's gut colonization by extended-spectrum β-lactamase (ESBL)-producing Enterobacterales: an antibiotic prophylaxis effect? J Med Microbiol 2021; 70. [PMID: 34477545 DOI: 10.1099/jmm.0.001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Sickle cell disease (SCD) children have a high susceptibility to pneumococcal infection. For this reason, they are routinely immunized with pneumococcal vaccines and use antibiotic prophylaxis (AP).Hypothesis/Gap Statement. Yet, little is known about SCD children's gut microbiota. If antibiotic-resistant Enterobacterales may colonize people on AP, we hypothesized that SCD children on AP are colonized by resistant enterobacteria species.Objective. To evaluate the effect of continuous AP on Enterobacterales gut colonization from children with SCD.Methodology. We analysed 30 faecal swabs from SCD children on AP and 21 swabs from children without the same condition. Enterobacterales was isolated on MacConkey agar plates and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) (bioMérieux, Marcy l'Etoile, France). We performed the antibiogram by Vitek 2 system (bioMérieux, Marcy l'Etoile, France), and the resistance genes were identified by multiplex PCR.Results. We found four different species with resistance to one or more different antibiotic types in the AP-SCD children's group: Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, and Citrobacter farmeri. Colonization by resistant E. coli was associated with AP (prevalence ratio 2.69, 95 % confidence interval [CI], 1.98-3.67, P<0.001). Strains producing extended-spectrum β-lactamases (ESBL) were identified only in SCD children, E. coli, 4/30 (13 %), and K. pneumoniae, 2/30 (7 %). The ESBL-producing Enterobacterales were associated with penicillin G benzathine use (95 % CI, 22.91-86.71, P<0.001). CTX-M-1 was the most prevalent among ESBL-producers (3/6, 50 %), followed by CTX-M-9 (2/6, 33 %), and CTX-M-2 (1/6, 17 %).Conclusion. Resistant enterobacteria colonize SCD children on AP, and this therapy raises the chance of ESBL-producing Enterobacterales colonization. Future studies should focus on prophylactic vaccines as exclusive therapy against pneumococcal infections.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Graduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil.,Present address: Postgraduate Course in Biotechnology in Health and Investigative Medicine, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | | | | | - Fábio David Couto
- Center of Agricultural, Environmental, and Biological Sciences, Federal University of Reconcavo of Bahia, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
19
|
Eshmuminov D, Mueller M, Brugger SD, Bautista Borrego L, Becker D, Hefti M, Hagedorn C, Duskabilova M, Tibbitt MW, Dutkowski P, Rudolf von Rohr P, Schuler MJ, Mueller NJ, Clavien PA. Sources and prevention of graft infection during long-term ex situ liver perfusion. Transpl Infect Dis 2021; 23:e13623. [PMID: 33887094 DOI: 10.1111/tid.13623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The use of normothermic liver machine perfusion to repair injured grafts ex situ is an emerging topic of clinical importance. However, a major concern is the possibility of microbial contamination in the absence of a fully functional immune system. Here, we report a standardized approach to maintain sterility during normothermic liver machine perfusion of porcine livers for one week. METHODS Porcine livers (n = 42) were procured and perfused with blood at 34°C following aseptic technique and standard operating procedures. The antimicrobial prophylaxis was adapted and improved in a step-wise manner taking into account the pathogens that were detected during the development phase. Piperacillin-Tazobactam was applied as a single dose initially and modified to continuous application in the final protocol. In addition, the perfusion machine was improved to recapitulate partially the host's defense system. The final protocol was tested for infection prevention during one week of perfusion. RESULTS During the development phase, microbial contamination occurred in 27 out of 39 (69%) livers with a mean occurrence of growth on 4 ± 1.6 perfusion days. The recovered microorganisms suggested an exogenous source of microbial contamination. The antimicrobial agents (piperacillin/tazobactam) could be maintained above the targeted minimal inhibitory concentration (8-16 mg/L) only with continuous application. In addition to continuous application of piperacillin/tazobactam, partial recapitulation of the host immune system ex situ accompanied by strict preventive measures for contact and air contamination maintained sterility during one week of perfusion. CONCLUSION The work demonstrates feasibility of sterility maintenance for one week during ex situ normothermic liver perfusion.
Collapse
Affiliation(s)
- Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Muhayyo Duskabilova
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin J Schuler
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
The Gut‒Breast Axis: Programming Health for Life. Nutrients 2021; 13:nu13020606. [PMID: 33673254 PMCID: PMC7917897 DOI: 10.3390/nu13020606] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
The gut is a pivotal organ in health and disease. The events that take place in the gut during early life contribute to the programming, shaping and tuning of distant organs, having lifelong consequences. In this context, the maternal gut plays a quintessence in programming the mammary gland to face the nutritional, microbiological, immunological, and neuroendocrine requirements of the growing infant. Subsequently, human colostrum and milk provides the infant with an impressive array of nutrients and bioactive components, including microbes, immune cells, and stem cells. Therefore, the axis linking the maternal gut, the breast, and the infant gut seems crucial for a correct infant growth and development. The aim of this article is not to perform a systematic review of the human milk components but to provide an insight of their extremely complex interactions, which render human milk a unique functional food and explain why this biological fluid still truly remains as a scientific enigma.
Collapse
|
21
|
Lo BC, Chen GY, Núñez G, Caruso R. Gut microbiota and systemic immunity in health and disease. Int Immunol 2020; 33:197-209. [PMID: 33367688 DOI: 10.1093/intimm/dxaa079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. Although the influence of the gut microbiota on intestinal physiology and immunity is well known, mounting evidence suggests a key role for intestinal symbionts in controlling immune cell responses and development outside the gut. Although the underlying mechanisms by which the gut symbionts influence systemic immune responses remain poorly understood, there is evidence for both direct and indirect effects. In addition, the gut microbiota can contribute to immune responses associated with diseases outside the intestine. Understanding the complex interactions between the gut microbiota and the host is thus of fundamental importance to understand both immunity and human health.
Collapse
Affiliation(s)
- Bernard C Lo
- Department of Pathology and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine, the University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Roberta Caruso
- Department of Pathology and Rogel Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Skinner C, Thompson AJ, Thursz MR, Marchesi JR, Vergis N. Intestinal permeability and bacterial translocation in patients with liver disease, focusing on alcoholic aetiology: methods of assessment and therapeutic intervention. Therap Adv Gastroenterol 2020; 13:1756284820942616. [PMID: 33149761 PMCID: PMC7580143 DOI: 10.1177/1756284820942616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023] Open
Abstract
Increased bacterial translocation (BT) across the gut barrier due to greater intestinal permeability (IP) is seen across a range of conditions, including alcohol-related liver disease (ArLD). The phenomenon of BT may contribute to both the pathogenesis and the development of complications in ArLD. There are a number of methods available to assess IP and in this review we look at their various advantages and limitations. The knowledge around BT and IP in ArLD is also reviewed, as well as the therapeutic strategies currently in use and in development.
Collapse
Affiliation(s)
- Charlotte Skinner
- Department of Metabolism, Digestion and Reproduction, St Mary’s Hospital Campus, Imperial College London, London, UK
| | - Alex J. Thompson
- Department of Surgery & Cancer, St. Mary’s Hospital Campus, Imperial College London, London, UK
| | - Mark R. Thursz
- Department of Metabolism, Digestion and Reproduction, St Mary’s Hospital Campus, Imperial College London, London, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, St Mary’s Hospital Campus, Imperial College London, London, UK
| | | |
Collapse
|
24
|
Kappler K, Restin T, Lasanajak Y, Smith DF, Bassler D, Hennet T. Limited Neonatal Carbohydrate-Specific Antibody Repertoire Consecutive to Partial Prenatal Transfer of Maternal Antibodies. Front Immunol 2020; 11:573629. [PMID: 33162988 PMCID: PMC7591393 DOI: 10.3389/fimmu.2020.573629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the prominence of carbohydrate-specific antibodies in human sera, data on their emergence and antigen specificities are limited. Whereas maternal IgG are transferred prenatally to the fetal circulation, IgM present in cord blood originate from fetal B lymphocytes. Considering the limited exposure of the fetus to foreign antigens, we assessed the repertoire of carbohydrate-specific antibodies in human cord blood and matched maternal blood samples using glycan arrays. Carbohydrate-specific IgM was absent in cord blood, whereas low cord blood IgG reactivity to glycans was detectable. Comparing IgG reactivities of matched pairs, we observed a general lack of correlation in the antigen specificity of IgG from cord blood and maternal blood due to a selective exclusion of most carbohydrate-specific IgG from maternofetal transfer. Given the importance of intestinal bacteria in inducing carbohydrate-specific antibodies, we analyzed global antibody specificities toward commensal bacteria. Similar IgG reactivities to specific Bacteroides species were detected in matched cord and maternal blood samples, thus pointing to an efficient maternal transfer of anti-microbial IgG. Due to the observed selectivity in maternofetal IgG transfer, the lack of fetal antibodies to carbohydrate epitopes is only partially compensated by maternal IgG, thus resulting in a weak response to carbohydrate antigens in neonates.
Collapse
Affiliation(s)
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - David F Smith
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Kappler K, Hennet T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun 2020; 21:224-239. [PMID: 32753697 PMCID: PMC7449879 DOI: 10.1038/s41435-020-0105-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence, little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand, various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with human antigens, thereby contributing to the development of autoimmune disorders.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Bito T, Bito M, Hirooka T, Okamoto N, Harada N, Yamaji R, Nakano Y, Inui H, Watanabe F. Biological Activity of Pseudovitamin B 12 on Cobalamin-Dependent Methylmalonyl-CoA Mutase and Methionine Synthase in Mammalian Cultured COS-7 Cells. Molecules 2020; 25:molecules25143268. [PMID: 32709013 PMCID: PMC7396987 DOI: 10.3390/molecules25143268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022] Open
Abstract
Adenyl cobamide (commonly known as pseudovitamin B12) is synthesized by intestinal bacteria or ingested from edible cyanobacteria. The effect of pseudovitamin B12 on the activities of cobalamin-dependent enzymes in mammalian cells has not been studied well. This study was conducted to investigate the effects of pseudovitamin B12 on the activities of the mammalian vitamin B12-dependent enzymes methionine synthase and methylmalonyl-CoA mutase in cultured mammalian COS-7 cells to determine whether pseudovitamin B12 functions as an inhibitor or a cofactor of these enzymes. Although the hydoroxo form of pseudovitamin B12 functions as a coenzyme for methionine synthase in cultured cells, pseudovitamin B12 does not activate the translation of methionine synthase, unlike the hydroxo form of vitamin B12 does. In the second enzymatic reaction, the adenosyl form of pseudovitamin B12 did not function as a coenzyme or an inhibitor of methylmalonyl-CoA mutase. Experiments on the cellular uptake were conducted with human transcobalamin II and suggested that treatment with a substantial amount of pseudovitamin B12 might inhibit transcobalamin II-mediated absorption of a physiological trace concentration of vitamin B12 present in the medium.
Collapse
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
- Correspondence: ; Tel.: +81-857-31-5443
| | - Mariko Bito
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (M.B.); (T.H.); (N.H.); (R.Y.); (Y.N.)
| | - Tomomi Hirooka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (M.B.); (T.H.); (N.H.); (R.Y.); (Y.N.)
| | - Naho Okamoto
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan;
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (M.B.); (T.H.); (N.H.); (R.Y.); (Y.N.)
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (M.B.); (T.H.); (N.H.); (R.Y.); (Y.N.)
| | - Yoshihisa Nakano
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (M.B.); (T.H.); (N.H.); (R.Y.); (Y.N.)
| | - Hiroshi Inui
- Department of Nutrition, College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka 583-8555, Japan;
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
| |
Collapse
|
27
|
Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 2020; 20:411-426. [PMID: 32005980 DOI: 10.1038/s41577-019-0268-7] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. The presence of large numbers of symbionts near the epithelial surface of the intestine poses an enormous challenge to the host because it must avoid the activation of harmful inflammatory responses to the microorganisms while preserving its ability to mount robust immune responses to invading pathogens. In patients with inflammatory bowel disease, there is a breakdown of the multiple strategies that the immune system has evolved to promote the separation between symbiotic microorganisms and the intestinal epithelium and the effective killing of penetrant microorganisms, while suppressing the activation of inappropriate T cell responses to resident microorganisms. Understanding the complex interactions between intestinal microorganisms and the host may provide crucial insight into the pathogenesis of inflammatory bowel disease as well as new avenues to prevent and treat the disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
28
|
Rouanet A, Bolca S, Bru A, Claes I, Cvejic H, Girgis H, Harper A, Lavergne SN, Mathys S, Pane M, Pot B, Shortt C, Alkema W, Bezulowsky C, Blanquet-Diot S, Chassard C, Claus SP, Hadida B, Hemmingsen C, Jeune C, Lindman B, Midzi G, Mogna L, Movitz C, Nasir N, Oberreither M, Seegers JFML, Sterkman L, Valo A, Vieville F, Cordaillat-Simmons M. Live Biotherapeutic Products, A Road Map for Safety Assessment. Front Med (Lausanne) 2020; 7:237. [PMID: 32637416 PMCID: PMC7319051 DOI: 10.3389/fmed.2020.00237] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Recent developments in the understanding of the relationship between the microbiota and its host have provided evidence regarding the therapeutic potential of selected microorganisms to prevent or treat disease. According to Directive 2001/83/EC, in the European Union (EU), any product intended to prevent or treat disease is defined as a medicinal product and requires a marketing authorization by competent authorities prior to commercialization. Even if the pharmaceutical regulatory framework is harmonized at the EU level, obtaining marketing authorisations for medicinal products remains very challenging for Live Biotherapeutic Products (LBPs). Compared to other medicinal products currently on the market, safety assessment of LBPs represents a real challenge because of their specific characteristics and mode of action. Indeed, LBPs are not intended to reach the systemic circulation targeting distant organs, tissues, or receptors, but rather exert their effect through direct interactions with the complex native microbiota and/or the modulation of complex host-microbiota relation, indirectly leading to distant biological effects within the host. Hence, developers must rely on a thorough risk analysis, and pharmaceutical guidelines for other biological products should be taken into account in order to design relevant non-clinical and clinical development programmes. Here we aim at providing a roadmap for a risk analysis that takes into account the specificities of LBPs. We describe the different risks associated with these products and their interactions with the patient. Then, from that risk assessment, we propose solutions to design non-clinical programmes and First in Human (FIH) early clinical trials appropriate to assess LBP safety.
Collapse
Affiliation(s)
- Alice Rouanet
- Pharmabiotic Research Institute - PRI, Narbonne, France
| | | | | | | | - Helene Cvejic
- Accelsiors CRO, Budapest, Hungary
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Ashton Harper
- Medical Affairs Department, ADM Protexin Ltd., Somerset, United Kingdom
| | | | | | | | - Bruno Pot
- Science Department, Yakult Europe BV, Almere, Netherlands
- Research Group of Industrial Microbiology and Food Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colette Shortt
- Johnson & Johnson Consumer Services EAME Ltd., Foundation Park, Maidenhead, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Garikai Midzi
- Medical Affairs Department, ADM Protexin Ltd., Somerset, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Frasca D, Diaz A, Romero M, Vazquez T, Strbo N, Romero L, McCormack RM, Podack ER, Blomberg BB. Impaired B Cell Function in Mice Lacking Perforin-2. Front Immunol 2020; 11:328. [PMID: 32180773 PMCID: PMC7057857 DOI: 10.3389/fimmu.2020.00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
Perforin-2 (P2) is a pore-forming protein with cytotoxic activity against intracellular bacterial pathogens. P2 knockout (P2KO) mice are unable to control infections and die from normally non-lethal bacterial infections. Here we show that P2KO mice as compared to WT mice show significantly higher levels of systemic inflammation, measured by inflammatory markers in serum, due to continuous microbial translocation from the gut which cannot be controlled as these mice lack P2. Systemic inflammation in young and old P2KO mice induces intrinsic B cell inflammation. Systemic and B cell intrinsic inflammation are negatively associated with in vivo and in vitro antibody responses. Chronic inflammation leads to class switch recombination defects, which are at least in part responsible for the reduced in vivo and in vitro antibody responses in young and old P2KO vs. WT mice. These defects include the reduced expression of activation-induced cytidine deaminase (AID), the enzyme for class switch recombination, somatic hypermutation and IgG production and of its transcriptional activators E47 and Pax5. Of note, the response of young P2KO mice is not different from the one observed in old WT mice, suggesting that the chronic inflammatory status of mice lacking P2 may accelerate, or be equivalent, to that seen in old mice. The inflammatory status of the splenic B cells is associated with increased frequencies and numbers of the pro-inflammatory B cell subset called Age-associated B Cells (ABCs) in the spleen and the visceral adipose tissue (VAT) of P2KO old mice. We show that B cells differentiate into ABCs in the VAT following interaction with the adipocytes and their products, and this occurs more in the VAT of P2KO mice as compared to WT controls. This is to our knowledge the first study on B cell function and antibody responses in mice lacking P2.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Thomas Vazquez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ryan M McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
30
|
Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM. Systemic Consequences of Pulmonary Hypertension and Right-Sided Heart Failure. Circulation 2020; 141:678-693. [PMID: 32091921 DOI: 10.1161/circulationaha.116.022362] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is a feature of a variety of diseases and continues to harbor high morbidity and mortality. The main consequence of PH is right-sided heart failure which causes a complex clinical syndrome affecting multiple organ systems including left heart, brain, kidneys, liver, gastrointestinal tract, skeletal muscle, as well as the endocrine, immune, and autonomic systems. Interorgan crosstalk and interdependent mechanisms include hemodynamic consequences such as reduced organ perfusion and congestion as well as maladaptive neurohormonal activation, oxidative stress, hormonal imbalance, and abnormal immune cell signaling. These mechanisms, which may occur in acute, chronic, or acute-on-chronic settings, are common and precipitate adverse functional and structural changes in multiple organs which contribute to increased morbidity and mortality. While the systemic character of PH and right-sided heart failure is often neglected or underestimated, such consequences place additional burden on patients and may represent treatable traits in addition to targeted therapy of PH and underlying causes. Here, we highlight the current state-of-the-art understanding of the systemic consequences of PH and right-sided heart failure on multiple organ systems, focusing on self-perpetuating pathophysiological mechanisms, aspects of increased susceptibility of organ damage, and their reciprocal impact on the course of the disease.
Collapse
Affiliation(s)
- Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology) and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University of Cologne, Germany (S.R.).,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany (S.R.)
| | - Luke S Howard
- National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, United Kingdom (L.S.H.)
| | | | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Germany (M.M.H.).,German Center for Lung Research (DZL), Hannover, Germany (M.M.H.)
| |
Collapse
|
31
|
Zimmermann P, Curtis N. Breast milk microbiota: A review of the factors that influence composition. J Infect 2020; 81:17-47. [PMID: 32035939 DOI: 10.1016/j.jinf.2020.01.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/31/2023]
Abstract
Breastfeeding is associated with considerable health benefits for infants. Aside from essential nutrients, immune cells and bioactive components, breast milk also contains a diverse range of microbes, which are important for maintaining mammary and infant health. In this review, we summarise studies that have investigated the composition of the breast milk microbiota and factors that might influence it. We identified 44 studies investigating 3105 breast milk samples from 2655 women. Several studies reported that the bacterial diversity is higher in breast milk than infant or maternal faeces. The maximum number of each bacterial taxonomic level detected per study was 58 phyla, 133 classes, 263 orders, 596 families, 590 genera, 1300 species and 3563 operational taxonomic units. Furthermore, fungal, archaeal, eukaryotic and viral DNA was also detected. The most frequently found genera were Staphylococcus, Streptococcus Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, Rothia, Cutibacterium, Veillonella and Bacteroides. There was some evidence that gestational age, delivery mode, biological sex, parity, intrapartum antibiotics, lactation stage, diet, BMI, composition of breast milk, HIV infection, geographic location and collection/feeding method influence the composition of the breast milk microbiota. However, many studies were small and findings sometimes contradictory. Manipulating the microbiota by adding probiotics to breast milk or artificial milk offers an exciting avenue for future interventions to improve infant health.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
32
|
Wang B, Li J, Wang S, Hao Y, Zhao X, Chen J. Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation in Caco-2 cells by regulation of TLR4 expression. J Med Microbiol 2019; 67:982-991. [PMID: 29877788 DOI: 10.1099/jmm.0.000762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose. Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis. In inflammatory conditions, commensal bacteria exploit transcytotic pathways to cross the intestinal epithelium in a TLR4-dependent manner. The aim of this study was to test the hypothesis that Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation by regulation of Toll-like receptor-4 expression.Methodology. L. plantarum strains were investigated to determine their capacity to inhibit the initial adhesion of Escherichia coli B5 to Caco-2 cells. The inhibitory effects of L. plantarum on TNF-α-induced E. coli B5 translocation across Caco-2 cells were studied. Barrier function and integrity were simultaneously assessed by transepithelial electrical resistance, HRP permeability, LDH release and distribution of tight junctional proteins. Expression of TLR4 was assessed by RT-PCR.Results/Key findings. Pretreatment of monolayers with L. plantarum L2 led to a significant decrease in E. coli B5 adhesion and cell internalization (P<0.01). Exposure to TNF-α for six hours caused a significant increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability and disruption of tight junction proteins. Manipulations that induced bacterial translocation were associated with a marked increase in TLR4 mRNA expression and IL-8 secretion. L. plantarum L2 significantly abrogated TNF-α-induced bacterial translocation of E. coli B5, and also downregulated expression of TLR4 and IL-8 in intestinal epithelial cells.Conclusion. Live L. plantarum L2 can inhibit TNF-α-induced transcellular bacterial translocation via regulation of TLR4 expression.
Collapse
Affiliation(s)
- Bin Wang
- Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu 210001, PR China.,Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jingjing Li
- Department of Ultrasound, Nanjing Hospital of Armed Police Force Corps, Nanjing, Jiangsu 210028, PR China
| | - Shuiming Wang
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Yu Hao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Xiaoyan Zhao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jun Chen
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu 210002, PR China
| |
Collapse
|
33
|
The effect of immunonutrition on bacterial translocation after Pringle maneuverer in rats. GASTROENTEROLOGY REVIEW 2019; 14:178-182. [PMID: 31649788 PMCID: PMC6807670 DOI: 10.5114/pg.2019.88166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/16/2019] [Indexed: 11/17/2022]
Abstract
Introduction Temporary clamping of the hepatoduodenal ligament (the Pringle manoeuvre) is the most commonly used method to prevent intraoperative blood loss in liver surgery. Some side effects of the Pringle manoeuvre (PM) can occur. Aim To investigate the effectiveness of preoperative immunonutritional support to prevent bacterial translocation (BT) in rats due to PM. Material and methods Forty Wistar albino rats were randomly divided into four groups. Groups 1 and 2 were fed with normal rat diet and water, and groups 3 and 4 were fed with enteral immunonutrition (Impact Glutamine) containing 1 g/kg/day amino acid in the preoperative period. Group 1 (n = 10) and 4 (n = 10) rats were treated only with laparotomy; group 2 (n = 10) and 3 (n = 10) rats were treated with PM for 30 min with laparotomy. After 30 min, relaparotomy was applied to all groups and portal blood, mesentery, spleen samples were taken for culture purposes. Results Proliferation in portal blood cultures was significantly higher in the samples from the normally fed group (group 2) in whom PM was applied, compared to the other groups (p < 0.001). No proliferation was observed in the PM-treated group (group 3), who also received preoperative immunonutritional support. Conclusions Preoperative immunonutritional support is effective in the prevention of BT due to PM in rats.
Collapse
|
34
|
Abstract
Rhodotorula spp. belong to the basidiomyceteous fungi. They are widespread in the environment. Transmission to humans occur mainly through air and food. Intestinal colonization is rather common, but an overgrowth is normally suppressed, since their optimal growth temperature is exceeded in the body. A massive presence in the gut indicates a disturbance of the balance of the microbial flora due to different causes. One particular reason will be the treatment with azoles because this will create an advantage for these azole resistant fungi. First of all, the finding of increased numbers of Rhodotorula in stool specimen is not alarming. In contrast, the colonized human will profit from such a situation since these fungi produce a lot of useful nutrients such as proteins, lipids, folate, and carotinoids. Furthermore, a probiotic effect due to regulation of multiplication of pathogenic bacteria and by neutralizing or destroying their toxins can be anticipated. On the other hand, their massive presence may increase the risk of fungemia and ensuing organ infections especially when the host defense system is hampered. Indeed, Rhodotorula spp. range among the emerging fungal pathogens in the compromised host. However, it can be doubted whether all these opportunistic infections reported originate primarily from the gut.
Collapse
|
35
|
Amornphimoltham P, Yuen PST, Star RA, Leelahavanichkul A. Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis. Dig Dis Sci 2019; 64:2416-2428. [PMID: 30863955 DOI: 10.1007/s10620-019-05581-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening response to systemic infection. In addition to frank gastrointestinal (GI) rupture/puncture, sepsis can also be exacerbated by translocation of pathogen-associated molecular patterns (PAMPs) from the GI tract to the systemic circulation (gut origin of sepsis). In the human gut, Gram-negative bacteria and Candida albicans are abundant, along with their major PAMP components, endotoxin (LPS) and (1 → 3)-β-D-glucan (BG). Whereas the influence of LPS in bacterial sepsis has been studied extensively, exploration of the role of BG in bacterial sepsis is limited. Post-translocation, PAMPs enter the circulation through lymphatics and the portal vein, and are detoxified and then excreted via the liver and the kidney. Sepsis-induced liver and kidney injury might therefore affect the kinetics and increase circulating PAMPs. In this article, we discuss the current knowledge of the impact of PAMPs from both gut mycobiota and microbiota, including epithelial barrier function and the "gut-liver-kidney axis," on bacterial sepsis severity.
Collapse
Affiliation(s)
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Asada Leelahavanichkul
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
36
|
Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol 2019; 10:1873. [PMID: 31456801 PMCID: PMC6698791 DOI: 10.3389/fimmu.2019.01873] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived infection is among the most common complications in patients who underwent severe trauma, serious burn, major surgery, hemorrhagic shock or severe acute pancreatitis (SAP). It could cause sepsis and multiple organ dysfunction syndrome (MODS), which are regarded as a leading cause of mortality in these cases. Gut-derived infection is commonly caused by pathological translocation of intestinal bacteria or endotoxins, resulting from the dysfunction of the gut barrier. In the last decades, the studies regarding to the pathogenesis of gut-derived infection mainly focused on the breakdown of intestinal epithelial tight junction and increased permeability. Limited information is available on the roles of intestinal microbial barrier in the development of gut-derived infection. Recently, advances of next-generation DNA sequencing techniques and its utilization has revolutionized the gut microecology, leading to novel views into the composition of the intestinal microbiota and its connections with multiple diseases. Here, we reviewed the recent progress in the research field of intestinal barrier disruption and gut-derived infection, mainly through the perspectives of the dysbiosis of intestinal microbiota and its interaction with intestinal mucosal immune cells. This review presents novel insights into how the gut microbiota collaborates with mucosal immune cells to involve the development of pathological bacterial translocation. The data might have important implication to better understand the mechanism underlying pathological bacterial translocation, contributing us to develop new strategies for prevention and treatment of gut-derived sepsis.
Collapse
Affiliation(s)
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Seo SU, Kweon MN. Virome-host interactions in intestinal health and disease. Curr Opin Virol 2019; 37:63-71. [PMID: 31295677 DOI: 10.1016/j.coviro.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The enteric virome consists largely of bacteriophages and prophages related to commensal bacteria. Bacteriophages indirectly affect the host immune system by targeting their associated bacteria; however, studies suggest that bacteriophages also have distinct pathways that enable them to interact directly with the host. Eukaryotic viruses are less abundant than bacteriophages but are more efficient in the stimulation of host immune responses. Acute, permanent, and latent viral infections are detected by different types of pattern recognition receptors and induce host immune responses, including the antiviral type I interferon response. Understanding the complex interplay between commensal microorganisms and the host immune system is a prerequisite to elucidating their role in intestinal diseases.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
38
|
The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells 2019; 8:cells8060628. [PMID: 31234447 PMCID: PMC6627060 DOI: 10.3390/cells8060628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Though historically regarded as an inert energy store, adipose tissue is a complex endocrine organ, which is increasingly implicated in the pathogenesis of inflammatory bowel disease (IBD). Accumulating evidence points to visceral adipose tissue and specifically to its mesenteric component, or “creeping fat” as impacting on the disease course through its immunomodulatory properties. On the one hand, mesenteric fat acts as a physical barrier to inflammation and is involved in controlling host immune response to translocation of gut bacteria. On the other hand, however, there exists a strong link between visceral fat and complicated course of the disease with unfavorable therapeutic outcomes. Furthermore, “creeping fat” appears to play different roles in different IBD phenotypes, with the greatest pathogenetic contribution probably to an ileal form of Crohn’s disease. In this review, we summarize and discuss the existing literature on the subject and identify high-priority areas for future research. It may be that a better understanding of the role of mesenteric fat in IBD will determine new therapeutic targets and translate into improved clinical outcomes.
Collapse
|
39
|
Kiernan MG, Coffey JC, McDermott K, Cotter PD, Cabrera-Rubio R, Kiely PA, Dunne CP. The Human Mesenteric Lymph Node Microbiome Differentiates Between Crohn's Disease and Ulcerative Colitis. J Crohns Colitis 2019; 13:58-66. [PMID: 30239655 PMCID: PMC6302955 DOI: 10.1093/ecco-jcc/jjy136] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Mesenteric lymph nodes are sites in which translocated bacteria incite and progress immunological responses. For this reason, understanding the microbiome of mesenteric lymph nodes in inflammatory bowel disease is important. The bacterial profile of Crohn's disease mesenteric lymph nodes has been analysed using culture-independent methods in only one previous study. This study aimed to investigate the mesenteric lymph node microbiota from both Crohn's disease and ulcerative colitis patients. METHODS Mesenteric lymph nodes were collected from Crohn's disease and ulcerative colitis patients undergoing resection. Total DNA was extracted from mesenteric lymph nodes and assessed for the presence of bacterial DNA [16S]. All work was completed in a sterile environment using aseptic techniques. Samples positive for 16S DNA underwent next-generation sequencing, and the identity of bacterial phyla and species were determined. RESULTS Crohn's disease mesenteric lymph nodes had a distinctly different microbial profile to that observed in ulcerative colitis. The relative abundance of Firmicutes was greater in nodes from ulcerative colitis patients, whereas Proteobacteria were more abundant in Crohn's disease. Although species diversity was reduced in the mesenteric lymph nodes of patients with Crohn's disease, these lymph nodes contained greater numbers of less dominant phyla, mainly Fusobacteria. CONCLUSION This study confirms that there are distinct differences between the Crohn's disease and ulcerative colitis mesenteric lymph node microbiomes. Such microbial differences could aid in the diagnosis of Crohn's disease or ulcerative colitis, particularly in cases of indeterminate colitis at time of resection, or help explain their mechanisms of development and progression.
Collapse
Affiliation(s)
- Miranda G Kiernan
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - J Calvin Coffey
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Kieran McDermott
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - Paul D Cotter
- APC Microbiome Institute, University College Cork, Cork, Ireland,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raul Cabrera-Rubio
- APC Microbiome Institute, University College Cork, Cork, Ireland,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Patrick A Kiely
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - Colum P Dunne
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Corresponding author: Professor Colum Dunne, Director of Research, Graduate Entry Medical School, University of Limerick, Limerick V94 T9PX, Ireland. Tel: +353-[0]61-234703;
| |
Collapse
|
40
|
Ignacio A, Terra FF, Watanabe IKM, Basso PJ, Câmara NOS. Role of the Microbiome in Intestinal Barrier Function and Immune Defense. MICROBIOME AND METABOLOME IN DIAGNOSIS, THERAPY, AND OTHER STRATEGIC APPLICATIONS 2019:127-138. [DOI: 10.1016/b978-0-12-815249-2.00013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Angarita SAK, Duarte S, Russell TA, Ruchala P, Elliott IA, Whitelegge JP, Zarrinpar A. Quantitative Measure of Intestinal Permeability Using Blue Food Coloring. J Surg Res 2019; 233:20-25. [PMID: 30502249 PMCID: PMC6561122 DOI: 10.1016/j.jss.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/23/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Loss of intestinal barrier integrity plays a fundamental role in the pathogenesis of various gastrointestinal diseases and is implicated in the onset of sepsis and multiple organ failure. An array of methods to assess different aspects of intestinal barrier function suffers from lack of sensitivity, prolonged periods of specimen collection, or high expense. We have developed a technique to measure the concentration of the food dye FD&C Blue #1 from blood and sought to assess its utility in measuring intestinal barrier function in humans. MATERIALS AND METHODS Four healthy volunteers and 10 critically ill subjects in the intensive care unit were recruited in accordance with an institutional review board approved protocol. Subjects were given 0.5 mg/kg Blue #1 enterally as an aqueous solution of diluted food coloring. Five blood specimens were drawn per subject: 0 h (before dose), 1, 2, 4, and 8 h. After plasma isolation, organic extracts were analyzed by high-performance liquid chromatography/mass spectrometry detecting the presence of unmodified dye. RESULTS We found no baseline detectable absorption in healthy volunteers. After including the subjects in the intensive care unit, we compared dye absorption in the six subjects who met criteria for septic shock with the eight who did not. Septic patients demonstrated significantly greater absorption of Blue #1 after 2 h. CONCLUSIONS We have developed a novel, easy-to-use method to measure intestinal barrier integrity using a food grade dye detectable by mass spectrometry analysis of patient blood following oral administration.
Collapse
Affiliation(s)
- Stephanie A K Angarita
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sergio Duarte
- Dumont-UCLA Transplant Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Tara A Russell
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Piotr Ruchala
- Semel Institue for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Irmina A Elliott
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Julian P Whitelegge
- Semel Institue for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ali Zarrinpar
- Dumont-UCLA Transplant Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
42
|
Kiely CJ, Pavli P, O'Brien CL. The microbiome of translocated bacterial populations in patients with and without inflammatory bowel disease. Intern Med J 2018; 48:1346-1354. [DOI: 10.1111/imj.13998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/20/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher J. Kiely
- IBD Research Laboratory, Medical School, College of Medicine, Biology and EnvironmentAustralian National University Canberra Capital of Australia Australia
| | - Paul Pavli
- IBD Research Laboratory, Medical School, College of Medicine, Biology and EnvironmentAustralian National University Canberra Capital of Australia Australia
- Gastroenterology and Hepatology UnitCanberra Hospital Canberra Australian Capital Territory Australia
| | - Claire L. O'Brien
- IBD Research Laboratory, Medical School, College of Medicine, Biology and EnvironmentAustralian National University Canberra Capital of Australia Australia
- Gastroenterology and Hepatology UnitCanberra Hospital Canberra Australian Capital Territory Australia
| |
Collapse
|
43
|
Rutanga JP, Van Puyvelde S, Heroes AS, Muvunyi CM, Jacobs J, Deborggraeve S. 16S metagenomics for diagnosis of bloodstream infections: opportunities and pitfalls. Expert Rev Mol Diagn 2018; 18:749-759. [PMID: 29985081 DOI: 10.1080/14737159.2018.1498786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Bacterial bloodstream infections (BSI) form a large public health threat worldwide. Current routine diagnosis is based on blood culture (BC) but this technique suffers from limited sensitivity. Molecular diagnostic tools have been developed for identification of bacteria in the blood of BSI patients. 16S metagenomics is an open-ended technique that can detect simultaneously all bacteria in a given sample based on PCR amplification of the 16S ribosomal RNA gene (rDNA) followed by sequencing of the PCR amplicons and taxonomic labeling of the sequence reads at genus or species level. Areas covered: Here we review the studies that have used 16S metagenomics for the identification of bacteria in human blood samples. We also discuss the potential added value of 16S metagenomics in the diagnosis of BSI, challenges as well as future directions for implementation in clinical settings. Expert commentary: 16S metagenomics has the potential to complement conventional BC; however, the technique currently suffers from several technical limitations jeopardizing implementation in routine clinical microbiology laboratories. Further studies are required to assess the cost-efficiency and clinical impact of 16S metagenomics in comparison to BC which remains the gold standard diagnostic method for BSI.
Collapse
Affiliation(s)
- Jean Pierre Rutanga
- a College of Science and Technology , University of Rwanda , Kigali , Rwanda.,b Department of Biomedical Sciences , Institute of Tropical Medicine , Antwerp , Belgium.,d Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | - Sandra Van Puyvelde
- b Department of Biomedical Sciences , Institute of Tropical Medicine , Antwerp , Belgium.,c Wellcome Trust Sanger Institute , Hinxton , United Kingdom
| | - Anne-Sophie Heroes
- d Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium.,e Department of Clinical Sciences , Institute of Tropical Medicine , Antwerp , Belgium
| | - Claude Mambo Muvunyi
- f College of Medicine and Health Sciences , University of Rwanda , Kigali , Rwanda
| | - Jan Jacobs
- d Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium.,e Department of Clinical Sciences , Institute of Tropical Medicine , Antwerp , Belgium
| | - Stijn Deborggraeve
- b Department of Biomedical Sciences , Institute of Tropical Medicine , Antwerp , Belgium
| |
Collapse
|
44
|
Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection 2018; 46:751-760. [PMID: 30003491 DOI: 10.1007/s15010-018-1178-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gut permeability is increased in critically ill patients, and associated with the development of the systemic inflammatory response syndrome and multiple organ dysfunction syndrome (MODS). The pathogenetic link(s) and potential therapies are an area of intense research over the last decades. METHODS We thoroughly reviewed the literature on gut-origin sepsis and MODS in critically ill patients, with emphasis on the implicated pathophysiological mechanisms and therapeutic interventions. FINDINGS Intestinal barrier failure leading to systemic bacterial translocation associated with MODS was the predominant pathophysiological theory for several years. However, clinical studies with critically ill patients failed to provide the evidence of systemic spread of gut-derived bacteria and/or their products as a cause of MODS. Newer experimental data highlight the role of the mesenteric lymph as a carrier of gut-derived danger-associated molecular patterns (DAMPs) to the lung and the systemic circulation. These substances are recognized by pattern recognition receptor-bearing cells in diverse tissues and promote proinflammatory pathways and the development MODS. Therefore, the gut becomes a pivotal proinflammatory organ, driving the systemic inflammatory response through DAMPs release in mesenteric lymph, without the need for systemic bacterial translocation. CONCLUSIONS There is an emerging need for application of sensitive non-invasive and easily measured biomarkers of early intestinal injury (e.g., citrulline, intestinal fatty acid protein, and zonulin) in our everyday clinical practice, guiding the early pharmacological intervention in critically ill patients to restore or prevent intestinal injury and improve their outcomes.
Collapse
|
45
|
Does bacterial translocation influence the postoperative infections in splenectomized patients after abdominal trauma? Surgeon 2018; 16:94-100. [DOI: 10.1016/j.surge.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 01/14/2023]
|
46
|
Assimakopoulos SF, Triantos C, Maroulis I, Gogos C. The Role of the Gut Barrier Function in Health and Disease. Gastroenterology Res 2018; 11:261-263. [PMID: 30116424 PMCID: PMC6089582 DOI: 10.14740/gr1053w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, University of Patras Medical School, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University of Patras Medical School, Patras 26504, Greece
| | - Ioannis Maroulis
- Department of Surgery, University of Patras Medical School, Patras 26504, Greece
| | - Charalambos Gogos
- Division of Infectious Diseases, Department of Internal Medicine, University of Patras Medical School, Patras 26504, Greece
| |
Collapse
|
47
|
McClave SA, Lowen CC, Martindale RG. The 2016 ESPEN Arvid Wretlind lecture: The gut in stress. Clin Nutr 2018; 37:19-36. [DOI: 10.1016/j.clnu.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
|
48
|
Physiological Translocation of Lactic Acid Bacteria during Pregnancy Contributes to the Composition of the Milk Microbiota in Mice. Nutrients 2017; 10:nu10010014. [PMID: 29295502 PMCID: PMC5793242 DOI: 10.3390/nu10010014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/24/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
The human milk microbiota is a complex and diverse ecosystem that seems to play a relevant role in the mother-to-infant transmission of microorganisms during early life. Bacteria present in human milk may arise from different sources, and recent studies suggest that at least some of them may be originally present in the maternal digestive tract and may reach the mammary gland through an endogenous route during pregnancy and lactation. The objective of this work was to elucidate whether some lactic acid bacteria are able to translocate and colonize the mammary gland and milk. For this purpose, two lactic acid bacteria strains (Lactococcus lactis MG1614 and Lactobacillus salivarius PS2) were transformed with a plasmid containing the lux genes; subsequently, the transformed strains were orally administered to pregnant mice. The murine model allowed the visualization, isolation, and Polymerase Chain Reaction (PCR)-detection of the transformed bacteria in different body locations, including mammary tissue and milk, reinforcing the hypothesis that physiological translocation of maternal bacteria during pregnancy and lactation may contribute to the composition of the mammary and milk microbiota.
Collapse
|
49
|
Wang B, Chen J, Wang S, Zhao X, Lu G, Tang X. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells. Benef Microbes 2017; 8:497-505. [PMID: 28441885 DOI: 10.3920/bm2016.0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.
Collapse
Affiliation(s)
- B Wang
- 1 Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu, 210001, China P.R.,2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - J Chen
- 3 Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, 210002, China P.R
| | - S Wang
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - X Zhao
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - G Lu
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - X Tang
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| |
Collapse
|
50
|
Mourad MM, Evans R, Kalidindi V, Navaratnam R, Dvorkin L, Bramhall SR. Prophylactic antibiotics in acute pancreatitis: endless debate. Ann R Coll Surg Engl 2017; 99:107-112. [PMID: 27917667 PMCID: PMC5392851 DOI: 10.1308/rcsann.2016.0355] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The development of pancreatic infection is associated with the development of a deteriorating disease with subsequent high morbidity and mortality. There is agreement that in mild pancreatitis there is no need to use antibiotics; in severe pancreatitis it would appear to be a logical choice to use antibiotics to prevent secondary pancreatic infection and decrease associated mortality. MATERIALS AND METHODS A non-systematic review of current evidence, meta-analyses and randomized controlled trials was conducted to assess the role of prophylactic antibiotics in acute pancreatitis and whether it might improve morbidity and mortality in pancreatitis. RESULTS Mixed evidence was found to support and refute the role of prophylactic antibiotics in acute pancreatitis. Most studies have failed to demonstrate much benefit from its routine use. Data from our unit suggested little benefit of their routine use, and showed that the mortality of those treated with antibiotics was significantly higher compared with those not treated with antibiotics (9% vs 0%, respectively, P = 0.043). In addition, the antibiotic group had significantly higher morbidity (36% vs 5%, respectively, P = 0.002). CONCLUSIONS Antibiotics should be used in patients who develop sepsis, infected necrosis-related systemic inflammatory response syndrome, multiple organ dysfunction syndrome or pancreatic and extra-pancreatic infection. Despite the many other factors that should be considered, prompt antibiotic therapy is recommended once inflammatory markers are raised, to prevent secondary pancreatic infection. Unfortunately, there remain many unanswered questions regarding the indications for antibiotic administration and the patients who benefit from antibiotic treatment in acute pancreatitis.
Collapse
Affiliation(s)
- M M Mourad
- Hereford County Hospital, Wye Valley NHS Trust , Hereford , UK
| | - Rpt Evans
- Hereford County Hospital, Wye Valley NHS Trust , Hereford , UK
| | - V Kalidindi
- North Middlesex University Hospital NHS Trust , London , UK
| | - R Navaratnam
- North Middlesex University Hospital NHS Trust , London , UK
| | - L Dvorkin
- North Middlesex University Hospital NHS Trust , London , UK
| | - S R Bramhall
- Hereford County Hospital, Wye Valley NHS Trust , Hereford , UK
| |
Collapse
|