1
|
Martinand-Mari C, Debiais-Thibaud M, Potier E, Gasset E, Dutto G, Leurs N, Lallement S, Farcy E. Estradiol-17β and bisphenol A affect growth and mineralization in early life stages of seabass. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109921. [PMID: 38609061 DOI: 10.1016/j.cbpc.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17β (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 μg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France.
| | - Melanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Eric Potier
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Eric Gasset
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Gilbert Dutto
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Stéphane Lallement
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Emilie Farcy
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France.
| |
Collapse
|
2
|
Lavajoo F, Perelló-Amorós M, Vélez EJ, Sánchez-Moya A, Balbuena-Pecino S, Riera-Heredia N, Fernández-Borràs J, Blasco J, Navarro I, Capilla E, Gutiérrez J. Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea bream. Sci Rep 2020; 10:184. [PMID: 31932663 PMCID: PMC6957526 DOI: 10.1038/s41598-019-57013-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
The tolerance of fish to fasting offers a model to study the regulatory mechanisms and changes produced when feeding is restored. Gilthead sea bream juveniles were exposed to a 21-days fasting period followed by 2 h to 7-days refeeding. Fasting provoked a decrease in body weight, somatic indexes, and muscle gene expression of members of the Gh/Igf system, signaling molecules (akt, tor and downstream effectors), proliferation marker pcna, myogenic regulatory factors, myostatin, and proteolytic molecules such as cathepsins or calpains, while most ubiquitin-proteasome system members increased or remained stable. In bone, downregulated expression of Gh/Igf members and osteogenic factors was observed, whereas expression of the osteoclastic marker ctsk was increased. Refeeding recovered the expression of Gh/Igf system, myogenic and osteogenic factors in a sequence similar to that of development. Akt and Tor phosphorylation raised at 2 and 5 h post-refeeding, much faster than its gene expression increased, which occurred at day 7. The expression in bone and muscle of the inhibitor myostatin (mstn2) showed an inverse profile suggesting an inter-organ coordination that needs to be further explored in fish. Overall, this study provides new information on the molecules involved in the musculoskeletal system remodeling during the early stages of refeeding in fish.
Collapse
Affiliation(s)
- F Lavajoo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, I.R., Iran
| | - M Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - A Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - N Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - I Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Zhu T, Zhang T, Wang Y, Chen Y, Hu W, Zhu Z. Effects of growth hormone (GH) transgene and nutrition on growth and bone development in common carp. ACTA ACUST UNITED AC 2013; 319:451-60. [PMID: 23744555 DOI: 10.1002/jez.1808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 11/06/2022]
Abstract
Limited information is available on effects of growth hormone transgene and nutrition on growth and development of aquatic animals. Here, we present a study to test these effects with growth-enhanced transgenic common carp under two nutritional conditions or feeding rations (i.e., 5% and 10% of fish body weight per day). Compared with the nontransgenic fish, the growth rates of the transgenic fish increased significantly in both feeding rations. The shape of the pharyngeal bone was similar among treatments, but the transgenic fish had relatively smaller and lighter pharyngeal bone compared with the nontransgenic fish. Calcium content of the pharyngeal bone of the transgenic fish was significantly lower than that of the nontransgenic fish. Feeding ration also affected growth rate but less of an effect on bone development. By manipulating intrinsic growth and controlling for both environment (e.g., feeding ration) and genetic background or genotype (e.g., transgenic or not), this study provides empirical evidence that the genotype has a stronger effect than the environment on pharyngeal bone development. The pharyngeal bone strength could be reduced by decreased calcium content and calcification in the transgenic carp.
Collapse
Affiliation(s)
- Tingbing Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
4
|
Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 2009; 84:315-46. [PMID: 19382934 DOI: 10.1111/j.1469-185x.2009.00077.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non-lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus- rather than calcium-driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.
Collapse
|
5
|
Hébert N, Gagné F, Cejka P, Bouchard B, Hausler R, Cyr DG, Blaise C, Fournier M. Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:122-7. [PMID: 18538640 DOI: 10.1016/j.cbpc.2008.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/29/2022]
Abstract
Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.
Collapse
Affiliation(s)
- N Hébert
- INRS-Institut Armand-Frappier, 531 des Prairies, Laval, Quebec, Canada H7V 1B7
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hallerman EM, McLean E, Fleming IA. Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: A review identifying research needs. Appl Anim Behav Sci 2007. [DOI: 10.1016/j.applanim.2006.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Bevelander GS, Hang X, Abbink W, Spanings T, Canario AVM, Flik G. PTHrP potentiating estradiol-induced vitellogenesis in sea bream (Sparus auratus, L.). Gen Comp Endocrinol 2006; 149:159-65. [PMID: 16839552 DOI: 10.1016/j.ygcen.2006.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/03/2006] [Accepted: 05/24/2006] [Indexed: 11/22/2022]
Abstract
In fish, vitellogenin is an important nutritional precursor protein produced solely in the liver and released into the blood where it binds calcium. In the gilthead sea bream (Sparus auratus) 17beta-Estradiol (E2) plays an important role in the synthesis of vitellogenin, but also the pituitary hormones prolactin (PRL) and growth hormone (GH) can stimulate vitellogenin induction in fish. Considering the emerging involvement of PTHrP in fish calcium metabolism and the importance of calcium regulation in reproduction, we investigated the possible role of PTHrP in vitellogenesis. E2-naïve and E2-primed sea bream hepatocytes were used in an in vitro primary hepatocyte culture and stimulated with a recombinant sea bream PTHrP (sbPTHrP) to establish the contribution of sbPTHrP alone or in combination with E2 to the regulation of hepatic vitellogenin synthesis. Hepatocytes stimulated solely with sbPTHrP were not affected in their vitellogenesis. However, in hepatocytes stimulated with E2 in combination with sbPTHrP a higher vitellogenin production was seen than with E2 alone. It is concluded that sbPTHrP has a potentiating effect on estradiol stimulation of vitellogenin production by sea bream hepatocytes. The sea bream provides a unique model where vitellogenesis regulation can be studied on E2-naïve liver cells, both in vivo and in vitro.
Collapse
Affiliation(s)
- Gideon S Bevelander
- Department of Animal Physiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T, Grau EG. Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): Effect of seawater exposure and cortisol treatment. Life Sci 2006; 78:2329-35. [PMID: 16376384 DOI: 10.1016/j.lfs.2005.09.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022]
Abstract
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Wargelius A, Fjelldal PG, Benedet S, Hansen T, Björnsson BT, Nordgarden U. A peak in gh-receptor expression is associated with growth activation in Atlantic salmon vertebrae, while upregulation of igf-I receptor expression is related to increased bone density. Gen Comp Endocrinol 2005; 142:163-8. [PMID: 15862560 DOI: 10.1016/j.ygcen.2004.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 12/14/2004] [Indexed: 11/26/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) play major roles in the endocrine regulation of fish growth, but their interdependency and mode of action has not been well elucidated. The GH-IGF-I system is essential for normal vertebral growth in mouse, but this has not been studied in fish. To study the interplay between GH, IGF-I, and their receptors, postsmolt Atlantic salmon were studied during spring growth (January-June 2003). From January to June, fish were sampled regularly for plasma and vertebral bone. The vertebra was collected from the same anterior-posterior position. The growth hormone receptor (ghr) (There is no determined nomenclature of salmon genes but we stick to the nomenclature which is consequent for zebrafish, where all gene names are named with small letters and in italic.) expression in the vertebrae peaked in the end of February coinciding with high levels of plasma GH and IGF-I, and an increase of vertebral growth rate. From April to June, plasma IGF-I levels decreased together with ghr expression in the vertebrae, while plasma GH did not decrease. In May and June, expression of the igf-I receptor (igf-Ir) increased 4- to 5-fold, which coincided with an increase in bone density. The changes seen in gene expression of the IGF-I and GH receptors suggest that these hormones are involved in vertebral growth and bone density.
Collapse
Affiliation(s)
- Anna Wargelius
- Institute of Marine Research, Matre, N-5984 Matredal, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Takagi Y. Effects of Starvation and Subsequent Refeeding on Formation and Resorption of Acellular Bone in Tilapia, Oreochromis niloticus. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.623] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
|
12
|
Kubo T, Tanaka H, Inoue M, Kanzaki S, Seino Y. Serum levels of carboxyterminal propeptide of type I procollagen and pyridinoline crosslinked telopeptide of type I collagen in normal children and children with growth hormone (GH) deficiency during GH therapy. Bone 1995; 17:397-401. [PMID: 8573414 DOI: 10.1016/s8756-3282(95)00267-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we investigated age-related changes in serum levels of both the carboxyterminal propeptide of type I procollagen (PICP) and the pyridinoline crosslinked telopeptide of type I collagen (ICTP) to elucidate bone formation and resorption, respectively, in 200 normal Japanese children (141 males and 59 females, age range 0-16 years). Furthermore, to clarify the effect of GH on bone turnover, we measured serum PICP and ICTP in 26 growth hormone (GH)-deficient children (20 males and 6 females, age range 4-15 years) who showed significant bone growth during recombinant human GH therapy. In the normal children, the curves for age-related changes in both serum PICP and ICTP levels almost paralleled that of the standard height velocity curve in both sexes. The serum levels of both peptides were higher than those in adults, and the peak increases corresponded with the timing of the adolescent growth spurt. Furthermore, the serum levels of PICP and ICTP were significantly correlated with the height velocity. In the GH-deficient patients, the serum ICTP levels before GH therapy were lower than those in age- and sex-matched controls. Both PICP and ICTP levels in serum increased significantly at the beginning of GH therapy. Furthermore, the percent increase in PICP after 1 month of GH treatment was positively correlated with the percent increase in height velocity during 1 year of GH treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Kubo
- Department of Pediatrics, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
13
|
Takagi Y, Hirano J, Tanabe H, Yamada J. Stimulation of skeletal growth by thyroid hormone administrations in the rainbow trout,Oncorhynchus mykiss. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/jez.1402680308] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|