1
|
Sharkey TD. Pentose Phosphate Pathway Reactions in Photosynthesizing Cells. Cells 2021; 10:cells10061547. [PMID: 34207480 PMCID: PMC8234502 DOI: 10.3390/cells10061547] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) is divided into an oxidative branch that makes pentose phosphates and a non-oxidative branch that consumes pentose phosphates, though the non-oxidative branch is considered reversible. A modified version of the non-oxidative branch is a critical component of the Calvin–Benson cycle that converts CO2 into sugar. The reaction sequence in the Calvin–Benson cycle is from triose phosphates to pentose phosphates, the opposite of the typical direction of the non-oxidative PPP. The photosynthetic direction is favored by replacing the transaldolase step of the normal non-oxidative PPP with a second aldolase reaction plus sedoheptulose-1,7-bisphosphatase. This can be considered an anabolic version of the non-oxidative PPP and is found in a few situations other than photosynthesis. In addition to the strong association of the non-oxidative PPP with photosynthesis metabolism, there is recent evidence that the oxidative PPP reactions are also important in photosynthesizing cells. These reactions can form a shunt around the non-oxidative PPP section of the Calvin–Benson cycle, consuming three ATP per glucose 6-phosphate consumed. A constitutive operation of this shunt occurs in the cytosol and gives rise to an unusual labeling pattern of photosynthetic metabolites while an inducible shunt in the stroma may occur in response to stress.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
2
|
Lu H, Zhu H. Effect of siRNA-mediated gene silencing of transketolase on A549 lung cancer cells. Oncol Lett 2017; 14:5906-5912. [PMID: 29113225 PMCID: PMC5661397 DOI: 10.3892/ol.2017.6916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/04/2017] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to investigate the effects of transketolase (TKT) on cell proliferation, cell migration and interaction with other metabolism-associated genes in A549 lung cancer cells. A549 cells were transfected with three TKT-specific small interfering (si)RNAs, screened for the optimal transfection concentration, and sequenced with flow cytometry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell viability was evaluated using Cell Counting Kit-8 (CCK-8), cell cycle was assessed by flow cytometric analysis. Cell migration was determined by scratch-wound and Transwell chamber assays. The changes in mRNA expression levels of glucose-6-phosphate dehydrogenase (G6PDH), transaldolase (TAL), sorbitol dehydrogenase (SORD), phosphoribosyl pyrophosphate synthetase 1 (PRPS1) and hexokinase 1 (HK1) were detected by RT-qPCR. siRNA-C at 50 nmol/l was selected for the subsequent experiments. Compared with the negative control, cell proliferation of the TKT-siRNA-C group was inhibited dramatically (CCK-8 24 h, 0.2984±0.0371 vs. 0.0952±0.0063; P<0.0001), the cell cycle was arrested at the G1/G0 cell cycle phase (58±2.0% vs. 70±2.5%; P=0.002), and cell migration ability was decreased [wound size, 254.71±34.96 vs. 349.12±37.43 µm (P=0.0001); Transwell migration, 250±47.8/field vs. 150±49.0/field (P<0.0001)]. The mRNA expression levels of G6PDH, TAL, SORD, PRPS1 and HK1 were downregulated in the TKT-siRNA-C group compared with the negative control. The present study revealed that synthetic TKT-siRNA can inhibit A549 cell viability and migration, which may be due to arrest of the cell cycle and downregulation of relevant metabolic enzymes.
Collapse
Affiliation(s)
- Huan Lu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huili Zhu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
3
|
Zhang Q, Linnemann TV, Schreiber L, Bartels D. The role of transketolase and octulose in the resurrection plant Craterostigma plantagineum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3551-9. [PMID: 27129952 PMCID: PMC4892735 DOI: 10.1093/jxb/erw174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phylogenetic analysis revealed that Craterostigma plantagineum has two transketolase genes (transketolase 7 and 10) which are separated from the other transketolase genes including transketolase 3 from C. plantagineum We obtained recombinant transketolase 3, 7, and 10 of C. plantagineum and showed that transketolase 7 and 10 of C. plantagineum, but not transketolase 3, catalyse the formation of octulose-8-phosphate in vitro Transketolase 7 and 10 of C. plantagineum performed the exchange reaction that produces octulose-8-phosphate using glucose-6-phosphate and fructose-6-phosphate as substrates. Octulose is localized in the cytosol and phloem exudate analysis showed that octulose was the dominant sugar exported from the leaves to the roots.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Thomas Vitus Linnemann
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| |
Collapse
|
4
|
Ghosh AK, Sardar AH, Mandal A, Saini S, Abhishek K, Kumar A, Purkait B, Singh R, Das S, Mukhopadhyay R, Roy S, Das P. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. FASEB J 2015; 29:2081-98. [PMID: 25690656 DOI: 10.1096/fj.14-258624] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
Understanding the mechanism that allows the intracellular protozoan parasite Leishmania donovani (Ld) to respond to reactive oxygen species (ROS) is of increasing therapeutic importance because of the continuing resistance toward antileishmanial drugs and for determining the illusive survival strategy of these parasites. A shift in primary carbon metabolism is the fastest response to oxidative stress. A (14)CO2 evolution study, expression of glucose transporters together with consumption assays, indicated a shift in metabolic flux of the parasites from glycolysis toward pentose phosphate pathway (PPP) when exposed to different oxidants in vitro/ex vivo. Changes in gene expression, protein levels, and enzyme activities all pointed to a metabolic reconfiguration of the central glucose metabolism in response to oxidants. Generation of glucose-6-phosphate dehydrogenase (G6PDH) (∼5-fold) and transaldolase (TAL) (∼4.2-fold) overexpressing Ld cells reaffirmed that lethal doses of ROS were counterbalanced by effective manipulation of NADPH:NADP(+) ratio and stringent maintenance of reduced thiol content. The extent of protein carbonylation and accumulation of lipid peroxidized products were also found to be less in overexpressed cell lines. Interestingly, the LD50 of sodium antimony gluconate (SAG), amphotericin-B (AmB), and miltefosine were significantly high toward overexpressing parasites. Consequently, this study illustrates that Ld strategizes a metabolic reconfiguration for replenishment of NADPH pool to encounter oxidative challenges.
Collapse
Affiliation(s)
- Ayan K Ghosh
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Abul H Sardar
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Abhishek Mandal
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Savita Saini
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Kumar Abhishek
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Ashish Kumar
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Bidyut Purkait
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Ruby Singh
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sushmita Das
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Rupkatha Mukhopadhyay
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Syamal Roy
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Pradeep Das
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| |
Collapse
|
5
|
Huan L, Xie X, Zheng Z, Sun F, Wu S, Li M, Gao S, Gu W, Wang G. Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga. PLANT & CELL PHYSIOLOGY 2014; 55:1395-403. [PMID: 24793748 DOI: 10.1093/pcp/pcu063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.
Collapse
Affiliation(s)
- Li Huan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujun Xie
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenbing Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Songcui Wu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moyang Li
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Gao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Gu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaCollege of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149:656-70. [PMID: 22541435 DOI: 10.1016/j.cell.2012.01.058] [Citation(s) in RCA: 1493] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/12/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023]
Abstract
Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.
Collapse
Affiliation(s)
- Haoqiang Ying
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Glucose is catabolized in yeast via two fundamental routes, glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Here, we describe riboneogenesis, a thermodynamically driven pathway that converts glycolytic intermediates into ribose-5-phosphate without production of NADPH. Riboneogenesis begins with synthesis, by the combined action of transketolase and aldolase, of the seven-carbon bisphosphorylated sugar sedoheptulose-1,7-bisphosphate. In the pathway's committed step, sedoheptulose bisphosphate is hydrolyzed to sedoheptulose-7-phosphate by the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity we identified based on metabolomic analysis of the corresponding knockout strain. The crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate reveals that the substrate binds in the closed furan form in the active site. Sedoheptulose-7-phosphate is ultimately converted by known enzymes of the nonoxidative pentose phosphate pathway to ribose-5-phosphate. Flux through SHB17 increases when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells.
Collapse
|
8
|
Abstract
Transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, catalyzes several key reactions of non-oxidative branch of pentose phosphate pathway. TK is a homodimer with two active sites that locate at the interface between the contacting monomers. Both ThDP and bivalent cations are strictly needed for TK activation, just like that for all ThDP-dependent enzymes. TK exists in all organisms that have been investigated. Up to now, one TK gene (TKT) and two transketolase-like genes (TKTL1 and TKTL2) have been identified in human genome. TKTL1 is reported to play a pivotal role in carcinogenesis and may have important implications in the nutrition and future treatment of patients with cancer. Researchers have found TK variants and reduced activities of TK enzyme in patients with neurodegenerative diseases, diabetes, and cancer. Recent studies indicated TK as a novel role in the prevention and therapy of these diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032
| | | |
Collapse
|
9
|
Samland AK, Sprenger GA. Transaldolase: from biochemistry to human disease. Int J Biochem Cell Biol 2009; 41:1482-94. [PMID: 19401148 DOI: 10.1016/j.biocel.2009.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 12/14/2022]
Abstract
The role of the enzyme transaldolase (TAL) in central metabolism, its biochemical properties, structure, and role in human disease is reviewed. The nearly ubiquitous enzyme transaldolase is a part of the pentose phosphate pathway and transfers a dihydroxyacetone group from donor compounds (fructose 6-phosphate or sedoheptulose 7-phosphate) to aldehyde acceptor compounds. The phylogeny of transaldolases shows that five subfamilies can be distinguished, three of them with proven TAL enzyme activity, one with unclear function, and the fifth subfamily comprises transaldolase-related enzymes, the recently discovered fructose 6-phosphate aldolases. The three-dimensional structure of a bacterial (Escherichia coli TAL B) and the human enzyme (TALDO1) has been solved. Based on the 3D-structure and mutagenesis studies, the reaction mechanism was deduced. The cofactor-less enzyme proceeds with a Schiff base intermediate (bound dihydroxyacetone). While a transaldolase deficiency is well tolerated in many microorganisms, it leads to severe symptoms in homozygous TAL-deficient human patients. The involvement of TAL in oxidative stress and apoptosis, in multiple sclerosis, and in cancer is discussed.
Collapse
Affiliation(s)
- Anne K Samland
- The Institute of Microbiology, Universität Stuttgart, Allmandring 31, Stuttgart, Germany.
| | | |
Collapse
|
10
|
Wittig R, Coy JF. The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0700100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets.
Collapse
Affiliation(s)
- Rainer Wittig
- R-Biopharm AG, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Johannes F. Coy
- R-Biopharm AG, Landwehrstrasse 54, 64293 Darmstadt, Germany
- TAVARTIS GmbH, Kroetengasse 10, 64853 Otzberg, Germany
- Dept. Of Gynaecology, University of Würzburg, Josef Schneider Str. 4, 97080 Würzburg, Germany
| |
Collapse
|
11
|
Kuchel PW, Philp DJ. Isotopomer subspaces as indicators of metabolic-pathway structure. J Theor Biol 2007; 252:391-401. [PMID: 17692871 DOI: 10.1016/j.jtbi.2007.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 11/29/2022]
Abstract
The relative abundances and rates of formation of particular isotopic isomers (isotopomers) of metabolic intermediates from (13)C-labelled substrates in living cells provide information on the routes taken by the initial (13)C-atoms. When a primary substrate such as [U,(13)C] d-glucose is added to human erythrocytes, the pattern of labels in terminal metabolites is determined by a set of carbon-group exchange reactions in both glycolysis and the pentose phosphate pathway (PPP). Of a given terminal metabolite, not all possible isotopomers will be produced from each possible primary substrate isotopomer. There are only 8 different (13)C-isotopomers of lactate but not all of these are produced when one of the 64 possible (13)C-isotopomers of glucose is used as the input substrate; thus a subset of all 63 glucose isotopomers x 8 lactate isotopomers+1 unlabelled glucose x 1 unlabelled lactate=505 pattern associations, would be produced if a complete experimental analysis were performed with all the glucose variants. The pattern of labelling in this isotopomer subspace reflects the nature of the re-ordering reactions that 'direct' the metabolism. Predicting the combinatorial rearrangements for particular sets of reactions and comparing these with real data should enable conclusions to be drawn about which enzymes are involved in the real metabolic system. An example of the glycolysis-PPP system is discussed in the context of a debate that occurred around the F- and L-type PPPs and which one actually operates in the human RBC. As part of this discussion we introduce the term 'combinatorial deficit' of all possible isotopomers and we show that this deficit is less for the F- than the L-type pathway.
Collapse
Affiliation(s)
- Philip W Kuchel
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
12
|
Williams JF, MacLeod JK. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach. PHOTOSYNTHESIS RESEARCH 2006; 90:125-48. [PMID: 17160443 PMCID: PMC1779624 DOI: 10.1007/s11120-006-9113-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
14C-Labelled octulose phosphates were formed during photosynthetic 14CO2 fixation and were measured in spinach leaves and chloroplasts. Because mono- and bisphosphates of D: -glycero- D: -ido-octulose are the active 8-carbon ketosugar intermediates of the L-type pentose pathway, it was proposed that they may also be reactants in a modified Calvin-Benson-Bassham pathway reaction scheme. This investigation therefore initially focussed only on the ido-epimer of the octulose phosphates even though 14C-labelled D: -glycero- D: -altro-octulose mono- and bisphosphates were also identified in chloroplasts and leaves. 14CO2 predominantly labelled positions 5 and 6 of D: -glycero- D: -ido-octulose 1,8-P2 consistent with labelling predictions of the modified scheme. The kinetics of 14CO2 incorporation into ido-octulose was similar to its incorporation into some traditional intermediates of the path of carbon, while subsequent exposure to 12CO2 rapidly displaced the 14C isotope label from octulose with the same kinetics of label loss as some of the confirmed Calvin pathway intermediates. This is consistent with octulose phosphates having the role of cyclic intermediates rather than synthesized storage products. (Storage products don't rapidly exchange isotopically labelled carbons with unlabelled CO2.)A spinach chloroplast extract, designated stromal enzyme preparation (SEP), catalysed and was used to measure rates of CO(2) assimilation with Calvin cycle intermediates and octulose and arabinose phosphates. Only pentose (but not arabinose) phosphates and sedoheptulose 7-phosphate supported CO2 fixation at rates in excess of 120 micromol h(-1) mg(-1) Chl. Rates for octulose, sedoheptulose and fructose bisphosphates, octulose, hexose and triose monophosphates were all notably less than the above rate and arabinose 5-phosphate was inactive. Altro-octulose phosphates were more active than phosphate esters of the ido-epimer. The modified scheme proposed a specific phosphotransferase and SEP unequivocally catalysed reversible phosphate transfer between sedoheptulose bisphosphate and D: -glycero- D: -ido-octulose 8-phosphate. It was also initially hypothesized that arabinose 5-phosphate, an L-Type pentose pathway reactant, may have a role in a modified Calvin pathway. Arabinose 5-phosphate is present in spinach chloroplasts and leaves. Radiochromatography showed that 14C-arabinose 5-phosphate with SEP, but only in the presence of an excess of unlabelled ribose 5-phosphate, lightly labelled ribulose 5-phosphate and more heavily labelled hexose and sedoheptulose mono- and bisphosphates. However, failure to demonstrate any CO2 fixation by arabinose 5-phosphate as sole substrate suggested that the above labelling may have no metabolic significance. Despite this arabinose and ribose 5-phosphates are shown to exhibit active roles as enzyme co-factors in transaldolase and aldolase exchange reactions that catalyse the epimeric interconversions of the phosphate esters of ido- and altro-octulose. Arabinose 5-phosphate is presented as playing this role in a New Reaction Scheme for the path of carbon, where it is concluded that slow reacting ido-octulose 1,8 bisphosphate has no role. The more reactive altro-octulose phosphates, which are independent of the need for phosphotransferase processing, are presented as intermediates in the new scheme. Moreover, using the estimates of phosphotransferase activity with altro-octulose monophosphate as substrate allowed calculation of the contributions of the new scheme, that ranged from 11% based on the intact chloroplast carboxylation rate to 80% using the carboxylation rate required for the support of octulose phosphate synthesis and its role in the phosphotransferase reaction.
Collapse
Affiliation(s)
- John F Williams
- Research School of Chemistry, Australian National University, Canberra, A.C.T., 0200, Australia.
| | | |
Collapse
|
13
|
Langbein S, Zerilli M, zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 2006; 94:578-85. [PMID: 16465194 PMCID: PMC2361175 DOI: 10.1038/sj.bjc.6602962] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tumours ferment glucose to lactate even in the presence of oxygen (aerobic glycolysis; Warburg effect). The pentose phosphate pathway (PPP) allows glucose conversion to ribose for nucleic acid synthesis and glucose degradation to lactate. The nonoxidative part of the PPP is controlled by transketolase enzyme reactions. We have detected upregulation of a mutated transketolase transcript (TKTL1) in human malignancies, whereas transketolase (TKT) and transketolase-like-2 (TKTL2) transcripts were not upregulated. Strong TKTL1 protein expression was correlated to invasive colon and urothelial tumours and to poor patients outcome. TKTL1 encodes a transketolase with unusual enzymatic properties, which are likely to be caused by the internal deletion of conserved residues. We propose that TKTL1 upregulation in tumours leads to enhanced, oxygen-independent glucose usage and a lactate-based matrix degradation. As inhibition of transketolase enzyme reactions suppresses tumour growth and metastasis, TKTL1 could be the relevant target for novel anti-transketolase cancer therapies. We suggest an individualised cancer therapy based on the determination of metabolic changes in tumours that might enable the targeted inhibition of invasion and metastasis.
Collapse
Affiliation(s)
- S Langbein
- Department of Urology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - M Zerilli
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè, 5, 90127 Palermo, Italy
| | - A zur Hausen
- Institute of Pathology, University Hospital Freiburg, Albertstr. 19, 79002 Freiburg, Germany
| | - W Staiger
- Department of Surgery, University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | - N Lukan
- Department of Surgery, University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - J Popa
- Department of Urology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - M P Ternullo
- Institute of Pathology, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - A Steidler
- Department of Urology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - C Weiss
- Department of Biostatistics, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - R Grobholz
- Department of Pathology, University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - F Willeke
- Department of Surgery, University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - P Alken
- Department of Urology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - G Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè, 5, 90127 Palermo, Italy
| | - P Schubert
- R-Biopharm AG, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - J F Coy
- TAVARTIS GmbH, Kroetengasse 10, 64853 Otzberg, Germany
- R-Biopharm AG, Landwehrstrasse 54, 64293 Darmstadt, Germany
- TAVARTIS GmbH, Kroetengasse 10, 64853 Otzberg, Germany. E-mail: or
| |
Collapse
|
14
|
Matthews GM, Butler RN. Cellular mucosal defense during Helicobacter pylori infection: a review of the role of glutathione and the oxidative pentose pathway. Helicobacter 2005; 10:298-306. [PMID: 16104945 DOI: 10.1111/j.1523-5378.2005.00327.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Helicobacter pylori is the primary cause of gastritis and peptic ulcer disease and is known to infect greater than 50% of the world's population. It is also known to lead to the onset of gastric cancer and unless treated, lasts throughout life in most individuals. Mouse models of H. pylori infection have improved our ability to study this organism and can be used to investigate the host mucosal response to the infection, particularly the early events postinoculation. Previous studies have shown that H. pylori infection leads to an increased production of reactive oxygen species within the gastric mucosa which are thought to play a major role in the mediation of associated disease. Recent studies have shown differences in the availability of an important antioxidant, glutathione, during chronic H. pylori infection. The availability of glutathione is primarily controlled by the activity of the oxidative pentose pathway. This review proposes that the severity of inflammation and damage associated with H. pylori infection is dependent on the ability of mucosal cells to counteract the increased load of reactive oxygen species. It is hypothesized that the oxidative pentose pathway and glutathione availability are important factors modulating this response. It is suggested that the therapeutic regulation of glutathione availability could provide a novel method for preventing or reducing the damage caused during H. pylori infection.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Centre for Paediatric and Adolescent Gastroenterology Women's and Children's Hospital, 72 King William Rd., North Adelaide 5006 South Australia.
| | | |
Collapse
|
15
|
Maugeri DA, Cazzulo JJ, Burchmore RJS, Barrett MP, Ogbunude POJ. Pentose phosphate metabolism in Leishmania mexicana. Mol Biochem Parasitol 2003; 130:117-25. [PMID: 12946848 DOI: 10.1016/s0166-6851(03)00173-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The metabolism of pentose phosphates was studied in Leishmania mexicana promastigotes. Each of the enzymes of the classical pentose phosphate pathway (PPP) has been identified and specific activities measured. Functioning of the PPP was demonstrated in non-growing cells by measuring the evolution of 14CO2 from [1-14C]D-glucose and [6-14C]D-glucose under normal conditions and also under selective stimulation of the PPP by exposure to methylene blue. The proportion of glucose which passes through the PPP increases in the latter condition, thus suggesting a protective role against oxidant stress. The incorporation into nucleic acids of ribose 5-phosphate provided via either glucose or free ribose was also determined. Results indicate that the PPP enables glucose to serve as a source of ribose 5-phosphate in nucleotide biosynthesis. Moreover, free ribose is incorporated efficiently, implying the presence of a ribose uptake system and also of ribokinase. Ribose was shown to be accumulated by a carrier mediated process in L. mexicana promastigotes and ribokinase activity was also measured in these cells.
Collapse
Affiliation(s)
- Dante Abel Maugeri
- Instituto de Investigaciones Biotecnologicas, Universidad Nacional de General San Martin, 1650 San Martin, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
16
|
Kruger NJ, von Schaewen A. The oxidative pentose phosphate pathway: structure and organisation. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:236-46. [PMID: 12753973 DOI: 10.1016/s1369-5266(03)00039-6] [Citation(s) in RCA: 527] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The oxidative pentose phosphate pathway is a major source of reducing power and metabolic intermediates for biosynthetic processes. Some, if not all, of the enzymes of the pathway are found in both the cytosol and plastids, although the precise distribution of their activities varies. The apparent absence of sections of the pathway from the cytosol potentially complicates metabolism. These complications are partly offset, however, by exchange of intermediates between the cytosol and the plastids through the activities of a family of plastid phosphate translocators. Molecular analysis is confirming the widespread presence of multiple genes encoding each of the enzymes of the oxidative pentose phosphate pathway. Differential expression of these isozymes may ensure that the kinetic properties of the activity that catalyses a specific reaction match the metabolic requirements of a particular tissue. This hypothesis can be tested thanks to recent developments in the application of 13C-steady-state labelling strategies. These strategies make it possible to quantify flux through metabolic networks and to discriminate between pathways of carbohydrate oxidation in the cytosol and plastids.
Collapse
Affiliation(s)
- Nicholas J Kruger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | |
Collapse
|
17
|
Leong HS, Grist M, Parsons H, Wambolt RB, Lopaschuk GD, Brownsey R, Allard MF. Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Am J Physiol Endocrinol Metab 2002; 282:E1039-45. [PMID: 11934668 DOI: 10.1152/ajpendo.00507.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycolysis, measured by (3)H(2)O production from [5-(3)H]glucose, is accelerated in isolated working hypertrophied rat hearts. However, nonglycolytic detritiation of [5-(3)H]glucose via the nonoxidative pentose phosphate pathway (PPP) could potentially lead to an overestimation of true glycolytic rates, especially in hypertrophied hearts where the PPP may be upregulated. To address this concern, we measured glycolysis using [5-(3)H]glucose and a second, independent method in isolated working hearts from halothane-anesthetized, sham-operated and aortic-constricted rats. Glycolysis was accelerated in hypertrophied hearts compared with control hearts regardless of the method used. There was also excellent concordance in glycolytic rates between the different methods. Moreover, activity of glucose-6-phosphate dehydrogenase and expression of transaldolase, enzymes controlling key steps in the oxidative and nonoxidative PPP, respectively, were not different between control and hypertrophied hearts. Thus nonglycolytic detritiation of [5-(3)H]glucose in the PPP is insignificant, and (3)H(2)O production from [5-(3)H]glucose is an accurate means to measure glycolysis in isolated working normal and hypertrophied rat hearts. Furthermore, the PPP does not appear to be increased in cardiac hypertrophy induced by abdominal aortic constriction.
Collapse
Affiliation(s)
- Hon Sing Leong
- McDonald Research Laboratories/The iCAPTUR, University of British Columbia-St. Paul's Hospital, Vancouver, British Columbia, V6Z 1Y6
| | | | | | | | | | | | | |
Collapse
|
18
|
van Winden W, Verheijen P, Heijnen S. Possible pitfalls of flux calculations based on (13)C-labeling. Metab Eng 2001; 3:151-62. [PMID: 11289791 DOI: 10.1006/mben.2000.0174] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic engineers have enthusiastically adopted the (13)C-labeling technique as a powerful tool for elucidating fluxes in metabolic networks. This tracer technique makes it possible to determine fluxes that are unobservable using only metabolite balances and allows the elimination of doubtful cofactor balances that are indispensable in flux analysis based on metabolite balancing alone. The (13)C-labeling technique, however, relies on a number of assumptions that are not free from uncertainties. Two possible errors in the models that are needed to determine the metabolic fluxes from labeling data are omitted reactions and ignored occurrence of channeling. By means of two representative examples it is shown that these modeling errors may lead to serious errors in the calculated flux distributions despite the use of labeling data. A complicating fact is that the model errors are not always easily detected as poor models may still yield good fits of experimental data. Results of (13)C-labeling experiments should therefore be interpreted with appropriate caution.
Collapse
Affiliation(s)
- W van Winden
- Bioprocestechnology Group, Faculty of Applied Sciences, Delft University of Technology, The Netherlands.
| | | | | |
Collapse
|
19
|
Goodwin GW, Cohen DM, Taegtmeyer H. [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. Am J Physiol Endocrinol Metab 2001; 280:E502-8. [PMID: 11171606 DOI: 10.1152/ajpendo.2001.280.3.e502] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We set out to study the pentose phosphate pathway (PPP) in isolated rat hearts perfused with [5-3H]glucose and [1-14C]glucose or [6-14C]glucose (crossover study with 1- then 6- or 6- then 1-14C-labeled glucose). To model a physiological state, hearts were perfused under working conditions with Krebs-Henseleit buffer containing 5 mM glucose, 40 microU/ml insulin, 0.5 mM lactate, 0.05 mM pyruvate, and 0.4 mM oleate/3% albumin. The steady-state C1/C6 ratio (i.e., the ratio from [1-14C]glucose to [6-14C]glucose) of metabolites released by the heart, an index of oxidative PPP, was not different from 1 (1.06 +/- 0.19 for 14CO2, and 1.00 +/- 0.01 for [14C]lactate + [14C]pyruvate, mean +/- SE, n = 8). Hearts exhibited contractile, metabolic, and 14C-isotopic steady state for glucose oxidation (14CO2 production). Net glycolytic flux (net release of lactate + pyruvate) and efflux of [14C]lactate + [14C]pyruvate were the same and also exhibited steady state. In contrast, flux based on 3H2O production from [5-3H]glucose increased progressively, reaching 260% of the other measures of glycolysis after 30 min. The 3H/14C ratio of glycogen (relative to extracellular glucose) and sugar phosphates (representing the glycogen precursor pool of hexose phosphates) was not different from each other and was <1 (0.36 +/- 0.01 and 0.43 +/- 0.05 respectively, n = 8, P < 0.05 vs. 1). We conclude that both transaldolase and the L-type PPP permit hexose detritiation in the absence of net glycolytic flux by allowing interconversion of glycolytic hexose and triose phosphates. Thus apparent glycolytic flux obtained by 3H2O production from [5-3H]glucose overestimates the true glycolytic flux in rat heart.
Collapse
Affiliation(s)
- G W Goodwin
- Division of Cardiology, University of Texas-Houston Medical School, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
20
|
Cabezas H, Raposo RR, Meléndez-Hevia E. Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol Cell Biochem 1999; 201:57-63. [PMID: 10630623 DOI: 10.1023/a:1007042531454] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activity of the pentose-phosphate pathway in several rat tissues was investigated, developing a new method that gives the activity of each phase (oxidative and non-oxidative) as well as the whole pathway separately. Our results demonstrate that this method is easy to carry out and that it has not the problems of indirect determinations of the previous ones. The activities of the oxidative and non-oxidative phases assayed separately gives us new information on the design of the pathway in the different tissues, from which several conclusions about the physiological role of this pathway can be derived. In all cases the activity of the oxidative phase was much higher than the non-oxidative one, and the global activity of the whole pathway was the same as the activity of the non-oxidative phase. The highest activity was found in lactating mammary gland and adipose tissue. Lung and liver showed to have a moderately high activity. Brain, kidney, skeletal muscle, and intestinal mucosa showed to have also a significant activity although less than other tissues. The switch in the mammary gland from the non-lactating state to the lactating one causes a very high increase of activity of 22 times, remaining the same ratio between the activity of the two phases.
Collapse
Affiliation(s)
- H Cabezas
- Universidad de La Laguna, Departamento de Bioquímica, Tenerife, Canary Islands, Spain
| | | | | |
Collapse
|
21
|
Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998; 30:1297-318. [PMID: 9924800 DOI: 10.1016/s1357-2725(98)00095-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.
Collapse
Affiliation(s)
- G Schenk
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
22
|
Nuño JC, Sánchez-Valdenebro I, Pérez-Iratxeta C, Meléndez-Hevia E, Montero F. Network organization of cell metabolism: monosaccharide interconversion. Biochem J 1997; 324 ( Pt 1):103-11. [PMID: 9190785 PMCID: PMC1218437 DOI: 10.1042/bj3240103] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural properties of carbohydrate metabolism are being studied. The present contribution focuses mainly on those processes involving the transfer of carbon fragments among sugars. It is shown how enzymatic activities fix the way the system self-organizes stoichiometrically at the steady state. It is proven that there exists a specific correspondence between the set of all possible enzymic activities, the activity set, and the set of stoichiometrically compatible flux distributions through the pathway. On the one hand, there are enzymic activities that do not allow a stoichiometrically feasible coupling at the steady state of the reactions involved in the conversion. On the other hand, there are enzymic activities that are related to one or more flux distributions at the steady state (i.e. with one or several rate vectors respectively). For this latter group, it can be demonstrated that the structure of the system depends on other non-structural factors, such as boundary constraints and the kinetic parameters. As a consequence, it is suggested that this kind of metabolic process must be viewed as a complex reaction network instead of a sequential number of steps. Some implications of these derivations are illustrated for the particular conversion of CO2 --> C3. General remarks are also discussed within the framework of network models of cell metabolism.
Collapse
Affiliation(s)
- J C Nuño
- Departamento de Bioquímica y Biologiá Molecular I, Facultad de CC. Químicas, Universidad Computense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
NMR structural analysis of a tri-O-isopropylidene derivative of d-glycero-d-ido-2-octulose, the major sugar found in the resurrection plant Craterostigma plantagineum. Carbohydr Res 1996. [DOI: 10.1016/0008-6215(96)00106-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Bismut H, Caron M, Coudray-Lucas C, Capeau J. Glucose contribution to nucleic acid base synthesis in proliferating hepatoma cells: a glycine-biosynthesis-mediated pathway. Biochem J 1995; 308 ( Pt 3):761-7. [PMID: 8948430 PMCID: PMC1136790 DOI: 10.1042/bj3080761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The coupling of glycolysis to serine and glycine metabolism was studied in fast-growing Zajdela hepatoma cultured cells. During the exponential phase of growth, occurring between 12 and 72 h, cells exhibited a decreased glycogen content together with a high glycolytic activity. Glycogen labelling, evaluated by 1 h-pulse experiments with [U-14C]glucose (5.5 mM), was minimal during the first 48 h and increased 2.5-fold at 72 h and 8-fold at 96 h, at which times it was also stimulated 2-fold by 10 nM insulin. [U-14C]Glucose carbons were incorporated into nucleic acid bases, with maximal incorporation at 72 h, the rate of nucleotide base labelling exceeding that of glycogen during the first 2 days of culture. Incubation of the cells with [U-14C]glucose resulted in the release into the medium of 14C-labelled glycine, the first intermediate formed on the route from serine to DNA. The rate of release per cell decreased as a function of cell growth, concomitantly with an increased rate of glucose carbon incorporation into nucleotide bases. The latter implied the intermediary formation of amino acids since the transaminase inhibitor cycloserine (10 mM), which totally inhibited [14C]glycine release, decreased by 65% nucleotide labelling from [U-14C]glucose. A dose-dependent inhibition by serine of the rate of [U-14C]glucose carbon incorporation into nucleotide bases was observed, which was maximal at 5 mM serine. These metabolic flux measurements indicate that glucose can be used as a precursor of nucleic acid synthesis. These results strongly suggest that this process is to a large extent mediated by a serine/glycine-biosynthesis-mediated pathway, and reinforce the hypothesis that glycolysis contributes to enhancing the provision of precursors required for cell proliferation.
Collapse
Affiliation(s)
- H Bismut
- Laboratoire de Biologie, U.E.R. d'Odontologie, Université Paris 7, France
| | | | | | | |
Collapse
|
25
|
NMR Studies of Erythrocyte Metabolism. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1569-2558(08)60251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Berthon HA, Bubb WA, Kuchel PW. 13C n.m.r. isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes. Biochem J 1993; 296 ( Pt 2):379-87. [PMID: 8257428 PMCID: PMC1137707 DOI: 10.1042/bj2960379] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
13C double-quantum filtered correlation spectroscopy (DQF-COSY) provides a novel method for the detection of reactions involving carbon-bond scissions. We report the use of this technique to investigate isotopic exchange reactions of the non-oxidative pentose phosphate pathway in human erythrocytes. These exchange reactions resulted in the formation of a range of isotopic isomers (isotopomers) of glucose 6-phosphate after incubation of a mixture of universally 13C-labelled and unlabelled glucose 6-phosphate with fructose 1,6-bisphosphate and haemolysates. These isotopomers were detected in the coupling patterns of cross-peaks within the DQF-COSY spectrum of the deproteinized sample. A computer model which fully describes the reactions of the non-oxidative pentose phosphate pathway in human erythrocytes has previously been constructed and tested with 31P n.m.r. time-course data in our laboratory. This model was refined using 13C n.m.r. time-course data and extended to include the range of isotopomers which may be formed experimentally by the reactions of the non-oxidative pentose phosphate pathway. The isotopomer ratios obtained experimentally from the DQF-COSY spectrum were consistent with simulations generated by this model.
Collapse
Affiliation(s)
- H A Berthon
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
27
|
Butler RN, Butler WJ, Antoniou D, Pascoe V. Effect of dehydroepiandrosterone on pentose phosphate pathway activity in the rat colon. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1601-7. [PMID: 8288029 DOI: 10.1016/0020-711x(93)90518-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The effects of fasting and fasting followed by refeeding on the activities of the oxidative pentose pathway (OPP) and the non-oxidative pentose pathway (NOPP) were estimated by the rate of production of 14CO2 from [1-14C] glucose in isolated rat colonocytes, and the production of hexose 6-phosphates from ribose 5-phosphate in rat colonic cytosols, respectively. 2. The OPP activity in colonocytes from rats in the fasted state was 50% lower when compared to colonocytes from rats refed after a fast. This indicated induction of the rate-limiting enzyme of the OPP, glucose 6-P dehydrogenase (G6-PDH) in the latter instance. No effect on the maximal catalytic activity of the enzymes of the NOPP was seen in colonocytes from rats refed after a fast compared with colonocytes from rats in the fasted state. 3. Isolated colonocytes obtained from the distal colon of rats refed after a fast, showed a significant decrease (30%) in OPP activity when incubated with 50 microM dehydroepiandrosterone (DHEA). A similar degree of inhibition was seen with 10 mM butyrate (P < 0.05). In contrast, using colonic cytosols, both DHEA and butyrate had no effect on the maximal catalytic activity of the NOPP. 4. Intraperitoneal injection (i.p.) of DHEA in rats refed after a fast showed a significant increase in the maximal catalytic activity of the NOPP in the distal colon (46%; P < 0.05). A similar elevation in the maximal catalytic activity of the NOPP was seen in the distal colon of DHEA treated pair-fed rats (43%; P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R N Butler
- Department of Gastroenterology, Queen Elizabeth Hospital, Woodville, Australia
| | | | | | | |
Collapse
|
28
|
Flanigan I, Collins JG, Arora KK, MacLeod JK, Williams JF. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:477-85. [PMID: 8477719 DOI: 10.1111/j.1432-1033.1993.tb17784.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. The distributions and rates of transfer of carbon isotopes from a selection of specifically labelled ketosugar-phosphate substrates by exchange reactions catalyzed by the pentose and photosynthetic carbon-reduction-pathway group-transferring enzymes transketolase, transaldolase and aldolase have been measured using 13C-NMR spectroscopy. 2. The rates of these exchange reactions were 5, 4 and 1.5 mumol min-1 mg-1 for transketolase exchange, transaldolase exchange and aldolase exchange, respectively. 3. A comparison of the exchange capacities contributed by the activities of these enzymes in three in vitro liver preparations with the maximum non-oxidative pentose pathway flux rates of the preparations shows that transketolase and aldolase exchanges exceeded flux by 9-19 times in liver cytosol and acetone powder enzyme preparations and by 5 times in hepatocytes. Transaldolase was less effective in the comparison of exchange versus flux rates: transaldolase exchange exceeded flux by 1.6 and 5 in catalysis by liver cytosol and acetone powder preparations, respectively, but was only 0.6 times the flux in hepatocytes. 4. Values of group enzyme exchange and pathway flux rates in the above three preparations are important because of the feature role of liver and of these particular preparations in the establishment, elucidation and measurement of a proposed reaction scheme for the fat-cell-type pentose pathway in biochemistry. 5. It is the claim of this paper that the excess of exchange rate activity (particularly transketolase exchange) over pathway flux will overturn attempts to unravel, using isotopically labelled sugar substrates, the identity, reaction sequence and quantitative contribution of the pentose pathway to glucose metabolism. 6. The transketolase exchange reactions relative to the pentose pathway flux rates in normal, regenerating and foetal liver, Morris hepatomas, mammary carcinoma, melanoma, colonic epithelium, spinach chloroplasts and epididymal fat tissue show that transketolase exchange may exceed flux in these tissues by factors ranging over 5-600 times. 7. The confusion of pentose pathway theory by the effects of transketolase exchange action is illustrated by the 13C-NMR spectrum of the hexose 6-phosphate products of ribose 5-phosphate dissimilation, formed after 30 min of liver enzyme action, and shows 13C-labelling in carbons 1 and 3 of glucose 6-phosphate with ratios which range over 2.1-6.4 rather than the mandatory value of 2 which is imposed by the theoretical mechanism of the pathway.
Collapse
Affiliation(s)
- I Flanigan
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra
| | | | | | | | | |
Collapse
|
29
|
Donohoe JA, Rosenfeldt FL, Munsch CM, Williams JF. The effect of orotic acid treatment on the energy and carbohydrate metabolism of the hypertrophying rat heart. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:163-82. [PMID: 8444313 DOI: 10.1016/0020-711x(93)90004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Adenine nucleotide concentrations in normal and one day hypertrophied hearts of untreated, orotic acid (OA), uridine, uracil, dihydroorotate and reserpine pretreated rats were measured. OA treatment increased the ADP concentration 5-fold in one day hypertrophied hearts. Neither uracil, uridine, dihydroorotate nor reserpine treatments changed ADP or total adenylate concentrations at one day of hypertrophy. 2. The adenine nucleotide ratio (ANR) at 0.263 x 10(3) M-1 and the energy charge (0.66) were at their lowest values in OA and in reserpine treated one day hypertrophying hearts. The temporal decline in the indices of energy metabolism corresponded with the OA induced maximum stimulation of contractility and maximum rates of protein, RNA and glycogen synthesis. 3. The phosphorylation state of the adenine nucleotides (PSAN) was both the most sensitive and the best predictive index of the cellular energy status in normal and hypertrophying hearts. The pronounced ability of OA treatment to energize myocyte cytoplasm was shown by the 9- and 6-fold greater values of PSAN over ANR in one and three day hypertrophied hearts. The enhanced PSAN may be the key factor in the mechanism of OA induced enhancement of contractile and synthetic functions of the heart in compensatory hypertrophy. 4. The development of myocardial hypertrophy in untreated rats resulted in a 36% reduction in the cytoplasmic NAD/NADH ratio. In rats treated with OA this redox couple of the hypertrophying heart was more oxidized and was increased by 30% to restore it to the value range of normal heart. 5. The regulatory status of the glycolytic pathway in untreated and OA treated hypertrophying hearts was assessed by comparisons of the mass action ratio (MAR) and equilibrium constants for each of the individual glycolytic reactions. There was an OA induced 2.7-fold increase in glycogen, UDP-glucose and total uridine nucleotides in hypertrophied hearts. The concentrations of seven out of ten glycolytic intermediates, including pyruvate and lactate were increased as a consequence of OA treated hypertrophy. Glycolytic flux was not stalled, rather the pathway was "more open" permitting greater throughput of intermediates with individually increased levels of selected metabolites. OA stimulated hypertrophy did not change the canonical control of glycolysis by the activities and individual MAR values of phosphofructokinase and pyruvic kinase. 6. Elevated levels of Glu 6-P, Fru 6-P and DHAP can force glycolytic intermediate entry into the non-oxidative reaction segment of the pentose pathway (PP), thereby elevating Rib 5-P concentration by reversal of the conventional flux direction of PP.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J A Donohoe
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT
| | | | | | | |
Collapse
|
30
|
Schuster R, Schuster S, Holzhütter HG. Simplification of complex kinetic models used for the quantitative analysis of nuclear magnetic resonance or radioactive tracer studies. ACTA ACUST UNITED AC 1992. [DOI: 10.1039/ft9928802837] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
The metabolism of D-[U-14C]glucose, D-[1-14C]glucose, D-[6-14C]glucose, D-[1-3H]glucose, D-[2-3H]glucose, D-[3-3H]glucose, D-[3,4-3H]glucose, D-[5-3H]glucose, and D-[6-3H]glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-[3-3H]glucose and D-[5-3H]glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-[U-14C]glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-[3,4-3H]glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-[6-3H]glucose, a phenomenon possibly attributable to the detritiation of [3-3H]pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-[2-3H]glucose was lower than that from D-[5-3H]glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-[1-3H]glucose largely exceeded that of 14CO2 from D-[1-14C]glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-[1-3H]glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.
Collapse
Affiliation(s)
- B Manuel y Keenoy
- Laboratory of Experimental Medicine, Brussels Free University, Belgium
| | | | | |
Collapse
|
32
|
Schuster S, Höfer T. Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. ACTA ACUST UNITED AC 1991. [DOI: 10.1039/ft9918702561] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Larrabee MG. Evaluation of the pentose phosphate pathway from 14CO2 data. Fallibility of a classic equation when applied to non-homogeneous tissues. Biochem J 1990; 272:127-32. [PMID: 2124803 PMCID: PMC1149666 DOI: 10.1042/bj2720127] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A classic equation that has frequently been used to estimate the fraction of glucose metabolized by the pentose phosphate pathway, using 14CO2 data, is more simply re-derived with careful consideration of the assumptions involved and the conditions under which it is applicable. The equation is shown to be unreliable for non-homogeneous tissues, depending on the fraction of triose phosphate converted to CO2. The formula in question is as follows: ([1]CO2/G-[6]CO2/G)/(1-[6]CO2/G) = 3Fmet./(1 + 2Fmet.) where [1]CO2 and [6]CO2 are output rates of carbons 1 and 6 of glucose respectively to CO2, G is the rate of glucose uptake and Fmet. is the fraction of the glucose that is metabolized to CO2 and triose phosphate by the pentose phosphate pathway, allowing for recycling of an appropriate fraction of the fructose-6-phosphate produced by the pathway. This analysis illustrates the importance of suitably testing any equation that assumes homogeneity before application to non-homogeneous tissues.
Collapse
Affiliation(s)
- M G Larrabee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
34
|
Bismut H, Plas C. Pathways of glycogen synthesis from glucose during the glycogenic response to insulin in cultured foetal hepatocytes. Biochem J 1989; 263:889-95. [PMID: 2688638 PMCID: PMC1133514 DOI: 10.1042/bj2630889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.
Collapse
Affiliation(s)
- H Bismut
- Laboratoire Interactions Cellulaires, U.E.R. Odontologie, Université Paris, France
| | | |
Collapse
|
35
|
Dworkin MB, Dworkin-Rastl E. Metabolic regulation during early frog development: glycogenic flux in Xenopus oocytes, eggs, and embryos. Dev Biol 1989; 132:512-23. [PMID: 2538374 DOI: 10.1016/0012-1606(89)90246-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.
Collapse
|
36
|
McIntyre LM, Thorburn DR, Bubb WA, Kuchel PW. Comparison of computer simulations of the F-type and L-type non-oxidative hexose monophosphate shunts with 31P-NMR experimental data from human erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:399-420. [PMID: 2924774 DOI: 10.1111/j.1432-1033.1989.tb14662.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mathematical modelling was used to predict the behaviour of the two most favoured schemes for the operation of the non-oxidative hexose monophosphate shunt (HMS), the F-type and the L-type pathways. The models simulate the time courses of sugar-phosphate concentrations when various substrates are metabolized via each pathway. A 31P-NMR technique, with which to observe time courses of concentrations of sugar phosphates in a human red cell lysate, was developed. The accuracy of each hypothesised scheme was then evaluated by comparing predicted with observed data. The results were more consistent with time courses of sugar-phosphate levels predicted by the F-type (classical) pathway than those predicted by the L-type model. However, the accumulation of sedoheptulose 1,7-bisphosphate when a haemolysate was incubated with ribose 5-phosphated showed that the F-type pathway is not a complete description of the system of reactions. Transaldolase was demonstrated to be essential for the normal metabolism of sugar phosphates by haemolysates. The effects of the heat-inactivation of transaldolase on the metabolism of sugar phosphates were accurately predicted by the F-type model. The relevance of attempting to describe the reaction of the non-oxidative HMS as a distinct 'pathway' or 'cycle' is discussed.
Collapse
Affiliation(s)
- L M McIntyre
- Department of Biochemistry, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
37
|
Landau BR. Why the L-type pentose pathway does not function in liver. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:99-102. [PMID: 2666185 DOI: 10.1016/0020-711x(89)90032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The classical pentose and not the L-type pathway functions in liver (Rognstad et al., 1982; Landau and Wood, 1983a; Landau, 1985; Scofield et al., 1985b). 2. It seems necessary to summarize again the reasons for this conclusion because of a recent review by Williams and his coworkers in this Journal (Williams et al., 1987).
Collapse
Affiliation(s)
- B R Landau
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
38
|
Crabtree B, Lobley GE. Measuring metabolic fluxes in organs and tissues with single and multiple tracers. Proc Nutr Soc 1988; 47:353-64. [PMID: 3254534 DOI: 10.1079/pns19880054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B Crabtree
- Division of Physiology, Rowett Research Institute, Bucksburn, Aberdeen
| | | |
Collapse
|
39
|
Magnusson I, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR. Pentose pathway in human liver. Proc Natl Acad Sci U S A 1988; 85:4682-5. [PMID: 3133657 PMCID: PMC280499 DOI: 10.1073/pnas.85.13.4682] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
[1-14C]Ribose and [2-14C]glucose were given to normal subjects along with glucose loads (1 g per kg of body weight) after administration of diflunisal and acetaminophen, drugs that are excreted in urine as glucuronides. Distributions of 14C were determined in the carbons of the excreted glucuronides and in the glucose from blood samples drawn from hepatic veins before and after glucagon administration. Eighty percent or more of the 14C from [1-14C]ribose incorporated into the glucuronic acid moiety of the glucuronides was in carbons 1 and 3, with less than 8% in carbon 2. In glucuronic acid from glucuronide excreted when [2-14C]glucose was given, 3.5-8.1% of the 14C was in carbon 1, 2.5-4.3% in carbon 3, and more than 70% in carbon 2. These distributions are in accord with the glucuronides sampling the glucose unit of the glucose 6-phosphate pool that is a component of the pentose pathway and is intermediate in glycogen formation. It is concluded that the glucuronic acid conjugates of the drugs can serve as a noninvasive means of sampling hepatic glucose 6-phosphate. In human liver, as in animal liver, the classical pentose pathway functions, not the L-type pathway, and only a small percentage of the glucose is metabolized via the pathway.
Collapse
Affiliation(s)
- I Magnusson
- Department of Clinical Physiology, Karolinska Institute at Huddinge Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|