1
|
Bisht N, Fular A, Saini M, Kumar S, Sankar M, Sharma AK, Ghosh S. Effect of ivermectin, amitraz and fipronil on midgut epithelium and digestive enzyme profile in Rhipicephalus microplus ticks (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:851-870. [PMID: 38642307 DOI: 10.1007/s10493-024-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Blood feeding and digestion are vital physiological activities essential for the survival and reproduction of ticks. Chemical acaricides viz., ivermectin, amitraz and fipronil, are known to act on the central nervous system, resulting in the mortality of ticks. The present study is focused on the effect of these acaricides on the midgut and gut enzymes of Rhipicephalus microplus. The ultra-thin sections of midgut of ivermectin-treated ticks showed irregular basal membrane and ruptured digestive vesicles. Amitraz treatment resulted in a notable decrease in digestive cells with pleats in the basal membrane, while fipronil-exposed ticks exhibited reduced digestive cells, loss of cellular integrity, and disintegration of the basal membrane and muscle layer. The gut tissue homogenate of ivermectin and fipronil treated ticks showed a significant reduction of cathepsin D level, 76.54 ± 3.20 μg/mL and 92.67 ± 3.72 μg/mL, respectively, as compared to the control group (150.0 ± 3.80 μg/mL). The leucine aminopeptidase level (4.27 ± 0.08 units/mL) was significantly decreased in the ivermectin treated ticks compared to other treatment groups. The acid phosphatase activity (29.16 ± 0.67 μmole/min/L) was reduced in the ivermectin treated group whereas, increased activity was observed in the fipronil and amitraz treated groups. All the treatment groups revealed increased alkaline phosphatase levels (17.47-26.72 μmole/min/L). The present finding suggests that in addition to the established mechanism of action of the tested acaricides on the nervous system, the alterations in the cellular profile of digestive cells and enzymes possibly affect the blood digestion process and thus the synthesis of vital proteins which are essential for vitellogenesis, and egg production in ticks.
Collapse
Affiliation(s)
- Nisha Bisht
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ashutosh Fular
- Temperate Animal Husbandry Division, ICAR- Indian Veterinary Research Institute, Mukteshwar, Uttarakhand, 263138, India.
| | - Mohini Saini
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Satyanshu Kumar
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat, 387310, India
| | - M Sankar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- School of Agriculture, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
2
|
Lu S, Waldman J, Parizi LF, Junior IDSV, Tirloni L. A longitudinal transcriptomic analysis of Rhipicephalus microplus midgut upon feeding. Ticks Tick Borne Dis 2024; 15:102304. [PMID: 38159432 PMCID: PMC10947743 DOI: 10.1016/j.ttbdis.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Rhipicephalus microplus, a highly host-specific tick that primarily feeds on cattle, posing a significant threat to livestock production. The investigation of tick physiology is crucial for identifying potential targets in tick control. Of particular interest adult female ticks undergo a significant expansion of the midgut during feeding, leading to an over 100-fold increase in body weight. Beyond the functions of storing and digesting blood meals, the tick midgut plays a crucial role in acquiring and transmitting pathogens. However, our understanding of tick midgut physiology remains limited. In this study we conducted a comprehensive longitudinal transcriptome analysis of the midgut from adult female R. microplus ticks collected at various feeding stages, providing an overview of the transcriptional modulation in this organ as feeding progress. By employing a de novo assembly approach followed by coding-sequences (CDS) extraction, 60,599 potential CDS were identified. In preparation for functional annotation and differential expression analysis, transcripts that showed an average transcript per million (TPM) ≥ 3 in at least one of the biological conditions were extracted. This selection process resulted in a total of 10,994 CDS, which were categorized into 24 functional classes. Notably, our differential expression analysis revealed three main transcriptional profiles. In the first one, representing the slow-feeding stage, the most abundant functional classes were the "protein synthesis" and "secreted" groups, reflecting the highly active state of the tick midgut. The second profile partially accounts for the rapid-feeding stage, in which a high number of differentially expressed transcripts was observed. Lastly, the third transcriptional profile represents post-detached ticks. Notably the highest number of modulated transcripts was observed up to 48 h post-detachment (hpd), however no major differences was observed up to 168 hpd. Overall, the data presented here offers a temporal insight into tick midgut physiology, contributing to the identification of potential targets for the development of anti-tick control strategies.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jéssica Waldman
- Centro de Biotecnologia, Universidade and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
3
|
Lu S, Martins LA, Kotál J, Ribeiro JMC, Tirloni L. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis. Sci Rep 2023; 13:11360. [PMID: 37443274 PMCID: PMC10345007 DOI: 10.1038/s41598-023-38207-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The hematophagy behavior has evolved independently several times within the Arthropoda phylum. Interestingly, the process of acquiring a blood meal in ticks is considerably distinct from that observed in other blood-feeding arthropods. Instead of taking seconds to minutes to complete a blood meal, an adult female Ixodes scapularis tick can remain attached to its host for numerous days. During this extended feeding period, the tick undergoes drastic morphological changes. It is well established that the tick midgut plays a pivotal role not only in blood meal digestion but also in pathogen acquisition and transmission. However, our understanding of the underlying molecular mechanisms involved in these events remains limited. To expedite tick research, we conducted a comprehensive longitudinal RNA-sequencing of the tick midgut before, during, and after feeding. By collecting ticks in different feeding stages (unfed, slow feeding, rapid feeding, and early post-detached), we obtained a comprehensive overview of the transcripts present in each stage and the dynamic transcriptional changes that occur between them. This provides valuable insights into tick physiology. Additionally, through unsupervised clustering, we identified transcripts with similar patterns and stage-specific sequences. These findings serve as a foundation for selecting targets in the development of anti-tick control strategies and facilitate a better understanding of how blood feeding and pathogen infection impact tick physiology.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Larissa A Martins
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
- Laboratory of Persistent Viral Diseases, Neuroimmunology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
4
|
Fular A, Bisht N, Sharma AK, Chigure G, Nagar G, Ghosh S. Evaluation of cytotoxic effects of amitraz and fipronil on digestive, reproductive and neural processes of engorged Rhipicephalus microplus (Acari: Ixodidae) female. Ticks Tick Borne Dis 2022; 13:102031. [PMID: 36115182 DOI: 10.1016/j.ttbdis.2022.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Fipronil and amitraz are potentially toxic compounds used for controlling ticks infesting pet and livestock. The use of fipronil on large animals was limited because of its high costs while amitraz is still persisting in the market since its introduction over four decades ago. Though resistance in ticks against these pesticides has been reported worldwide since 2000, the toxicity of these chemicals at cellular level in ticks is still poorly understood. The present study aimed to examine the gross and cellular impact of fipronil and amitraz on the gut, ovaries and synganglion of engorged Rhipicephalus microplus females. Fipronil and amitraz treated tick groups showed formation of a large number of vacuoles of different size throughout the cytoplasm of generative cells whereas sessile, residual and detached digestive cells were very low in numbers. The treatment of ticks resulted in the formation of vacuolations at periphery of all oocytes. Ultra-thin sections of the synganglion revealed severe rupture of neural lamella and perineurium with apoptosis of neural cells after fipronil treatment whereas in the amitraz treated ticks, severe destruction of neuropile region and extensive vacuolation of type I and II cells of cortical region as compared to the unexposed ticks were noted.
Collapse
Affiliation(s)
- Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, UttarPradesh 243122, India
| | - Nisha Bisht
- Entomology Laboratory, Division of Parasitology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, UttarPradesh 243122, India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, UttarPradesh 243122, India
| | - Gajanan Chigure
- Entomology Laboratory, Division of Parasitology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, UttarPradesh 243122, India
| | - Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, UttarPradesh 243122, India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, UttarPradesh 243122, India.
| |
Collapse
|
5
|
de Oliveira PR, Santos Monteiro OD, da Rocha CQ, Costa-Júnior LM, Pinheiro Camara MB, da Silva Pereira TC, Soares Maia JG. Exposure of Rhipicephalus sanguineus sensu lato Latreille, 1806 (Acari: Ixodidae) to hexane extract of Acmella oleracea (Jambu): semi-engorged and engorged ticks. Ticks Tick Borne Dis 2021; 12:101705. [PMID: 33730658 DOI: 10.1016/j.ttbdis.2021.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
The present study analyzed the efficacy of hexane extract of Acmella oleracea against Rhipicephalus sanguineus sensu lato. After exposure of R. sanguineus s. l. female ticks to 14 different concentrations of the hexane extract of A. oleracea, the LC50 was established as 18.135 mg/mL (limits: 16.251-22.675). The effects of the extract were more significant in the ovary of the semi-engorged females, that presented damages in most oocytes. Since such changes would not be repaired, the oocytes could not advance to further stages of development (I-V), thereby causing the inhibition of ovary development, interruption of vitellogenesis, oocyte death and, consequently, infertility. The semi-engorged females also presented extensive damages in the midgut cells, which would prevent (totally or partially) these cells from functioning properly (blood intake and release of nutrients), impairing the ectoparasite nutrition and the viability of the individual. Thus, the hexane extract of A. oleracea can be considered as a promising alternative to chemical control of pests of medical and veterinary importance, due to its efficient acaricidal activity and lesser environmental impact, when used against female ticks in the middle feeding stage.
Collapse
Affiliation(s)
- Patrícia Rosa de Oliveira
- Chemistry Post Graduate Program, Exact and Technology Sciences Center, Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil.
| | | | | | | | - Marcos Bispo Pinheiro Camara
- Chemistry Post Graduate Program, Exact and Technology Sciences Center, Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Tereza Cristina da Silva Pereira
- Chemistry Post Graduate Program, Exact and Technology Sciences Center, Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | | |
Collapse
|
6
|
Reif KE, Backus EA. AC-DC electropenetrography unmasks fine temporal details of feeding behaviors for two tick species on unsedated hosts. Sci Rep 2021; 11:2040. [PMID: 33479263 PMCID: PMC7820320 DOI: 10.1038/s41598-020-80257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022] Open
Abstract
Ticks are significant nuisance pests and vectors of pathogens for humans, companion animals, and livestock. Limited information on tick feeding behaviors hampers development and rigorous evaluation of tick and tick-borne pathogen control measures. To address this obstacle, the present study examined the utility of AC–DC electropenetrography (EPG) to monitor feeding behaviors of adult Dermacentor variabilis and Amblyomma americanum in real-time. EPG recording was performed during early stages of slow-phase tick feeding using an awake calf host. Both tick species exhibited discernable and stereotypical waveforms of low-, medium-, and high-frequencies. Similar waveform families and types were observed for both tick species; however, species-specific waveform structural differences were also observed. Tick waveforms were hierarchically categorized into three families containing seven types. Some waveform types were conserved by both species (e.g., Types 1b, 1c, 2b, 2c) while others were variably performed among species and individually recorded ticks (e.g., Types 1a, 2a, 2d). This study provides a proof-of-principle demonstration of the feasibility for using EPG to monitor, evaluate, and compare tick feeding behaviors, providing a foundation for future studies aimed at correlating specific feeding behaviors with waveforms, and ultimately the influence of control measures and pathogens on tick feeding behaviors.
Collapse
Affiliation(s)
- Kathryn E Reif
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506-5802, USA.
| | - Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA, 93648, USA
| |
Collapse
|
7
|
Huercha, Song R, Li M, Fan X, Hu Z, Wu L, Li Y, Zhang W, Zhang Y, Ma Y, Bayin C. Caracterization of glutathione S-transferase of Dermacantor marginatus and effect of the recombinant antigen as a potential anti-tick vaccine. Vet Parasitol 2020; 279:109043. [PMID: 32070900 DOI: 10.1016/j.vetpar.2020.109043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Dermacentor marginatus is one of the main tick species in northwestern China, and is a vector of various tick-borne pathogens. Tick control method largely depends on chemical agents, but the disadvantages of using such approach would cause environmental damage and the risk of developing tick resistance to acaricides. Vaccination of tick protective antigen is an eco-friendly approach which is an alternative and promising method to mitigate tick infestation in livestock. In the study, a mu-class glutathione S-transferase (GST) sequence of D. marginatus was cloned and the recombinant protein (rDmGST) was expressed. Transcriptional level of the GST was measured together with native GST activity of the tick. Finally, A vaccine trial on rabbits against D. marginatus was proceeded to evaluate the anti-tick effect of rDmGST. Results reveled that the CDs of the D. margiantus glutathione S-transferase mu 1 gene has 669 base pair nucleotide sequence encoding a 223 amino acid. The deduced GST protein sequence had over 95 % similarity with that of D. variabilis. The rDmGST was efficiently expressed soluble and purified by His trap affinity chromatography. Enzyme activity of native GST and transcriptional profiles of the GST showed up-regulation in different stages and organs of D. marginaus during blood feeding. Polyclonal antibody reacted with rDmGST in Western blotting. Tick challenge on rDmGST inoculated rabbits showed reductions in adult female engorgement rate, total egg mass and egg hatching rate with an overall vaccine efficacy of 43.69 %. The results of the experiment indicated the GST has potential value to be an effective protective antigen of D. marginatus.
Collapse
Affiliation(s)
- Huercha
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China; Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China; Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Min Li
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Xinli Fan
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla 841000, Xinjiang, China
| | - Lijiang Wu
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Wei Zhang
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Yang Zhang
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Yuhui Ma
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China
| | - Chahan Bayin
- Parasitology Laboratory, College of Veterinary, Xinjiang Agricultural University, Urumqi 830053, Xinjiang, China.
| |
Collapse
|
8
|
Tafur-Gómez GA, Patarroyo Salcedo JH, Vargas MI, Araújo L, Fidelis CF, Prates-Patarroyo PA, Cortes-Vecino JA, Portela RW. Intestinal changes and performance parameters in ticks feeding on calves immunized with subunits of immunogens against Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:91-107. [PMID: 31845063 DOI: 10.1007/s10493-019-00451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
We describe the intestinal changes and biological parameters of the tick species Rhipicephalus microplus exposed to the immune response of calves vaccinated with two subunits of immunogens. The first group of Bos taurus calves was immunized with a synthetic peptide (SBm7462), whereas the second group received an inoculum for synthetic control. The third group was immunized with a recombinant peptide (rSBm7462); an inoculum was injected into a fourth group of calves for recombinant control. Each formulation was administered to these calves during three times at intervals of 30 days. At 21 days after the last immunization, the calves were challenged using a total of 4500 larvae per animal. Indirect ELISA was realized to identify the kinetics of IgGs from samples of calves studied. Naturally detaching ticks were collected for analyses of biological performance and histological changes in the midgut. We dissected randomly detached ticks. The midgut of each of these ticks was removed and processed routinely for histology, stained with hematoxylin-eosin (H&E) and slow Giemsa. Slides were also subjected to immunohistochemistry. The antibody response showed significant induction of high-affinity IgGs in calves immunized with both peptides in comparison to calves of the control groups. Histological changes included damage of the intestinal epithelium in ticks fed on immunized hosts and intense immunostaining in midgut cells, using the serum of calves immunized with recombinant peptide. There were significant differences in all biological performing parameters of ticks detached from vaccinated calves in comparison with ticks of the control groups. We identified reductions of 87.7 and 93.5% in engorged ticks detached from calves immunized with a synthetic and recombinant peptides, respectively, a 28 and 8.60% lower egg mass in groups immunized with synthetic and recombinant peptides, respectively, and a 38.4% reduction of the value of nutrient index/tick in the group immunized with the recombinant peptide. Our findings show that the immune response induced by small peptides in cattle can modify the digestion and metabolism of ticks fed on vaccinated animals, resulting in changes in tick performance.
Collapse
Affiliation(s)
| | - Joaquín H Patarroyo Salcedo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil.
| | - Marlene I Vargas
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Leandro Araújo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Cintia F Fidelis
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Pablo A Prates-Patarroyo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Jesus A Cortes-Vecino
- Laboratorio de Parasitología Veterinaria, Departamento de Salud Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
| | - Ricardo W Portela
- Departamento de Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Salvador, BA, CEP 40110-903, Brasil
| |
Collapse
|
9
|
Xu Z, Lin Z, Wei N, Di Q, Cao J, Zhou Y, Gong H, Zhang H, Zhou J. Immunomodulatory effects of Rhipicephalus haemaphysaloides serpin RHS2 on host immune responses. Parasit Vectors 2019; 12:341. [PMID: 31296257 PMCID: PMC6624921 DOI: 10.1186/s13071-019-3607-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Rhipicephalus haemaphysaloides is a widespread tick species in China and other South East Asian countries, where it is the vector of many pathogens. The objective of this study was to study the role of serpin (serine protease inhibitor) during the tick-host interaction. Methods The differentiation of bone marrow-derived dendritic cells (BMDC) was induced in vitro, and the effect of RHS2 on the maturation of DCs was evaluated. The effects of RHS2 on T cell activation and cytotoxic T lymphocytes’ (CTLs) activity were analyzed by flow cytometry. Antibody subtypes after immunization of mice with RHS2 and OVA were determined. Results RHS2 can inhibit the differentiation of bone marrow-derived cells into DCs and promote their differentiation into macrophages. RHS2 can inhibit the maturation of DCs and the expression of CD80, CD86 and MHCII. The number of CD3+CD4+ and CD3+CD8+ T cells secreting IFN-γ, IL-2 and TNF-α was decreased, and the number of CD3+CD4+ T cells secreting IL-4 was increased, indicating that RHS2 can inhibit the activation of CD4 T cells and CD8 T cells, leading to inhibition of Th1 immune response. RHS2 inhibits the elimination of target cells by cytotoxic T lymphocytes. After immunization of mice with RHS2 and OVA, serum IgG2b was significantly reduced and IgM was increased. Conclusions The results show that RHS2 has an inhibitory effect on the host immune response. Ticks have evolved various ways to circumvent adaptive immunity. Their serpin inhibits BMDC differentiation to reduce immune responses.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhibing Lin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nana Wei
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qing Di
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
10
|
Bowman CE. The gut epithelium from feeding to fasting in the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae): one tissue, two roles. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:253-357. [PMID: 30895556 DOI: 10.1007/s10493-019-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
A review of acarine gut physiology based on published narratives dispersed over the historical international literature is given. Then, in an experimental study of the free-living predatory soil mite Pergamasus longicornis (Berlese), quantitative micro-anatomical changes in the gut epithelium are critically assessed from a temporal series of histological sections during and after feeding on larval dipteran prey. An argued functional synthesis based upon comparative kinetics is offered for verification in other mesostigmatids. Mid- and hind-gut epithelia cell types interconvert in a rational way dependent upon the physical consequences of ingestion, absorption and egestion. The fasted transitional pseudo-stratified epithelium rapidly becomes first squamous on prey ingestion (by stretching), then columnar during digestion before confirmed partial disintegration (gut 'lumenation') during egestion back to a pseudo-stratified state. Exponential processes within the mid- and endodermic hind-gut exhibit 'stiff' dynamics. Cells expand rapidly ([Formula: see text] 22.9-49.5 min) and vacuolate quickly ([Formula: see text] 1.1 h). Cells shrink very slowly ([Formula: see text] 4.9 days) and devacuolate gently ([Formula: see text] 1.0-1.7 days). Egestive cellular degeneration has an initial [Formula: see text] 7.7 h. Digestion appears to be triggered by maximum gut expansion-estimated at 10 min post start of feeding. Synchrony with changes in gut lumen contents suggests common changes in physiological function over time for the cells as a whole tightly-coupled epithelium. Distinct in architecture as a tissue over time the various constituent cell types appear functionally the same. Functional phases are: early fluid transportation (0-1 h) and extracellular activity (10-90 min); through rising food absorption (10 min to [Formula: see text] day); to slow intracellular meal processing and degenerative egestive waste material production (1 to [Formula: see text] days) much as in ticks. The same epithelium is both absorptive and degenerative in role. The switch in predominant physiology begins 4 h after the start of feeding. Two separate pulses of clavate cells appear to be a mechanism to facilitate transport by increasing epithelial surface area in contact with the lumen. Free-floating cells may augment early extracellular lumenal digestion. Possible evidence for salivary enzyme alkaline-related extra-corporeal digestion was found. Giant mycetome-like cells were found embedded in the mid-gut wall. Anteriorly, the mid-gut behaves like a temporally expendable food processing tissue and minor long-term resistive store. Posteriorly the mid-gut behaves like a major assimilative/catabolic tissue and 'last-out' food depot (i.e., a 'hepatopancreas' function) allowing the mite to resist starvation for up to 3.5 weeks after a single meal. A 'conveyor-belt' wave of physiology (i.e., feeding and digestion, then egestion and excretion) sweeps posteriorly but not necessarily pygidially over time. Assimilation efficiency is estimated at 82%. The total feeding cycle time histologically from a single meal allowing for the bulk of intracellular digestion and egestive release is not 52.5 h but of the order of 6 days ([Formula: see text] total gut emptyings per day), plus typically a further 3 days for subsequent excretion to occur. Final complete gut system clearance in this cryptozooid may take much longer ([Formula: see text] days). A common physiology across the anactinotrichid acarines is proposed. A look to the future of this field is included.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
11
|
de Oliveira PR, Anholeto LA, Ferreira Rodrigues RA, Arnosti A, Bechara GH, de Carvalho Castro KN, Camargo-Mathias MI. Cytotoxic Effects of Extract of Acmella oleracea in the Ovaries and Midgut of Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) Female Ticks. J Microsc Ultrastruct 2019; 7:28-43. [PMID: 31008054 PMCID: PMC6442324 DOI: 10.4103/jmau.jmau_16_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The present study investigated the effects of different concentrations of Acmella oleracea extract on the germinative cells and digestive processes of semi-engorged Rhipicephalus sanguineus females. For this experiment, 150 ticks were divided into five groups (30 individuals each). The animals were immersed for 5 min in different concentrations of the extract, distilled water, or ethanol 50%/DMSO 1%, dried, and kept in biological oxygen demand incubator for 7 days. The alterations were associated with the size of germinative cells and yolk granules; presence, size, and location of vacuoles in the cytoplasm of germinative cells; nuclear modifications in the germinative cells; damages to the nucleus and cytoplasm of the midgut generative cells; size of digestive cells; number of captured blood elements; accumulated digestive residues and digestive vacuoles in the digestive cells cytoplasm; and the number and distribution of proteins and polysaccharides in all the cells of both organs. The concentrations used in this study prevented an efficient and complete blood digestion by the midgut epithelial cells of the treated animals, resulting in the absence of the necessary nutrients to maintain the physiological events in the ectoparasites. In advanced stages, This can lead the ectoparasite to death. The germinative cells were highly impaired and probably not able to advance developmental stages (I–V) or complete vitellogenesis to be released during ovulation, which would prevent the females from originating a new individual. Thus, it can be concluded that the effects of A. oleracea are similar to those caused by chemical products widely recognized as effective to control ticks.
Collapse
Affiliation(s)
- Patrícia Rosa de Oliveira
- Graduate Program in Chemistry, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís/MA, Paulínia, São Paulo, Brazil
| | - Luis Adriano Anholeto
- Graduate Program in Chemistry, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís/MA, Paulínia, São Paulo, Brazil
| | | | - André Arnosti
- Graduate Program in Chemistry, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís/MA, Paulínia, São Paulo, Brazil
| | - Gervásio Henrique Bechara
- Graduate Program in Animal Science, School of Agricultural Science and Veterinary Medicine, The Pontificia Universidade Catolica do Parana - PUCPR, Rua Imaculada Conceição, Curitiba, PR, Brazil
| | | | - Maria Izabel Camargo-Mathias
- Graduate Program in Chemistry, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís/MA, Paulínia, São Paulo, Brazil
| |
Collapse
|
12
|
Starck JM, Mehnert L, Biging A, Bjarsch J, Franz-Guess S, Kleeberger D, Hörnig M. Morphological responses to feeding in ticks (Ixodes ricinus). ZOOLOGICAL LETTERS 2018; 4:20. [PMID: 30123529 PMCID: PMC6091150 DOI: 10.1186/s40851-018-0104-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ticks can survive long periods without feeding but, when feeding, ingest large quantities of blood, resulting in a more than 100-fold increase of body volume. We study morphological adaptations to changes in opisthosoma volume during feeding in the castor bean tick, Ixodes ricinus. We aim to understand the functional morphological features that accommodate enormous changes in volume changes. METHODS Using light and electron microscopy, we compare the cuticle and epidermis of the alloscutum, the epithelium of the midgut diverticula, and the tracheae of adult female ticks when fasting, semi-engorged, and fully engorged. RESULTS Our results add to an existing body of knowledge that the area of the epidermis increases by cellular differentiation, cellular hypertrophy, and changes in the shape of epithelial cells from pseudostratified to single layered prismatic in semi-engorged ticks, and to thin squamous epithelium in fully engorged ticks. We did not find evidence for cell proliferation. The midgut diverticula accommodate the volume increase by cellular hypertrophy and changes in cell shape. In fully engorged ticks, the epithelial cells of the midgut diverticula are stretched to an extremely thin, squamous epithelium. Changes in size and shape (and cell divisions) contribute to the accommodation of volume changes. Tracheae do not increase in size, but extend in length, thus following the volume changes of the opisthosoma in feeding ticks to secure oxygen supply to the internal organs. CONCLUSIONS Changes of epithelial tissue configuration in the epidermis and the midgut diverticula are described as important components of the morphological response to feeding in ticks. We provide evidence for a previously unknown mechanism hosted in the endocuticle of the tracheae that allows the tracheae of castor bean ticks to expand when the body volume increases and the distance between the respiratory spiracle and the oxygen demanding tissue enlarges. This is the first report of expandable tracheae in arthropods.
Collapse
Affiliation(s)
- J. Matthias Starck
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Lisa Mehnert
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Anja Biging
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Juliana Bjarsch
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Sandra Franz-Guess
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Daniel Kleeberger
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Marie Hörnig
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstr 23, D17487 Greifswald, Germany
| |
Collapse
|
13
|
de Oliveira PR, Anholeto LA, Bechara GH, Camargo Mathias MI. Dinotefuran-induced morphophysiological changes in semi-engorged females Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) ticks: Ultra-structural evaluation. Acta Trop 2017; 166:139-154. [PMID: 27876644 DOI: 10.1016/j.actatropica.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The present study demonstrated the effects of dinotefuran (active ingredient of the acaricide Protetor Pet®) on the ovary and midgut cells of semi engorged R. sanguineus females exposed to different concentrations of this chemical. For this, 120 semi-engorged females were divided into four treatment groups with 30 individuals each: group I or control (distilled water), group II (5000ppm), groups III (6250ppm) and group IV (8334ppm of dinotefuran). All the ticks were immersed in the different concentrations of dinotefuran or in distilled water for 5min and then dried and kept in BOD incubator for 7days. The results showed alterations mainly regarding the damaged cell structures, such as yolk granules, organelles and the plasma membrane of the germ cells. In addition, structures related with defense mechanisms were found, such as vacuoles, cytoskeletal filaments, and myelin figures in the germ cells. Damages in the generative cells of the midgut, alterations in the size of digestive cells, the number of endosomes, digestive vacuoles, digestive residues, lipid drops and organelles in the cytoplasm of the digestive cells and the presence of microvilli in the plasma membrane of these cells also demonstrate the progressive damages caused by the action of dinotefuran in the midgut and germ cells of R. sanguineus semi-engorged females. The concentrations applied partially impaired the digestive processes; and, without proper nutrition, all the ectoparasite's physiologic events are prevented from occurring, leading the individual to death. The germ cells were also damaged, and probably would not be able to advance in their development (I-V) and complete the vitellogenesis, which would affect the fertility of the female and consequently impede the formation of a new individual.
Collapse
|
14
|
Dinotefuran-induced morphophysiological changes in the ovaries and midgut of semi-engorged females Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) ticks. Parasitol Res 2015; 115:829-49. [PMID: 26614361 DOI: 10.1007/s00436-015-4814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
The present study demonstrated the effects of dinotefuran (active compound of the Protetor Pet® acaricide) in germ cells and the digestive processes of semi-engorged females of R. sanguineus exposed to different concentrations of the chemical. For this purpose, 120 semi-engorged females were divided into four treatment groups with 30 individuals each: group I or control (distilled water), group II (5000 ppm), group III (6250 ppm), and group IV (8334 ppm of dinotefuran). All ticks were immersed in different concentrations of dinotefuran or in distilled water for 5 min and then were dried and stored in biological oxygen demand (BOD) incubator for 7 days. The results show the action of this compound, exhibiting morphohistologic and histochemical changes in the oocytes and the midgut cells of individuals of different groups, which were compared with those of group I (control). The alterations occurred mainly in relation to the size of the germ cells and yolk granules; presence, quantity, size, and location of vacuoles found in the cytoplasm of these germ cells; the damage occurred in the generative cells of the midgut; the size of the digestive cells; the quantity of blood elements captured, accumulated digestive wastes and digestive vacuoles found in the cytoplasm of the digestive cells of the midgut, as well as the amount and distribution of proteins, polysaccharides, lipids of all cells in both organs. So, it has demonstrated the effectiveness of dinotefuran in the reduction of fertility and digestive processes of semi-engorged females of R. sanguineus, data that points the possibility of employing this chemical to control these ectoparasites.
Collapse
|
15
|
Mori H, Tanaka T, Mochizuki M. The widely distributed hard tick, Haemaphysalis longicornis, can retain canine parvovirus, but not be infected in laboratory condition. J Vet Med Sci 2014; 77:405-11. [PMID: 25650060 PMCID: PMC4427740 DOI: 10.1292/jvms.14-0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT. Ticks are known to transmit various pathogens, radically threatening humans and
animals. Despite the close contact between ticks and viruses, our understanding on their
interaction and biology is still lacking. The aim of this study was to experimentally
assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick,
Haemaphysalis longicornis, in laboratory condition. After inoculation
of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV
persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was
recovered from the inoculated ticks using a cell culture, indicating that the virus
retained intact in the ticks after inoculation, but significant positive reaction
indicating virus infection was not detected in the tick organs by immunofluorescence
antibody test using a monoclonal antibody. In the case of ticks inoculated with feline
leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These
findings provide significant important information on the characteristic interaction of
tick with non-tick-borne virus.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 890-0065, Japan
| | | | | |
Collapse
|
16
|
Galay RL, Umemiya-Shirafuji R, Mochizuki M, Fujisaki K, Tanaka T. Iron metabolism in hard ticks (Acari: Ixodidae): the antidote to their toxic diet. Parasitol Int 2014; 64:182-9. [PMID: 25527065 DOI: 10.1016/j.parint.2014.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ticks are notorious parasitic arthropods, known for their completely host-blood-dependent lifestyle. Hard ticks (Acari: Ixodidae) feed on their hosts for several days and can ingest blood more than a hundred times their unfed weight. Their blood-feeding habit facilitates the transmission of various pathogens. It is remarkable how hard ticks cope with the toxic nature of their blood meal, which contains several molecules that can promote oxidative stress including iron. While it is required in several physiological processes, high amounts of iron can be dangerous because iron can also participate in the formation of free radicals that may cause cellular damage and death. Here we review the current knowledge on heme and inorganic iron metabolism in hard ticks and compare it with that in vertebrates and other arthropods. We briefly discuss the studies on heme transport, storage and detoxification, and the transport and storage of inorganic iron, with emphasis on the functions of tick ferritins. This review points out other aspects of tick iron metabolism that warrant further investigation, as compared to mammals and other arthropods. Further understanding of this physiological process may help in formulating new control strategies for tick infestation and the spread of tick-borne diseases.
Collapse
Affiliation(s)
- Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Masami Mochizuki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
17
|
Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) nymphs: An ultrastructural study of the integument and midgut. Ticks Tick Borne Dis 2014; 5:834-40. [DOI: 10.1016/j.ttbdis.2013.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 11/29/2013] [Accepted: 06/21/2014] [Indexed: 11/21/2022]
|
18
|
de Oliveira PR, Calligaris IB, Nunes PH, Bechara GH, Camargo-Mathias MI. Fluazuron-induced morphological changes in Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) nymphs: An ultra-structural evaluation of the cuticle formation and digestive processes. Acta Trop 2014; 133:45-55. [PMID: 24508101 DOI: 10.1016/j.actatropica.2014.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/06/2014] [Accepted: 01/20/2014] [Indexed: 11/24/2022]
Abstract
Rhipicephalus sanguineus is a species of tick which is widely distributed in America, Africa and Australia and is probably the most prevalent among all the other ixodid tick species. The present study demonstrated the effects of the arthropod growth regulator fluazuron (Acatak(®)), in the formation of the integument and the digestive processes of R. sanguineus nymphs fed on rabbits treated with different doses of this chemical acaricide. For this, three different doses of fluazuron (20mg/kg, 40mg/kg and 80mg/kg) were applied "pour on" to the hosts divided into three different treated-groups (II, III, IV) of three animals each. A fourth group (I) of rabbits (n=3) was given distilled water as control. On the first day after treatment (24h), the hosts were artificially infested with R. sanguineus nymphs. After full engorgement (7 days), the nymphs were removed and placed on labeled Petri dishes and kept in BOD incubator for 7 days. The engorged nymphs were then taken to ultra-structural analysis. Results revealed the following main ultra-structural changes in the nymphs integument and midgut of the different treated groups (II, III, IV): cuticle disorganization and the absence of subdivisions, damages in the integument epithelial cells, size of digestive cells, amount of endosomes, autophagic and digestive vacuoles, accumulated digestive residues, lipid droplets and organelles found in the digestive cells' cytoplasm, as well as the presence of microvilli in their plasma membranes. It is concluded that fluazuron may act on the integument and midgut cells of R. sanguineus engorged nymphs by impairing the synthesis of the new cuticle and the digestive processes (absorption of the blood ingested from the host, digestion - hemolysis, formation of digestive residues and release of nutrients to be converted into lipid, as well as for the synthesis of structural protein), which interfere in the development of nymphs, being able to prevent the emergence of adults after periodical ecdysis. These data indicate the possibility to use this arthropod growth regulator (AGR) in the control of R. sanguineus, at least in the nymphal stage of its biological cycle.
Collapse
|
19
|
Ben Said M, Galaï Y, Ben Ahmed M, Gharbi M, de la Fuente J, Jedidi M, Darghouth MA. Hd86 mRNA expression profile in Hyalomma scupense life stages, could it contribute to explain anti-tick vaccine effect discrepancy between adult and immature instars? Vet Parasitol 2013; 198:258-63. [PMID: 24029714 DOI: 10.1016/j.vetpar.2013.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/14/2022]
Abstract
Bm86 midgut protein has been used in order to control ticks of the Hyalomma genus. Previous studies demonstrated the inefficacity of this antigen in the control of Hyalomma scupense, whereas recombinant Hd86 antigen, the Bm86 ortholog in H. scupense produced in Pichia pastoris, was protective against larval H. scupense tick stage infestations but ineffective in the control of the adult stage. One possible explanation for this result is the variation in Hd86 expression levels between these two developmental stages. To test this hypothesis, Hd86 mRNA levels were characterized in H. scupense developmental stages. The expression profile of Hd86 demonstrated a significant variation between tick life stages and showed a significant reduction in the number of transcripts during feeding and, particularly after molting to adults. The most interesting result was noted after molting of engorged nymphs in unfed adults where the expression levels decreased significantly by 12.78 (10.77-17.39) (p<0.001) and 9.25 (5.77-15.72)-fold (p<0.001) in unfed males and unfed females, respectively. Comparing unfed nymphs to unfed adult ticks, the Hd86 expression levels decreased by 13.82 (5.39-24.45) (p=0.035) and 9.93 (2.87-22.08)-fold (p=0.038) in males and females respectively. Lower Hd86 mRNA levels in adult ticks should result in lower protein levels and thus less antibody-antigen interactions necessary for vaccine efficacy in ticks fed on vaccinated animals. Thus, the observed differences in Hd86 expression profile between immature and adult stages might explain, in part, the discrepancy of the Hd86 vaccine efficacy against these two life stages of H. scupense.
Collapse
Affiliation(s)
- Mourad Ben Said
- Laboratoire de Parasitologie, Ecole Nationale de Médecine Vétérinaire, 2020 Sidi Thabet, IRESA and La Manouba University, Tunisia
| | | | | | | | | | | | | |
Collapse
|
20
|
Filimonova SA. Morphological aspects of blood digestion in a parasitic mite Bakericheyla chanayi. ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:265-276. [PMID: 23518384 DOI: 10.1016/j.asd.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 05/27/2023]
Abstract
All life stages of B. chanayi (Acariformes: Cheyletidae) are characterized by occasional bloodsucking and a long period of digestion. No newly engorged mites were found during the period of their host birds' migration. The fine structure of the digestive tract of a blood-feeding acariform mite is described for the first time. The anterior midgut (AMG) is a place of blood digestion, while the posterior midgut (PMG) is involved in nitrogen metabolism forming guanine crystals as the main end-product. The AMG epithelium consists of digestive cells that probably arise from mitotically active basal cells with high synthesizing activity. As observed in ticks, blood digestion is accompanied by the formation of huge endosomes that serve as places of storage and sorting of ingested material. Digestive cells show different types of endocytotic activity as well as various late endosomes, which implies different subcellular pathways for different blood components. In both midgut regions, elimination of the excretory material occurs by apocrine secretion or by discharging of apical cell fragments (loaded with lysosomes) into the gut lumen. The formation of guanine granules occurs inside the lysosomes of PMG epithelial cells thus having much in common with intracellular digestion. Peculiarities of intracellular blood digestion were analyzed according to the modern hypothesis of endocytosis and compared to what is known in ticks.
Collapse
Affiliation(s)
- S A Filimonova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya Embankment 1, 199034 St. Petersburg, Russia.
| |
Collapse
|
21
|
Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol 2013; 29:276-85. [PMID: 23664173 DOI: 10.1016/j.pt.2013.04.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022]
Abstract
Blood-protein digestion is a key physiological process providing essential nutrients for ticks and is a prerequisite for the transmission of tick-borne pathogens. Recently, substantial progress has been made in determining the proteolytic machinery in tick gut tissue, which is based on a dynamic multienzyme network capable of processing a vast amount of host blood. In this article we summarize our current knowledge of the molecular mechanisms of tick hematophagy and their similarities to those of Platyhelminthes, nematodes, and Plasmodium. Future research perspectives, including the potential for rational control of ticks and transmitted diseases, are also discussed.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, CZ 370 05, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Galay RL, Aung KM, Umemiya-Shirafuji R, Maeda H, Matsuo T, Kawaguchi H, Miyoshi N, Suzuki H, Xuan X, Mochizuki M, Fujisaki K, Tanaka T. Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. ACTA ACUST UNITED AC 2013; 216:1905-15. [PMID: 23393286 DOI: 10.1242/jeb.081240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ticks are obligate hematophagous parasites and important vectors of diseases. The large amount of blood they consume contains great quantities of iron, an essential but also toxic element. The function of ferritin, an iron storage protein, and iron metabolism in ticks need to be further elucidated. Here, we investigated the function a newly identified secreted ferritin from the hard tick Haemaphysalis longicornis (HlFER2), together with the previously identified intracellular ferritin (HlFER1). Recombinant ferritins, expressed in Escherichia coli, were used for anti-serum preparation and were also assayed for iron-binding activity. RT-PCR and western blot analyses of different organs and developmental stages of the tick during blood feeding were performed. The localization of ferritins in different organs was demonstrated through an indirect immunofluorescent antibody test. RNA interference (RNAi) was performed to evaluate the importance of ferritin in blood feeding and reproduction of ticks. The midgut was also examined after RNAi using light and transmission electron microscopy. RT-PCR showed differences in gene expression in some organs and developmental stages. Interestingly, only HlFER2 was detected in the ovary during oviposition and in the egg despite the low mRNA transcript. RNAi induced a reduction in post-blood meal body weight, high mortality and decreased fecundity. The expression of vitellogenin genes was affected by silencing of ferritin. Abnormalities in digestive cells, including disrupted microvilli, and alteration of digestive activity were also observed. Taken altogether, our results show that the iron storage and protective functions of ferritin are crucial to successful blood feeding and reproduction of H. longicornis.
Collapse
Affiliation(s)
- Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alim MA, Islam MK, Miyoshi T, Hatta T, Yamaji K, Matsubayashi M, Fujisaki K, Tsuji N. A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:925-934. [PMID: 23017545 DOI: 10.1016/j.ibmb.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 08/10/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
Inhibitors of proteases play key roles in the biological processes of vertebrate and invertebrate animals, including arthropod parasites. Here, we describe a cDNA that encodes a functionally active chymotrypsin inhibitor of the BPTI/Kunitz family of serine protease inhibitors from the hemocytes of the ixodid tick, Haemaphysalis longicornis, herein called HlChI. HlChI sequence is evolutionarily conserved and contains six cysteine residues and three disulfide bonds with a calculated molecular weight of 9.1 kDa. HlChI-specific mRNA was expressed in all developmental stages of ticks and the expression was up-regulated by host's blood-feeding processes. Endogenous HlChI was localized mainly in the hemocytes. HlChI potently inhibited bovine pancreatic α-chymotrypsin for hydrolyzing the fluorogenic substrate (IC(50) 8.32 nM, K(d) 5.35 ± 1.01 nM) and bovine casein digestion. However, HlChI weakly inhibited bovine pancreatic trypsin and could not affect the porcine elastase activity, suggesting its narrow specificity to chymotrypsin. HlChI was stable over the pH range 2-11 and heating up to 70 °C at pH 8. HlChI was highly stable to 8 M urea and 2% SDS at pH 8.0, when treated for 24 h at 37 °C. However, 0.2 M 2-mercaptoethanol caused complete but reversible inactivation of HlChI. Knockdown of HlChI gene by RNA interference (RNAi) caused death of the feeding ticks, failure of ticks to engorge and significantly reduced body weight gain. RNAi also resulted in significantly decreased egg conversion ratio and fecundity. These results suggest that HlChI is a chymotrypsin-specific inhibitor with high stability and may play regulatory functions in host's blood-feeding processes and tick reproduction.
Collapse
Affiliation(s)
- M Abdul Alim
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Remedio RN, Sampieri BR, Vendramini MCR, Souza NM, Anholeto LA, Denardo TAGB, Camargo-Mathias MI. Morphology of the midgut of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) adult ticks in different feeding stages. Parasitol Res 2012; 112:415-25. [PMID: 23052783 DOI: 10.1007/s00436-012-3153-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 11/24/2022]
Abstract
The intestinal epithelial cells of ticks are fundamental for their full feeding and reproductive success, besides being considered important sites for the development of pathogens. Rhipicephalus sanguineus ticks are known for their great medical and veterinary importance, and for this reason, the knowledge of their intestinal morphology may provide relevant subsidies for the control of these animals, either by direct acaricidal action over these cells or by the production of vaccines. Therefore, this study aimed to describe the midgut morphology of male and female R. sanguineus ticks in different feeding stages, by means of histological analysis. Significant differences were observed between the genders, and such alterations may refer mainly to the distinct demands for nutrients, much higher in females, which need to develop and carry out the egg-laying process. In general, the midgut is coated by a thin muscle layer and presents a pseudostratified epithelium, in which two basic types of cells can be observed, connected to a basal membrane-generative or stem and digestive cells. The latter was classified as follows: residual, deriving from the phase anterior to ecdysis; pinocytic, with vesicles containing liquid or pre-digested components of blood; phagocytic, with entire cells or remnants of nuclear material inside cytoplasmic vesicles; and mature, free in the lumen. Digestion is presumably intracellular and asynchronous and corresponds to a process which starts with the differentiation of generative cells into pinocytic digestive cells, which subsequently start to phagocytize intact blood cells and finally detach from the epithelium, being eliminated with feces.
Collapse
Affiliation(s)
- R N Remedio
- Laboratório de Histologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Avenida 24-A, 1515, P.O. Box 199, Jardim Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Fluazuron-induced morphophysiological changes in the cuticle formation and midgut of Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) nymphs. Parasitol Res 2012; 112:45-58. [PMID: 22992894 DOI: 10.1007/s00436-012-3103-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
The present study demonstrated the effects of the arthropod growth regulator, fluazuron (Acatak®), in the formation of the integument and digestive processes of Rhipicephalus sanguineus nymphs fed on rabbits treated with different doses of this chemical acaricide. For this, three different doses of fluazuron (20, 40, or 80 mg/kg) were applied "pour on" to the hosts (groups II, III, and IV), as well as distilled water to the control group. On the first day after treatment (24 h), the hosts were artificially infested with R. sanguineus nymphs. After full engorgement (7 days), the nymphs were removed, placed on labeled Petri dishes, and kept in biochemical oxygen demand incubator for 7 days. The engorged nymphs were then taken for morphological, histochemical, and histological analyses. The results showed the occurrence of cytological, morphohistological, and histochemical alterations in the integument and midgut of nymphs from all the different treated groups. These alterations occurred at cuticular level in the subdivisions of the cuticle, related to the size of the digestive cells, amount of accumulated blood elements, and digestive residues, as well as the presence of vacuoles in the cytoplasm of the digestive cells. Thus, this study demonstrated that fluazuron acts on the integument and midgut cells of R. sanguineus nymphs fed on treated rabbits and pointed out the possibility of the use of this chemical-which is more specific, less toxic, and less harmful to the environment and nontarget organisms-in the control of R. sanguineus, at least in the nymphal stage of its biological cycle.
Collapse
|
26
|
Umemiya-Shirafuji R, Tanaka T, Boldbaatar D, Tanaka T, Fujisaki K. Akt is an essential player in regulating cell/organ growth at the adult stage in the hard tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:164-173. [PMID: 22193391 DOI: 10.1016/j.ibmb.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Ticks grow rapidly during blood feeding, and their body weight may ultimately increase 100-fold more than that before feeding. The molecular mechanisms controlling growth during blood feeding in ticks remain largely unknown. The conserved insulin/PI3K/Akt signaling pathway regulates growth and metabolism in eukaryotes. Here, we show evidence for the involvement of Akt in growth during blood feeding in the parthenogenetic strain of the hard tick Haemaphysalis longicornis. We identified a homolog of the Ser/Thr kinase Akt (HlAkt) from the EST database of the H. longicornis embryo. HlAkt cDNA had a 1,590 bp ORF that encodes 529 amino acids with a predicted molecular weight of 60 kDa. HlAkt possesses a PH domain, a Ser/Thr kinase domain, a hydrophobic motif, and dual phosphorylation residues (Thr 338 and Ser 503) that are essential for kinase activation. Knockdown of HlAkt by RNA interference caused inhibition of blood feeding in female ticks. Histological observation demonstrated that HlAkt knockdown led to the arrest of growth in internal organs. HlAkt knockdown also affected the expressions of blood meal-induced genes that are essential for blood digestion, development, and reproduction in the female tick. These results strongly indicate that HlAkt is essential to complete the blood feeding process accompanied by the growth of internal organs in adult ticks. This is the first report of identification and characterization of Akt in Chelicerata, including ticks.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
27
|
De Oliveira PR, Calligaris IB, Roma GC, Bechara GH, Mathias MIC. Morphological characterization of the nymphs rhipicephalus sanguineus ticks (Latreille, 1806) (Acari: Ixodidae). Description of the testes, integument, malpighian tubules, and midgut on the detachment day. Microsc Res Tech 2011; 75:727-36. [DOI: 10.1002/jemt.21118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/22/2011] [Indexed: 11/07/2022]
|
28
|
Franta Z, Frantová H, Konvičková J, Horn M, Sojka D, Mareš M, Kopáček P. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit Vectors 2010; 3:119. [PMID: 21156061 PMCID: PMC3016361 DOI: 10.1186/1756-3305-3-119] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/14/2010] [Indexed: 11/11/2022] Open
Abstract
Background Ticks are vectors of a wide variety of pathogens causing severe diseases in humans and domestic animals. Intestinal digestion of the host blood is an essential process of tick physiology and also a limiting factor for pathogen transmission since the tick gut represents the primary site for pathogen infection and proliferation. Using the model tick Ixodes ricinus, the European Lyme disease vector, we have previously demonstrated by genetic and biochemical analyses that host blood is degraded in the tick gut by a network of acidic peptidases of the aspartic and cysteine classes. Results This study reveals the digestive machinery of the I. ricinus during the course of blood-feeding on the host. The dynamic profiling of concentrations, activities and mRNA expressions of the major digestive enzymes demonstrates that the de novo synthesis of peptidases triggers the dramatic increase of the hemoglobinolytic activity along the feeding period. Overall hemoglobinolysis, as well as the activity of digestive peptidases are negligible at the early stage of feeding, but increase dramatically towards the end of the slow feeding period, reaching maxima in fully fed ticks. This finding contradicts the established opinion that blood digestion is reduced at the end of engorgement. Furthermore, we show that the digestive proteolysis is localized intracellularly throughout the whole duration of feeding. Conclusions Results suggest that the egressing proteolytic system in the early stage of feeding and digestion is a potential target for efficient impairment, most likely by blocking its components via antibodies present in the host blood. Therefore, digestive enzymes are promising candidates for development of novel 'anti-tick' vaccines capable of tick control and even transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Zdeněk Franta
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
A Kunitz-type proteinase inhibitor from the midgut of the ixodid tick, Haemaphysalis longicornis, and its endogenous target serine proteinase. Mol Biochem Parasitol 2010; 170:112-5. [DOI: 10.1016/j.molbiopara.2009.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 01/27/2023]
|
30
|
Veronez VA, de Castro MB, Bechara GH, Szabó MPJ. Histopathology of Rhipicephalus sanguineus (Acari: Ixodidae) ticks fed on resistant hosts. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 50:151-161. [PMID: 19554460 DOI: 10.1007/s10493-009-9286-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 06/12/2009] [Indexed: 05/28/2023]
Abstract
Histological features of Rhipicephalus sanguineus ticks fed on dog, a non resistant host, and on guinea pig, a resistant host, were compared. Unfed ticks and ticks from each host species were collected during first and third infestation and processed for histology. Many ticks from guinea pigs, especially during third infestation, were unattached, dehydrated and small. Only the midgut of ticks fed on guinea pigs had host leukocytes. Vacuolization of midgut cells was observed in all ticks, with exception of those fed on dogs for more than 96 h. Ticks of guinea pigs, particularly from third infestation, had vacuolated tracheae and swelling of malpighian tubules. Solely ticks from third infestation of guinea pigs displayed vacuolization of oocytes. Ticks fed on guinea pigs also had an increased number of guanine spherules. Observed alterations in ticks from guinea pigs are discussed.
Collapse
Affiliation(s)
- Viviane Aparecida Veronez
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| | | | | | | |
Collapse
|
31
|
Nijhof AM, Balk JA, Postigo M, Jongejan F. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Mol Biol 2009; 10:112. [PMID: 20040102 PMCID: PMC2809063 DOI: 10.1186/1471-2199-10-112] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/29/2009] [Indexed: 11/17/2022] Open
Abstract
Background For accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is essential. In most studies on ticks where (semi-)quantitative RT-PCR is employed, normalization occurs with a single reference gene, usually β-actin, without validation of its presumed expression stability. The first goal of this study was to evaluate the expression stability of commonly used reference genes in Rhipicephalus appendiculatus and Rhipicephalus (Boophilus) microplus ticks. To demonstrate the usefulness of these results, an unresolved issue in tick vaccine development was examined. Commercial vaccines against R. microplus were developed based on the recombinant antigen Bm86, but despite a high degree of sequence homology, these vaccines are not effective against R. appendiculatus. In fact, Bm86-based vaccines give better protection against some tick species with lower Bm86 sequence homology. One possible explanation is the variation in Bm86 expression levels between R. microplus and R. appendiculatus. The most stable reference genes were therefore used for normalization of the Bm86 expression profile in all life stages of both species to examine whether antigen abundance plays a role in Bm86 vaccine susceptibility. Results The transcription levels of nine potential reference genes: β-actin (ACTB), β-tubulin (BTUB), elongation factor 1α (ELF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glutathione S-transferase (GST), H3 histone family 3A (H3F3A), cyclophilin (PPIA), ribosomal protein L4 (RPL4) and TATA box binding protein (TBP) were measured in all life stages of R. microplus and R. appendiculatus. ELF1A was found to be the most stable expressed gene in both species following analysis by both geNorm and Normfinder software applications, GST showed the least stability. The expression profile of Bm86 in R. appendiculatus and R. microplus revealed a more continuous Bm86 antigen abundance in R. microplus throughout its one-host life cycle compared to the three-host tick R. appendiculatus where large variations were observed between different life stages. Conclusion Based on these results, ELF1A can be proposed as an initial reference gene for normalization of quantitative RT-PCR data in whole R. microplus and R. appendiculatus ticks. The observed differences in Bm86 expression profile between the two species alone can not adequately explain the lack of a Bm86 vaccination effect in R. appendiculatus.
Collapse
Affiliation(s)
- Ard M Nijhof
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Centre for Tick-borne Diseases, 3584 CL Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
32
|
Identification of a synthetic peptide inducing cross-reactive antibodies binding to Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, Hyalomma anatolicum anatolicum and Rhipicephalus appendiculatus BM86 homologues. Vaccine 2009; 28:261-9. [DOI: 10.1016/j.vaccine.2009.09.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/05/2009] [Accepted: 09/21/2009] [Indexed: 01/15/2023]
|
33
|
HATTA T, TSUJI N, MIYOSHI T, ALIM MA, ISLAM MK, FUJISAKI K. Leucine Aminopeptidase in the Ixodid Tick Haemaphysalis longicornis: Endogenous Expression Profiles in Midgut. J Vet Med Sci 2009; 71:589-94. [DOI: 10.1292/jvms.71.589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takeshi HATTA
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization
| | - Naotoshi TSUJI
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization
| | - Takeharu MIYOSHI
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization
| | - M. Abdul ALIM
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization
| | - M. Khyrul ISLAM
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization
| | - Kozo FUJISAKI
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
- Laboratory of Emerging Infectious Diseases, School of Frontier Veterinary Medicine, Kagoshima University
| |
Collapse
|
34
|
A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis. Parasitol Int 2008; 57:499-505. [PMID: 18775510 DOI: 10.1016/j.parint.2008.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/10/2008] [Accepted: 08/06/2008] [Indexed: 11/23/2022]
Abstract
We present evidence demonstrating that genes encoding enzymes essential for successful blood-feeding are differentially induced in the midgut of the hard tick Haemaphysalis longicornis. Three serine proteinase genes (HlSP, HlSP2 and HlSP3) isolated from H. longicornis midgut exhibit protein sequence similarity with other trypsin-like serine proteinases reported from arthropods and vertebrate animal species. The endogenous enzymes were mainly detected in the midgut epithelial cells and in the lumen of an adult tick. The recombinant enzymes expressed in Escherichia coli efficiently hydrolyzed synthetic substrates specific for serine proteinases over a broad range of pH and temperature values. Notably, the transcript levels of HlSP2 and HlSP3 were detected to significantly increase at 96 h post infestation, while the transcript of HlSP was induced in the earlier stage of blood-feeding. Further, silencing of HlSP, HlSP2 and HlSP3 genes by RNA interference led to a significant reductions in the engorged tick body weight, suggesting synergetic roles of these serine proteinases in blood-feeding and digestion.
Collapse
|
35
|
Alim MA, Tsuji N, Miyoshi T, Islam MK, Hatta T, Fujisaki K. Legumains from the hard tick Haemaphysalis longicornis play modulatory roles in blood feeding and gut cellular remodelling and impact on embryogenesis. Int J Parasitol 2008; 39:97-107. [PMID: 18718474 DOI: 10.1016/j.ijpara.2008.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/21/2008] [Accepted: 06/07/2008] [Indexed: 11/16/2022]
Abstract
The biology and vectorial capacity of haematophagous ticks are directly related to effective blood feeding and digestion. The midgut-associated proteases in ticks are involved in the blood (Hb) digestion cascade, the molecular mechanisms of which are yet poorly understood. Our previous studies indicated that Haemaphysalis longicornis midgut-specific asparaginyl endopeptidases/legumains, HlLgm and HlLgm2, act in the Hb digestion cascade. Here, we investigated the potential of these enzymes in blood feeding and digestion, midgut remodelling and reproduction of ticks by employing RNA interference (RNAi) techniques. Injection of HlLgm- and HlLgm2 gene-specific double-stranded RNAs into unfed adult female H. longicornis caused gene-specific transcriptional and translational disruptions. RNAi impacted on tick blood feeding leading to death of the feeding ticks, failure of ticks to reach repletion and significant reductions in engorged tick body weight. Histological examination revealed that deletion of legumains resulted in damage to the midgut tissues and disruption of normal cellular remodelling during feeding. Gene knock-down also caused significantly delayed onset of oviposition, reduced number of eggs and, most strikingly, structurally deformed eggs that failed to hatch suggesting imperfect embryogenesis. Synergistic impacts of RNAi were reflected on all parameters evaluated when HlLgm and HlLgm2 were silenced together. These findings suggest that legumains may play modulatory roles in blood feeding and digestion, midgut cellular remodelling and embryogenesis in H. longicornis. Deletion of legumains in H. longicornis would help in controlling the tick population and thereby transmission of diseases to their hosts.
Collapse
Affiliation(s)
- M Abdul Alim
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog 2008; 4:e1000062. [PMID: 18483546 PMCID: PMC2358973 DOI: 10.1371/journal.ppat.1000062] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/09/2008] [Indexed: 11/25/2022] Open
Abstract
Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. Ticks are important ectoparasites among the blood-feeding arthropods and serve as vectors of many deadly diseases of humans and animals. Of tick-transmitted pathogens, Babesia, an intracellular haemoprotozoan parasite causing a malaria-like disease, called babesiosis, gain increasing interest due to its zoonotic significance. When vector ticks acquire the protozoa via blood-meals, they invade midgut and undergo several developmental stages prior to exit through salivary glands. It has long been conceived that midguts of these ticks evolve diverse innate immune mechanisms and perform blood digestion critical for tick survival. A cysteine proteinase, longipain, was identified from the three-host tick Haemaphysalis longicornis, which shows potent parasiticidal activity. Longipain is localized in midgut epithelium and its expression is induced by blood feeding. This protein is passively secreted into midgut lumen where it exerts enzymatic degradation of blood-meals. A series of experiments unveil that longipain-knockdown ticks when fed on Babesia-infected dog, exhibited a significantly increased numbers of parasites compared with controls. Longipain has shown to interact on the surface of Babesia parasites in vitro and in vivo, and is thought to mediate direct killing of the parasites, suggesting that longipain may be a potential chemotherapeutic target against babesiosis and ticks themselves.
Collapse
Affiliation(s)
- Naotoshi Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Badger Battsetseg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomohide Matsuo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Xuenan Xuan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Emerging Infectious Diseases, School of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
37
|
Alim MA, Tsuji N, Miyoshi T, Islam MK, Huang X, Hatta T, Fujisaki K. HlLgm2, a member of asparaginyl endopeptidases/legumains in the midgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:573-585. [PMID: 18222467 DOI: 10.1016/j.jinsphys.2007.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/22/2007] [Accepted: 12/10/2007] [Indexed: 05/25/2023]
Abstract
Here we describe a cDNA encoding the second asparaginyl endopeptidase/legumain (HlLgm2) from the midgut of the ixodid tick Haemaphysalis longicornis. Endogenous HlLgm2 was expressed in all the developmental stages of the tick, localized mainly in the midgut epithelium and was up-regulated by the host blood-feeding process, as demonstrated by immunoblotting and immunohistochemistry. RT-PCR and real-time PCR showed that the HlLgm2 gene was expressed at a lower level during all phases of blood-feeding than our previously characterized legumain (HlLgm) gene from the same tick. More strikingly, there was no expression of HlLgm2 mRNA beyond 96 h of blood-feeding, while HlLgm mRNA expression continued until full engorgement. Escherichia coli-expressed recombinant HlLgm2 (rHlLgm2) efficiently hydrolysed the legumain-specific synthetic substrate. rHlLgm2 activity was inhibited by iodoacetamide and N-ethylmaleimide and also by Fe(2+), Cu(2+), Co(2+) and Ni(2+). rHlLgm2 digested bovine haemoglobin and exhibited strict specificity for the asparaginyl bonds on the carboxy-terminal side of a peptide, as demonstrated by internal amino acid sequence analysis of the cleaved bovine serum albumin products. Our results suggest that HlLgm2, together with HlLgm, plays a pivotal role in host blood-meal digestion process.
Collapse
Affiliation(s)
- M Abdul Alim
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abdul Alim M, Tsuji N, Miyoshi T, Khyrul Islam M, Huang X, Motobu M, Fujisaki K. Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:911-22. [PMID: 17681230 DOI: 10.1016/j.ibmb.2007.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/13/2007] [Indexed: 05/16/2023]
Abstract
We characterize here a cDNA from the ixodid tick Haemaphysalis longicornis, which encodes an asparaginyl endopeptidase, legumain (HlLgm), that was present as a functional molecule in the midgut of this tick. Endogenous HlLgm was detected as a 38-kDa antigen in H. longicornis extracts and was seen throughout all developmental stages. Endogenous HlLgm was mainly localized in the midgut epithelium by immunohistochemistry, and was shown to be up-regulated by the host blood-feeding process. Recombinant HlLgm (rHlLgm) produced in Escherichia coli was shown to hydrolyze the synthetic substrate Z-Ala-Ala-Asn-MCA at the rate of 6.42x10(-4)mumol/min/mg protein. Its activity was inhibited by the thiol blocking reagents iodoacetamide and N-ethylmaleimide. The enzyme was shown to possess a unique feature of having an autocatalyzed cleavage at asparagines(364-365) at the C-terminus of both endogenous HlLgm and rHlLgm. rHlLgm degraded bovine hemoglobin and bovine serum albumin (BSA) showing its strict specificity for hydrolysis of the peptide on the carboxyl side of the asparagines, as demonstrated by internal amino acid sequence analysis of proteolytic product of BSA cleavage. These results suggest that HlLgm plays an important role in host blood-meal digestion and may be critical for the final process of digestion of blood components.
Collapse
Affiliation(s)
- M Abdul Alim
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Hatta T, Umemiya R, Liao M, Gong H, Harnnoi T, Tanaka M, Miyoshi T, Boldbaatar D, Battsetseg B, Zhou J, Xuan X, Tsuji N, Taylor D, Fujisaki K. RNA interference of cytosolic leucine aminopeptidase reduces fecundity in the hard tick, Haemaphysalis longicornis. Parasitol Res 2006; 100:847-54. [PMID: 17136388 DOI: 10.1007/s00436-006-0336-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 11/24/2022]
Abstract
Ticks are effective vectors of pathogens because of their blood feeding and high fecundity. This high fecundity is related to the size of the blood meal. Therefore, knowledge of how blood proteins are degraded and converted to proteins, including yolk protein, is important for the development of ways to inhibit the utilization of blood proteins by ticks. RNA interference (RNAi) is becoming a powerful post-transcriptional gene silencing technique that provides insight into gene function. We constructed a double-stranded RNA (dsRNA) based on a previously cloned Haemaphysalis longicornis leucine aminopeptidase (HlLAP) gene to reevaluate the biological role in tick blood digestion. Gene specific transcriptional, translational, and functional disruptions were achieved by the introduction of dsRNA into the ticks. Significantly delayed onset of egg-laying and reduced egg oviposition resulted from the RNAi for the HlLAP gene. These results suggest that HlLAP actually works as a blood digestive enzyme and affects tick fecundity via unknown mechanisms. The reduction of egg oviposition may be caused by a decrease in nutrients, especially free amino acids generated by HlLAP, from the blood meal. This is the first report of an impact on tick reproduction caused by gene silencing of a blood digestion-related molecule.
Collapse
Affiliation(s)
- Takeshi Hatta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hatta T, Kazama K, Miyoshi T, Umemiya R, Liao M, Inoue N, Xuan X, Tsuji N, Fujisaki K. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int J Parasitol 2006; 36:1123-32. [PMID: 16814790 DOI: 10.1016/j.ijpara.2006.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Aminopeptidases responsible for blood digestion have yet to be identified in haematophagous ticks. We report here the cloning and molecular characterisation of a cDNA encoding leucine aminopeptidase, a member of the M17 cytosolic aminopeptidase family, from the hard tick Haemaphysalis longicornis (HlLAP). Endogenous HlLAP was detected in the soluble fraction of adult tick extracts by immunoblotting. Immunohistochemical studies demonstrated that endogenous HlLAP expression mainly took place in the cytosol of midgut epithelial cells. Furthermore, expression of HlLAP was induced by a blood-feeding process. A functional recombinant HlLAP expressed in Escherichia coli efficiently hydrolyses synthetic substrates for aminopeptidase, a leucyl (with the Km value 0.19 +/- 0.011 mM and Vmax value 157.2 +/- 3.17 nmol/min/mgprotein) and a methionyl substrate (with the Km value 0.12+/-0.0052 mM and Vmax value 171.9 +/- 2.31 nmol/min/mgprotein). Enzyme activity was found to be optimum at pH 8 and 35 degrees C. The recombinant HlLAP enzyme activity was strongly dependent on metal divalent cations, Mn2+, and was inhibited by bestatin. These results indicate that HlLAP play an important role for host's blood digestion process.
Collapse
Affiliation(s)
- Takeshi Hatta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vennestrøm J, Jensen PM. Ixodes ricinus: the potential of two-dimensional gel electrophoresis as a tool for studying host-vector-pathogen interactions. Exp Parasitol 2006; 115:53-8. [PMID: 16904668 DOI: 10.1016/j.exppara.2006.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/25/2006] [Accepted: 05/29/2006] [Indexed: 11/16/2022]
Abstract
Ixodes ricinus is a three-host tick, with three active instars. For moulting to occur the tick has to find a host where it can take a blood meal. Throughout feeding I. ricinus can be infected or infect the host with different pathogens, e.g., Tick-Borne Encephalitis virus or Borrelia burgdorferi. The host-vector-pathogen interaction is very complex, making a detailed study difficult. Here we analyse the potential of two-dimensional gel electrophoresis (2DE) to study the host-vector-pathogen interaction. We examined 20 nymphs, which as larvae parasitised either mouse or hen. After moulting, they were kept alive for up to 30 weeks, to analyse whether tick ageing influenced host determination, and for comparison of the 2D-gels. Even though the number of proteins in the gel decreased during ageing, some proteins of the host determination persisted for all 30 weeks. We also discovered persisting proteins in relation to nymphs. These findings showed that 2DE is suitable as a tool for studying host-vector-pathogen interactions.
Collapse
Affiliation(s)
- J Vennestrøm
- Department of Genetics and Microbiology, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | |
Collapse
|
42
|
Jasik K, Buczek A. Origin of alimentary tract in embryogenesis of Ixodes ricinus (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:541-7. [PMID: 16119541 DOI: 10.1093/jmedent/42.4.541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We studied the embryos of Ixodes ricinus (L.) in the second and third trimester of embryonic development, by using light and transmission electron microscopy. At the beginning of the second trimester, the formation of the foregut and rectal sac, by a process of invagination, was observed. The invagination, which develops into the primordium of the hindgut, forms only in the third trimester. The rectum forms in the last phase of embryogenesis. The development of the midgut is incomplete during embryogenesis. The yolk is surrounded by a wall, formed of an amorphous basal lamina and flattened cells, that gradually accumulate deutoplasmic material. These cells do not acquire the typical features of the gut epithelium until after larval hatching. These features are, however, found in the cells forming the rectal sac.
Collapse
Affiliation(s)
- Krzysztof Jasik
- Department of Microbiology, Silesian Medical Academy, Jagiel-lońska 4, 41-200 Sosnowiec, Poland
| | | |
Collapse
|
43
|
Shatrov AB. Comparative midgut ultrastructure of unfed larvae and adult mites of Platytrombidium fasciatum (C.L. Koch, 1836) and Camerotrombidium pexatum (C.L. Koch, 1837) (Acariformes: Microtrombidiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:227-239. [PMID: 18089008 DOI: 10.1016/s1467-8039(03)00044-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 05/15/2003] [Indexed: 05/25/2023]
Abstract
The midgut of unfed larvae and adult mites of Platytrombidium fasciatum (C.L. Koch, 1836) and Camerotrombidium pexatum (C.L. Koch, 1937) (Acariformes: Microtrombidiidae) was investigated by electron microscopy. The sac-like midgut occupies the entire body volume, ends blindly and is not divided into functionally differentiated diverticula or caeca. The midgut walls are composed of one type of digestive cell that greatly varies in shape and size. In larvae, the lumen of the midgut is poorly recognizable and its epithelium is loosely organized, although yolk granules are already utilized. In adults, the midgut forms compartments as a result of deep folds of the midgut walls, and the lumen is well distinguished. The epithelium is composed of flat, prismatic or club-like cells, which may contain nutritional vacuoles and residual bodies in various proportions that depend on digestive stages. In both larvae and adult mites, parts of cells may detach from the epithelium and float within the lumen. The cells contain a system of tubules and vesicles of a trans-Golgi network, whereas the apical surface forms microvilli as well as pinocytotic pits and vesicles. Lysosome-like bodies, lipid inclusions and some amount of glycogen particles are also present in the digestive cells. Spherites (concretions) are not found to be a constant component of the digestive cells and in adult mites occur for the most parts in the midgut lumen.
Collapse
Affiliation(s)
- Andrew B Shatrov
- Zoological Institute, Russian Academy of Sciences, 199034, St-Petersburg, Russian Federation
| |
Collapse
|
44
|
Lara FA, Lins U, Paiva-Silva G, Almeida IC, Braga CM, Miguens FC, Oliveira PL, Dansa-Petretski M. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J Exp Biol 2003; 206:1707-15. [PMID: 12682102 DOI: 10.1242/jeb.00334] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hard tick Boophilus microplus ingests large volumes of cattle blood, as much as 100 times its own mass before feeding. Huge amounts of haem are produced during haemoglobin digestion, which takes place inside acidic lysosomal-type vacuoles of the digest cells of the midgut. Haem is a promoter of free radical formation, so haemoglobin digestion poses an intense oxidative challenge to this animal. In the present study we followed the fate of the haem derived from haemoglobin hydrolysis in the digest cells of the midgut of fully engorged tick females. The tick does not synthesize haem, so during the initial phase of blood digestion, absorption is the major route taken by the haem, which is transferred from the digest cells to the tick haemocoel. After this absorptive period of a few days, most of the haem produced upon haemoglobin degradation is accumulated in the interior of a specialized, membrane-delimited, organelle of the digest cell, herein called hemosome. Haem accounts for 90% of the hemosome mass and is concentrated in the core of this structure, appearing as a compact, non-crystalline aggregate of iron protoporphyrin IX without covalent modifications. The unusual FTIR spectrum of this aggregate suggests that lateral propionate chains are involved in the association of haem molecules with other components of the hemosome, which it is proposed is a major haem detoxification mechanism in this blood-sucking arthropod.
Collapse
Affiliation(s)
- Flavio Alves Lara
- Departamento de Bioquímica Médica, ICB, Universidade Federal do Rio de Janeiro, IMPPG, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|