1
|
Gordon JM, Eva MJ, Gaire S, Appel AG, DeVries ZC. Common consumer residual insecticides lack efficacy against insecticide-susceptible and resistant populations of the German cockroach (Blattodea: Ectobiidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2051-2059. [PMID: 39140374 DOI: 10.1093/jee/toae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
The German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae), is a ubiquitous pest in affordable housing. They represent a major threat to human health due to their contribution of asthma-exacerbating allergens and the potential to transfer pathogenic microorganisms indoors. Despite well-documented pyrethroid resistance, pyrethroid-based broadcast residual insecticide products are often used by residents to control cockroaches in their homes. Additionally, there is little empirical independent testing of these products. Thus, it remains unclear how effective these commonly used do-it-yourself products are at controlling German cockroaches. This study represents a comprehensive examination of the efficacy of these products with direct, limited, and continuous exposure assays on a variety of common household surfaces on field populations of cockroaches with varying levels of pyrethroid resistance. While most products performed well when applied directly to test insects, mortality was substantially lower across all surfaces with limited exposure (30 min). In continuous exposure assays on a nonporous surface, products took at least 24 hr to cause 100% mortality in a field population, with some products taking up to 5 d to achieve 100% mortality. The findings of this study demonstrate a lack of residual efficacy from common pyrethroid-based consumer-use pesticides products. Given that it is not feasible to find and treat every cockroach in a home directly, the residuality of spray-based formulations is critical for products designed to control German cockroaches. Without residual efficacy, as shown in the consumer aerosol and spray products tested, we expect these products to add little to no value to cockroach control.
Collapse
Affiliation(s)
- Johnalyn M Gordon
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Marla J Eva
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Sudip Gaire
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Zachary C DeVries
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Morales-Amparano MB, Teran MG, Huerta-Ocampo JÁ, Teran LM. Impact of Enolase in Allergic Disease. Curr Allergy Asthma Rep 2024; 24:571-579. [PMID: 39167280 PMCID: PMC11377513 DOI: 10.1007/s11882-024-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW There is growing evidence that enolase is involved in allergy. This manuscript reviews the impact of enolase in allergic disease and describes several sources of this allergen including molds, plants, animals, and pollens, among others. IgE epitopes are carefully analyzed as they may account for cross-reactivity. RECENT FINDINGS Enolase has been previously associated to food allergy and contact dermatitis. However, other groups and we have identified recently novel enolases derived from diverse pollens in patients suffering asthma and allergic rhinitis. Exposure to outdoor enolases may cause respiratory disease. Enolase has been identified across various species and its amino acid sequence is highly conserved among different sources of this allergen. The demonstration that enolase is involved in many allergic diseases including respiratory allergies, is of clinic relevance. Thus, the development of novel molecular-based diagnostic and therapeutic strategies may pave the way for improved diagnosis and therapeutics.
Collapse
Affiliation(s)
- Martha Beatriz Morales-Amparano
- Food Science Department, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304, Hermosillo, Sonora, México
| | - Maria G Teran
- Immunogenetics and Allergy Department, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas (INER), Calzada de Tlalpan No. 4502, 14080, Ciudad de Mexico, México
| | - José Ángel Huerta-Ocampo
- Food Science Department, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, 83304, Hermosillo, Sonora, México
| | - Luis M Teran
- Immunogenetics and Allergy Department, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas (INER), Calzada de Tlalpan No. 4502, 14080, Ciudad de Mexico, México.
| |
Collapse
|
3
|
Yang J, Zhou S, Kuang H, Tang C, Song J. Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit Rev Food Sci Nutr 2023; 64:10361-10383. [PMID: 37341655 DOI: 10.1080/10408398.2023.2223644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Edible insect products contain high-quality protein and other nutrients, including minerals and fatty acids. The consumption of insect food products is considered a future trend and a potential strategy that could greatly contribute to meeting food needs worldwide. However, insect proteins have the potential to be allergenic to insect consumers. In this review, the nutritional value and allergy risk of insect-derived foods, and the immune responses elicited by insect allergens are summarized and discussed. Tropomyosin and arginine kinase are the most important and widely known insect allergens, which induce Th2-biased immune responses and reduced the activity of CD4+T regulatory cells. Besides, food processing methods have been effectively improving the nutrients and characteristics of insect products. However, limited reviews systematically address the immune reactions to allergens present in edible insect proteins following treatment with food processing technologies. The conventional/novel food processing techniques and recent advances in reducing the allergenicity of insect proteins are discussed in this review, focusing on the structural changes of allergens and immune regulation.
Collapse
Affiliation(s)
- Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Shuling Zhou
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chunhong Tang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Pomés A, Arruda LK. Cockroach allergy: Understanding complex immune responses to develop novel therapies. Mol Immunol 2023; 156:157-169. [PMID: 36930991 PMCID: PMC10134214 DOI: 10.1016/j.molimm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
Cockroach allergy is associated with the development of asthma. The identification of cockroach allergens, which began in the 1990 s, is an ongoing process that has led to the current listing of 20 official allergen groups in the WHO/IUIS Allergen Nomenclature database. The function and structure of some of these allergens has been determined and define their natural delivery into the environment and their allergenicity. Analysis of antigenic determinants by X-ray crystallography and rational design of site-directed mutagenesis led to the identification of IgE binding sites for the design of molecules with reduced IgE reactivity and T cell modulatory capacity. New developments in recent years include component analyses of B and T cell reactivity and a recent cockroach immunotherapy trial, CRITICAL, that will contribute to understand the immune response to cockroach and to define future directions for cockroach allergy diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Director of Basic Research, InBio, 700 Harris Street, Charlottesville, VA 22903, USA.
| | - L Karla Arruda
- Professor of Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
5
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
In Silico Comparative Exploration of Allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248740. [PMID: 36557872 PMCID: PMC9785491 DOI: 10.3390/molecules27248740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The burden of allergic illnesses is continuously rising, and patient diagnosis is a significant problem because of how intricately hereditary and environmental variables interact. The past three to four decades have seen an outbreak of allergies in high-income countries. According to reports on the illness, asthma affects around 300 million individuals worldwide. Identifying clinically important allergens for the accurate classification of IgE-mediated allergy respiratory disease diagnosis would be beneficial for implementing standardized allergen-associated therapy. Therefore, the current study includes an in silico analysis to identify potential IgE-mediated allergens in date palms and cockroaches. Such an immunoinformatic approach aids the prioritization of allergens with probable involvement in IgE-mediated allergic respiratory diseases. Immunoglobulin E (IgE) was used for molecular dynamic simulations, antigen-antibody docking analyses, epitope identifications, and characterizations. The potential of these allergens (Per a7, Per a 1.0102, and Bla g 1.0101) in IgE-mediated allergic respiratory diseases was explored through the evaluation of physicochemical characteristics, interaction observations, docking, and molecular dynamics simulations for drug and vaccine development.
Collapse
|
7
|
Woo C, Bhuiyan MIU, Kim D, Kumari P, Lee SK, Park JY, Dong K, Lee K, Yamamoto N. DNA metabarcoding-based study on bacteria and fungi associated with house dust mites (Dermatophagoides spp.) in settled house dust. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:329-347. [PMID: 36301451 DOI: 10.1007/s10493-022-00755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
House dust mites (HDMs) including Dermatophagoides spp. are an important cause of respiratory allergies. However, their relationship with microorganisms in house dust has not been fully elucidated. Here, we characterized bacteria and fungi associated with HDMs in house dust samples collected in 107 homes in Korea by using DNA barcode sequencing of bacterial 16S rRNA gene, fungal internal transcribed spacer 2 (ITS2) region, and arthropod cytochrome c oxidase I (COI) gene. Our inter-kingdom co-occurrence network analysis and/or indicator species analysis identified that HDMs were positively related with a xerophilic fungus Wallemia, mycoparasitic fungi such as Cystobasidium, and some human skin-related bacterial and fungal genera, and they were negatively related with the hygrophilous fungus Cephalotrichum. Overall, our study has succeeded in adding novel insights into HDM-related bacteria and fungi in the house dust ecosystem, and in confirming the historically recognized fact that HDMs are associated with xerophilic fungi such as Wallemia. Understanding the microbial ecology in house dust is thought to be important for elucidating the etiology of human diseases including allergies, and our study revealed baseline information of house dust ecology in relation to HDMs. The findings could be useful from a perspective of human health.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mohammad Imtiaj Uddin Bhuiyan
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyun Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Priyanka Kumari
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Kyung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Young Park
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ke Dong
- Major of Life Science, College of Natural Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Life-History Traits from Embryonic Development to Reproduction in the American Cockroach. INSECTS 2022; 13:insects13060551. [PMID: 35735888 PMCID: PMC9225176 DOI: 10.3390/insects13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary The American cockroach is a widely distributed sanitary pest closely related to human life. The American cockroach is not only a hygienic pest that we all know but also beneficial to humans as its extract can be used medicinally and could be a model organism for physiology and neuroscience studies. In this study, we provide a life table of the American cockroach in a stable environment, including embryonic development, nymphal instars, and adult reproduction. Newly laid eggs hatch into nymphs after about 35 days of embryonic development. Under sufficient materials and space, gregarious nymphs undergo 14 molts before transforming into adults. Adult females can produce fertile offspring whether they have mated or not. On average, mated females produce an ootheca every 4 days, while unmated females produce an ootheca every 10 days. Each ootheca contains 12–16 eggs. Additionally, group living seems to improve the survival rate of offspring of unmated females. Abstract The American cockroach, Periplaneta americana (Insecta: Blattodea: Solumblattodea: Blattidae), is an urban hygiene pest but also a model organism for physiology and neuroscience study. However, the current description of the developmental process of the American cockroach is insufficient. In this study, we provide a life table of the American cockroach in a stable environment, including embryonic development, nymphal instars and adult reproduction. Our results show that there are 14 nymphal instars of the American cockroach in groups with sufficient living materials and space. The secondary sexual characteristics are evident in last-instar nymphs and adults, namely, the complete absence of the anal stylus in females. The entire embryonic development process was divided into 20 stages on the basis of lateral-view observations of the embryos. The formation of the embryo involves the fusion of paired blastoderm regions with higher cellular density, similar to that in other insects of Polyneoptera. With respect to reproduction, the gamogenetic females produced their first ootheca earlier than the parthenogenic females, and the frequency of oviposition was higher for the former throughout adulthood. Interestingly, group living seems to improve the parthenogenesis success rate in the American cockroach.
Collapse
|
9
|
Gremski LH, Matsubara FH, da Justa HC, Schemczssen-Graeff Z, Baldissera AB, Schluga PHDC, Leite IDO, Boia-Ferreira M, Wille ACM, Senff-Ribeiro A, Veiga SS. Brown spider venom toxins: what are the functions of astacins, serine proteases, hyaluronidases, allergens, TCTP, serpins and knottins? J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200188. [PMID: 34377142 PMCID: PMC8314928 DOI: 10.1590/1678-9199-jvatitd-2020-0188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | - Ana Carolina Martins Wille
- Department of Molecular Structural Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
10
|
Kumar M, Gupta RK, Kumar R, Spalgais S, Mavi AK, Singh K. Cockroach exposure and its allergy sensitization in asthma patients. Monaldi Arch Chest Dis 2021; 91. [PMID: 33985325 DOI: 10.4081/monaldi.2021.1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Asthma is a heterogeneous disease with distinct phenotypes. Serum tIgE, SSIgE and SPT are the methods of evaluating allergen sensitization. The present study evaluates the exposure and sensitization to cockroach (Periplaneta americana) antigens in asthma patients in a metropolitan city of India. The study enrolled 200 consecutive bronchial asthma patients, diagnosed as per GINA guidelines. As per history of exposure to cockroaches, the patients are divided in two groups as exposed and non-exposed asthmatic. All the enrolled subjects underwent SPT against common aeroallergens including cockroach, spirometry and estimation of tIgE level and SSIgE against cockroach. Out of 200 asthma patients, a total of 114 (57%) asthmatic were found SPT positive against one of the common aeroallergens, of which 68 (34%) showed SPT sensitivity against cockroach. A total of 103 (51.5%) patients were found exposed to cockroaches. In the cockroach exposed group, the mean serum tIgE was found significantly higher than the non-exposed group (569.31±224.64 vs 479.29±237 IU/ml; p=0.007). The mean SSIgE against cockroach in exposed groups was found not significant than non-expose group (4.87±11.19 vs 4.11±8.39 KUA/L; p=0.589). The mean tIgE was also not significant in atopic compared to non-atopic asthmatic (553.25±218.12 IU/ml vs 489.1±251.16 IU/ml; p=0.056). The mean SSIgE against cockroach was 5.66±10.45 KUA/L for atopic and 2.96±8.98 KUA/L for non-atopic (p=0.054). The airway obstruction was almost the same in both groups. Asthmatic patients who were exposed to cockroach and atopic had high tIgE, SSIgE levels and SPT positivity against cockroach antigen compared to non-exposed patients.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Rajesh Kumar Gupta
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida U.P.
| | - Raj Kumar
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Kamal Singh
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| |
Collapse
|
11
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Antigenic cross-reactivity between Schistosoma mansoni and allergenic invertebrates putatively due to shared glycanic epitopes. Sci Rep 2020; 10:3350. [PMID: 32099050 PMCID: PMC7042331 DOI: 10.1038/s41598-020-59892-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/28/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that rabbit IgG antibodies against Schistosoma mansoni egg antigens (SmSEA) cross-react with allergens in natural rubber latex, peanuts and grass and tree pollens. Here we describe antigenic molecules that cross-react with rabbit anti-S. mansoni IgG antibodies in extracts of the house dust mite (HDM) Dermatophagoides farinae, the Australian cockroach (ACR) Periplaneta australasiae and in the venom of the honey bee Apis mellifera (HBV). Tandem mass spectrometry identified the cross-reactive allergens as Der f 15 in HDM, two homologues of the Periplaneta americana cockroach allergen Cr-PI/Per a 3 in ACR and two isoforms of the allergen Api m 1 (phospholipase A2: PLA2) in HBV. Cross-reactive rabbit anti-SmSEA IgG antibodies eluted from the three invertebrate allergens reacted with S. mansoni egg antigens and variably with schistosome cercarial and worm antigens. Treatment of the electroblotted allergens with sodium metaperiodate abrogated most of the cross-reactivity of the rabbit anti-SmSEA antibodies, suggesting it was due to cross-reactive carbohydrate determinants (CCDs). Furthermore, analyses of the allergens’ amino acid sequences indicated that they had potential for both N- and O-linked glycosylation. A potential role for the CCDs shared by the schistosome and invertebrates in inducing an allergy-protective effect, as proposed by the hygiene hypothesis, is discussed.
Collapse
|
13
|
Laha A, Sarkar T, Dey D, Mondal P, Bhattacharya S, Moitra S, Saha GK, Podder S. Assessment of Hymenoptera and Non-Hymenoptera Insect Bite and Sting Allergy Among Patients of Tropical Region of West Bengal, India. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1-7. [PMID: 31228205 DOI: 10.1093/jme/tjz088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 06/09/2023]
Abstract
West Bengal, India, is inhabited by abundance and variety of insects that triggers sensitization in some humans to inhalant allergens and/or insect stings/venoms. Lack of research on this topic prevented accurate diagnosis and proper follow-up treatments to patients suffering from insect-induced allergies. The aim of our study was to identify the allergy-causing insects and evaluate resulting sensitization among a study population in West Bengal, India. The skin prick test (SPT) evaluated sensitivity of 450 patients who sought treatment at the Allergy and Asthma Research Center from July 2017 to June 2018. Eight insect allergens were tested: Common Black Ant (Lasius niger, Linnaeus 1758), Fire Ant (Solenopsis invicta, Buren 1972), Honey Bee (Apis cerana indica, Fabricius 1798), Common Wasp (Vespula vulgaris, Linnaeus 1758), Mosquito (Aedes aegypti, Linnaeus in Hasselquist 1762), American Cockroach (Periplaneta americana, Linnaeus 1758), House Fly (Musca domestica, Linnaeus 1758), and Grasshopper (Gesonula punctifrons, Stal 1861). From a total of 450 patients evaluated, 370 patients had positive SPT reaction from at least one of the 8 insect allergens tested. Sensitivity to some Hymenoptera insects (common black ant, 87.62%; fire ant, 84.59%; and honey bee, 67.02%) was found in higher proportion than non-Hymenoptera group (mosquito, 66.67%; American cockroach, 33.33%; house fly, 10.41%; and grasshopper, 5.14%). There was significant difference in sensitivity among child, adolescent, and adult (P < 0.001). While female patients showed more sensitivity than males to SPT, the difference was statistically insignificant. In regards to occupation, farmers and bee keepers were most sensitive of field workers sensitive to Hymenoptera-derived allergens.
Collapse
Affiliation(s)
- Arghya Laha
- Allergology and Applied Entomology Research Laboratory, Post Graduate Department of Zoology, Barasat Government College, Kolkata, West Bengal, India
| | - Tania Sarkar
- Allergology and Applied Entomology Research Laboratory, Post Graduate Department of Zoology, Barasat Government College, Kolkata, West Bengal, India
| | - Debarati Dey
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Priti Mondal
- Allergology and Applied Entomology Research Laboratory, Post Graduate Department of Zoology, Barasat Government College, Kolkata, West Bengal, India
| | - Srijit Bhattacharya
- Post Graduate Department of Physics, Barasat Government College, Kolkata, West Bengal, India
| | - Saibal Moitra
- Allergy and Asthma Research Centre, Kolkata, West Bengal, India
| | - Goutam Kumar Saha
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sanjoy Podder
- Allergology and Applied Entomology Research Laboratory, Post Graduate Department of Zoology, Barasat Government College, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Immunological characterization of the American cockroach allergen Per a 9 expressed in baculovirus-infected insect cells. Cent Eur J Immunol 2019; 44:322-326. [PMID: 31871421 PMCID: PMC6925565 DOI: 10.5114/ceji.2019.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
American cockroach (CR) allergy has been recognized as important IgE-mediated type I hypersensitivity. Per a 9 is an arginine kinase, reacting with IgE in sera of all CR allergic Thai patients. Per a 9 gene was cloned and expressed in eukaryotic systems (baculovirus-infected insect cells). The expressed Per a 9 was purified by Nickel column. The antigenicities were analyzed by ELISA, immunoblot analysis and basophile activation test. The results show that 13 out of 16 (81.3%) sera from American CR patients reacted to Per a 9, confirming that Per a 9 is a major allergen of CR. The IgE reactivity of Per a 9 in the sera from American CR patients was increased 8.3-fold in comparison with the sera from healthy controls. Per a 9 at 1.0 μg/ml induced an approximately up to 5.6-fold increase in CD63 and CCR3 double positive cells when incubating with passively sensitized basophils from by sera from American CR patients.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The review provides insight into recent findings on bedroom allergen exposures, primarily focusing on pet, pest, and fungal exposures. RECENT FINDINGS Large-scale studies and improved exposure assessment technologies, including measurement of airborne allergens and of multiple allergens simultaneously, have extended our understanding of indoor allergen exposures and their impact on allergic disease. Practical, streamlined methods for exposure reduction have shown promise in some settings, and potential protective effects of early-life exposures have been further elucidated through the investigation of specific bacterial taxa. Advances in molecular allergology have yielded novel data on sensitization profiles and cross-reactivity. The role of indoor allergen exposures in allergic disease is complex and remains incompletely understood. Advancing our knowledge of various co-exposures, including the environmental and host microbiome, that interact with allergens in early life will be crucial for the development of efficacious interventions to reduce the substantial economic and social burden of allergic diseases including asthma.
Collapse
|
16
|
Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep 2017; 17:25. [PMID: 28421512 DOI: 10.1007/s11882-017-0694-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma. RECENT FINDINGS The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy. Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, Intramural Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
18
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
19
|
Yang H, Chen H, Jin M, Xie H, He S, Wei JF. Molecular cloning, expression, IgE binding activities and in silico epitope prediction of Per a 9 allergens of the American cockroach. Int J Mol Med 2016; 38:1795-1805. [PMID: 27840974 PMCID: PMC5117749 DOI: 10.3892/ijmm.2016.2793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Per a 9 is a major allergen of the American cockroach (CR), which has been recognized as an important cause of imunoglobulin E-mediated type I hypersensitivity worldwide. However, it is not neasy to obtain a substantial quantity of this allergen for use in functional studies. In the present study, the Per a 9 gene was cloned and expressed in Escherichia coli (E. coli) systems. It was found that 13/16 (81.3%) of the sera from patients with allergies caused by the American CR reacted to Per a 9, as assessed by enzyme-linked immunosorbent assay, confirming that Per a 9 is a major allergen of CR. The induction of the expression of CD63 and CCR3 in passively sensitized basophils (from sera of patients with allergies caused by the American CR) by approximately 4.2-fold indicated that recombinant Per a 9 was functionally active. Three immunoinformatics tools, including the DNAStar Protean system, Bioinformatics Predicted Antigenic Peptides (BPAP) system and the BepiPred 1.0 server were used to predict the potential B cell epitopes, while Net-MHCIIpan-2.0 and NetMHCII-2.2 were used to predict the T cell epitopes of Per a 9. As a result, we predicted 11 peptides (23-28, 39-46, 58-64, 91-118, 131-136, 145-154, 159-165, 176-183, 290-299, 309-320 and 338-344) as potential B cell linear epitopes. In T cell prediction, the Per a 9 allergen was predicted to have 5 potential T cell epitope sequences, 119-127, 194-202, 210-218, 239-250 and 279-290. The findings of our study may prove to be useful in the development of peptide-based vaccines to combat CR-induced allergies.
Collapse
Affiliation(s)
- Haiwei Yang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hao Chen
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Jin
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hua Xie
- Department of Respiratory Medicine, General Hospital of Shenyang Military Region, PLA Cancer Center, Shenyang, Liaoning 110840, P.R. China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Tong X, Guo M, Jin M, Chen H, Li Y, Wei JF. In silico epitope prediction, expression and functional analysis of Per a 10 allergen from the American cockroach. Int J Mol Med 2016; 38:1806-1814. [PMID: 27840898 PMCID: PMC5117736 DOI: 10.3892/ijmm.2016.2790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/21/2016] [Indexed: 01/02/2023] Open
Abstract
Cockroach (CR) allergies caused by the American cockroach hyave been recognized to be repsonsible for IgE-mediated type I hypersensitivity worldwide. Per a 10 is one of the recognized main allergens of the American CR. In a previous study, we examined another American CR allergen, Per a 9 in patients with CR allergies and examined epitope sequences in this allergen. In the present study, we aimed to examine epitope sequences in the Per a 10 allergen. for this purpose, the Per a 10 gene was cloned and expressed in Escherichia coli (E. coli) systems. Our results revealed that 9 out of 16 (56.3%) sera from patients with American CR allergies reacted to Per a10, as assessed by ELISA, confirming that Per a 10 is a major allergen of the American CR. Our results also revealed that the expression of CD63 and CCR3 on passively sensitized basophils (obtained sera of patients with American CR allergies) was increased by approximately 2.3-fold, indicating that recombinant Per a 10 is functionally active. In addition, 3 immunoinformatics tools, namely the DNAStar Protean system, the Bioinformatics Predicted Antigenic Peptides (BPAP) system and the BepiPred 1.0 server were used to predict the peptides and the results revealed 8 peptides (2-12, 55-67, 98-120, 125-133, 149-160, 170-182, 201-208 and 223-227) as potential B cell epitopes of the Per a 10 allergen. Moreover, Per a 10 was predicted to have 3 T cell epitope sequences, namely 83-92, 139-147 and 162-170. The findings of our study on the CR allergen may prove to be useful in the development of peptide-based vaccine for the prevention and/or treatment of CR allergies.
Collapse
Affiliation(s)
- Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Jin
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hao Chen
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Clinical Research Center for Respiratory Disease, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
21
|
Pomés A, Chapman MD, Wünschmann S. Indoor Allergens and Allergic Respiratory Disease. Curr Allergy Asthma Rep 2016. [PMID: 27184001 DOI: 10.1007/s11882-016-0622-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - Sabina Wünschmann
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| |
Collapse
|
22
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Woodfolk JA, Glesner J, Wright PW, Kepley CL, Li M, Himly M, Muehling LM, Gustchina A, Wlodawer A, Chapman MD, Pomés A. Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2. J Biol Chem 2015; 291:2288-301. [PMID: 26644466 DOI: 10.1074/jbc.m115.702324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4(+) T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines.
Collapse
Affiliation(s)
- Judith A Woodfolk
- From the Allergy Division, Department of Medicine, University of Virginia, Charlottesville, Virginia 22903
| | - Jill Glesner
- INDOOR Biotechnologies, Inc., Charlottesville, Virginia 22908
| | - Paul W Wright
- From the Allergy Division, Department of Medicine, University of Virginia, Charlottesville, Virginia 22903
| | - Christopher L Kepley
- the Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, North Carolina 27401
| | - Mi Li
- the Macromolecular Crystallography Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, and
| | - Martin Himly
- the Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Lyndsey M Muehling
- From the Allergy Division, Department of Medicine, University of Virginia, Charlottesville, Virginia 22903
| | - Alla Gustchina
- the Macromolecular Crystallography Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702
| | - Alexander Wlodawer
- the Macromolecular Crystallography Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702
| | | | - Anna Pomés
- INDOOR Biotechnologies, Inc., Charlottesville, Virginia 22908,
| |
Collapse
|
24
|
Fang Y, Long C, Bai X, Liu W, Rong M, Lai R, An S. Two new types of allergens from the cockroach, Periplaneta americana. Allergy 2015; 70:1674-8. [PMID: 26361742 DOI: 10.1111/all.12766] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 01/04/2023]
Abstract
Periplaneta americana cockroach is an important source of inhalant indoor allergen resource, and there are more than twenty IgE-binding components identified in P. americana, but only nine allergens were characterized. Our knowledge about cockroach allergens remains poor. In this work, two novel allergen proteins Per a 11 (alpha-amylase) and Per a 12 (chitinase) with molecular weight around 55 and 45 kDa, respectively, were purified and characterized from the midgut of cockroaches. Their primary sequences were determined by Edman degradation, mass spectrometry, and cDNA cloning. Sera from 39 and 30 of 47 (83.0% and 63.8%) patients reacted to Per a 11 and Per a 12 on immunoblots, respectively. The allergenicity of Per a 11 and Per a 12 was further confirmed by competitive ELISA, basophil activation test (BAT), and skin prick test (SPT). They appear to be of importance for the allergic reactions induced by cockroach and have a potential for component-based diagnosis of allergy.
Collapse
Affiliation(s)
- Y. Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
| | - C. Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
| | - X. Bai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
| | - W. Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
| | - M. Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
| | - R. Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
- Life Sciences College of Nanjing Agricultural University; Nanjing Jiangsu China
- Joint Laboratory of Natural peptide; Chinese Academy of Sciences; University of Science and Technology of China and Kunming Institute of Zoology; Yunnan China
| | - S. An
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology; Kunming Yunnan China
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Yunnan China
| |
Collapse
|
25
|
Lee MF, Chang CW, Song PP, Hwang GY, Lin SJ, Chen YH. IgE-Binding Epitope Mapping and Tissue Localization of the Major American Cockroach Allergen Per a 2. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:376-83. [PMID: 25749772 PMCID: PMC4446636 DOI: 10.4168/aair.2015.7.4.376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/21/2014] [Indexed: 11/20/2022]
Abstract
Purpose Cockroaches are the second leading allergen in Taiwan. Sensitization to Per a 2, the major American cockroach allergen, correlates with clinical severity among patients with airway allergy, but there is limited information on IgE epitopes and tissue localization of Per a 2. This study aimed to identify Per a 2 linear IgE-binding epitopes and its distribution in the body of a cockroach. Methods The cDNA of Per a 2 was used as a template and combined with oligonucleotide primers specific to the target areas with appropriate restriction enzyme sites. Eleven overlapping fragments of Per a 2 covering the whole allergen molecule, except 20 residues of signal peptide, were generated by PCR. Mature Per a 2 and overlapping deletion mutants were affinity-purified and assayed for IgE reactivity by immunoblotting. Three synthetic peptides comprising the B cell epitopes were evaluated by direct binding ELISA. Rabbit anti-Per a 2 antibody was used for immunohistochemistry. Results Human linear IgE-binding epitopes of Per a 2 were located at the amino acid sequences 57-86, 200-211, and 299-309. There was positive IgE binding to 10 tested Per a 2-allergic sera in 3 synthetic peptides, but none in the controls. Immunostaining revealed that Per a 2 was localized partly in the mouth and midgut of the cockroach, with the most intense staining observed in the hindgut, suggesting that the Per a 2 allergen might be excreted through the feces. Conclusions Information on the IgE-binding epitope of Per a 2 may be used for designing more specific diagnostic and therapeutic approaches to cockroach allergy.
Collapse
Affiliation(s)
- Mey Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.; General Education Center, Tunghai University, Taichung, Taiwan
| | - Chia Wei Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Pei Pong Song
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guang Yuh Hwang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Shyh Jye Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.; Department of Life Science, Tunghai University, Taichung, Taiwan.; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
26
|
Chen H, Yang HW, Wei JF, Tao AL. In silico prediction of the T-cell and IgE-binding epitopes of Per a 6 and Bla g 6 allergens in cockroaches. Mol Med Rep 2014; 10:2130-6. [PMID: 25050891 DOI: 10.3892/mmr.2014.2399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/02/2014] [Indexed: 11/05/2022] Open
Abstract
Per a 6 and Bla g 6 are cockroach allergens found in Periplaneta americana and Blattella germanica, respectively. The objective of the present study was to predict the B‑ and T‑cell epitopes of the Per a 6 and Bla g 6 allergens. Three immunoinformatics tools, the DNAStar Protean system, the Bioinformatics Predicted Antigenic Peptides system and the BepiPred 1.0 server, were used to predict the potential B‑cell epitopes, while Net‑MHCIIpan‑2.0 and NetMHCII‑2.2 were used to predict the T‑cell epitopes of the two allergens. As a result, seven peptides were predicted in the Per a 6 allergen and seven peptides were predicted in the Bla g 6 allergen in the B‑cell epitope predictions. In the T‑cell prediction, the Per a 6 allergen was predicted to have nine strongly binding nonamer core epitope sequences (IC50<50 nm) and 28 weakly binding sequences (50 nm<IC50<500 nm), while the Bla g 6 allergen was predicted to have nine strong binders and 25 weak binders. These results may be useful for peptide‑based vaccine designs.
Collapse
Affiliation(s)
- Hao Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Hai-Wei Yang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ji-Fu Wei
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Ai-Lin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
27
|
Arruda LK, Barbosa MCR, Santos ABR, Moreno AS, Chapman MD, Pomés A. Recombinant allergens for diagnosis of cockroach allergy. Curr Allergy Asthma Rep 2014; 14:428. [PMID: 24563284 DOI: 10.1007/s11882-014-0428-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular cloning of cockroach allergens and their expression as recombinant proteins have allowed a better understanding of the mechanisms of cockroach allergic disease. Recombinant cockroach allergens have been used for skin testing or in vitro methods to measure IgE antibody levels in serum. Early studies evaluating selected U.S. patients revealed that a cocktail of four cockroach allergens, Bla g 1, Bla g 2, Bla g 4, and Bla g 5, would identify 95 % of cockroach allergic patients. More recent studies pointed to an important role of sensitization to tropomyosin among certain populations, and suggested that a cocktail of five allergens Bla g 1 and/or Per a 1, Bla g 2, Bla g 4, Bla g 5, and Bla g 7, and/or Per a 7, would be expected to diagnose 50- 64 % of cockroach-allergic patients worldwide. Variation in IgE reactivity profiles could be in part due to IgE responses to cross-reactive homologous allergens from different origins. The availability of purified natural or recombinant cockroach allergens provides the capacity to improve diagnosis of cockroach allergy and to develop novel forms of immunotherapy for cockroach-allergic patients.
Collapse
Affiliation(s)
- L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil,
| | | | | | | | | | | |
Collapse
|
28
|
Offermann LR, Chan SL, Osinski T, Tan YW, Chew FT, Sivaraman J, Mok YK, Minor W, Chruszcz M. The major cockroach allergen Bla g 4 binds tyramine and octopamine. Mol Immunol 2014; 60:86-94. [PMID: 24769496 DOI: 10.1016/j.molimm.2014.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 11/26/2022]
Abstract
Bla g 4 is a male cockroach specific protein and is one of the major allergens produced by Blattella germanica (German cockroach). This protein belongs to the lipocalin family that comprises a set of proteins that characteristically bind small hydrophobic molecules and play a role in a number of processes such as: retinoid and pheromone transport, prostaglandin synthesis and mammalian immune response. Using NMR and isothermal titration calorimetry we demonstrated that Bla g 4 binds tyramine and octopamine in solution. In addition, crystal structure analysis of the complex revealed details of tyramine binding. As tyramine and octopamine play important roles in invertebrates, and are counterparts to vertebrate adrenergic transmitters, we speculate that these molecules are physiological ligands for Bla g 4. The nature of binding these ligands to Bla g 4 sheds light on the possible biological function of the protein. In addition, we performed a large-scale analysis of Bla g 4 and Per a 4 (an allergen from American cockroach) homologs to get insights into the function of these proteins. This analysis together with a structural comparison of Blag 4 and Per a 4 suggests that these proteins may play different roles and most likely bind different ligands. Accession numbers: The atomic coordinates and the structure factors have been deposited to the Protein Data Band under accession codes: 4N7C for native Bla g 4 and 4N7D for the Se-Met Bla g 4 structure.
Collapse
Affiliation(s)
- Lesa R Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Siew Leong Chan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tomasz Osinski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yih Wan Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
29
|
Preparation and identification of Per a 5 as a novel American cockroach allergen. Mediators Inflamm 2014; 2014:591468. [PMID: 24707117 PMCID: PMC3953463 DOI: 10.1155/2014/591468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/17/2022] Open
Abstract
Glutathione S-transferase (GST) from various arthropods can elicit allergic reactions. In the present study, Per a 5, a GST, was cloned from American cockroach (CR) and expressed in both baculovirus-infected insect cell (iPer a 5) and E. coli expression (bPer a 5) systems. The secondary structures were predicted to be 45.93 and 8.69% of α-helix β-sheets in iPer a 5 and 42.54 and 8.49% of α-helix and β-sheets in bPer a 5, respectively. It is found that 4 out of 16 (25%) sera from American CR allergy patients reacted to both bPer a 9 and iPer a 9 as assessed by ELISA and Western blotting analysis, confirming that Per a 5 is not a major allergen of American CR. Induction of upregulated expression of CD63 and CCR3 on passively sensitized human basophils (sera from American CR allergy patients) by approximately up to 4.5- and 3.2-fold indicates that iPer a 5 and bPer a 5 are functionally active. Recombinant Per a 5 (rPer a 5) should be a useful tool for studying and understanding the role of Per a 5 in CR allergy.
Collapse
|
30
|
Pomés A, Arruda LK. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients. Methods 2013; 66:75-85. [PMID: 23916425 DOI: 10.1016/j.ymeth.2013.07.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/16/2022] Open
Abstract
Cockroach allergy is an important health problem associated with the development of asthma, as a consequence of chronic exposure to low levels of allergens in susceptible individuals. In the last 20 years, progress in understanding the disease has been possible, thanks to the identification and molecular cloning of cockroach allergens and their expression as recombinant proteins. Assays for assessment of environmental allergen exposure have been developed and used to measure Bla g 1 and Bla g 2, as markers of cockroach exposure. IgE antibodies to cockroach extracts and to specific purified allergens have been measured to assess sensitization and analyze association with exposure and disease. With the development of the field of structural biology and the expression of recombinant cockroach allergens, insights into allergen structure, function, epitope mapping and allergen-antibody interactions have provided further understanding of mechanisms of cockroach allergic disease at the molecular level. This information will contribute to develop new approaches to allergen avoidance and to improve diagnosis and therapy of cockroach allergy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, USA.
| | | |
Collapse
|
31
|
Mueller GA, Pedersen LC, Lih FB, Glesner J, Moon AF, Chapman MD, Tomer KB, London RE, Pomés A. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J Allergy Clin Immunol 2013; 132:1420-6. [PMID: 23915714 DOI: 10.1016/j.jaci.2013.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/28/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Sensitization to cockroach allergens is a major risk factor for asthma. The cockroach allergen Bla g 1 has multiple repeats of approximately 100 amino acids, but the fold of the protein and its biological function are unknown. OBJECTIVE We sought to determine the structure of Bla g 1, investigate the implications for allergic disease, and standardize cockroach exposure assays. METHODS nBla g 1 and recombinant constructs were compared by using ELISA with specific murine IgG and human IgE. The structure of Bla g 1 was determined by x-ray crystallography. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to examine the ligand-binding properties of the allergen. RESULTS The structure of an rBla g 1 construct with comparable IgE and IgG reactivity to the natural allergen was solved by x-ray crystallography. The Bla g 1 repeat forms a novel fold with 6 helices. Two repeats encapsulate a large and nearly spherical hydrophobic cavity, defining the basic structural unit. Lipids in the cavity varied depending on the allergen origin. Palmitic, oleic, and stearic acids were associated with nBla g 1 from cockroach frass. One unit of Bla g 1 was equivalent to 104 ng of allergen. CONCLUSIONS Bla g 1 has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with nonspecific transport of lipid molecules in cockroaches. Defining the basic structural unit of Bla g 1 facilitates the standardization of assays in absolute units for the assessment of environmental allergen exposure.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Allergic asthma is on the rise in developed countries, and cockroach exposure is a major risk factor for the development of asthma. In recent years, a number of studies have investigated the importance of allergen-associated proteases in modulating allergic airway inflammation. Many of the studies have suggested the importance of allergen-associated proteases as having a direct role on airway epithelial cells and dendritic cells. In most cases, activation of the protease activated receptor (PAR)-2 has been implicated as a mechanism behind the potent allergenicity associated with cockroaches. In this review, we focus on recent evidence linking cockroach proteases to activation of a variety of cells important in allergic airway inflammation and the role of PAR-2 in this process. We will highlight recent data exploring the potential mechanisms involved in the biological effects of the allergen.
Collapse
|
34
|
Sohn MH, Kim KE. The cockroach and allergic diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 4:264-9. [PMID: 22950031 PMCID: PMC3423599 DOI: 10.4168/aair.2012.4.5.264] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/10/2012] [Accepted: 04/12/2012] [Indexed: 11/20/2022]
Abstract
The cockroach represents one of the most common sources of indoor allergens worldwide, and 40%-60% of patients with asthma in urban and inner-city areas possess IgE antibodies to cockroach allergens. In Korean homes, four cockroach species have been found, of which the most commonly encountered is the German cockroach. The pathogenic mechanism underlying the association between cockroach allergens and allergic diseases has not been fully elucidated. Allergenicity is associated with the cockroach allergens themselves, enzymatic protease activity, and ligands for pattern recognition receptors. Although allergen-specific adaptive immune responses orchestrate the cockroach allergic response, recent data suggest that the innate immune system is also a critical contributor to pathogenesis. We review the current evidence for the demographics of cockroach exposure and sensitization, characteristics of cockroach allergens, and inflammatory responses to cockroach allergens initiated through protease-dependent pathways.
Collapse
Affiliation(s)
- Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|
35
|
Sheehan WJ, Rangsithienchai PA, Wood RA, Rivard D, Chinratanapisit S, Perzanowski MS, Chew GL, Seltzer JM, Matsui EC, Phipatanakul W. Pest and allergen exposure and abatement in inner-city asthma: a work group report of the American Academy of Allergy, Asthma & Immunology Indoor Allergy/Air Pollution Committee. J Allergy Clin Immunol 2010; 125:575-81. [PMID: 20226293 DOI: 10.1016/j.jaci.2010.01.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/29/2009] [Accepted: 01/07/2010] [Indexed: 11/19/2022]
Abstract
Our work group report details the importance of pest allergen exposure in inner-city asthma. We will focus specifically on mouse and cockroach exposure. We will discuss how exposure to these pests is common in the inner city and what conditions exist in urban areas that might lead to increased exposure. We will discuss how exposure is associated with allergen sensitization and asthma morbidity. Finally, we will discuss different methods of intervention and the effectiveness of these tactics.
Collapse
Affiliation(s)
- William J Sheehan
- Division of Immunology, Children's Hospital Boston, Boston, Mass 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Poor, minority children living in US inner cities have increased rates of asthma morbidity and mortality. Factors that contribute to these increased rates are varied and complex, with current evidence suggesting that the environment is an important causative factor. Respiratory morbidity is often the result of allergens and air pollutants. Additionally, for children living in urban environments, underlying societal susceptibility factors specific to the inner city serve to increase asthma morbidity. Even though ambient pollutants have been declining in US cities, asthma morbidity and mortality rates have been increasing. Indoor pollutants are closely linked to increased asthma prevalence and morbidity. While the understanding of environmental influences is still relatively limited, we can say that indoor exposures are more important than ambient pollutants, and we know that bioaerosols containing allergenic proteins are especially important. Additionally, certain particulate aerosols and ozone cause inflammation individually and may act synergistically to enhance the acute and chronic IgE-mediated inflammation. The purpose of this article is to review the data relating exposure to environmental pollutants and airborne allergens, and the relationship of this exposure to asthma prevalence and morbidity in order to inform plans for public health programs to reduce an asthma burden.
Collapse
Affiliation(s)
- Peyton A Eggleston
- Department of Pediatrics, School of Medicine, The Johns Hopkins University, CMCSC 1102, Baltimore, MD 21287-3923, USA.
| |
Collapse
|
37
|
Eggleston PA. The Environment and Asthma in US Inner Cities. Chest 2007. [DOI: 110.1378/chest.07-1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Gore JC, Schal C. Cockroach allergen biology and mitigation in the indoor environment. ANNUAL REVIEW OF ENTOMOLOGY 2007; 52:439-63. [PMID: 17163801 DOI: 10.1146/annurev.ento.52.110405.091313] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
For nearly a half century, cockroaches have been recognized as a major cause of asthma morbidity in the urban, inner-city environment. Several cockroach-produced allergens have been identified and characterized, and a few have been produced as recombinant proteins. Recent research has moved beyond clinical, patient-based investigations to a more entomological perspective that addresses the production, physiological regulation, and developmental expression of cockroach allergens, thus providing insight into their functional biology and their relationship to current cockroach control strategies. Although successful removal of cockroach allergens from the infested environment has been difficult to accomplish with remedial sanitation, large-scale reductions in cockroach allergens below clinically relevant thresholds have recently been realized through suppression of cockroach populations. Here we review the current understanding of cockroach allergen biology and the demographics associated with human exposure and sensitization. We also critically evaluate allergen mitigation studies from an entomological perspective, highlighting disparities between successful and failed attempts to lessen the cockroach allergen burden in homes.
Collapse
Affiliation(s)
- J Chad Gore
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695-7613, USA.
| | | |
Collapse
|
39
|
Sookrung N, Chaicumpa W, Tungtrongchitr A, Vichyanond P, Bunnag C, Ramasoota P, Tongtawe P, Sakolvaree Y, Tapchaisri P. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:875-80. [PMID: 16759988 PMCID: PMC1480524 DOI: 10.1289/ehp.8650] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 01/26/2006] [Indexed: 05/10/2023]
Abstract
Periplaneta americana is the predominant cockroach (CR) species and a major source of indoor allergens in Thailand. Nevertheless, data on the nature and molecular characteristics of its allergenic components are rare. We conducted this study to identify and characterize the P. americana allergenic protein. A random heptapeptide phage display library and monoclonal antibody (MAb) specific to a the P. americana component previously shown to be an allergenic molecule were used to identify the MAb-bound mimotope and its phylogenic distribution. Two-dimensional gel electrophoresis, liquid chromatography, mass spectrometry, peptide mass fingerprinting, and BLAST search were used to identify the P. americana protein containing the MAb-specific epitope. We studied the allergenicity of the native protein using sera of CR-allergic Thai patients in immunoassays. The mimotope peptide that bound to the MAb specific to P. americana was LTPCRNK. The peptide has an 83-100% identity with proteins of Anopheles gambiae, notch homolog scalloped wings of Lucilia cuprina, delta protein of Apis mellifera; neu5Ac synthase and tyrosine phosphatase of Drosophila melanogaster, and a putative protein of Drosophila pseudoobscura. This finding implies that the mimotope-containing molecule of P. americana is a pan-insect protein. The MAb-bound protein of P. americana was shown to be arginine kinase that reacted to IgE in the sera of all of the CR-allergic Thai patients by immunoblotting, implying its high allergenicity. In conclusion, our results revealed that P. americana arginine kinase is a pan-insect protein and a major CR allergen for CR-allergic Thai patients.
Collapse
Affiliation(s)
- Nitat Sookrung
- Graduate Studies, Faculty of Allied Health Sciences, Thammasat University, Rangsit Center, Pathum-thani, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cockroaches produce several potent allergens associated with sensitization and the development of asthma. Many of these allergens have been cloned and produced as biologically active recombinant proteins. Three-dimensional structure and molecular modeling, in addition to studies on the biological functions of these proteins in the cockroach, have provided new insights into the ability of these allergens to cause immunoglobulin E antibody responses. Recent studies have pointed to a potential role of recombinant cockroach allergens for diagnosis and the development of novel therapeutic strategies that may benefit cockroach-allergic patients.
Collapse
Affiliation(s)
- L Karla Arruda
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto - USP, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
41
|
Ock MS, Kim BJ, Kim SM, Byun KH. Cloning and expression of trypsin-encoding cDNA from Blattella germanica and its possibility as an allergen. THE KOREAN JOURNAL OF PARASITOLOGY 2005; 43:101-10. [PMID: 16192751 PMCID: PMC2712009 DOI: 10.3347/kjp.2005.43.3.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, the trypsin gene (bgtryp-1) from the German cockroach, Blattella germanica, was cloned via the immunoscreening of patients with allergies to cockroaches. Nucleotide sequence analysis predicted an 863 bp open reading frame which encodes for 257 amino acids. The deduced amino acid sequence exhibited 42-57% homology with the serine protease from dust mites, and consisted of a conserved catalytic domain (GDSGGPLV). bgtryp-1 was determined by both Northern and Southern analysis to be a 0.9 kb, single-copy gene. SDS-PAGE and Western blotting analyses of the recombinant protein (Bgtryp-1) over-expressed in Escherichia coli revealed that the molecular mass of the expressed protein was 35 kDa, and the expressed protein was capable of reacting with the sera of cockroach allergy patients. We also discussed the possibility that trypsin excreted by the digestive system of the German cockroach not only functions as an allergen, but also may perform a vital role in the activation of PAR-2.
Collapse
Affiliation(s)
- Mee Sun Ock
- Department of Parasitology, Kosin Medical College, Busan 602-702, Korea.
| | | | | | | |
Collapse
|
42
|
Gore JC, Schal C. Expression, production and excretion of Bla g 1, a major human allergen, in relation to food intake in the German cockroach, Blattella germanica. MEDICAL AND VETERINARY ENTOMOLOGY 2005; 19:127-34. [PMID: 15958021 DOI: 10.1111/j.0269-283x.2005.00550.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The German cockroach, Blattella germanica (Linnaeus) (Dictyoptera: Blattellidae), produces several potent human allergens, one of which, Blattella germanica allergen 1 (Bla g 1), is produced in the midgut and excreted in faeces. We tested with descriptive and experimental approaches the hypothesis that Bla g 1 production is related to food intake in adult males and females of the German cockroach. Bla g 1 mRNA expression in the female midgut (assayed by real time quantitative polymerase chain reaction), her Bla g 1 content (assayed by enzyme-linked immunosorbent assay), and the female's faeces production and its Bla g 1 content tracked a cyclic pattern in relation to the gonadotrophic cycle. All four measures rose as food intake increased, declined before oviposition in relation to diminishing food intake, and remained low while the female carried an egg case for 20 days. After her first clutch of embryos hatched, the female resumed feeding, and faeces and Bla g 1 production increased concomitantly. Both Bla g 1 mRNA expression and Bla g 1 protein levels remained low in experimentally starved females. However, when starved females were allowed to feed, Bla g 1 production elevated and the gonadotrophic cycle resumed. Bla g 1 mRNA expression also increased six-fold in response to feeding compared to starved females. By contrast, there were no apparent cycles in the pattern of Bla g 1 production in males, reflecting their low and non-cyclic food intake. Our results therefore demonstrate that Bla g 1 production in B. germanica is modulated in relation to food intake.
Collapse
Affiliation(s)
- J Chad Gore
- Department of Entomology and W. M. Keck Center for Behavioural Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
43
|
Gore JC, Schal C. Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:953-960. [PMID: 15535627 DOI: 10.1603/0022-2585-41.5.953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exposure and sensitization to cockroach allergens is an important risk factor for allergic disease in humans. Despite a recent burgeoning of clinical and socioeconomic studies regarding environmental pervasiveness and human exposure to cockroach allergens, little is known about the basic biology of these proteins. The purpose of this study was to ascertain gene expression patterns and the tissue distribution of Blattella germanica allergen 1 (Bla g 1), a perennial indoor environmental allergen, thought to be involved in digestion in cockroaches. We also investigated the relative potential contribution of different life stages of the German cockroach to environmental Bla g 1. Enzyme-linked immunosorbent assay was used to quantify the Bla g 1 contents of feces and various anatomical tissues, and Northern blot analysis was used to elucidate tissue-specific expression of Bla g 1. Results showed that the Bla g 1 protein is most prevalent in the midgut, and the Bla g 1 gene is exclusively expressed by midgut cells. Although Bla g 1 is produced by both sexes and all life stages of the German cockroach, adult females produce and excrete significantly more Bla g 1 in their feces than males or nymphs, even when corrected for body mass or mass of voided feces. Our results show that the concentration of Bla g 1 in feces of adult females is 6- to 7- and 30-fold higher than in adult males and nymphs, respectively, probably because females process more food than other life stages of the German cockroach.
Collapse
Affiliation(s)
- J Chad Gore
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | | |
Collapse
|
44
|
Sarinho E, Schor D, Veloso MA, Rizzo JA. There are more asthmatics in homes with high cockroach infestation. Braz J Med Biol Res 2004; 37:503-10. [PMID: 15064813 DOI: 10.1590/s0100-879x2004000400007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although asthma has been commonly associated with sensitivity to cockroaches, a clear causal relationship between asthma, allergy to cockroaches and exposure levels has not been extensively investigated. The objective of the present study was to determine whether asthma occurs more frequently in children living in homes with high cockroach infestation. The intensity of household infestation was assessed by the number of dead insects after professional pesticide application. Children living in these houses in the metropolitan area of Recife, PE, were diagnosed as having asthma by means of a questionnaire based on the ISAAC study. All children had physician-diagnosed asthma and at least one acute exacerbation in the past year. Children of both sexes aged 4 to 12 years who had been living in the households for more than 2 years participated in this transverse study and had a good socioeconomic status. In the 172 houses studied, 79 children were considered to have been exposed to cockroaches and 93 not to have been exposed. Children living in residences with more than 5 dead cockroaches after pesticide application were considered to be at high infestation exposure. Asthma was diagnosed by the questionnaire in 31.6% (25/79) of the exposed group and in 11.8% (11/93) of the non-exposed group (P = 0.001), with a prevalence ratio of 3.45 (95%CI, 1.48-8.20). The present results indicate that exposure to cockroaches was significantly associated with asthma among the children studied and can be considered a risk factor for the disease. Blattella germanica and Periplaneta americana were the species found in 96% of the infested houses.
Collapse
Affiliation(s)
- E Sarinho
- Centro de Pesquisas em Alergia e Imunologia Clínica em Pediatria, Faculdade de Medicina, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | | | | |
Collapse
|
45
|
Abstract
The ubiquitous existence of cockroaches and the large-scale domestic infestation seen in inner cities make cockroach proteins a significant indoor allergen and a risk factor for asthma among inner-city residents. Studies have shown that early exposure to high levels of allergen may lead to the development of asthma in individuals with a genetic predisposition to asthma. Although field trials at cockroach abatement do not yield promising results, integrated pest management still remains the best control strategy. In highly susceptible or symptomatic patients, allergen-specific immunotherapy may be beneficial, although data are limited. As molecular techniques improve and recombinant allergens are developed, a more novel form of T-cell-specific immunotherapy may prove to be efficacious without the anaphylactic side effects seen with traditional allergy vaccines.
Collapse
Affiliation(s)
- Rohit K Katial
- Division of Allergy and Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
46
|
|
47
|
Stelmach I, Jerzynska J, Stelmach W, Majak P, Chew G, Gorski P, Kuna P. Cockroach allergy and exposure to cockroach allergen in Polish children with asthma. Allergy 2002; 57:701-5. [PMID: 12121188 DOI: 10.1034/j.1398-9995.2002.23561.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Asthma morbidity increases every year, especially among children, and exposure to high levels of indoor allergens is a very important factor. We evaluated the prevalence and exposure to cockroach (CR) allergen in asthmatic children in Poland, and also tested the hypothesis that asthma with allergy to CR is more severe than with allergy to other antigens. METHODS One hundred and sixty children with asthma were examined, had skin prick tests (SPT) with common and CR allergens, underwent spirometry, and provocation tests to histamine. Children with positive SPT to CR had measured specific IgE levels to this antigen and Bla g 2 concentrations were measured in their homes. RESULTS The most common allergen, was dust mite 51.3%, followed by pollen 48.8% and CR allergen 24.3%. In children with CR sensitivity, 13% had mild asthma, 26% moderate and 61% had severe asthma. Their levels for forced expiratory volume in one second (FEV1), and the provocative concentration of histamine that caused a 20% fall in FEV1 (PC20), were statistically lower than in the group of children with other than CR allergies. Bla g 2 antigen was detected in 55.13% samples. The highest levels of Bla g 2 were found in old houses, without central heating, and in houses with lower income. CONCLUSION In Polish children, CR allergen is a very important factor of sensitivity. Concentrations of Bla g 2 in homes are higher than previously reported in other European countries, and are strongly related to the houses' characteristics. Also, children with CR hypersensitivity have severe asthma more often than children with other allergies.
Collapse
Affiliation(s)
- I Stelmach
- Department of Pediatrics and Allergy, M Curie Hospital, Zgierz, Poland
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Many species of arthropods are the sources of potent allergens that sensitize and induce IgE-mediated allergic reactions in humans. Most of these arthropod allergens are proteins, and the allergic response mechanism to these allergens is the same as it is for allergens from other sources such as plant pollens, molds, and foods. Aside from ingestion of crustaceans (shrimp, lobster), among arthropods, humans have the greatest contact with insects and mites, and as a result allergies to these two groups of arthropods have been the most frequently reported. Because of the large number of people affected by allergic reactions to stinging insects, cockroaches, and dust mites, many allergens of these organisms have been extensively studied, purified, and immunobiochemically characterized and for some recombinant allergens, produced. Cocktails of these recombinant allergens have the potential for use in diagnosis and immunotherapy. In this chapter, we review the insects and mites that induce allergic reactions. Where the information exists, the immunobiochemical characterization of the allergens and the frequency of sensitivity or clinical reactivity in the human population are also reviewed. As background, the beginning of this review includes sections that define allergens, explain the allergic reaction mechanism, and describe the methods for naming allergens.
Collapse
Affiliation(s)
- Larry G Arlian
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
49
|
Sousa CA, Halliwell RE. The ACVD task force on canine atopic dermatitis (XI): the relationship between arthropod hypersensitivity and atopic dermatitis in the dog. Vet Immunol Immunopathol 2001; 81:233-7. [PMID: 11553385 DOI: 10.1016/s0165-2427(01)00344-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The relationship between arthropod allergen hypersensitivity and the development of canine atopic dermatitis (AD) is unclear. It has been shown that dogs with AD are more likely to exhibit positive intradermal reactivity to flea allergens than non-pruritic dogs from the same flea-endemic geographic region. Also, dogs in a flea endemic region are four times more likely to suffer from flea allergy dermatitis (FAD) and AD than from FAD alone. These results provide indirect evidence to support the hypothesis that, in the canine species, atopy predisposes to the development of hypersensitivity to flea allergens and eventually to FAD. A causal relationship between insects other than fleas and canine AD has not been identified with certainty.
Collapse
Affiliation(s)
- C A Sousa
- Animal Dermatology Clinic, 1413, 60th Street, Sacramento, CA 95819, USA.
| | | |
Collapse
|
50
|
Arruda LK, Ferriani VP, Vailes LD, Pomés A, Chapman MD. Cockroach allergens: environmental distribution and relationship to disease. Curr Allergy Asthma Rep 2001; 1:466-73. [PMID: 11892074 DOI: 10.1007/s11882-001-0035-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cockroach allergy has been recognized as an important cause of asthma. Exposure to high levels of cockroach allergens in the home is a major risk factor for symptoms in sensitized individuals. Previously identified allergens from Blatella germanica and Periplaneta americana include Bla g 2 (inactive aspartic proteinase), Bla g 4 (calycin), Bla g 5 (glutathione-S-transferase), Bla g 6 (troponin), the Group 1 cross-reactive allergens Bla g 1 and Per a 1, Per a 3 (arylphorin), and Per a 7 (tropomyosin). The primary site of cockroach allergen accumulation is the kitchen. However, lower levels of allergen can be found in bedding, on the bedroom floor, and in sofa dust. Strategies for decreasing exposure to cockroach have been investigated. The results suggest that a sustained decrease in cockroach allergen levels is difficult to accomplish, even after successful extermination of cockroach populations. The use of recombinant cockroach allergens may lead to the development of new approaches to asthma treatment in the future.
Collapse
Affiliation(s)
- L K Arruda
- Departmento Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|